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Abstract

Although delays in treatment adversely affect patient health outcomes, establishing the precise
nature of this relationship raises important methodological challenges. Healthcare production is
not only time-dependent but also varies greatly between individuals; this heterogeneity arises from
unobserved or endogenous variables, particularly the severity of the condition, the rate of health
depreciation or patient health literacy. This paper leverages original large-scale individual data,
containing precise time measures for 10,250 episodes of acute ischaemic strokes (AIS), starting
at symptom onset, as well as precise data on patient health outcomes -transformed into a utility
index-, to address this complex relationship over the complete response time segment. By choosing
an original instrument —air temperature— in a non-parametric estimation, we identify the average
treatment effect (ATE) of an increase in response time, as well as the average treatment effect
on the treated (ATT). Furthermore, the heterogeneity in patients’ returns to reducing response
time is examined. Comparing the estimates of the relationship identified using an IV method with
existing results in the clinical literature highlights the value of a robust identification strategy in
correcting for effects’ underestimation. Our approach suggests a near-linear relationship between
delays and outcomes, challenging the conventional view of bounded effects in the management of
AIS. Our ATT results support existing clinical recommendations, but policy-relevant treatment
effects require a more precise account of patient benefits’ distribution and health loss valuations.
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1 Introduction

Healthcare, as an economic good, possesses distinctive characteristics, particularly for
time-sensitive conditions. The theoretical framework established by Becker [2007] and
Grossman [1972] conceptualizes health as a capital stock subject to depreciation. Un-
like most commodities, delays in healthcare delivery can result in irreversible health
deterioration, with waiting costs escalating non-linearly over time. While timely access
to emergency care is paramount for acute conditions, time sensitivity is also critical for
early cancer detection, which significantly enhances treatment efficacy, or for infectious
diseases, in order to control epidemic growth.

Effectively reducing time to adequate treatment constitutes a significant public
health challenge, shaped by both supply-side factors (e.g., geographical availability
of healthcare facilities) and demand-side determinants (e.g., patients’ ability to recog-
nize first symptoms). Regarding the spatial allocation of facilities, regulators are faced
with the trade-off between centralising specialised resources to enhance efficiency and
safety while improving equity by reducing distance to facilities. Disparities in healthcare
access, particularly in under-resourced regions, have been shown to exacerbate socioe-
conomic inequalities in health outcomes Bertoli and Grembi [2017], Turner et al. [2022].
Additionally, delays in symptom recognition among specific subpopulations contribute
to adverse health outcomes. This phenomenon is particularly evident in cardiovascu-
lar diseases among women, where symptom presentation diverges from conventional
clinical expectations, often resulting in under-recognition Lichtman et al. [2015].

Robust evidence on the value of further reducing time to adequate treatment is still
lacking to guide policy. Existing studies have consistently documented strong associa-
tions between delays in access to treatment and patient health outcomes. Establishing
causality in healthcare, which is the purpose of this paper, remains a challenge due
to data constraints and the presence of unmeasured confounders Angrist et al. [2024].
Regarding the former, most of the data covers truncated care pathways, ignoring the ex-
act starting point of the disease. Confounders, for their part, mostly relate to selection
issues in relation to severity.

On the supply-side, clinicians’ management of acute events relies on a severity-
based patient prioritization, whether upon arrival at the healthcare facility or during
pre-hospital decision-making (e.g. the selection of transportation modes tailored to
severity levels). Best practices, clinical heuristics, and data increasingly inform these
prioritization strategies Siciliani et al. [2015] and empirical evidence shows that official
triage protocols tend to prioritize patients presenting with the most severe symptoms
in emergency settings Zachariasse et al. [2019].

On the demand side, patients’ ability to seek care is influenced by multiple fac-
tors. Two primary dimensions warrant consideration: the ability to interpret symp-
toms (some conditions sharing the same symptoms) and individuals’ health literacy
(e.g. their ability to recognize symptoms). Goff [1998] founds that individuals with
prior experience of heart disease exhibited greater awareness of myocardial infarction
symptoms, potentially facilitating more rapid medical attention. Similarly, in stroke
management, patients exhibiting more overtly severe symptoms tend to present earlier
for treatment.

The impact of selection on treatment heterogeneity has been extensively explored
in the economics literature, particularly in education Angrist and Krueger [1991]. A
parallel selection mechanism operates in acute healthcare settings, with two primary
sources of selection bias: patients self-select based on symptom severity, and healthcare
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providers further prioritize patients whom they perceive as deriving the greatest benefit
from early intervention. The interplay of supply and demand determinants results in
heterogeneity in the returns to minimizing RT, contingent on the severity as perceived
by both providers and patients.

In this paper, we address causality between time and health outcomes using Acute
Ischemic Stroke (AIS) as a case study, in order to assess whether non-causal estimations
lead to underestimate the benefits of reducing time to treatment. We use rich individual
data with 10,250 hospital stays for Acute Ischemic Stroke (AIS) of the most severe type
(Large Vessel Occlusion - LVO), a condition known to be extremely time sensitive
[Mazighi et al., 2013], between March 2017 and November 2023. Compared to other
conditions such as cancer, stroke symptoms are relatively easy to detect, allowing a
precise collection of the time of symptom onset upon arrival at EMS. As a result, this
study focuses on the full time segment, from symptom onset to access to care, hereafter
defined as Response Time (RT). RT is multifactorial, since it includes demand-side
factors, such as patients’ ability to seek care upon symptom onset, and supply-side
factors, such as the distance to the nearest EMS and its efficiency at handling cases,
especially under strong capacity constraints.

Beyond mortality rates, this study uses measures of utility loss, leveraging a mapping
function to predict utility scores from a neurological disability index Rivero-Arias et al.
[2009]. To estimate the Average Treatment Effect (ATE) and the Average Treatment
Effect on the Treated (ATT), we use an innovative instrumental variable (IV) approach
within a partially non-parametric control function (CF) framework. Specifically, air
temperature (measured in degrees Celsius) is utilized as an instrument. Air temperature
is associated with various socio-behavioral factors that influence RT from both the
demand and supply sides, exhibiting a negative correlation with RT. The validity of
this instrument is rigorously tested and discussed D’Haultfœuille et al. [2024].

Our results show that, due to the negative correlation between RT and severity,
previous results have underestimated the benefits of further reducing RT on health
outcomes. Comparing the naive versus instrumented estimation yields important pol-
icy implications: the existing prioritisation of patients by EMS is already playing a
crucial role in improving health outcomes of the most severe patients. Additional ben-
efits would be derived from further reducing RT, whether by improving the territorial
distribution of EMS, or alternatively, by dedicating fast-track pathways for ambulances,
by improving existing prioritization practices (using predictive tools based on Artificial
Intelligence) or by developing literacy and preventive skills in the population.

The remainder of this paper is structured as follows: Section 2 provides a comprehen-
sive review of the relevant literature. Section 3 details the sample characteristics and
empirical methodology. Section 4 presents the main results, followed by a discussion in
Section 5.

2 Literature

First, this paper is greatly indebted to the vast literature that has uncovered the many
biases in data analysis. Estimating the impact of time-varying exposure involving self-
selection and heterogeneous benefits is a recurrent topic in empirical economics. This
issue arises for example in the study of returns to schooling, where self-selection occurs
on multiple levels based on expected returns and costs [Card, 2001]. In this context,
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thorough econometric analyses have disentangled the various mechanisms at play, re-
vealing the true (structural) relationship between years of education and labour market
outcomes (Angrist and Krueger [1991], among many others).

Secondly, this paper belongs to the set of health economics studies applying similar
econometric techniques to data derived from both randomized controlled trials [Fransen
et al., 2016, Goyal et al., 2016, Saver et al., 2016] and real-world data [Joundi et al.,
2024, Al-Mufti et al., 2023, Alawieh et al., 2018, 2019, Mulder et al., 2018, Spiotta
et al., 2013]. In these studies, time to treatment is significantly correlated with clinical
outcomes and some medical research has also highlighted the inherent self-selection bias
associated with the severity of the condition [Saver et al., 2013]. Although these studies
have generally identified the direction of the effect Angrist et al. [2024] shows that a
complementary data analysis using instrumental variables is relevant under a varying
time of exposure.

