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the firm than transparent ones. In contrast to a transparent algorithm,
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inputs. When the algorithm is opaque, it yields higher payoffs than a
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1. Introduction

The increasing integration of artificial intelligence (AI) in business operations
marks a significant shift in how companies interact with consumers. From content
recommendation to fraud detection to dynamic pricing, firms use AI in their
interaction with consumers in various applications. We explore AI’s effect on the
interaction between firms and consumers, focusing on a core application of AI:
learning algorithms.
Learning algorithms enable firms to detect patterns and adapt strategies based

on predictive analytics. However, when a firm employs them in its interaction with
consumers, learning must occur in the face of consumers that best-respond and
therefore adapt their behavior. Despite their widespread use, little is known about
how learning algorithms perform in such a strategic environment.
In this paper, we examine the interaction between a learning algorithm and

strategic consumers. We investigate to what long-run outcomes the use of learning
algorithms in firm-consumer relations leads — in terms of profits, consumer welfare,
and conduct.
To address these questions, we propose a model of a learning algorithm interacting

with consumers. In our model, a firm repeatedly interacts with consumers. The firm
behaves according to a reinforcement learning algorithm. Consumers, on the other
hand, best-respond to the firm’s (expected) decisions. We place no restrictions on
the nature of the interaction between the firm and consumer. The model thus nests
applications as diverse as content recommendation, pricing, and quality provision.
We consider a standard class of learning algorithms that is frequently employed

and studied. The purpose of these algorithms is to determine the optimal policy
in the long-run through taking actions and observing realized profits. They work
as follows. The algorithm uses the outcomes of past interactions with consumers
— the actions it has taken and the profit that obtained — to form an estimate of
each action’s profitability. It then either chooses the action for which its estimated
profitability is highest or it experiments with an arbitrary action. After profits
realize, it updates its estimate.
As we show, the long-run dynamics depend critically on the information con-

sumers have about the algorithm, specifically whether the algorithm is transparent
or opaque. We call an algorithm transparent if consumers observe its inputs, i.e.,
the outcomes of past interactions of the algorithm with consumers. It is opaque if
consumers do not observe its inputs.
Our main results are as follows. First, we show that opaque algorithms per-

form better for the firm than transparent algorithms. In contrast to transparent
algorithms, opaque algorithms converge to the optimal policy even in this strate-
gic environment. As a consequence, opaque algorithms yield higher profits than
transparent algorithms. The algorithm thus benefits from consumers having less
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information about its inputs. Intuitively, when consumers have less information
about the algorithm’s inputs, they are more reactive to information about the
algorithm’s current behavior. This in turn enables the algorithm to learn about
the environment and so to play the optimal action.
Second, perhaps surprisingly, opaque algorithms not only raise firm’s profits but

may lead to higher consumer surplus as well. Indeed, for a large class of games,
consumer welfare is higher when the algorithm is opaque than when the algorithm
is transparent. That is, consumers, on average, can be better off when they have
less information about the algorithm. While each individual consumer benefits
from more information, her behavior affects the algorithm’s learning and thus poses
an externality on future consumers. If consumers benefit from the algorithm’s
learning, having less information about the algorithm creates a positive externality
on other consumers. We provide conditions under which the externality is positive
so that consumers, on average, gain when the algorithm is opaque instead of
transparent. This is satisfied, for instance, if the algorithm recommends products
to the consumer, or if the algorithm decides on the quality level of a service.
Third, the transparent-opaque dichotomy also matters when comparing the

algorithm’s performance to the profits the firm could obtain as a strategic player.
Comparing the long-run profits of the algorithm to the ones a strategic player can
obtain, the following holds: in the transparent case, the strategic player obtains
higher payoffs than the algorithm; in the opaque case, the algorithm receives weakly
higher payoffs than the strategic player. In both cases, the difference in payoffs is
strict for some games.
From a methodological point of view, we ask which properties of reinforcement

learning algorithms carry over to a strategic environment. In a non-strategic,
stationary Markov environment, the algorithms we consider learn the policy that
is optimal under complete information about the environment. Moreover, the
algorithm asymptotically achieves this maximum payoff. We characterize conditions
under which these two properties — learning the optimal policy and attaining the
maximum payoff, subject to consumers playing a best-response — carry over to
environments with short-lived consumers.1

