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1 Introduction

The relationship between regulation, productivity, technology adoption, and innovation is at the
heart of a long-standing debate in economics. While regulation is often justified as a means of
mitigating negative externalities – such as environmental damages – it can also impose constraints
on firms and producers, potentially hindering productivity growth and discouraging innovation
(Aghion et al., 2023). However, if regulation provides economic incentives for innovation by cre-
ating new market opportunities, either by banning existing products or by precisely defining new
markets, it can act as a catalyst for technological progress by increasing the expected returns on
innovation, a central mechanism in endogenous growth models (Aghion and Howitt, 1992; Romer,
1990), or facilitate the adoption of new technologies.

This debate has gained renewed urgency with the rapid advancement of artificial intelligence
(AI). As evidence of Europe’s historical productivity slowdown continues to accumulate, partic-
ularly due to its declining position in the global race for innovation (Fuest et al., 2024; Draghi,
2024), the continent faces a paradoxical situation. Despite lacking a dominant player in the global
AI ecosystem, Europe was the first to regulate the technology with the adoption of the AI Act
in December 2023. While many view this regulatory move as a barrier to innovation, potentially
exacerbating Europe’s competitive disadvantage, others argue that it provides an opportunity by es-
tablishing a clear regulatory framework, which could guide investment choices in R&D and foster
innovation. Similar tensions have arisen during past technological revolutions, from calls to reg-
ulate industrial machinery due to fears of technological unemployment (Keynes, 1930; Leontief,
1952) to the restrictions on digital markets in recent decades. These historical parallels underscore
a fundamental question: under what conditions does regulation stimulate or hinder innovation, and
how do firms respond in terms of productivity and technology adoption?

This paper contributes to this discussion by examining the impact of regulatory interventions
on productivity and innovation, using agricultural firms as a case study. This tension is particularly
relevant in agriculture, where regulations on key inputs such as pesticides, fertilizers, and geneti-
cally modified crops can have profound effects on productivity and technological change.
The agricultural sector has long been a cornerstone of Europe’s economic and political landscape.
The Common Agricultural Policy (CAP), established in 1962, was one of the founding pillars of
the European Economic Community (EEC), the predecessor of the European Union (EU). De-
signed to ensure food security, stabilize markets, and support farmers’ incomes, the CAP remains
one of the largest budgetary expenditures of the EU, accounting for approximately one-third of the
total EU budget in 2023 – amounting to e55 billion – of which France is the largest beneficiary.
Beyond its economic weight, agriculture is also deeply embedded in the political economy of re-
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form in Europe. Recent events, such as the widespread farmers’ protests across Western Europe
in early 2024, underscore the sector’s continued influence. These protests, triggered by rising pro-
duction costs and concerns over unfair competition linked to free trade agreements, highlight the
socioeconomic tensions at the heart of agricultural policy debates, particularly in France.
Richness of French agricultural data. Some recently released agricultural data in France offer
an unprecedented level of detail for studying these questions. Unlike standard firm-level datasets,
which often provide limited information on inputs, agricultural data offer far greater precision.
These datasets capture a comprehensive view of inputs – including machinery, crop types, and
chemical inputs – as well as detailed output information, such as the type and quantity of crops
sold. This richness stems from exhaustive censuses and surveys, making agricultural data an in-
valuable resource for identifying economic mechanisms that could be generalized to other sectors.
By providing a rare combination of detailed input and output data, the agricultural sector serves
as a natural laboratory for economic research on this question, offering insights that are difficult
to obtain in other industries, yet whose underlying economic mechanisms can be generalized to
broader contexts. To analyze the relationship between pesticide regulation, farm productivity, and
innovation, I construct a novel dataset by integrating farm-level balance-sheet data, the CAP Land
Parcel Register, and Field Crop Cultural Practices surveys, which offer a detailed inventory of plant
protection products used at the farm level. Additionally, I incorporate publicly available data on
pesticide authorizations to identify regulatory events.
Case Study. I first consider a typical case: the 2018 European Neonicotinoid Ban. This family of
crop protection products is crucial for sugar beet cultivation, which can account for up to 12% of
cultivated land in intensively producing counties in northern France, as nearly all sugar beet pro-
ducers rely on this category of crop protection products. This case study focuses on a product for
which no substitutes were available on the market at the time of the ban. Adopting a difference-in-
differences approach, I find that land productivity declines more sharply for farms more exposed
to the neonicotinoid ban due to their historical reliance on sugar beet cultivation. Furthermore, the
results indicate a significant shift in the production function of affected farms, consistent with the
idea that the regulation forces farm owners to reorganize their production factors in the short run.
Finally, I show that the ban negatively impacts farm labor earnings, primarily driven by a decline
in labor demand.
General Case. Next, I examine the broader impact of pesticide bans on agricultural productiv-
ity, regardless of the specific product or crop affected. By leveraging the combination of datasets
described earlier, I can identify whether a randomly selected farm experienced a pesticide ban on
a product it previously used for an economically relevant crop. Using a difference-in-differences
approach, I find that land productivity declines for farms exposed to a crop protection product

2



ban. More specifically, the decline is most pronounced when the banned product has no available
substitutes, negative but smaller in magnitude when substitutes exist but are limited, and nonex-
istent when a large number of potential substitutes are available. I then extend the analysis by
examining how farms respond to the ban based on whether they had proactively implemented mit-
igation policies primarily for economic reasons, depending on the number of available substitutes.
The findings reveal that when no substitutes are available for the banned crop protection product,
mitigation practices fail to offset or even reduce the adverse effects on productivity. However,
when substitutes exist in limited quantities, preventive mitigation policies prove highly effective
in preserving productivity. Finally, when a large number of substitute products are available, the
ban has no discernible impact on land productivity, regardless of whether farms adopted mitiga-
tion practices. These results highlight that pesticide bans have a short-term negative effect on
farm productivity under two key conditions: (i) when no substitute products are available and (ii)
when farms fail to implement preventive mitigation practices in cases where substitute products
are scarce. Conversely, regulation can yield positive effects on agricultural productivity, provided
that (i) it does not target irreplaceable products and (ii) farms have proactively adopted mitigation
measures to facilitate the transition – an outcome that may initially appear counterintuitive.
Indirect effect on innovation. Building on the insights from Schumpeterian growth models and
their predictions regarding the interplay between competition and innovation (Aghion et al., 2005),
one could anticipate a contrasting effect on innovation. In particular, when a regulatory ban targets
an agricultural product with no viable substitute, it generates strong incentives for the agrochemical
industry to develop alternative solutions. I present descriptive findings indicating that the impact
on innovation fundamentally differs from that on agricultural productivity. If a regulatory shock
affects a use for which few or no crop protection products exist, agrochemical firms typically re-
spond by accelerating innovation, leading to an increase in the number of available products for
that usage. Conversely, when regulation targets a use with a substantial number of existing crop
protection products, it results in a decline in the number of products available on the market. These
findings call for more nuanced policy recommendations. Indeed, banning pesticides with few or
no substitutes may be fully justified if the objective is to stimulate the development of new, more
environmentally friendly alternatives. However, such a strategy should be accompanied by active
support policies for farms to help them absorb the transition shock, rather than relying solely on
proactive mitigation measures in this context.
Related Literature. This paper builds on a vast literature examining the impact of technological
progress in the agricultural sector, particularly the diffusion of new technologies. This includes the
adoption of hybrid crops (Griliches, 1957) as well as the spread of agricultural machinery – most
notably tractors – and their effects on farm productivity (Gross, 2018; Chabé-Ferret and Enrich,
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2021; Manuelli and Seshadri, 2014). It also builds on research highlighting the indirect effects of
adopting new agricultural technologies, which can drive broader structural transformations in the
economy (Bustos et al., 2016). It also contributes to the literature examining the determinants of
agricultural productivity (Gollin et al., 2014a,b; Chen, 2017; Adamopoulos and Restuccia, 2022;
Moscona and Sastry, 2022; Boppart et al., 2023), particularly in documenting cross-country differ-
ences. I also contribute to the literature linking agriculture and the environment, whether through
the lens of climate change or biodiversity. Recent research has examined both how agricultural in-
novation responds to climate change (Moscona and Sastry, 2023) and the adaptation costs incurred
by the agricultural sector in response to climate shifts (Du Puy and Shrader, 2024). More broadly,
this paper aligns with the literature documenting the effects of regulation on firms’ economic per-
formance (Garicano et al., 2016; Nimier-David et al., 2023) and their innovation outcomes (Aghion
et al., 2023).
Outline. The remainder of the paper is structured as follows. Section 2 describes the data and key
variables. Section 3 presents a case study on the neonicotinoid ban. Section 4 examines the broader
impact of pesticide bans on agricultural productivity. Section 5 provides suggestive evidence on
their effects on innovation. Finally, Section 6 concludes.