More precisely, in the context of emergency care, this paper builds on the work of
Wilde [2013], who found no statistically significant relationship between RT and mor-
tality when the issue of endogeneity was not addressed. Two other studies emphasize
the necessity of exploiting exogenous shocks to evaluate patients’ sensitivity to delays.
Bertoli and Grembi [2017] assess the effect of hospital proximity in emergency situa-
tions (road traffic accidents) by leveraging the exogenous variation in hospital prox-
imity to cities, which is legally defined based on population size. Their results show
that increasing the distance to the nearest hospital by 5 km raises the fatality rate by
13.84% at the sample average, corresponding to 0.92 additional deaths per 100 acci-
dents. They also demonstrate that ordinary least squares and difference-in-differences
estimates—commonly used approaches in the literature—tend to underestimate the
true positive effect of hospital proximity on mortality. Similarly, Lucchese [2023] ana-
lyze patients who experienced a cardiac event in an Italian region in 2013 and 2014. By
using hourly rainfall measurements at the time of the ambulance run as an instrument
for RT, they find that its estimated effect on mortality approximately doubles compared
to a näıve OLS estimation.

Compared to these studies, our paper offers two main advantages. First, our flexi-
ble estimation approach, which uses splines in a generalized additive model, allows for
the estimation of the actual structural relationship between the two variables, inter-
preted as the average treatment effect (ATE), while the comparison with the average
treatment effect on the treated (ATT) highlights policy implications related to these
metrics. Second, our study employs a continuous utility index as the outcome variable,
providing additional insightful results.

The heterogeneity of the effect has been studied in the literature: Jaldell et al. [2014]
and Swan and Baumstark [2022] considered the severity of injuries (light or severe) and
observed that the marginal effect of RT was greater for severe injuries than for mortality,
using French and Thai data from rescue services, respectively. Additionally, Ma et al.
[2019] provided evidence that the relationship between RT and health outcomes (mor-
tality and morbidity measures) was non-monotonic. They suggest that the structural
relationship between RT and outcomes is complex and that sophisticated econometric
specifications are required to properly study these relationships. Building on this liter-
ature, our paper adds an analysis of injury severity while accounting for all unobserved
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factors associated with self-selection.

Lastly, this paper contributes to the growing economics literature that uses meteoro-
logical events as random exogenous shocks to identify treatment effects. Three weather
variables are commonly used: rainfall, wind-speed and temperature. Rainfall has been
used in several economic studies. Hodler and Raschky [2014] for instance find that
economic shocks, indicated by night-time light intensity and instrumented by rainfall
and drought, significantly increase the likelihood of civil conflicts. Miguel et al. [2004]
is another example of how rainfall can be used as an instrument to measure the effect of
economic activity on civil conflicts, showing that higher temperatures significantly in-
crease their likelihood through reduced agricultural productivity. Similarly, wind-speed
has been used in Bondy et al. [2020] to instrument pollution and assess its impact on
health status and criminality. Atmospheric inversions have also been used as IVs for
studying environmental outcomes, as in Sager [2019]. As for temperature variables, De-
schênes and Greenstone [2007] analyse the effects of temperature on agricultural profits,
using historical temperature variability as the instrument. Dell et al. [2012] use tem-
perature as an exogenous variable to assess its impact on economic growth, finding that
higher temperatures reduce output in poorer countries but have no significant impact
in richer countries. Burke et al. [2015] evaluate temperature’s role in explaining varia-
tions in conflict incidence among regions, showing that rising temperatures significantly
increase interpersonal and intergroup conflict rates.

These studies also highlighted several limitations in using weather variables as IVs.
For instance, the broad influence of temperature on various outcomes —such as social
variables, labour productivity, conflict, health, migration, and institutional stability—
challenges its ability to isolate a single causal effect, calling for a careful analysis of its
validity in the specific context of its use. The main improvement of this paper regarding
the use of an instrumental variable is the thorough analysis of the exclusion restriction
hypothesis which is validated using a statistical test.

3 Data and Methods

3.1 Sample Description

3.1.1 Data sources

This study relies on two sources of data: the Endovascular Treatment in Ischemic Stroke
Registry (ETIS) and weather observational data.

ETIS includes hospital stays between March 2017 and November 2023. It is a French
multicentre observational study 1. Although this database has been extensively used for
clinical research and publications El Nawar et al. [2019], Douarinou et al. [2022], Ben-
soussan et al. [2023], Lambrou et al. [2024], to the best of our knowledge, no economic
studies have yet been conducted using this rich material. It is the largest available
database on AIS in France, including information on patients’ RT, care pathways, and
health outcomes.

The extraction of the database initially covers 19,884 hospital stays in 29 CSCs with
MT performed by 186 different neurosurgeons. From this initial sample, 9,634 hospital

1Further information is available on this page: https://clinicaltrials.gov/study/NCT03776877
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stays were excluded (detailed in Appendix A). Hospital stays with missing variables for
RT (n=1,246) and the modified Rankin Scale (mRS) (n=5,916) had to be excluded for
feasibility reasons. Stays in which MT was performed after 8 hours (not recommended)
(n=1,465) and those involving in-hospital strokes (n=956) were also excluded, as they
are very specific cases. Additionally, hospital stays of patients whose health-related
quality of life improved after their stroke (n=51) were excluded for consistency reasons.

The final sample after data cleaning (detailed in Appendix A) contains 10,250 hos-
pital stays. This filtering approach ensures a high-quality data set while preserving
a sample size that is sufficient to maintain the statistical power of the results. Only
two comorbidity variables (diabetes and high blood pressure) had a limited number of
missing values (194 and 116 respectively). The missing values were replaced by imput-
ing the most likely values, calculated using a logistic regression model with the other
covariates as predictors.

The second source of data, the weather data, is publicly available2. It is collected
at an hourly frequency through the extensive ground and altitude network of weather
stations operated by the French National Weather Service (Météo-France). All weather
observations —temperature, relative humidity, precipitation, pressure, cloud cover and
wind-speed— are included in our database, although only temperature observations are
used for the IV.

Each hospital stay is matched with the weather observations recorded at the station
nearest to the hospitals where MT was performed at the time of the admission The
maximum distance between the hospital and the nearest observation point is 1.3 km.

3.2 Variables

3.2.1 Outcome Variables

This study considers two outcome measures: mortality at 3 months post-stroke and
utility losses.

Unlike mortality, utility losses are not directly observable in our data. Measures
of pre-stroke and post-stroke utility were estimated from the reported pre-stroke and
post-stroke levels of the modified Rankin Scale (mRS). The mRS is one of the most
frequently used measures of health outcome in clinical trials involving AIS [Wilson et al.,
2002], ranging from 0 to 6. Level 0 represents the absence of symptoms or limitations.
Level 1 describes individuals who, despite minor symptoms (such as balance or speech
difficulties), can perform all usual activities. Level 2 covers light disabilities, with no
impairment for conducting daily activities independently but with limitations in social
or work areas. Level 3 marks moderate disability, where some assistance is needed
for household chores, though the person can walk without help. Level 4 represents
moderately severe disability, where support is necessary for basic self-care activities.
Level 5 is a severe disability, where the individual is bedridden, incontinent, and requires
constant care from a caregiver, while Level 6 denotes death.

The pre-stroke level of mRS is calculated from patients’ functional status before the
AIS, as declared retrospectively by the patient or the family. The mRS post-stroke is
collected three months after discharge by the medical team during a follow-up phone

2https://donneespubliques.meteofrance.fr/donnees_libres/Static/listeStations_Metro-OM_PackRadome.csv
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call or medical visit. These two measures are then converted into utility scores using
the mapping function of Rivero-Arias et al. [2009], with estimations using the French
tariffs, described in Table 1. This mapping function was built from a dataset in which
measures of mRS and answers to the EQ5D-5L questionnaire were collected at the same
time for the same individuals three months after having an AIS.