We contribute to three distinct literatures. First, our paper adds to the under-
standing of how artificial intelligence impacts markets with a focus on learning in
environments of incomplete information. Second, we contribute to the literature
on reinforcement learning in multi-agent environment. The main difference to
the literature is that we consider the interaction between one algorithm and a
(myopically) best-responding agent. Third, we contribute to the literature on

1The environment with a single short-lived consumer in each period is a minimal departure
from the exogenous, stationary environment — where learning algorithms are well understood —
to a strategic environment.
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learning in repeated games. Section 4 discusses the related literature in-depth.
The remainder of the paper is organized as follows. Section 2 introduces the model.

In Section 3, we present the main results. Section 4 discusses our contribution to
the literature in detail. Section 5 concludes. Proofs are relegated to the Appendix.
A supplementary Online Appendix contains additional results and examples.2

2. Model and algorithm

2.1. Model

Environment Time is discrete and infinite, t = 0, 1, . . . There is one long–lived
player, called the algorithm or algorithmic player, who is active in every period. In
each period t, there is a short-run player SRt who is active only in that period. Let
AQ and ASR be two finite set of actions of the algorithmic player and the short–run
player SRt, respectively.
We assume the environment changes over time, reflecting the notion that what

constitutes optimal play may evolve. Let (ωt)t be a sequence random variables
with support Ω. For simplicity, assume (ωt) are iid. Denote the distribution of the
random variable ωt by q(·), i.e., P[ωt = ω] = q(ω). Throughout, we assume that Ω
is countable.

Information To allow players to react to changes in the environment, assume that
in each period t, the algorithmic player and the short–run player SRt receive some
information about the realization of ωt. We model this information via partitions.
Let SQ and SSR be two finite partitions of Ω. After ωt has realized, the algorithmic
player is informed of the cell s ∈ SQ that contains ωt, i.e., the unique s ∈ SQ such
that ωt ∈ s. Likewise, the short–run player SRt observes the cell in s′ ∈ SSR that
contains ωt.
Throughout, we assume that the algorithmic player has more information about

the realized random variable than the short–run players do.

Assumption 1. The partition SQ is (weakly) finer than SSR.

We refer to the cell s ∈ SQ that contains the realized ωt as the state of the world
in period t.
The random variable ωt and information about it matter for payoffs. Given a

realization ω ∈ Ω, we are given a pair of payoff functions that map joint actions

2The Online Appendix is available at https://stephanwaizmann.github.io/

website-docs/jmp_online_appendix.pdf.
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into real numbers:3

uQ(·, ·, ω), uSR(·, ·, ω) : AQ × ASR → R.

Furthermore, we allow for imperfect monitoring of actions. To this end, define
a signalling structure (Φ, p) as follows: Φ is a finite set of signals and, for each
aQ ∈ AQ, p(·|aQ) ∈ ∆(Φ) is a probability distribution over signals. The signal ϕ
is drawn independently from ω, conditional on aQ, and privately observed by the
short-run players.
The following example showcases the components of the model.