2 Data

To study this question, I have assembled a wide range of data sources that have recently been made
available, allowing for the creation of a unique and novel dataset to study this question. In this
section, I present the data sources, define the sample and key variables used in the analysis, and
provide summary statistics.

2.1 Data sources

To obtain a comprehensive understanding of the relationship between pesticide regulation, farm
productivity, and innovation, I construct a novel and unique dataset. I combine exhaustive farm-
level agricultural balance-sheet data and the exhaustive Land Parcel Register with surveys on Field
Crop Cultural Practices compiling a detailed inventory of plant protection products used. Finally,
I supplement this dataset with publicly available data on plant protection products, including their
authorization status by year, to define regulatory events.

Agricultural Benefits Database (“BA”). This database covers the entire population of farms
in France’s agricultural sector from 1995 to 2023, representing approximately 220,000 farms per
year. While the Ficus-Fare database – detailing balance-sheet records for non-agricultural business
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firms – serves as the benchmark for firm-level studies in France, its counterpart in the agricultural
sector, the Agricultural Benefits Database (“BA”), provides detailed information for each farm
on total sales, balance-sheet records, total employment, total wage bill, assets by type, and spe-
cific expenditure categories. The recent availability of this database offers new perspectives for
research on these issues, as previous data sources were limited to thematic surveys, and the rel-
atively small number of farms surveyed made it difficult, if not impossible, to match data across
multiple sources. These balance-sheet data are used to construct various measures of production
(total production, crop production), productivity (land productivity, labor productivity, etc.) and
tangible assets (stock of machines) at the farm level, as well as indicators of remuneration for farm
owners and their employees.

Graphical Land Parcel Register. This database covers all French land parcels receiving Eu-
ropean subsidies from the Common Agricultural Policy (CAP) between 2015 and 2022, providing
highly detailed annual information on parcel size, the crop grown, and the identifier of the farm
cultivating the parcel. I use this information to construct precise measures of farm land use al-
location across different crop types, allowing me to analyze potential changes in the production
function following shocks such as pesticide bans.

E-Phy database. The E-Phy database provides access to detailed information on plant pro-
tection products covered by a marketing authorization (AMM) by the French Agency for Food,

Environmental and Occupational Health & Safety (ANSES). The dataset files cover approximately
15,000 authorized and withdrawn products since the 1970s. They includes the crop protection
product identifier, the date of marketing authorization, the current authorization status (approved
or banned), the potential ban date, the active substance content, as well as product uses. Product
uses cover three dimensions: the type of crop on which the product can be applied, the target of
the product (e.g., insects, fungi), and the application method (e.g., directly applied to seeds, used
as a spray). I use this information to define pesticide and active substance ban events.

Field Crop Cultural Practices Survey. The Field Crop Cultural Practices Survey is conducted
at the land parcel level for the years 2001, 2006, 2011, 2017, and 2021, covering approximately
20,000 land parcels each year. For each land parcel, the survey provides detailed information on
the crop cultivated, the plant protection products applied during cultivation, and the agricultural
practices employed (e.g., tillage). This information, in particular, allows for the identification of
farms that would be affected by a ban on a specific plant protection product or active substance.
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Farm Accountancy Data Network (FADN). The Farm Accountancy Data Network (FADN)
is a survey conducted annually in the member states of the European Union according to common
rules and principles. In France, data are available from 1968 to 2023, covering approximately
7,000 farms each year since 1988. This survey provides detailed information on farm structures
(land area, crop types, and livestock), labor (workforce size, working hours, contract type, etc.), the
sociodemographic characteristics of farm managers (age, education, gender, etc.), economic per-
formance indicators (production, intermediate consumption, etc.), and balance sheet components
(debt, land, equipment, etc.). The extensive range of information contained in this database makes
it the historical reference dataset for micro-level farm studies. However, it only covers around 2%
to 3% of all farms each year. Moreover, matching this subsample with the Field Crop Cultural

Practices Survey results in an even more limited overlap, making it difficult to study the effects of
regulatory shocks or policy changes at the farm level. I use this dataset as a secondary data source,
particularly to analyze specific farm subsamples over short periods before 2015, when information
from the Graphical Land Parcel Register is unavailable.

3 The European Neonicotinoids Ban: A typical Case Study

3.1 Institutional Context

Nicotine has been used as a potent insecticide since the 17th century due to its biocidal properties
on fruit and horticultural crops. In the 1980s, major global agrochemical companies developed
neonicotinoids, a class of neurotoxic insecticides that proved more effective than nicotine due to
their systemic action and greater molecular stability. Imidacloprid, the first neonicotinoid, was
discovered in 1985 by Bayer and introduced to the market in 1991. This class of biocides experi-
enced rapid expansion in the 1990s, quickly replacing nicotine. By the mid-2010s, neonicotinoid
pesticides had become the most widely used class of insecticides worldwide (Simon-Delso et al.,
2015), accounting for more than 25% of total global insecticide sales (Bass et al., 2015).

However, several scientific studies have highlighted the harmful effects of neonicotinoids on
pollinators and aquatic insects. In 2018, the European Food Safety Authority (EFSA) published
a report (European Food Safety Authority, 2018) based on a meta-analysis of 588 studies, con-
cluding that imidacloprid, clothianidin, and thiamethoxam – three widely used neonicotinoids –
pose a threat to bees. Following these findings, on April 27, 2018, European Union member states
agreed to a total ban on neonicotinoid insecticide use, except within closed greenhouses, with im-
plementation set for the end of 2018. France had anticipated this regulatory shift by banning the
use of neonicotinoid-based products and seeds treated with these substances as early as August
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2016, with the regulation taking effect on September 1, 2018.

Sugar beet cultivation relies heavily on neonicotinoid seed coatings, which protect the crop
from beet yellows virus, a disease transmitted by aphids. This virus causes the leaves to turn yel-
low, thicken, and become brittle (Figure 1a), leading to significant yield losses. In the most severe
cases, yield reductions can reach up to 50%, primarily due to a decrease in beet size (Figure 1b).
Moreover, there is currently no truly effective alternative to neonicotinoids for controlling aphids,
the vectors of Beet Yellows Virus in sugar beet cultivation, as noted by the French Agency for
Food, Environmental and Occupational Health & Safety (ANSES, 2018).