Table 1: Mapping mRS - Utility scores

mRS score Utility Score
0 0.942
1 0.867
2 0.67
3 0.413
4 0.104
5 -0.215

After converting the pre-stroke and the 3-month post-stroke mRS into utility levels,
we calculate the utility loss (YL) for a given patient as a result of the stroke and the
subsequent episode of care using the following formula:

YL = U3month − Uprestroke

Table 2 shows the contingency table of pre AIS- and post AIS-mRS scores.

Table 2: Contingency table mRS pre AIS and mRS post AIS

mRS before stroke 0 1 2 3 4
mRS after stroke
0 1169 - - - -
1 1608 140 - - -
2 1216 134 82 - -
3 1195 168 106 94 -
4 894 129 91 77 48
5 483 98 63 65 42
6 1435 331 256 236 89

Although considered continuous in the study, due to the mapping exercise, the vari-
able for loss of utility takes 26 possible values as there were no patients with a pre-stroke
mRS greater than 4 (moderately severe disability).

3.2.2 Covariates

We consider four types of control variables in our study :

• Patient Characteristics. Being diabetic and having high blood pressure are pre-
dictors of poor health outcomes after AIS. Age is also a good predictor of poor
outcomes, partly due to the positive association found between age and multi-
morbidity.

• Stroke Severity The National Institute of Health Stroke Scale (NIHSS) is a measure
of stroke severity, commonly used by healthcare providers to quantify the level of
impairment caused by a stroke Originally designed for acute stroke trials, it is
composed of 11 items, each of which scores a specific ability on a scale from 0 to
4. A score of 0 typically indicates normal function for that ability, while higher
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scores indicate varying levels of impairments. Individual item scores are summed
to calculate a patient’s total NIHSS score, ranging from 0 to 42. This variable was
collected in the dataset for medical purposes, ensuring high-quality measurement.

• Patient pathway Patients’ mode of entry is recorded as being either direct or
through another hospital (a patient was admitted to an initial hospital, then re-
ferred to a more specialised centre for MT). Direct admission is positively associ-
ated with better health outcomes and lower RT.

• Hospital and year fixed effects Hospitals fixed effects are used as well as years
fixed effects, especially to ensure the exogeneity of the instrumental variable. In
addition, these two sets of variables allow us to account for possible differences in
technology across hospitals and years.

3.2.3 Treatment Variable

The treatment variable, RT, represents the time elapsed from symptom onset to the
initiation of MT, measured in hours. Emergency services systematically record the date
and time of symptoms’ onset, as the French Health Authority guidelines recommend
that certain treatments be administered only within a given time window, following
symptoms’ onset. As with the NIHSS, the exact time of MT for symptom onset and the
initiation of MT are recorded for medical purposes, ensuring high-quality and reliable
data collection.

3.2.4 Instrument

Air temperature, measured in degrees Celsius, is used as an instrument for the treatment
variable. The justification for using this instrument is detailed in the following section.
It is measured at the nearest weather station from the hospital facility at the time of
hospital admission.

3.3 Empirical Setting

3.3.1 Rationale for the method

Understanding the data-generating process provides valuable intuition for the empirical
strategy. Unlike many other conditions, stroke symptoms are typically identifiable
with relative ease, although they can occasionally be confused with other pathologies.
This specific nature of stroke symptoms allows for precise collection of the time of
symptom onset. Thus, we assume that this measure of RT is observed with reasonable
accuracy. The primary aim of this study is to examine the relationship between RT,
the time to treatment, and Y, the post-stroke utility change (capturing the before-and-
after difference in health outcomes). To ease the understanding of the data generating
process, let’s consider that utility loss is a function of two key elements: the severity
(s) of and the response time (t)3. The exact shape of the relationship is unknown, so a
simple and flexible representation would be that the utility loss for a given patient (y)
can be any function of t and s:

y = h(t, s)
3t designates the time for a single individual between symptoms onset and in-hospital treatment, while we keep RT

as the designation for the variable in our data. Following the literature (for example Florens et al. [2008], t refers to the
potential treatment while RT is the observed (realised) treatment.
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The objective of this paper is to estimate ∂h(t,s)
∂t

. Yet, there is reason to believe that
t impacts s. First, it can be assumed that the more severe the symptoms, the easier to
identify. Secondly, it is assumed that healthcare services prioritize the most severe cases
of AIS. It seems reasonable to suggest that some individuals may exhibit a steeper slope
in the relationship between response time and outcomes, a scenario commonly described
in the literature as having a higher return on treatment and similarly recognised in the
context of returns to schooling (e.g., Garen [1984]). As a consequence, one can assume
that:

t = g1(s) +D

where D accounts for all factors impacting t except the severity; the most important
being the distance to the nearest facility but also some aspects of individual respon-
siveness that are independent of the severity. g1(.) is a decreasing function.

A last aspect should be considered for the picture to be complete, s is the true severity
at the moment the AIS is discovered, while the observed severity (s1) is recorded at
hospital entry. For medical reasons, the severity of the conditions worsens in the absence
of any treatment. As a consequence, if we define t1 as the time elapsed before s1 is
recorded, and g2(.) the function modulating the s1 as a consequence of t, we also have
that:

s1 = s+ g2(t1)

As a consequence, the observed severity cannot be used as a relevant control for
patient severity because it is likely impacted by t. In addition, as:

y = h (D + g1(s), s)

estimating h using cross-section data requires an identification strategy which isolates
some variations in D that are independent of s.

3.3.2 Identification

The identification strategy relies on an exogenous variation in response time induced
by air temperature (Z). More precisely, it is assumed that E(D|Z) ̸= 0. While air
temperature itself is not the direct cause of increased RT during colder conditions, it
correlates with various social behaviours, which are presented in the subsequent section.
Consequently, in the data, it is possible to express RT as:

RT = E(RT |Z) + ηi

Where Z is expected to be independent of the severity, and any other possible un-
observed variable and ηi contains the remaining variance, including the part associated
with the severity. In addition, Z should not impact s by any means. The validity of
air temperature as a relevant exogenous variation has occasionally been questioned in
the literature [Schultz and Mankin, 2019]. The following paragraphs provide theoreti-
cal justifications and outline the tests to be conducted to ensure the robustness of the
procedure in our context.4

4The CF framework is appealing here for its flexibility, allowing especially non-parametric estimation. In addition,
Guo and Small [2016] show that, when the instrumental variables are valid, the control function method is more efficient
than the usual two-stage least square, sometimes more than 10 times more efficient.

9



Relevance. Several justifications exist for the negative relationship between air tem-
perature and RT . First, cold weather influences individual behaviour, such as spending
less time outdoors and interacting less with others, which jeopardises early stroke detec-
tion. Secondly, hospital congestion, which is known to be greater during cold weather
events (whether caused by cold-related illnesses or injuries due to weather conditions),
slows the delivery of acute treatments necessary for timely stroke management, signifi-
cantly impacting patient outcomes [Rizmie et al., 2022]. This slower responsiveness of
healthcare services may result from reduced availability of emergency vehicles and phone
operators. Third, in addition to slowing healthcare services, cold weather can disrupt
transportation networks, delay access to care, and strain emergency response systems.
Finally, stroke symptoms—which require immediate recognition and response—may be
misinterpreted by patients due to environmental conditions. For example, heatstroke
during a heatwave or hypothermia in freezing conditions might mask or mimic the
clinical presentation of a stroke, delaying calls for emergency medical services (EMS)
[Bakradze and Liberman, 2018]. Statistically speaking, the relevance of Z is measured
by comparing a model predicting RT with all covariates and a model with the air
temperature as an additional variable using an ANOVA test which provides a joint
F-statistics for the additional predictors used in the regression model.