Example 1. Consider a long-lived retailer that repeatedly interacts with a sequence
of consumers. In each period, the consumer owns a product that is defective and
has to decide if she asks for the product to be repaired or if she returns the product.
The retailer decides whether to provide customer service in–house or to outsource
customer service. In–house customer service provides a higher quality for the
consumer. Outsourced customer service, however, is of lower quality.
Payoffs are as in Figure 1. The consumer prefers a repair if the quality of the

customer service is high. If the customer service has a low quality, the consumer
prefers to return the product. The service quality affects the consumer’s payoff
both when she returns the product and when she asks for a repair.
To allow for the possibility that the retailer’s optimal policy changes over time, we

assume its profit depends on the state of the economy. In each period, the economy
can be in one of three states ωi, i = 1, 2, 3. The retailer observes the realized state
at the start of each period. Formally, this means that SQ = {{ω1}, {ω2}, {ω3}}.
For simplicity, denote by si = {ωi} the state that contains the realized shock ωi.
We return to this example below. ■

Timing Play evolves as follows. In period t, ωt is drawn according to q. The
algorithmic player and the short–run player SRt observe the cell of their information
partition that contains ωt, i.e., stQ ∋ ωt, stSR ∋ ωt. Then the algorithmic player
chooses an action aQ ∈ AQ. Next, a signal ϕ ∈ Φ is drawn according to p(·|aQ).
SRt observes the realized signal and chooses an action aSR ∈ ASR. Play moves to

3Information partitions allow us to model random payoffs as well. For a ∈ AQ × ASR and
s ∈ SQ, denote vQ(a, s) = E[uQ(a, ω)|ω ∈ s]. Then the payoff the algorithmic player receives
when its information is s is the random variable

uQ(a, ω)|ω∈s = vQ(a, s) + ηa,s(ω),

where ηa,s(ω) = uQ(a, ω)|ω∈s − E[uQ(a, ω)|ω ∈ s] is a payoff shock with mean zero. Information
partitions are flexible enough to capture arbitrary correlations between the payoff shocks ηa,s(ω)
for different action profiles a.
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Retailer

Consumer
repair return

high quality 2, 3 0, 2
low quality −1, 0 −2, 1

ω1

Consumer
repair return
2, 3 0, 2
3, 0 1, 1

ω2

Consumer
repair return
2, 3 0, 2
4, 0 3, 1

ω3

Figure 1: The payoff functions for the Example 1.

ωt ∈ Ω is drawn

Algorithmic player observes stQ
Short-run player observes stSR

Algorithmic Player selects atQ

Short-run player observes ϕt

Short-run player selects atSR

Figure 2: Timing

t+ 1. We describe what the players observe about the outcome of this and past
interactions below. Figure 2.1 describes the timing of the interaction.

Algorithmic approach The main premise of this paper is that the algorithmic
player does not choose its strategy. Instead, it plays according to a fixed Q–learning
algorithm.
The algorithm is model-free: it does not depend on the primitives of the model

(i.e., the payoff functions and probability distribution of the random variable ωt).
The algorithm takes as given its state space SQ and its actions AQ. All it takes as
inputs are states and own past realized payoffs in those states, given the action it
has taken.
Q–learning is a popular reinforcement learning algorithm and serves as a founda-

tional model for many variations and enhancements applied by firms. Moreover,
Q-learning has the advantage that it is relatively tractable. Therefore, it has
become the workhorse model in the economics literature.4 We view Q-learning as
a proxy for more sophisticated reinforcement learning algorithms.
We expand on the definition of Q–learning in Section 2.2. In short, such

an algorithm is described by a vector ⟨Q0, SQ, (α
t), (εt)⟩. SQ is the algorithm’s

information about ω. Q0 : SQ × AQ → R, and Q0(s, aQ) is the initial guess about
its payoffs from playing aQ ∈ AQ given information s ∈ SQ. The initial guess Q0

captures all the information about the payoffs that is coded into the algorithm, i.e.,

4See the discussion in Section 4.
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all the training of the algorithm that has been done before the interaction with
the short–run players. The sequence (αt) are updating parameters and (εt) are
experimentation probabilities. The standard assumptions on those are introduced
below (see Assumptions (Step-Size) and (Experimentation) in Section 2.2). The
parameters ⟨Q0, SQ, (α

t), (εt)⟩ are common knowledge.
While the algorithmic player’s strategy is exogenously fixed, the short-run players

choose their actions strategically. This is where our paper departs from the literature
on algorithmic learning; because each short-run player best replies, the environment
is not exogenous. The environment with a single short-run player in each period is
a minimal departure from the exogenous, stationary environment — where learning
algorithms are well understood — to a strategic environment.