(a) Leaves of sugar beet infected with Beet Yellows
Virus

(b) Comparison of the size of a healthy sugar beet
(left) and a severely affected one (right) by Beet

Yellows Virus

Figure 1. Effects of Beet Yellows Virus on Sugar Beet Cultivation

Observing that several European countries had resorted to derogations under European law to
support their sugar beet farmers and the refined sugar production sector, and explicitly stating that
"the technical alternatives currently available have proven ineffective",1 the French government
proposed a law, adopted on December 14, 2020, re-authorizing the use of neonicotinoid insecti-
cides exclusively for sugar beet cultivation until 2023. In January 2023, the Court of Justice of
the European Union (CJEU) ruled to prohibit any exemptions granted by EU member states to the
ban on the marketing and use of seeds treated with plant protection products containing neonicoti-
noids. Member states that had granted such exemptions, including France, were therefore required
to immediately discontinue them.

1Press release from the French Ministry of Agriculture and Food, August 6, 2020, https://agriculture.gouv.fr/filiere-
betterave-sucre-plan-de-soutien-gouvernemental-pour-faire-face-la-crise-de-la-jaunisse
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Sugar beet is primarily cultivated in Northern Europe, including northern France, Germany, the
Netherlands, Belgium, and Poland, where the climate is most suitable. Figure 3 presents the share
of agricultural land allocated to sugar beet cultivation in 2015 by county (département in French).
The data reveal that outside the northern quarter of France, most counties cultivate very little to
almost no sugar beet. In contrast, in the northern French counties, which account for nearly the
entire top 25% of highly intensive sugar beet-producing areas, the share of land used for sugar
beet cultivation ranges between 0.39% and 12.24%. Regulations on neonicotinoids thus apply to
a specific region where sugar beet cultivation represents a significant share of local agricultural
activity.

(0.39,12.24]
(0.03,0.39]
(0.00,0.03]
[0.00,0.00]

Figure 2. Share of Agricultural Land Allocated to Sugar Beet Cultivation in 2015 (in %)

3.2 Empirical Approach

When a farm is heavily exposed to the neonicotinoid ban, how does it affect land productivity,
revenues, production methods, and employment? I now investigate this question in the farm pop-
ulation using a difference-in-differences approach.

The abrupt ban of a crucial plant protection product in a crop representing a significant share of
northern France’s cultivated land provides a valuable setting for constructing a natural experiment.
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Indeed, a substantial number of farms will be highly exposed to the neonicotinoid ban due to the
significant share of their income derived from sugar beet cultivation. However, for this statement
to hold, it is essential to first ensure that certain conditions are met.

First, there must be no concurrent shock altering farmers’ incentives to produce sugar beet or
affecting its profitability. As shown in Figure 3a, sugar beet has been the most profitable crop
per hectare among major agricultural crops in France throughout the 2000–2023 period. Its high
profitability is precisely why, as early as 1968, the European Union integrated sugar beet pro-
duction quotas into the Common Agricultural Policy (CAP). A maximum production limit was
allocated to incumbent farmers, alongside a guaranteed price, ensuring stable revenues. These pro-
duction rights could later be resold or reallocated if a farm exited the sector. However, in 2017,
the EU abolished these quotas to align the sugar sector with its broader competition framework.
One could argue that the near-simultaneous removal of production quotas and the neonicotinoid
ban could bias the estimation of the ban’s effect. This concern would be particularly relevant if
the quota removal had triggered a collapse in sugar beet prices. However, as shown in Figure
3b, while prices declined slightly between 2017 and 2018, the combination of surging global de-
mand—particularly from developing countries—and insufficient global production growth led to
a sharp increase in world sugar prices. As a result, the sale price per ton of sugar beet in 2021
exceeded its 2017 level at the time of quota abolition.2 Ultimately, the removal of quotas granted
farms greater production flexibility without discouraging sugar beet cultivation, given the prevail-
ing global market conditions.

Second, sugar beet cultivation must account for a significant share of farm income to ensure
that the shock experienced by these farms is substantial enough. As shown in Figure 3, in some
counties in northern France, the share of land used for sugar beet cultivation reaches 12%, repre-
senting a considerable portion of farm revenue.

Third, it is necessary to either identify which farms use neonicotinoids for sugar beet cultiva-
tion or, ideally, ensure that nearly all sugar beet-producing farms rely on neonicotinoids for their
crop protection. According to the Field Crop Cultural Practices Survey for the year 2017, 96% of
sugar beet-producing farms use neonicotinoids. As a first approximation, our approach will assume
that all sugar beet-producing farms use neonicotinoids. However, if some highly intensive sugar
beet farms did not use them, this would lead to an underestimation of the magnitude of the effect.
Consequently, the estimated results should be interpreted as a lower bound of the true effect.

2French Ministry of Agriculture (2024) provides a more detailed analysis of global sugar market supply and de-
mand dynamics over the study period.
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Figure 3. Evolution of Profitability per Hectare and Prices of Major Crops in France

3.3 Identification

Starting from the entire population of French farms, and given that nearly all sugar beet-producing
farms use neonicotinoids, I restrict the analysis in the baseline specification to farms that were
already producing sugar beet in 2015. This allows for a comparison between farms that, a priori,
have relatively similar production tools and infrastructure. As a robustness check, I extend the
control group to include all farms. I focus on a balanced panel of farms that are present every year
from 2013 to 2022 to ensure that the estimated effects are not driven by selection bias or farm exit.
To identify the effect of the neonicotinoid ban on agricultural productivity, I adopt a difference-
in-differences strategy, considering two groups of farms. Farms for which the land share of sugar
beet exceeds the 90th percentile (p90) three years before the ban (in 2015) – and that therefore
historically relied heavily on sugar beet production – are classified as exposed and constitute the
treatment group. Meanwhile, farms for which the land share of sugar beet is below this threshold
form the control group. In the baseline specification, the p90 threshold corresponds to 21% of a
farm’s cultivated land allocated to sugar beet.

On average, 1,560 exposed farms cultivated 24% of their land with sugar beet in 2015, whereas
14,042 non-exposed farms cultivated only 9%. The samples of exposed and non-exposed farms
are described in Table 1. Exposed farms are slightly larger, with an average cultivated land of 159
ha compared to 149 ha for non-exposed farms. They also have higher total production levels and
crop production values, suggesting that they are more reliant on crop production. However, their
net stock of machines is slightly lower. In terms of productivity, land productivity is marginally
higher for exposed farms. Exposed farms also receive slightly higher subsidies. Finally, employ-
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ment levels are nearly identical, with 1.19 full-time equivalent (FTE) workers in exposed farms
compared to 1.18 in non-exposed farms.

Exposed Non-exposed

Cultivated land (ha) 159 149

Production (ke) 348 316

Crop production (ke) 297 230

Subsidies (ke) 51 47

Net stock of machines (ke) 140 145

Land productivity (ke per ha) 2.31 2.25

Employment (FTE) 1.19 1.18

Number of farms 1,560 14,042

Table 1. Characteristics of Farms Exposed and Not Exposed to the Neonicotinoid Ban
Notes: This table presents descriptive statistics for the two groups in 2015, three years before the implementation of the Neonicotinoid Ban.

Indexing farms by i and years by t, the difference-in-differences is specified as

log Yit = α +

yn∑
t=y0

δt IntensiveBeeti,t−2017 + µi + λct + ϵit

with Yit the outcome of interest, the treatment dummy defined based on the ex-ante intensity of
sugar beet cultivation IntensiveBeetCultivationi,t−2017, farm fixed effects µi and city-by-year
fixed effects λct. The lead-lag coefficient δt gives the cumulative dynamic response of the outcome
Yit in year t, relative to the base year 2017, which marks the last year before the neonicotinoid ban.
I consider a variety of outcomes at the farm level, including total production, land productivity,
crop land productivity, wagebill, and employment.

A causal interpretation of the estimates requires the identification condition

E[IntensiveBeetCultivationi,t−2017 · ϵit|µi, λct] = 0 ∀t.