Independence. The independence hypothesis asserts that the unobserved compo-
nents in both the first and second stages are unrelated to the instrument. One possible
limitation to this hypothesis, identified in this study, relates to differences in geograph-
ical location (e.g., North vs. South or altitude), which can simultaneously impact RT
and Z and also influence patient outcomes, potentially due to variations in the level of
hospital specialization or the characteristics of the local population. Annual tempera-
ture variation is also a possible limitation to the independence of Z, as air temperature
tends to increase from one year to another, while the average RT decreases. To address
these potential issues, geographical variables capturing local characteristics (hospital
dummies) and year dummies are included in the analysis. Although this test does not
directly assess the independence of the instrument (a hypothesis required in the CF
framework), a J-test is performed to test the exogeneity of the instrument in a 2SLS
framework by assessing the correlation between the instrumented RT and the second-
stage residual of a 2SLS.

Exclusion restriction. A growing literature is concerned with the violation of this
hypothesis especially when using weather instruments. For example, Mellon [2024]
review 195 papers using meteorological instrumental variables highlighting numerous
cases of violation. More concerning for this study, recent articles published in medical
journals argued that air temperature could directly impact the probability of AIS onset
[Zhu et al., 2024] and the number of deaths by AIS per day [Alahmad et al., 2024].
While these papers identify the mechanisms coming from the probability of getting ill,
some possible vectors also involve a greater severity of the disease and could lessen the
quality of our empirical strategy. Therefore, the method developed by D’Haultfœuille
et al. [2024] is applied to the data. It involves identifying segments of Z for which the
instrument is considered ”Locally Irrelevant” (Assumption 4 in the paper). An instru-
ment is locally irrelevant if it doesn’t perfectly separate the population into two groups
for which a stochastic dominance is observed in the distribution of the treatment. In
other words, there exists a value of response time (RT) where the cumulative distribu-
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tion functions (CDFs) conditional on the instrument are equal. At this precise point,
Z assumes two distinct values (the average of each segment), yet x remains unchanged.
The method then assesses whether the outcome variable demonstrates a significant
change at this specific point. This change is defined as the Kolmogorov-Smirnov (KS)
distance between the CDFs of the outcome, conditional on x and Z, for the given point
and both segments. Since our instrument is continuous, but the test requires a binary
variable, the test is repeated across different sub-samples of the database. The results
provide the KS distance and a p-value derived from the method outlined in the paper.
The code used to perform the test is available in Appendix C.

Although some indications are available about the structural form of the response
curve - it is likely bounded, at worst by the death of the patient- , and it is also expected
to be heterogeneous, with some patients benefiting more from a reduced response time -
we do not no much about its actual shape. A simple specification might assume a linear
relationship between patient outcomes and response time, but this could be mislead-
ing. In such a context, a partially non-parametric approach becomes appealing. This
situation is typical in econometrics, where understanding the structural relationship
between dependent variables is critical to address key questions, but there is no prior
knowledge about that structure [Newey et al., 1999, Newey and Powell, 2003]. This
approach differs from standard non-parametric regression because the goal is to esti-
mate the structural model rather than merely the conditional expectation. It combines
flexibility in estimation with the capacity to define interpretable parameters, which is
particularly useful for tasks such as defining counterfactual scenarios.

The estimation procedure works as follows: first, the response time is regressed on
the air temperature and all other control variables. In this first regression, the equation
does not use the air temperature directly. Instead, we prefer using the natural spline of
the temperature with 3 degrees of freedom (chosen by cross-validation). This method
allows to account for the non-linear relationship between the air temperature and the
RT: the relationship between the two variables is negative but the slope is steeper as
the temperature becomes colder. Secondly, the residuals from the initial regression are
incorporated as a variable in a subsequent regression. Unlike the standard control func-
tion (CF) approach, we do not rely on a simple ordinary least squares (OLS) method
in this second stage of estimation. Instead, we employ a generalised additive model
(GAM), which utilises a back-fitting interactive smoothing algorithm. A spline is cho-
sen as the functional form for response time, allowing for a flexible representation of the
structural relationship. This approach is advantageous because the actual structural
form of the relationship between RT and Y is not predefined but is determined through
the smoothing process (for details, see Hastie [1992]).

Furthermore, since the utility loss is bounded, we specify the a quasi-binomial link
between the two variables. This choice is particularly suitable because it fixes a bounded
support of the utility ensures that predicted values remain within the feasible range,
thus preventing estimates from falling outside these limits [Gómez–Déniz et al., 2020].
For the estimation involving the binary outcome (mortality), a standard logit model
is employed within the GAM framework, incorporating a binomial link function. The
adoption of the quasibinomial link is logical, as it provides a coherent framework to
understand both the binary relationship between survival and death, as well as the
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continuum of health states leading to the worst outcome, namely death. When using
utility loss as the outcome, the estimation is extended to account for this continuum,
enabling the representation of varying levels of disability status.

On average, the CF term – the residual from the first regression – controls for the
function’s slope. However, we would expect this slope to vary across individuals. To
test this hypothesis, we introduce an interaction term between response time and the
CF in the model. This term is also included non-linearly, but also estimated para-
metrically in robustness checks (see Appendix B). This approach, which is standard in
control function methods (random correlated coefficient [Wooldridge, 2015]), allows for
capturing subgroup effects in the presence of heterogeneity and also accounts for het-
eroscedasticity – situations where the bias increases or decreases with the treatment. In
our case, we expect the difference between early and late entrants to widen over time,
as low-severity patients may reach their maximum utility loss relatively quickly. In
contrast, high-severity patients continue to experience utility losses, potentially leading
to more significant utility reductions, including the ultimate loss associated with death.

The model estimated is:log

(
Y

1− Y

)
= f1(RT ) + f2(v) + f3(v,RT ) +Xβ1 + u

RT = s(Z) +Xβ2 + v

(1)

Where f1(.), f2(.) are splines of RT and v, and f3(.) is the tensor products of the
two. These three functions are penalized splines so that their smoothness results from
a tradeoff between predictability and degrees of freedom5. s(.) is a natural spline with
three degrees of freedom.

The ATE is obtained by comparing the value of f̂1(.) at different points in time as

follows: ∆ATE(t2 − t1) = f̂1(t2) − f̂1(t1) or by linear approximation at a single point

as ∆ATE(t) = d
dt
f̂1(t). Due to self-selection, one might expect the response time to be

correlated with the return on such response time (e.g., marginal cost of time). People
for whom the return to response time is higher will, on average, arrive earlier. As a
consequence, the ATE is not necessarily the policy-relevant treatment effect as defined
by [Heckman and Vytlacil, 2001]; in the context of our data, it is likely that the ATT
is a better predictor of any policy aiming to reduce the time to treatment because
it would impact individuals as they are currently sorted into the treatment. Under
continuous treatment, Florens et al. [2008] suggest using the local average response
parameter, which is the derivative with respect to the treatment variable and includes
the random coefficient (e.g., the interaction between the treatment and the residual
from the first stage). Following this suggestion, it is possible to define the ATT as

∆ATT (t) = d
dt
f̂1(t) +

d
dt
f̂3(t). Finally, the approach can also be extended by defining

the ATE for population subgroups, where subgroups are defined with respect to the
instrument, as shown by Wooldridge [2015], by setting the residuals to a specific value:

∆ATE
g = d

dt
f̂1(t) +

d
dt
f̂3(t, v)

∣∣∣
v=g

.

5We chose to use the mgcv package in R for estimation, as it provides generalized additive modelling functions that are
very similar to those of Hastie [1992], with some extensions. The main difference lies in the fact that mgcv is based on a
penalized regression spline approach with automatic smoothness selection instead of the standard back-fitting algorithm.
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The procedure’s two stages are bootstrapped using the standard resampling method
with one thousand replications to obtain robust confidence intervals. More precisely,
as the estimation is non-parametric, each sample is randomly drawn before the first
estimation and used to recover a prediction from the model fitted to this subsample.
Once the 1,000 estimations are completed, the 0.975 and 0.025 quantiles are recovered
to construct the confidence intervals.