Transparent and opaque algorithm Lastly, we describe what the short-run
players observe about the interaction of the algorithm with previous short-run
players. To elucidate how the short-run players’ information impacts the algorithm’s
learning, we focus on two extreme cases:5 transparent algorithms and opaque
algorithms. When the algorithm is transparent, the short-run player has the same
information the algorithm has about past play and the current realization of the
random variable ω. In contrast, when the algorithm is opaque, the short-run
players have no information about past interactions and no information about the
algorithm’s state.
When the algorithm is transparent, the short-run player in period t observes the

past interactions of the algorithm and the previous short-run players. That is, SRt

observes the state skQ ∈ SQ, the algorithm’s action akQ ∈ AQ, and the algorithm’s

realized payoff ukQ in all periods k prior to t.6 Moreover, the short-run player SRt

observes the state of the world stQ in period t. However, SRt does not observe the
action the algorithm takes in period t, atQ, but only the private signal ϕt ∈ Φ about
the action.
Denote by UQ the range of the algorithm’s payoffs, i.e.,

UQ = {uQ(a, ω)|a ∈ AQ × ASR, ω ∈ Ω}.

Definition 1 (Transparent Algorithm). An algorithm is transparent if the short-
run players observe the algorithm’s inputs. Formally, a history ht for player SRt

is an element of (SQ × AQ × UQ)
t−1 × SQ × Φ. In that case, a strategy for player

5These cases are not exhaustive. For example, the short-run players may observe the
algorithm’s past actions and realized payoffs, but not its state. The Online Appendix provides
results for such intermediate cases.

6The results do not change if the short-run player SRt observes the actions akSR of the short-run
player or the signal ϕk from previous periods.
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SRt is a map from the set of histories into actions,

σSRt : (SQ × AQ × UQ)
t−1 × SQ × Φ → ∆(ASR).

In contrast, an algorithm is opaque if the short-run players have no information
about its past interactions nor about its current information about ω. Formally, the
short-run players’ information partition is trivial, SSR = {Ω}. When the algorithm
is opaque, the short-run player in period t can condition her action only on the
realized signal ϕ about the algorithm’s action.7

Definition 2 (Opaque algorithm). An algorithm is opaque if the short-run players
do not observe its inputs. Formally, a strategy for SRt is a map8

σSRt : Φ → ∆(ASR).

Any strategy tuple of the short-run players σSR = (σSRt)t together with the
algorithm induce a probability measure over outcomes o ∈ (Ω× AQ × ASR). De-
note this probability measure and the expectation it induces by PσSR and EσSR ,
respectively.9

The short-run players are Bayesian agents, and use the prior q (as well as their
knowledge of the signalling structure, etc.) to form expectations. A strategy tuple
σ∗
SR is an equilibrium if for all players SRt

Eσ∗
SR
[
uSR(a

t
Q, a

t
SR, ω

t)
]
≥ E(σ∗

SRk )k ̸=t,σ
′
SRt
[
uSR(a

t
Q, a

t
SR, ω

t)
]
∀σ′

SRt .

Throughout, we focus on strategies σSR that constitute an equilibrium. All
results hold in any equilibrium.10

Additional assumptions We impose the following assumptions on the primitives
of the model. In order to focus on the algorithm’s learning, we abstract away
from signalling considerations of the algorithmic player. We therefore impose a
“known-own-payoffs”-assumption.

Assumption 2 (Known-own payoffs). For all sSR ∈ SSR, ω, ω
′ ∈ sSR, a ∈ AQ×ASR,

uSR(a, ω) = uSR(a, ω
′).