If this holds, one should expect the leads (i.e., δ̂t with t < 2017) to be statistically insignificant and
the point estimates to be close to zero. Although the lack of pre-trends is a necessary condition,
it may not be sufficient to guarantee the validity of the identification condition. Indeed, correlated
demand and supply shocks may occur simultaneously as farms face the ban. For example, one
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could argue that the liberalization of the European sugar market, coupled with the end of production
quotas, might have led to the closure of several sugar factories in the same year as the ban. This, in
turn, could have reduced demand for sugar beet, causing a simultaneous direct negative impact on
land productivity for sugar beet producers. However, data on the number of sugar factories do not
indicate such a sharp decline. Moreover, agricultural production requires multi-year crop planning
to follow crop rotation principles that ensure optimal land use. In this sense, while there is indeed
a decline in the share of land dedicated to sugar beet (Figure 5), it remains limited. This provides
reassurance that an external shock did not fundamentally alter the production methods of intensive
sugar beet producers in the year of the ban.

3.4 Main Results

Productivity. Figure 4 documents the effect on productivity. I find that land productivity declines
more sharply for farms that are more exposed to the neonicotinoid ban due to their historical re-
liance on sugar beet cultivation. Figure 4a presents the difference-in-differences estimation with
city-by-year fixed effects. The semi-elasticity of farm land productivity3 with respect to the neoni-
cotinoid ban is -0.05 after one year, reaching -0.07 after five years, with no evidence of pre-trends.
This implies that the land productivity of exposed farms decreased by 7% more than that of less
exposed farms after five years. The point estimates are precise; the 95% confidence interval rules
out a semi-elasticity above -0.04 or below -0.1 after five years. We observe that the effect is weak
and not statistically significant in the first year of the neonicotinoid ban, 2018. In France, farmers
sow sugar beet around March and harvest it around October. As a result, the majority of the crop’s
lifecycle took place before the regulation, which came into effect on September 1, 2018.4

Figure 4b examines the response of an alternative measure of land productivity: crop land pro-
ductivity, defined as the ratio between crop production revenues and total cultivated land. This
measure has the advantage of more specifically isolating yields from crop production. However,
its denominator does not distinguish between the portion of land actually used for crop cultivation
and that used as grassland for livestock for instance. This is why I use land productivity as the
main measure. The results are very similar, with a semi-elasticity of approximately -0.06 after two
years and -0.1 after five years.

Figure 4c reports the semi-elasticity of total production excluding subsidies. Once again, we
observe a negative effect on farms exposed to the ban, with a semi-elasticity of approximately

3Land productivity is defined as the ratio between total production (excluding subsidies) and total cultivated land.
4It could be argued that, since the law was enacted in France as early as 2016, farms might have foreseen the

regulation and adapted their practices accordingly. However, the lack of pre-trends alleviates this concern, as does the
fact that sugar beet remained the most financially rewarding major crop in 2016 (Figure 3a). This issue is explored in
greater detail in the next paragraph.
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-0.05 after two years and -0.06 after five years. Interestingly, the magnitude of the effect is very
similar for total production and land productivity, suggesting that it is primarily the numerator of
productivity (total production) that is impacted by the ban, rather than the denominator (total land).
Indeed, one might have expected that the sharp decline in revenue would lead farms to downsize
after a few years.

In reality, the opposite effect is observed. Figure 4d shows that total cultivated land increases
more for farms that are more exposed to the regulation. However, this growth remains modest, with
a semi-elasticity of +0.02 after five years, which is insufficient to offset the decline in production.
Furthermore, the fact that exposed farms continue to expand after the ban reinforces the causal
interpretation of the results. In fact, one might have argued that these farms were simultaneously
experiencing a negative shock, such as the abolition of production quotas in 2017, which could
have biased the estimated effects of the ban. However, their expansion instead suggests that the
regulatory shock is not correlated with a broader negative shock affecting their entire production
structure, as they continue to increase their cultivated area.
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Figure 4. Effect of the European Neonicotinoid Ban on Farm Productivity
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Production function and inputs. Figure 5 presents the effects of the regulation on the evolu-
tion of the production function. The results indicate a significant shift in the production function of
farms affected by the ban, which is consistent with the idea that the regulation forces farm owners
to reorganize their production factors in the short run. This disruption leads them to make subopti-
mal choices regarding crop selection and investments, ultimately explaining the negative effect on
productivity observed in the previous section.

Figure 5a highlights a negative effect of the ban on the land share allocated to sugar beet cultiva-
tion. This result suggests that heavily affected farms must immediately adjust their crop allocation
starting from the year of the ban. One could argue that, given the law was passed in France as
early as 2016, farms may have anticipated the regulation and adjusted their behavior in advance.
However, the absence of pre-trends in the land share allocated to sugar beet cultivation between
2015 and 2017 is reassuring in addressing this concern, as is the fact that sugar beet remained the
most profitable major crop in 2016 (Figure 3a).

Figure 5b examines the response of expenses on crop protection products and shows that farms
more severely impacted by the regulation initially increase their spending on crop protection prod-
ucts in the year following the ban. However, the difference quickly becomes indistinguishable in
subsequent years. Additionally, standard errors are large. This finding suggests that, in order to
compensate for the ban of the most effective plant protection product, exposed farms increase their
use of alternative chemical inputs in the short term, while they gradually reallocate their production
resources across different crops.

Finally, Figure 5c shows that the net stock of agricultural machinery (e.g., tractors, harvesters)
declines more sharply among more exposed farms in the medium run, with no evidence of pre-
trends. The difference between the two groups is negligible in the first two years following the
pesticide ban but then widens, with a semi-elasticity reaching -0.1 after five years. The estimates
for this variable are somewhat noisy, reflecting considerable heterogeneity between farms in both
groups. However, the magnitude of the point estimate suggests that the pesticide ban leads to a sig-
nificant reduction in investment in machinery and equipment, which in turn results in less efficient
capital-intensive production factors.
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Figure 5. Effect of the European Neonicotinoid Ban on Farm Production Function

Employment and Earnings. Figure 6 presents the estimated effects of the neonicotinoid ban
on farm labor demand and earnings. The decline in productivity and the reallocation of inputs and
production methods, as described in the previous sections, may lead to a reduction in labor demand
for highly affected farms, particularly if they are forced to downsize their production. Figure 6a
focuses on total wage bill and shows a decrease following the ban, with a semi-elasticity of -0.04
in the year of the ban, reaching -0.1 after five years. This result indicates that the regulation has
a negative impact on farm labor earnings. Finally, Figure 6b shows that this effect is primarily
driven by a decline in labor demand, with a stronger reduction in total farm employment for highly
exposed farms.
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Figure 6. Effect of the European Neonicotinoid Ban on Employment and Earnings

3.5 Robustness

I now conduct several robustness checks to assess the overall land productivity response observed
at the farm level.

First, I analyze the results using alternative thresholds to define exposure to the neonicotinoid
ban, based on the land share of sugar beet cultivation three years before the ban (in 2015). Ap-
pendix Figure A1 presents the results using different thresholds to define the investment event
(p75, p95, and p99). The semi-elasticities obtained for p75 and p95 are comparable to those in the
main specification (p90), while the p99 threshold leads to slightly more negative semi-elasticities,
around -0.13 five years after the ban.

Second, Appendix Figure A2 shows that the results remain stable when using alternative spec-
ifications with different sets of interacted local fixed effects, i.e. zipcode-by-year fixed effects
or county-by-year fixed effects. In both cases, there is no evidence of pre-trends, and the point
estimates remain nearly unchanged when considering zipcode-by-year fixed effects. When using
county-by-year fixed effects, the estimates become slightly more negative. Since zipcodes and
counties are less granular than cities, the estimates are even more precisely estimated than in the
main specification. Under the county-by-year fixed effects specification, the effect ranges between
-0.11 and -0.09 five years after the ban.
Third, Appendix Figure A3 shows that the estimates remain consistent when balancing the panel
over different time horizons.