Robustness checks are performed by testing alternative specifications for the model,
and the results are presented in Appendix B. The most significant modifications intro-
duced in these robustness checks include the parametric inclusion of v and v · RT as
linear predictors. Additionally, v ·RT 2 was introduced to ensure that the shape of the
curve is sensitive to the unobservable. A fully parametric approach was employed in
another robustness check, incorporating RT , RT 2, and RT 3 as predictor variables.

4 Results

4.1 Descriptive statistics

4.1.1 Univariate Descriptive Statistics

Table 3: Descriptive Statistics

Sample size: 10,250 First observation 2017.01.02
N hospitals: 29 Last observation 2023.10.26

Variable Mean SD Median Min Max Skew

RT 4.34 1.44 4.20 1.05 7.98 0.37
Utility loss 0.47 0.38 0.45 0.00 1.16 0.22
Mortality 0.23 0.42 0.00 0.00 1.00 1.30
Air temperature 13.39 7.30 12.84 -7.77 40.14 0.22
Diabetes 0.17 0.38 0.00 0.00 1.00 1.72
High blood pr. 0.60 0.49 1.00 0.00 1.00 -0.39
Age 70.76 14.73 73.00 17.00 102.00 -0.75
Mod. Admission 0.50 0.50 0.00 0.00 1.00 0.02
Severity 15.03 7.15 16.00 0.00 42.00 0.04

Table 3 provides univariate descriptive statistics. The final sample includes 10,250
observations.

The average utility loss is 0.47, with a maximum slightly above 1, which is possible
because extreme disabilities (mRS 5) result in negative utility values. The rate of death
following a stroke in this sample reaches 23%. Figure 2 provides a more detailed descrip-
tion of the two main variables distribution. The utility loss seems evenly distributed
across patients except for no utility loss which is overrepresented in the distribution.
The discrete nature of the variable from which utility scores are retrieved is visible in
this data. The mean time to receive treatment for AIS is 4.33 hours (around 4 hours
and 20 minutes), ranging from 1 hour to under 8 hours by study design (see section
”Sample Description”).

The air temperature instrument has an average of 13.4 °C, with a minimum of −7.8
°C and a maximum of 40.1 °C. The distribution of the instrument is normal with a mean
of 13.40 °C, which is close to the average temperature in France during this period (13.8
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Figure 1: Distribution of air temperature

°C)6

Regarding comorbidities and individual characteristics, we find that approximately
60% of individuals in the sample have high blood pressure, while 0.17% have diabetes.
The mean age is 70.8 years, with the first quartile at 62 years and the third quartile at
82 years. Stroke severity, as measured by NIHSS, averages 15.4.

Figure 2: Distribution: Utility loss (left), Response Time in hours (right)

Table 4: Patients per year

2017 2018 2019 2020 2021 2022 2023
622 1053 1163 1783 2211 2268 1150

Patients are treated in 29 hospitals over seven years. The number of cases increases
over time (Table 4), mostly due to the integration of new hospitals in the data collec-
tion program and the inclusion of more patients in each participating hospital. Overall
around 50% of the patients were admitted through another hospital (5101) while the
others were admitted directly (5200).

6https://meteofrance.fr/actualite/publications
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4.1.2 Bivariate Descriptive Statistics

Among the 29 hospitals involved in the data collection, 5 provide half of the patients
available in the database, both because they were involved earlier in the data collec-
tion and also because treat (or include) more patients per year (Figure 3). Figure 4a
represents the relationship between RT and patient outcome. The figure on the top
plots the relationship between RT and patient outcome, measured with a utility score.
It shows an increase of around 0.20 unit of utility loss when RT increases by 4 hours
and 30 minutes. Similarly, when removing patients who did not survive, the outcome
increases by around 0.13. Eventually, the number of patients who did not survive the
AIS increases over time: while patients arriving before three hours have more than 80%
chances to survive, after five more hours it reaches 70%.

Figure 3: Distribution of Patients by Year and Hospitals

Surprisingly, the utility loss and the likelihood of death decrease after 6 hours, which
is unlikely from a medical point of view and is explained by the sources of endogeneity
detailed in Section 3.3.2.

The descriptive statistics support prior intuitions, showing that the drop in the out-
come curve appears in both “utility with no death” and “death only” categories. This
suggests that data selection effects and individual sorting likely occur simultaneously.

Figure 4b illustrates this composition bias using observables: a clear downward rela-
tionship emerges between stroke severity and RT, highlighting the link between disease
severity and the responsiveness of both individuals and EMS. The second graph shows a
slight increase in age with RT, followed by a drop after 6 to 7 hours. Finally, a small but
positive correlation exists between RT and comorbidities, likely due to the spatial age
distribution. These statistics highlight the correlation between RT and other observed
confounders, suggesting that other unobserved confounders may introduce biases into
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Figure 4: Comparison of Response Time Outcomes and Covariates

(a) Moving Average (range = 6 minutes): Outcomes
Conditional on Observed Response Time

(b) Moving average: Rounded Response Time and Co-
variates

the relationship between RT and health outcomes.

Several complementary factors explain the pattern between observables and treat-
ment. First, hospitals involved in data collection are located in cities with generally
younger populations, meaning the age increase could reflect regional age distribution.
Second, younger individuals tend to have less severe acute ischemic stroke (AIS), as
indicated by a significant positive relationship between age and stroke severity, which
may explain the overrepresentation of younger individuals after 6 to 7 hours.

4.2 Prediction of RT using the air temperature

Figure 5 presents E(RT |Z), estimated using the natural spline of the air temperature
with 3 degrees of freedom. The curve exhibits a steep slope until the temperature
reaches 10 degrees whereas temperatures above 10 degrees impact less the RT. Overall,
the average response time varies by more than 0.5 (30 minutes) when the temperature
goes from its minimum to its maximum. To establish whether this is enough variation
for Z to be valid as an instrument, we used joint F-statistics for the parameters of the
instruments in this regression.

The number of degrees of freedom for the natural spline, chosen by cross-validation
also offers the model with the straightest relationship between the air temperature and
RT as detailed in table 5. The F-statistic of roughly 13.9 is enough to use this variable
as an instrument. The p-value is highly significant indicating a strong statistical rela-
tionship between the included terms and the dependent variable in the first stage. This
is promising for relevance. In addition, the difference in the sum of square between the
two models confirms the explanatory power of the air temperature.

Especially because temperature (notably extreme heat) is known to cause emergency
conditions, the exogeneity of the instrument would be questioned. Under a direct causal
relationship between the air temperature and the unobserved variables of the structural
equation, especially the severity, one could expect that the instrument introduces new
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Figure 5: Natural spline regression of response time on air temperature

Table 5: Comparison of Model 1 (without Air Temperature) and Model 2 (with Air Temperature)

Model Res.Df RSS Df Sum of Sq F p-value
Model 1 10219 14650 - - -
Model 2 10216 14590 3 59.464 13.879 4.989× 10−9 ***

factors of endogeneity in the structural equation. We conducted a J-test, by testing
the hypothesis that the instrument cannot predict the residuals of the reduced form.
The F-statistic of the test is 0.3345 with a p-value of 0.8004. This result suggests that
the instrument is exogenous. As we partially observed the severity of the condition in
our data (although the measure is endogenous of time) it is possible to directly test the
relationship between the instrument and one of the factors of endogeneity; results are
in line with those of the J-test [see Appendix XXX TBC].

Eventually, the test developed by Guo and Small [2016] to compare the control
function estimate to the standard 2SLS is used. It takes the form of a Hausman test
comparing the coefficients of the 2SLS and the control function (estimated parametri-
cally, see Appendix B. If the p-value of the test is less than 0.05, then there is evidence
that the control function estimator is inconsistent and the usual two-stage least squares
estimator should be used. Applying the methods to our data gives a test statistic of
1.087921 and a p-value of 0.2969323, supporting the use of the control function method.

The last aspect to be tested to ensure that the instrument chosen is valid is the fact
that the instrument chosen has no direct impact on patient outcomes (exclusion restric-
tion hypothesis). Table 6 presents the results of the test developed by D’Haultfœuille
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Table 6: Test of exclusion restriction

Subset boundaries Z ∈ ]-2, 18 [ ]2, 22[ ]6, 26[ ]10, 30[ ]14, 34[ ]18, 38[
Mean Z 10.12 12.27 14.56 17.14 19.98 22.69
x∗ 2.75 2.62 2.55 2.57 2.5 2.5
KS statistic 3.34 3.93 3.01 1.86 2.27 2.76
p-value 0.35 0.3 0.5 0.87 0.72 0.55
N 7432 8414 8130 6622 4549 2774

Note: the table presents the results of the test developed by D’Haultfœuille et al. [2024]. H0: the instrument
is valid (e.g. has no direct impact on the dependant variable). The test has been performed on several subsets
of the dataset defined by the minimum and the maximum value of the air temperature. For each of these
subsets, the air temperature is divided into two categories based on its mean value. x∗ is the value of RT for
which the instrument is locally irrelevant. The p-value gives the location of the KS-statistic in the bootstrap
distribution of the estimator. See annexe [XX TBC] for more details about the method.

et al. [2024]. As the method requires a binary instrument, we performed several tests
by choosing different thresholds for the air temperature to be binarised. Since the vari-
able is strictly decreasing as shown in Figure 5, any threshold could work. One can see
from Table 6 that the hypothesis of exclusion restriction seems to hold regardless of the
threshold chosen: it is not possible to reject the exclusion restriction hypothesis at the
0.1 level in the different subsets used of the test. This means that the difference in the
outcome induced by the instrument is not significantly different from zero. Therefore, it
is possible to state, partially at odds with the medical literature - see section discussion
- that the impact of extreme temperature is not significantly associated with patient
outcomes except through the mean of the response time.

4.2.1 RT/outcome relationship

Figure 6: RT/Utility loss relationship

Table 6 presents the main result of this paper. In particular, the orange curve
presents the average treatment effect. Its curve represents the utility loss for an ad-
ditional delay before being treated in a CSC. This curve is almost a straight line, it
exhibits a slope of 0.05 to 0.09 additional utility loss for an additional hour before
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treatment. It is interesting to compare the ATE to the results of the naive regression.
Because of patient sorting, the curve of the naive regression exhibits a much less steep
slope. The curve even decreases after 6 hours because the effect of patient sorting be-
comes larger than the effect of response time.

The ATT completes the picture as it provides an average treatment effect condi-
tional on the type of patients treated on average after a certain response time. The
slope of this curve should be understood as the sensibility to RT of patients treated at
time t. Unsurprisingly, the slope of the curves starts to flatten when the naive regres-
sion begins to decrease: patients treated after five to six hours are less sensitive to RT,
these results are consistent with the intuition regarding patient sorting. In contrast,
the ATT and the ATE are quite similar under five hours whereas one could also have
expected that patients arriving earlier have a greater time sensibility - even if the ATT
line has a slighter steeper slope as predicted.

These comparisons are informative regarding the mechanism of selection at stake.
While selection mostly occurs on levels before five hours - which is in line with a
selection based on the evidentness of the symptoms - it occurs also on trend after five
hours, where the ATT begins to flatten.

Figure 7: ATE comparison: early and late entrants

Figure 7 illustrates the subgroup ATEs, with groups categorised as either late or
early entrants. Late entrants are those who, on average, arrived at the hospital later
than the mean defined by the instrument, while early entrants arrived earlier than this
mean. The figure uses the 0.01 and 0.99 quantiles of the first-stage equation residuals
to define these groups. Due to patient prioritisation, late entrants can be interpreted
as representing the least severe cases, while early entrants correspond to the most severe.

The figure also displays the overall ATE and the results of a naive regression to
facilitate comparison. The findings align with those presented in Figure 6: the overall
ATE and ATEearly exhibit a similar average slope, while the ATElate is considerably less
steep. Comparing the ATElate with the naive regression provides a revealing insight:
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Figure 8: RT/Utility loss relationship with 95% CI

the similarity in their slopes suggests that, due to patient prioritisation, the observed
utility loss aligns closely with that of late entrants, who are typically the least severe
patients.

Figure 9: RT/mortality relationship

Figure 8 presents the inference investigation for the ATE, using utility loss as the
outcome. The confidence interval is quite large due to the two-step procedure and the
heterogeneity of the impact.

Figures 9 and 10 present the same results using mortality as the outcome. These
results are similar to those for utility loss. The lines are steeper in the middle of the
graph, reflecting the binary nature of the variable. The interpretation of the different
lines is similar.
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Figure 10: ATE mortality comparison: early and late entrants

5 Discussion and Conclusion

This study revisits the relationship between response time and patients’ health out-
comes in emergency care, focusing on severe AIS patients in France. Response time
is defined as the time elapsed from symptoms’ onset to treatment, and covers both
demand-side determinants (patients’ ability to seek emergency care in due time) and
supply-side determinants (emergency care operational processes and physical distance).
It uses a large, detailed and robust dataset for an extensive period of time. The study
relies on an innovative empirical strategy to overcome two biases which have affected
previous results: severity is frequently measured imperfectly in available data, resulting
in omitted variable bias that underestimates the impact of RT on health outcomes;
hospital data about acute conditions face a censoring issue as some individuals do not
reach the emergency department before dying. The instrumented estimation results
show that näıve assessments have strongly underestimated the impact of response time
on patients’ health outcomes, calling for corrective emergency care policies.

Subsequently, this paper demonstrates that relying solely on existing medical scales
to control for observed severity is insufficient to ensure a robust ceteris paribus analysis.
These scales are inherently correlated with both the time taken to access healthcare
services and health outcomes. Intuitively, for any given patient, an increased response
time worsens their condition. This dual correlation introduces additional endogeneity
challenges, for which an explanation is provided in this paper: while there is a negative
relationship between the time of arrival and severity, the relationship between response
time and severity is actually positive. A causal link between treatment delay and health
outcomes is identified, alongside a negative association between severity and the like-
lihood of reaching healthcare services promptly. These findings can be generalised to
other conditions where severity is measured at the point of entry into the healthcare
system.

Building on this new evidence, and considering both supply and demand deter-
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minants, healthcare policies aimed at reducing response time are needed that extend
beyond geographical adjustments in the distribution of emergency care. Focusing on
patient-centred care, streamlining operational processes within EMS, and strategically
allocating resources can provide a solid foundation for sustainable improvements in
emergency care delivery. Key actions include educating patients, enhancing EMS pro-
cesses and improving the spatial distribution of emergency care, considering innovations
such mobile care units and Point-of-Care solutions to ensure that specialized care units
are available in underserved areas. This comprehensive strategy emphasizes equity and
scalability, ensuring that the benefits reach both urban centres and remote communi-
ties. Such a balanced focus not only strengthens public health infrastructure but also
maximizes the impact of investments, paving the way for a more efficient and inclusive
healthcare system.

A Data cleaning process

Database extraction: 19,884 hospital stays in 29 CSCs
MT performed by 186 neurosurgeons

Documented time for both
stroke onset and groin puncture

(18,638 cases remain)

Recorded mRS scores both
pre-stroke and 3 months post-stroke

(12,722 cases remain)

Onset-to-groin puncture time <8 hours
(11,257 cases remain) (Note: Delays

> 8 hours are too rare for conclusions)

Exclusion of in-hospital strokes
(Time recording differs)
(10,301 cases remain)

Exclusion of patients whose
health improved post-AIS
(Recording errors likely)

(Final dataset: 10,250 cases)

Final dataset:
10,250 cases for analysis
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B Results using a two-step parametric estimation

B.1 First stage estimation (parametric polynomial)

This appendix presents the prediction of RT by the air temperature. After conditioning
on hospitals and year fixed-effects, in addition to covariates. Air temperature appears
to be negatively associated with RT, with the slope being steeper for cold weather.
While the square of the air temperature is positively associated with RT, suggesting
a U-shaped relationship between the two variables, reaching a minimum when the
temperature is 23.2 Celsius degrees.