Finally, one might argue that restricting the sample to farms that were already cultivating sugar
beet in 2015 – in both the treatment and control groups – could overestimate the negative effect
of the neonicotinoid ban. Indeed, if sugar beet production requires specific capital investments,
incumbent sugar beet producers within the control group may face higher adjustment costs than
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farms that never cultivated sugar beet and were therefore not affected by the ban at all. To address
this concern, Appendix Figure A4 extends the analysis to include all farms, regardless of whether
they cultivated sugar beet three years before the ban, before defining the treatment group. The
estimated effects remain of the same magnitude when defining exposure to the ban using either the
p95 threshold or the p99 threshold, corresponding to 16% and 24% of land allocated to ex ante

sugar beet cultivation, respectively.

Ultimately, this case study shows that regulation appears to have a swift and negative impact on
the productivity of exposed farms. However, a key characteristic of this ban is that it left economic
agents without any viable substitute to sustain productivity, which is likely to have influenced the
outcome. In the next section, we examine the general case through the lens of this insight.

4 Effect of Pesticide Bans on Farm-level Productivity: General Case

In this section, I extend the case study of the neonicotinoid ban to a broader analysis of regulations
on the adoption and use of plant protection products. I first present the empirical approach and
descriptive statistics for the general case in Section 4.1, followed by the main results on the effect
of pesticide bans on productivity in Section 4.2. Finally, I examine the counterbalancing role of
mitigation policies in offsetting the negative effects of pesticide bans on farm-level productivity in
Section 4.3.

4.1 Empirical approach

Section 3 focused on the ban of a single pesticide family – neonicotinoids – on a single crop –
sugar beet. This case study specifically focused on a product with no available substitutes on the
market, which, intuitively, may have an impact on the estimated effects. This section considers
the general case and raises the following question: what are the general effects of pesticide bans
on agricultural productivity? To ensure a homogeneous sample of farms, the analysis is restricted
to major field crops, excluding horticulture, viticulture, and greenhouse farming. This restriction
allows for the study of a farm dataset with relatively uniform land use, covering the majority of the
French territory.

The main challenge is the absence of a comprehensive database in France tracking farm-level
use of plant protection products across crops. In the case of neonicotinoid use on sugar beet, I was
able to analyze the entire farm population, as nearly all producers relied on these products, mak-
ing the assumption of widespread neonicotinoid use valid. To more generally document the effect
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of pesticide bans on farm productivity, I rely on the Field Crop Cultural Practices Survey, which
covered approximately 20,000 land parcels in 2017. This dataset provides detailed information on
the crop cultivated, all crop protection products used, and the identifier of the farm managing the
field. To identify exposure to pesticide bans for each farm, I match these data with the Graphical
Land Parcel Register, which covers all French land parcels receiving European subsidies from the
Common Agricultural Policy (CAP). This dataset provides information on parcel size, the crop
grown, and the identifier of the farm cultivating the parcel. This matching process allows me to
focus on a sample of farms engaged in intensive cultivation of the surveyed crop two years before
the survey (in 2015). Specifically, I define intensive cultivation as meeting two conditions. First,
the land share of the surveyed crop in the given field must exceed the national average share allo-
cated to this crop by other French farms, conditional on these farms cultivating the crop. Second,
the crop must represent at least 10% of the farm’s total cultivated land. These conditions ensure
that the surveyed crop has sufficient economic weight to make the information provided in the
survey – the use of a specific plant protection product – economically relevant for the focal farm.
The first condition ensures that the surveyed farm is highly intensive in the production of the target
crop, while the second condition excludes cases where the surveyed crop represents only a minor
share of the total land use among all French farms cultivating it, which could otherwise make the
first condition insufficient to establish economic relevance. This approach relies on the underlying
assumption that a farm growing a given crop applies the same plant protection products across all
its fields for that crop.

Using the E-Phy database, which provides detailed information on the market authorization of
plant protection products, I identify farms in the sample exposed to a pesticide ban if they used,
in 2017, a product whose use on the surveyed crop was prohibited between 2017 and 2018. This
approach results in a sample of 863 farms exposed to a pesticide ban on a crop that is economi-
cally relevant to them, and 2,304 farms that were not exposed to such a ban on any economically
relevant crop. The samples of exposed and non-exposed farms are described in Table 2. Exposed
farms are larger, with an average cultivated land of 170 ha, compared to 153 ha for non-exposed
farms. They also have higher total production and crop production, suggesting that they are more
reliant on crop production. Exposed farms receive slightly higher subsidies and have a larger net
stock of machines, indicating greater capital intensity. In terms of productivity, land productivity is
slightly higher for exposed farms. Employment levels are also marginally higher in exposed farms,
with an average of 1.18 full-time equivalent (FTE) workers, compared to 1.11 FTE in non-exposed
farms. Finally, although the sample is smaller and, a priori, quite different from the one analyzed
in Section 3 and the case of the neonicotinoid ban, the characteristics of farms exposed and not
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exposed are actually similar between the case study and the general case.

Exposed Non-exposed

Cultivated land (ha) 170 153

Production (ke) 332 289

Crop production (ke) 241 167

Subsidies (ke) 52 46

Net stock of machines (ke) 168 146

Land productivity (ke per ha) 2.19 2.04

Employment (FTE) 1.18 1.11

Number of farms 863 2,304

Table 2. Characteristics of Farms Exposed and Not Exposed to a Pesticide Ban
Notes: This table presents descriptive statistics for the two groups in 2015, two years before the year of the studied pesticide ban.

I adopt a difference-in-differences empirical approach similar to that used in Section 3.3. In-
dexing farms by i and years by t, the difference-in-differences is specified as

log Yit = α +

yn∑
t=y0

δt ExposedBani,t−2016 + µi + λct + ϵit

with Yit the outcome of interest, the treatment dummy defined based on the exposure to the ban of a
plant protection product used for an economically important crop for the farm ExposedBani,t−2016.
The specification includes farm fixed effects µi and county-by-year fixed effects λct. The lead-lag
coefficient δt captures the cumulative dynamic response of the outcome Yit in year t, relative to the
base year 2016, which marks the last year before the regulation. In particular, I examine the effects
on land productivity at the farm level.

A causal interpretation of the estimates requires the identification condition

E[ExposedBani,t−2016 · ϵit|µi, λct] = 0 ∀t.

If this holds, one should expect the leads (i.e., δ̂t with t < 2016) to be statistically insignificant and
the point estimates to be close to zero. Although the lack of pre-trends is a necessary condition, it
may not be sufficient to guarantee the validity of the identification condition. Indeed, simultaneous
demand and supply shocks may coincide with the implementation of a pesticide ban, potentially
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confounding its effects.