Table 7: First Stage Ordinary Least Square Estimation

Dep. variable: Response time Estimate Std. Error t value Pr(> |t|)
Air temperature −0.0205626 0.0061164 −3.362 0.000777
Air temperature squared 0.0004378 0.0002044 2.141 0.032261
High blood pressure 0.0321 0.0267 1.201 0.2299
Diabetes 0.0703 0.0323 2.176 0.0296
Age 0.0025 0.0009 2.836 0.0046
Mode of admission 1.5681 0.0249 63.099 < 2× 10−16

Regression includes year and hospital fixed effects.

Residual standard error: 1.393 on 10209 degrees of freedom
Multiple R-squared: 0.9075, Adjusted R-squared: 0.9072
F-statistic: 2444 on 41 and 10209 DF, p-value: ¡ 2.2e-16

B.2 Reduced form (parametric polynomial)

Table 8 illustrate the utility loss associated with an additional hour of RT delay. The
relationship between RT and utility loss is concave. In the naive model, utility loss
peaks at an RT value of 6.7, confirming the descriptive relationship between these vari-
ables after accounting for covariates. In contrast, the control function model predicts
the maximum utility loss at an RT value of 12.5, which lies outside the data’s observed
range. These findings align with prior expectations regarding the direction of the bias.
Figure 11 compares the estimation provided by the two regressions showing a steeper
curve after using the instrument.

The results presented in table 9 illustrate the probability of death associated with
an additional hour of RT delay. The relationship between RT and the probability of
death is concave, as for the utility loss. The parameters of the logit model show, again,
a steepening of the curve once an instrument is used in our control function setup.
Results are more easily sizable in figure 12: while the non-instrumented curve shows a
probability of death of 25%, it is around 40% when using the control function after 6
hours from symtpoms onset. The results suggest that reducing the time to treatment by
one hour for patients arriving in four hours may reduce the probability of death by 10%.
These findings are also in line with prior expectations regarding the direction of the bias.
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Table 8: Utility Loss Regression Results: Naive vs. Control Function

Naive Model Control Function Model
Est. SE t P Est. SE t P

Response time 0.0701 0.0150 4.66 3.1e−6 0.1323 0.0514 2.57 0.010
Resp. time2 −0.0052 0.0016 −3.32 0.0009 −0.0052 0.0016 −3.30 0.0010
High BP 0.0212 0.0081 2.62 0.0087 0.0192 0.0082 2.33 0.020
Diabetes 0.0750 0.0095 7.92 2.6e−15 0.0711 0.0099 7.15 9.1e−13
Age 0.0054 0.0003 20.5 < 2e−16 0.0053 0.0003 18.2 < 2e−16
Mode adm. 0.0220 0.0090 2.44 0.015 −0.0757 0.0776 −0.98 0.330
Res. 1st stage — — — — −0.0628 0.0496 −1.27 0.206

Naive Model Control Function Model
RSE: 0.3632 (10,253 df) RSE: 0.3632 (10,252 df)
R2: 0.638, Adj. R2: 0.637 R2: 0.6381, Adj. R2: 0.637
F-stat: 440.8 (p < 2.2e−16) F-stat: 430.3 (p < 2.2e−16)
Both regressions include year and hospital fixed effects.

Figure 11: Average utility loss by response time

C Python code for the method of D’Haultfœuille et al. [2024]

1

2 import numpy as np

3 from scipy.stats import norm

4

5 def kernel(u):

6 """ Kernel function."""

7 return 0.75 * (1 - u**2) * ((u > -1) & (u < 1))

8

9 def bandwidth(y, X, Z, numboot =1000):

10 """

11 Test and Relax the Exclusion Restriction in the Control Function Approach.
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Table 9: Binomial Regression: Probability of Death as a Function of Response Time

Naive model Control Function
Est. SE z P Est. SE z P

Intercept −5.73 0.37 −15.49 < 2e−16 −6.58 1.13 −5.82 5.8e−9
Resp. time 0.35 0.11 3.28 0.001 0.62 0.36 1.75 0.08
Resp. time2 −0.03 0.01 −2.56 0.01 −0.03 0.01 −2.55 0.01
High BP 0.11 0.06 1.99 0.046 0.10 0.06 1.80 0.072
Diabetes 0.68 0.06 11.51 < 2e−16 0.67 0.06 10.59 < 2e−16
Age 0.045 0.002 20.86 < 2e−16 0.045 0.002 19.36 < 2e−16
Mode adm. 0.02 0.06 0.37 0.71 −0.40 0.54 −0.75 0.45
Res. (iv) — — — — −0.27 0.34 −0.80 0.42

Naive model Control Function
Deviance: 9942.4 (10,253 df) Deviance: 9941.7 (10,252 df)
AIC: 10024 AIC: 10026
Both regressions include year and hospital fixed effects.

Figure 12: Probability of death by response time

12

13 Parameters:

14 y : ndarray

15 Dependent variable.

16 xz : ndarray

17 Independent variables (X and Z as columns).

18 numboot : int

19 Number of bootstrap samples.

20 Returns:

21 results : dict

22 KS statistic , p-value , bandwidth , and additional outputs.

23 """

24 n = len(y)
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25 x = X

26 z = Z

27 mean_z = np.mean(z)

28 z = (z > np.mean(z)).astype(int) # Threshold Z

29 mean_z = np.mean(z)

30 # Generate xlist and ylist

31 x1, x2 = np.quantile(x, [0.01 , 0.99])

32 xlist = np.linspace(x1 , x2 , 1001)

33

34 y1, y2 = np.quantile(y, [0.01 , 0.99])

35 ylist = np.linspace(y1 , y2 , 1001)

36

37 # Compute FXZ0 and FXZ1

38 fxz0 = np.array ([np.mean((x <= x_star) & (z == 0)) for x_star in xlist ])

39 fxz1 = np.array ([np.mean((x <= x_star) & (z == 1)) for x_star in xlist ])

40

41 xstar_idx = np.argmin(np.abs(fxz1 - fxz0))

42 xstar = xlist[xstar_idx]

43

44 if abs(fxz1[xstar_idx] - fxz0[xstar_idx ]) > 0.01:

45 print("Warning:␣No␣CDF␣crossing␣at␣the␣tolerance␣level␣of␣1%.")

46

47 # Bandwidth selection

48 hlist = np.arange(1, 21) / 10 * np.std(x)

49 medy = np.median(y)

50 cv_sse = []

51 print(hlist)

52 for h in hlist:

53 errors = []

54 for i in range(n):

55 others = np.delete(np.arange(n), i)

56 kout = kernel ((x[others] - x[i]) / h)

57 prediction = np.mean((y[others] <= medy) * kout * (z[others] == z[

i])) / \

58 (np.mean(kout * (z[others] == z[i])) + 1e-6)

59 errors.append ((int(y[i] <= medy) - prediction) ** 2)

60 cv_sse.append(np.sum(errors))

61

62 return hlist[np.argmin(cv_sse)] * (n ** (1 / 5 - 5 / 12))

63

64 def test_exclusion(y, X, Z, h, numboot =1000):

65 n = len(y)

66 x = X

67 z = Z

68 mean_z = np.mean(z)

69 z = (z > np.mean(z)).astype(int) # Threshold Z

70

71

72 # Generate xlist and ylist

73 x1, x2 = np.quantile(x, [0.1, 0.9])

74 xlist = np.linspace(x1 , x2 , 1001)

75

76 y1, y2 = np.quantile(y, [0.1, 0.9])

77 ylist = np.linspace(y1 , y2 , 1001)

78

79 # Compute FXZ0 and FXZ1

80 fxz0 = np.array ([np.mean((x <= x_star) & (z == 0)) for x_star in xlist ])

81 fxz1 = np.array ([np.mean((x <= x_star) & (z == 1)) for x_star in xlist ])

82

83 xstar_idx = np.argmin(np.abs(fxz1 - fxz0))

84 xstar = xlist[xstar_idx]

85
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86 if abs(fxz1[xstar_idx] - fxz0[xstar_idx ]) > 0.01:

87 print("Warning:␣No␣CDF␣crossing␣at␣the␣tolerance␣level␣of␣1%.")

88 message = "Warning:␣No␣CDF␣crossing␣at␣the␣tolerance␣level␣of␣1%."

89 else :

90 print("CDF␣crossing␣ok")

91 message = "CDF␣crossing␣ok"

92 h = h

93

94 # Compute FYXZ0 , FYXZ1 , and KS statistic

95 fyxz0 , fyxz1 = [], []

96

97 kout = kernel ((x - xstar) / h)

98

99 mean_x_z0 = np.mean(x*kout*(z==0))

100 mean_x_z1 = np.mean(x*kout*(z==1))

101

102 mean_y_z0 = np.mean(y*kout*(z==0))

103 mean_y_z1 = np.mean(y*kout*(z==1))

104

105 for yval in ylist:

106 fyxz0.append(np.mean((y <= yval) * kout * (z == 0)) / (np.mean(kout *

(z == 0)) + 1e-6))

107 fyxz1.append(np.mean((y <= yval) * kout * (z == 1)) / (np.mean(kout *

(z == 1)) + 1e-6))

108

109 fyxz0 , fyxz1 = np.array(fyxz0), np.array(fyxz1)

110 ks_statistic = np.sqrt(n * h) * np.max(np.abs(fyxz1 - fyxz0))

111

112 # Multiplier bootstrap

113 ifz0 = np.zeros ((n, len(ylist)))

114 ifz1 = np.zeros ((n, len(ylist)))

115

116 x_indices = np.array([np.argmin(np.abs(x_val - xlist)) for x_val in x])

117

118 #print(fyxz0[x_indices ])

119

120 for i, yval in enumerate(ylist):

121

122 ifz0[:, i] = (np.sqrt(n * h) * ((y <= yval) - fyxz0[x_indices ]) * kout

* (z == 0)) / \

123 (np.sum(kout * (z == 0)) + 1e-6/n)

124 #plt.hist(ifz0[:, i])

125 #plt.show()

126 ifz1[:, i] = (np.sqrt(n * h) * ((y <= yval) - fyxz1[x_indices ]) * kout

* (z == 1)) / \

127 (np.sum(kout * (z == 1)) + 1e-6/n)

128 #print(ifz0)

129 mb = [np.max(np.abs(np.sum((np.random.normal(size=n)[:, None]) * (ifz1 -

ifz0), axis =0))) for _ in range(numboot)]

130 #print(mb)

131 #plt.hist(mb)

132 p_value = np.mean(np.array(mb) > ks_statistic)

133

134 # Results

135 results = {

136 ’KS_statistic ’: ks_statistic ,

137 ’p_value ’: p_value ,

138 ’bandwidth ’: h,

139 ’num_bootstrap ’: numboot ,

140 ’n’: n,

141 ’xstar’: xstar ,

142 ’CI+’ : np.quantile(mb, 0.95) ,
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143 ’message ’ : message ,

144 ’mean_z ’ : mean_z ,

145 ’mean_var ’ : [mean_x_z0 , mean_x_z1 , mean_y_z0 , mean_y_z1]

146 }

147 return results

148

149 --------------------------------------------------------------------------------

150

151 bandwidth(df.Y.reset_index(drop=True),

152 df.T.reset_index(drop=True),

153 df.Z.reset_index(drop=True), numboot =1000)

154

155 --------------------------------------------------------------------------------

156

157 RES = []

158 for t in [-2, 2, 6, 10, 14, 18] :

159 res = test_exclusion(df[(df.temperature_2m >t) & (df.temperature_2m <t+20)].

ut_loss.reset_index(drop=True),

160 df[(df.temperature_2m >t) & (df.temperature_2m <t+20)].OTT.

reset_index(drop=True),

161 df[(df.temperature_2m >t) & (df.temperature_2m <t+20)].

temperature_2m.reset_index(drop=True),

162 0.15586483562757023 ,

163 numboot =1000)

164 RES.append(res)

165 #print(res)

166

167 dviz = pd.DataFrame ({’Mean␣Z’ : [RES[i][’mean_z ’] for i in range(len(RES))],

168 ’xstar ’ : [RES[i][’xstar ’] for i in range(len(RES))],

169 ’KS␣statistic ’ : [RES[i][’KS_statistic ’] for i in range(len(RES))

],

170 ’p-value ’ : [RES[i][’p_value ’] for i in range(len(RES))], }).round

(2).astype(str).set_index(’Mean␣Z’).T

171

172 dviz = pd.DataFrame ({’N’ : [RES[i][’n’] for i in range(len(RES))],

173 ’Mean␣Z’ : [RES[i][’mean_z ’] for i in range(len(RES))],

174 ’xstar ’ : [RES[i][’xstar ’] for i in range(len(RES))],

175 ’KS␣statistic ’ : [RES[i][’KS_statistic ’] for i in range(len(RES))

],

176 ’p-value ’ : [RES[i][’p_value ’] for i in range(len(RES))], }).round

(2).astype(str).set_index(’Mean␣Z’).T
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Renou, Sharmila Sagnier, Mathilde Poli, Sabrina Debruxelles, François Rouanet,
Thomas Tourdias, Jean-Sebastien Liegey, Pierre Briau, Nicolas Pangon, Lili De-
traz, Benjamin Daumas-Duport, Pierre-Louis Alexandre, Monica Roy, Cédric Leno-
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jem, Simon Escalard, Jean-Philippe Desilles, Gabriele Ciccio, Stanislas Smajda,
Mikael Mazighi, Robert Fahed, Michael Obadia, Candice Sabben, Ovide Corabianu,
Thomas de Broucker, Didier Smadja, Sonia Alamowitch, Olivier Ille, Eric Manchon,
Pierre-Yves Garcia, Guillaume Taylor, Malek Ben Maacha, Frédéric Bourdain, Jean-
Pierre Decroix, Adrien Wang, Serge Evrard, Maya Tchikviladze, Bertrand Laper-
gue, Oguzhan Coskun, Arturo Consoli, Federico Di Maria, Georges Rodesch, Morgan
Leguen, Marie Tisserand, Fernando Pico, Haja Rakotoharinandrasana, Philippe Tas-
san, Roxanna Poll, Benjamin Gory, Paul Emile Labeyrie, Roberto Riva, Francis Tur-
jman, Norbert Nighoghossian, Laurent Derex, Tae-Hee Cho, Laura Mechtouff, Anne-
Claire Lukaszewicz, Frédéric Philippeau, Serkan Cakmak, Karine Blanc-Lasserre, and
Anne-Evelyne Vallet. Higher annual operator volume is associated with better reper-
fusion rates in stroke patients treated by mechanical thrombectomy. JACC: Cardio-
vascular Interventions, 12(4):385–391, February 2019. ISSN 1936-8798. doi: 10.1016/
j.jcin.2018.12.007. URL http://dx.doi.org/10.1016/j.jcin.2018.12.007.

J. P. Florens, J. J. Heckman, C. Meghir, and E. Vytlacil. Identifica-
tion of Treatment Effects Using Control Functions in Models With Con-
tinuous, Endogenous Treatment and Heterogeneous Effects. Economet-
rica, 76(5):1191–1206, 2008. ISSN 1468-0262. doi: 10.3982/ECTA5317.
URL https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA5317. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA5317.

Puck S. S. Fransen, Olvert A. Berkhemer, Hester F. Lingsma, Debbie Beumer, Lu-
cie A. van den Berg, Albert J. Yoo, Wouter J. Schonewille, Jan Albert Vos, Paul J.

31

http://dx.doi.org/10.1161/STROKEAHA.121.034422
https://www.sciencedirect.com/science/article/pii/S0304407621000439
http://dx.doi.org/10.1016/j.jcin.2018.12.007
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA5317


Nederkoorn, Marieke J. H. Wermer, Marianne A. A. van Walderveen, Julie Staals,
Jeannette Hofmeijer, Jacques A. van Oostayen, Geert J. Lycklama à Nijeholt, Jelis
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