4.2 Results

Average effect on productivity. Figure 7 documents the effect on productivity. I find that land
productivity declines for farms exposed to a crop protection product ban. The semi-elasticity of
farm land productivity with respect to the ban is statistically significant after five years and reaches
-0.03, with no evidence of pre-trends. This implies that the land productivity of exposed farms
decreased by 3% more than that of unexposed farms after five years. The standard errors are rela-
tively large compared to the point estimates, making the coefficients only marginally significant at
the 95% confidence interval. To my knowledge, this result is novel within the economic literature,
as it is the first time that a negative effect of a crop protection product ban on farm productivity is
highlighted using a systematic approach and a large sample.
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Figure 7. Effects of Pesticide Bans on Farm-Level Productivity

Heterogeneity by degre of substitution. For each plant protection product, the E-Phy database
provides highly detailed information on its uses, covering three dimensions: the type of crop on
which the product can be applied (e.g. wheat, barley), the target of the product (e.g., insects,
fungi), and the application method (e.g., directly applied to seeds, used as a spray). Using this
data, I construct a detailed annual database that records the number of crop protection products
available for each specific use. This allows me to determine, for each crop protection product used
on a given crop, the number of potential substitutes available on the market. I use this informa-
tion to document the heterogeneity of effects based on the number of substitutes available for the
banned crop protection product use, keeping the same control group of farms not exposed to the
ban but differentiating the treatment group as follows: (i) Farms where all banned plant protection
products have no substitutes; (ii) Farms where all banned plant protection products have between 1
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and the median number of substitutes (52); (iii) Farms where all banned plant protection products
have more than the median number of substitutes.

Figure 8 presents the difference-in-differences estimation for each of the three treated groups,
which include 139, 387, and 266 farms, respectively. In all three cases, there is no evidence of
pre-trends. Figure 8a presents the results for farms exposed to the ban where the banned plant
protection products had no substitutes. For these farms, land productivity declines more sharply
from the second year after the ban, and the effect increases in magnitude over time, reaching a
semi-elasticity of -0.1 five years after the ban. This pattern and order of magnitude are comparable
to those observed in the case of the neonicotinoid ban on sugar beet cultivation, as shown in Figure
4a. This similarity is expected, as the neonicotinoid ban represents a typical case of prohibiting
a crop protection product with no available substitutes. Figure 8b presents the results for farms
exposed to the ban with a positive number of potential substitutes, but below the median. In this
case, a negative effect on productivity is observed again, but with a semi-elasticity of -0.05 five
years after the ban, which is smaller in magnitude than in the case where no substitutes are avail-
able. Finally, Figure 8c considers the case of farms exposed to the ban with a number of potential
substitutes above the median. Here, a well-estimated null effect is observed.

These results indicate that the slightly negative average effect presented in Figure 7 actually
conceals substantial heterogeneity depending on the degree of substitutability of the banned prod-
ucts. While this finding may seem intuitive, it provides a basis for policy recommendations aimed
at designing regulations that minimize productivity losses in agriculture. Specifically, for compara-
ble environmental and biodiversity risks, the degree of substitutability of crop protection products
should be considered to mitigate the adverse effects of bans.

-.2
5

-.2
-.1

5
-.1

-.0
5

0
.0

5
.1

.1
5

Es
tim

at
ed

 S
em

i-E
la

st
ic

ity

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Land Productivity

(a) No substitute available

-.2
5

-.2
-.1

5
-.1

-.0
5

0
.0

5
.1

.1
5

Es
tim

at
ed

 S
em

i-E
la

st
ic

ity

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Land Productivity

(b) Between 1 and 52 substitutes
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(c) More than 53 substitutes

Figure 8. Effects of Pesticide Bans on Farm-Level Land Productivity - By Number of Substitutes
Available

Robustness. I now perform several robustness checks to evaluate the farm-level land produc-
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tivity response based on the degree of substitution.
First, Appendix Figure A5 shows that the results regarding the average effect on land produc-

tivity remain consistent even if I relax the condition that the surveyed crop must represent at least
10% of the farm’s total cultivated land.

Second, Appendix Figure A6 presents the results using an alternative definition of land produc-
tivity, where the denominator is the total cultivated land declared under the Common Agricultural
Policy (CAP) instead of the total land reported in balance-sheet data. This alternative definition
would actually be my preferred measure, but the variable is only available from 2015 onward,
preventing an extensive pre-trend analysis. The estimates, however, remain very similar to those
obtained in the baseline specification.

Third, Appendix Figure A7 presents the results using crop production revenues as the numera-
tor instead of total revenues (excluding subsidies). Again, the results follow a similar pattern, with
slightly more negative effects for farms without available substitutes or with a limited number of
substitutes. In contrast, we observe a slightly positive but noisy effect for farms with numerous
substitution possibilities.

4.3 Mitigation Practices and the Reduction of Adverse Effects on Productivity

Agricultural production is inherently exposed to multiple sources of uncertainty, including cli-
mate variability, soil degradation, pest outbreaks, and evolving regulatory frameworks. When
farmers encounter abrupt changes, the associated adaptation costs can be substantial, encompass-
ing yield losses, increased labor demands, investments in alternative methods, and learning costs
for new practices. Theoretically, mitigation practices could play a crucial role in reducing these
adaptation costs and enhancing resilience in response to such shocks. In the specific context of
pesticide bans, mitigation measures can help limit productivity losses and maintain economic vi-
ability. For instance, crop rotation and biological pest control can reduce pest pressure naturally,
thereby decreasing dependency on chemical solutions. Similarly, precision spraying technologies
and resistant crop varieties enable farmers to optimize input use while complying with regulatory
constraints. Mechanical weeding, through more frequent interventions, can also serve as an effec-
tive alternative pest control strategy. This section aims to examine the extent to which pre-existing
mitigation practices implemented by farms help mitigate –or even offset – the effects of the shock.

We can examine this question in detail because the Field Crop Cultural Practices Survey in-
cludes a specific section on the implementation of mitigation policies aimed at reducing the use of
plant protection products. This section provides information on the types of techniques employed
and the reasons for adopting these mitigation practices. The survey identifies three possible mo-
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tivations: (i) Health reasons, aimed at reducing risks for users of crop protection products or for
consumers; (ii) Environmental reasons, focused on protecting the environment and biodiversity
(e.g., preventing water pollution); and (iii) Economic reasons, related to reducing production costs
by minimizing the use of expensive crop protection products. Additionally, the questionnaire asks
respondents to indicate the primary reason for adopting mitigation practices.

We have previously observed that land productivity declines for farms exposed to a crop pro-
tection product ban. Therefore, we define the implementation of mitigation practices to counteract
productivity loss based on two conditions. First, the primary motivation for reducing dependence
on crop protection products is economic. Second, at least one of the other two motivations (health
or environmental concerns) is explicitly mentioned as not relevant for this decision. This second
condition ensures that we do not include farms equally motivated by all three factors but instead
focus specifically on those pursuing an economic objective. Compared to the specification pre-
sented in Section 4.1, the control group remains unchanged, while the treatment group is divided
into two subgroups: farms implementing mitigation policies primarily for economic reasons and
those either not adopting such policies or doing so primarily for non-economic reasons. A separate
coefficient is estimated for each subgroup. More precisely, Indexing farms by i and years by t, the
specification is as follows:

log Yit = α +

yn∑
t=y0

δM,t Mitigationi,t−2016 +

yn∑
t=y0

δNM,t NoMitigationi,t−2016 + µi + λct + ϵit

with Yit the outcome of interest, a first dummy variable indicating farms exposed to a pesticide ban
in 2017 or 2018 that proactively implemented mitigation practices to limit its impact on produc-
tivity Mitigationi,t−2016, a second dummy variable indicating farms exposed to a pesticide ban in
2017 or 2018 that did not implement mitigation practices in advance NoMitigationi,t−2016. As
before, the specification includes farm fixed effects µi and county-by-year fixed effects λct. The
lead-lag coefficients δM,t and δNM,t capture the cumulative dynamic response of the outcome Yit

in year t for mitigated and non-mitigated farms, respectively, relative to the last year before the
regulation. The advantage of running a single regression is that both groups share the same fixed
effects, allowing for a direct comparison of the point estimates. For the baseline specification
considering all pesticide bans, 118 farms implemented preventive mitigation practices, while 745
farms did not.
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Figure 9. mitigation practices et atténuaiton des effects of Pesticide Bans

Figure 9 presents the results on productivity. Both subgroups show no evidence of pre-trends.
Farms exposed to a pesticide ban without having proactively implemented mitigation practices
experience a decline in productivity, whereas those that adopted mitigation measures in advance
show no significant effect—or a slightly positive one, if any. However, the standard errors overlap,
making it impossible to confirm with certainty that the effects differ significantly by mitigation
practices at the 95% confidence level.

To further investigate the extent to which the implementation of mitigation practices helps limit
the adverse effects on productivity, I examine the heterogeneity of the effect based on the degree
of substitution of the banned crop protection product. Figure 10 presents the estimates for each of
the three cases: (i) No substitute available; (ii) Between 1 and the median number of substitutes
(52); (iii) More than the median number of substitutes.

Figure 10a highlights that when no substitute is available for the banned crop protection prod-
uct, mitigation practices do not reduce the adverse effects on productivity. The decline in produc-
tivity is indistinguishable between the two groups, regardless of whether mitigation practices were
implemented to limit economic losses.
Figure 10b shows that when substitutes are available on the market but in limited quantity (below
the median), preventive mitigation policies fully demonstrate their potential. While the group of
farms exposed to the ban without implementing mitigation policies (in red) experiences a 7% de-
cline in productivity relative to the control group five years after the regulation, farms that adopted
proactive mitigation strategies (in blue) instead see their land productivity increase by 11% com-
pared to the control group over the same period. The standard errors of the point estimates for
the two subgroups do not overlap, confirming that the effects are statistically different at the 95%
confidence level.
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Finally, Figure 10c shows that when a large number of crop protection product substitutes are
available – i.e., when the number of potential substitutes is above the median – the ban has no
effect on land productivity, regardless of whether farms implemented mitigation policies or not.

Overall, these results highlight that mitigation policies can be effective in counteracting the
adverse effects of regulation on productivity, but only under the essential condition that substitute
products are available. When this condition is met, mitigation policies can not only offset the neg-
ative impact but may even lead to positive effects following the regulation. This finding conveys
a nuanced policy message: regulation can have beneficial effects on agricultural productivity pro-
vided that (i) it does not target irreplaceable products and (ii) farms have proactively implemented
mitigation practices to facilitate the transition. However, when regulation targets crop protection
products with no available substitutes, mitigation practices become entirely ineffective, and the
ban systematically results in productivity losses for the agricultural sector.
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(b) Between 1 and 52 substitutes
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(c) More than 53 substitutes

Figure 10. Effects of Pesticide Bans on Farm-Level Land Productivity - By Number of Substitutes
Available
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5 Effect of Pesticide Bans on Innovation

Section 4 highlighted that pesticide bans have a short-term negative effect on farm productivity
under two conditions: (i) when no substitute products are available and (ii) when farms do not
implement preventive mitigation practices in situations where the number of substitute products is
limited.

Following the intuition of Schumpeterian growth models and their predictions on the relation-
ship between competition and innovation (Aghion et al., 2005), one might expect an opposite effect
on innovation. Specifically, banning a product with no available substitute for an agricultural use
creates strong incentives for the agrochemical sector to develop alternatives. Indeed, firms that
successfully innovate in this space could gain a temporary monopoly or, at the very least, operate
in a market with limited competition for several years, leading to higher profits. From a Schum-
peterian perspective, it is precisely the prospect of these high rents that can drive firms to develop
new substitutes that are both effective and environmentally sustainable, ensuring approval from
regulatory authorities.

Given the available data, tracking the adoption of replacement products or newly developed
alternatives by farms affected by a pesticide ban is challenging. The Field Crop Cultural Practices
Survey randomly selects a sample of fields in each wave, making it impossible to follow individual
farms over time. as a result, I am unable to analyze whether the ban of a crop protection product
in the 2000s led to the adoption of a substitute several years later. However, the E-Phy database
provides descriptive insights that help document this intuition. To achieve this, I consider all usage
types recorded in the database, which cover three dimensions: the type of crop on which the prod-
uct can be applied, the target of the product (e.g., insects, fungi), and the application method. For
each usage type, I count the number of available crop protection products each year. Then, over
the period 1990-2022, I identify the year in which the relative number of banned products was the
most significant, indicating a regulatory shock for this use. At that point, the number of alternative
products ranges between 0 and 170, with a highly skewed distribution. I then classify these cases
into three categories: (i) Usages for which the number of available products was below the median
(which is 2) at the time of the decline; (ii) Usages where this number is above the median but below
the 75th percentile (set at 7) at the time of the decline; (iii) Usages where the number of available
products exceeds p75 at the time of the decline.

Figure 11 presents the evolution of the average number of crop protection products available
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on the market for a given usage, with year 0 representing the year following the regulatory shock,
when the relative decline in the number of authorized products was the most significant. Figure
11a shows that when the number of available products the year after the regulatory shock is zero
or close to zero, agrochemical companies immediately innovate by developing substitutes, leading
to an average increase of 0.6 additional products per usage after 10 years. Figure 11b indicates
that when the number of available products the year after the regulatory shock ranges between 2
and 7, agrochemical companies do not innovate in the very short term due to lack of incentives.
As a result, the number of products on the market continues to decline for five years, reaching
an average decrease of 0.6 products per usage. Then, the incentive to develop substitutes begins
to emerge, and the number of products for this usage recovers, eventually surpassing the initial
level, reaching 0.6 additional products per usage after 10 years. Finally, Figure 11c examines the
case where the number of available products the year after the regulatory shock exceeds 7. In this
scenario, since a significant number of alternative products remain available, market competition
remains high, reducing incentives for innovation. Consequently, subsequent regulatory measures
lead to a continued decline in the number of available products for this usage, resulting in an aver-
age decrease of 9 products per usage 10 years after the regulatory shock.
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Figure 11. Effect of Pesticide Bans on Innovation

These descriptive insights suggest that the effect on innovation is the opposite of that on agri-
cultural productivity, which may lead us to reconsider the policy recommendations presented in
Section 4. Indeed, in light of this evidence, it may now be fully justified to ban pesticides with
few or no substitutes in order to stimulate the development of new, more environmentally friendly
molecules for these uses. However, such a strategy should be accompanied by active support
policies for farms to help them absorb the transition shock, rather than relying on the effects of
proactive mitigation policies in this case.
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A natural next step in this analysis would be to leverage a patent database to track how patent
filings for active molecules targeting specific uses respond to these regulatory incentives. It would
then be valuable to conduct a welfare analysis, weighing the short-term adverse effects on produc-
tivity against the medium-term positive effects on innovation, in order to design an optimal policy
framework.

6 Conclusion

In this paper, I investigate a core economic question: the conditions under which regulation fosters
or impedes innovation and the ways in which firms adjust in terms of productivity and technol-
ogy adoption. On one hand, regulation can impose constraints on firms and producers, potentially
slowing productivity growth. On the other hand, regulation can create economic incentives for
innovation by opening new market opportunities, leading to positive long-term effects on sectoral
productivity.

I investigate this question in the context of French agriculture. To do so, I construct a novel
and unique farm-level dataset, leveraging the richness of recently available annual administrative
records. These comprehensive datasets mark a turning point in agricultural research, offering an
unprecedented opportunity to study these issues at a granular level and identify the microeconomic
mechanisms at play.

I begin by analyzing a typical case – the 2018 European Neonicotinoid Ban – using a difference-
in-differences approach. I show that when regulation removes an essential input without viable
alternatives, it leads to an immediate and sharp productivity decline, which intensifies over time. I
then extend the analysis to pesticide bans more broadly, taking advantage of the generality of the
data. The findings are consistent with the case study: When no substitutes are available, abrupt reg-
ulation results in a significant productivity decline, which mitigation policies cannot offset; When
a limited number of substitutes exist, the impact of regulation depends on farm-level adaptation
strategies. If farms fail to implement proactive mitigation practices, the regulatory shock has a
negative effect on productivity. However, when farms adopt mitigation practices in advance, the
effect of regulation is positive, highlighting the role of strategic adaptation in mitigating economic
costs.

While these findings suggest that regulation should be implemented only when viable substi-
tutes exist for the regulated inputs, I also provide preliminary and suggestive evidence on its effects
on innovation, offering a different perspective. When a regulatory ban targets an input with no vi-
able substitute, it creates strong incentives for agrochemical firms to develop alternative solutions,
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leading to the emergence of new products that serve the same purpose while complying with the
new regulation. This calls for even more nuanced policy recommendations – suggesting that reg-
ulation can be strategically designed to stimulate innovation by targeting inputs with no existing
substitutes. However, such policies should be accompanied by active support measures for farms
to help them absorb the transition shock, rather than relying solely on encouraging mitigation prac-
tices.

These findings do not account for the adverse effects of crop protection products on the envi-
ronment and biodiversity, which, in turn, can indirectly impact farm productivity – for instance,
through climate change or the decline of pollinators. The objective of this paper is not to downplay
these crucial externalities affecting global welfare but rather to document the impact of regulation
on productivity and innovation.

That said, these findings do not account for the adverse effects of crop protection products on
the environment and biodiversity, qui affecte indirectly en retour la productivité des fermes, via
le changement climatique ou le manque de pollinisateur par exemple. The objective of this paper
is not to downplay these crucial externalities affecting global welfare but rather to document the
impact of regulation on productivity and innovation.

A natural extension of these results would be to conduct a welfare analysis, balancing (i) the
short-term negative effects of regulation on productivity with (ii) its long-term positive effects on
innovation, driven by the economic incentives that regulation creates. Such an approach would
provide a comprehensive assessment of the overall impact on well-being.

30



References

Adamopoulos, Tasso and Diego Restuccia, “Geography and agricultural productivity: Cross-
country evidence from micro plot-level data,” The Review of Economic Studies, 2022, 89 (4),
1629–1653.

Aghion, Philippe and Peter Howitt, “A model of growth through creative destruction,” 1992.

, Antonin Bergeaud, and John Van Reenen, “The impact of regulation on innovation,” Amer-
ican Economic Review, 2023, 113 (11), 2894–2936.

, Nick Bloom, Richard Blundell, Rachel Griffith, and Peter Howitt, “Competition and inno-
vation: An inverted-U relationship,” The quarterly journal of economics, 2005, 120 (2), 701–
728.

ANSES, “Risques et bénéfices relatifs des alternatives aux produits phytopharmaceutiques com-
portant des néonicotinoïdes,” Technical Report 2018.

Bass, Chris, Ian Denholm, Martin S Williamson, and Ralf Nauen, “The global status of insect
resistance to neonicotinoid insecticides,” Pesticide biochemistry and physiology, 2015, 121, 78–
87.

Boppart, Timo, Patrick Kiernan, Per Krusell, and Hannes Malmberg, “The macroeconomics
of intensive agriculture,” Technical Report, National Bureau of Economic Research 2023.

Bustos, Paula, Bruno Caprettini, and Jacopo Ponticelli, “Agricultural productivity and struc-
tural transformation: Evidence from Brazil,” American Economic Review, 2016, 106 (6), 1320–
1365.

Chabé-Ferret, Sylvain and Jacint Enrich, “Scale versus scope in the diffusion of new technol-
ogy: evidence from the farm tractor,” Working paper, 2021.

Chen, Chaoran, “Untitled land, occupational choice, and agricultural productivity,” American
Economic Journal: Macroeconomics, 2017, 9 (4), 91–121.

Draghi, Mario, “The future of European competitiveness,” Report for the European Commission
September 2024.

European Food Safety Authority, “Peer review of the pesticide risk assessment for bees for
the active substance imidacloprid considering the uses as seed treatments and granules,” EFSA
Journal, 2018, 16 (2).

French Ministry of Agriculture, “En 2023, hausse de la production française de sucre malgré
le recul des surfaces betteravières, dans un contexte de prix du sucre élevés,” Technical Report
2024.

Fuest, Clemens, Daniel Gros, Philipp-Leo Mengel, Giorgio Presidente, and Jean Tirole, “EU
Innovation Policy - How to Escape the Middle Technology Trap,” Report, European Policy
Analysis Group May 2024.

31



Garicano, Luis, Claire Lelarge, and John Van Reenen, “Firm size distortions and the pro-
ductivity distribution: Evidence from France,” American Economic Review, 2016, 106 (11),
3439–3479.

Gollin, Douglas, David Lagakos, and Michael E Waugh, “Agricultural productivity differences
across countries,” American Economic Review, 2014, 104 (5), 165–170.

, , and , “The agricultural productivity gap,” The Quarterly Journal of Economics, 2014,
129 (2), 939–993.

Griliches, Zvi, “Hybrid corn: An exploration in economics of technological change.” PhD disser-
tation 1957.

Gross, Daniel P, “Scale versus scope in the diffusion of new technology: evidence from the farm
tractor,” The RAND Journal of Economics, 2018, 49 (2), 427–452.

Keynes, John Maynard, “Economic possibilities for our grandchildren,” in “Essays in persua-
sion,” Springer, 1930, pp. 321–332.

Leontief, Wassily, “Machines and man,” Scientific American, 1952, 187 (3), 150–164.

Manuelli, Rodolfo E and Ananth Seshadri, “Frictionless technology diffusion: The case of trac-
tors,” American Economic Review, 2014, 104 (4), 1368–1391.

Moscona, Jacob and Karthik A Sastry, “Does directed innovation mitigate climate damage?
Evidence from US agriculture,” The Quarterly Journal of Economics, 2023, 138 (2), 637–701.

and Karthik Sastry, “Inappropriate technology: Evidence from global agriculture,” Available
at SSRN 3886019, 2022.

Nimier-David, Elio, David Sraer, and David Thesmar, “The effects of mandatory profit-sharing
on workers and firms: Evidence from France,” Technical Report, National Bureau of Economic
Research 2023.

Puy, Tristan Du and Jeffrey G Shrader, “Costs of Climate Adaptation: Evidence From French
Agriculture,” Technical Report, Working Paper 2024.

Romer, Paul M, “Endogenous technological change,” Journal of political Economy, 1990, 98 (5,
Part 2), S71–S102.

Simon-Delso, Noa, Vanessa Amaral-Rogers, Luc P Belzunces, Jean-Marc Bonmatin,
Madeleine Chagnon et al., “Systemic insecticides (neonicotinoids and fipronil): trends, uses,
mode of action and metabolites,” Environmental Science and Pollution Research, 2015, 22, 5–
34.

32



A Appendix Tables and Figures
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Appendix Figure A1. Effect of the European Neonicotinoid Ban on Farm Productivity with
Alternative Thresholds of exposure
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Appendix Figure A2. Effect of the European Neonicotinoid Ban on Farm Productivity with
Alternative Fixed Effects
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Appendix Figure A3. Effect of the European Neonicotinoid Ban on Farm Productivity across
Balanced Samples
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Appendix Figure A4. Effect of the European Neonicotinoid Ban on Farm Land Productivity
Beyond Ex-Ante Sugar Beet Producers
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Appendix Figure A5. Effects of Pesticide Bans on Farm-Level Land Productivity with Less
Stringent Sample Selection Criteria
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Appendix Figure A6. Effects of Pesticide Bans on an Alternative Measure of Farm-Level Land
Productivity - By Number of Substitutes Available
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Appendix Figure A7. Effects of Pesticide Bans on Farm-Level Crop Land Productivity - By
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