7The short–run player SRt knows the period t in which she is active.
8We suppress the dependence of σSRt on SSR because the partition is assumed to be trivial.
9We suppress dependence of the probability and the expectation operator on σSR when there

is no chance of confusion.
10Our assumptions guarantee that the equilibrium is generically unique.
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Assumption 2 requires that the short–run players have enough information to
determine their own payoffs. In particular, even when the algorithm has more
information about ω than the short–run players, the algorithm has no more
information about the short-run players’ payoff than they have. This implies that
the algorithm’s action does not convey information about the short-run players’
payoff other than the action itself.11

In addition, we suppose that any preference ordering of the algorithmic player is
possible.

Assumption 3 (Richness Condition). For any strict preference relation ≻ on
AQ × ASR there exists ω ∈ Ω such that uQ(·, ω) represents ≻, i.e., a ≻ a′ ⇐⇒
uQ(a, ω) > uQ(a

′, ω).

Assumption 3 requires that for all preference relations over joint action pairs,
there exists a realization of the random variable ω such that the corresponding payoff
function of the algorithmic player represents this preference relation. Informally,
Assumption 3 requires that the set of possible payoff functions of the algorithmic
player is rich. Interpreting the random variable ω as payoff shocks, Assumption 3
is satisfied if the support of the payoff shocks is large. In particular, Assumption
3 is satisfied if payoff shocks are independent across actions and have unbounded
support.12 We maintain Assumptions 2 and 3 throughout.
Throughout, we make two further technical assumptions. Unless explicitly stated,

these assumptions are maintained.
For each joint action a ∈ AQ×ASR and state s ∈ SQ, the conditional distribution

of payoffs is sub-Gaussian;13 that is, uQ(a, ω) ∼ q|s is sub-Gaussian. Sub-Gaussian
random variables have a finite variance. We remark that each distribution with a
bounded support is sub-Gaussian.
Secondly, we assume that payoffs are generic. For all s ∈ SQ, aQ ∈ AQ,

E[uSR(aQ, aSR, ω)|s] = E[uSR(aQ, a
′
SR, ω)|s] ⇐⇒ aSR = a′SR.

11Under Assumption 1, Assumption 2 can be weakened to: ∀sSR ∈ SSR, a ∈ AQ ×ASR,

E[uSR(a, ω)|sQ] = E[uSR(a, ω)|sSR] ∀sQ ⊂ sSR.

12Our leading Example 1, as stated, does not satisfy Assumption 3. However, Assumption 3 is
satisfied if the payoffs in Figure 1 are interpreted as expected payoffs in each state si.

13Recall that a random variable ω is sub-Gaussian if there exists a real number r ∈ (0,∞)
such that E[exp(λω)] ≤ exp(λ2r2/2) for each real number λ.

9



For all s ∈ SQ and a ∈ AQ × ASR,

E[uQ(a, ω)|s] = E[uQ(a′, ω′)|s] ⇐⇒ a = a′.

Genericity of the short-run player’s payoff implies that the short–run players’
best-response is unique if the algorithmic player takes an action with probability 1.
If the short-run players’ payoffs are not generic, there is little hope for the algorithm
to converge, as the short-run players can alternate among multiple best-responses,
thus preventing learning.

2.2. Q–learning

We provide a brief description of Q–learning. See Watkins (1989), Watkins
and Dayan (1992) or, e.g., chapter 6.5 in Sutton and Barto (2018) for a detailed
exposition. Readers familiar with Q–learning may wish to read the section to
acquaint themselves with the notation used subsequently.14

Consider a single-player decision problem with state space SQ, available actions
AQ, and (random) rewards u(·, ω) where ω is distributed according to q(ω|s). Here,
q(ω|s) = q(ω)/

∑
ω′∈s q(ω

′) if ω ∈ s and q(ω|s) = 0 otherwise.
Q-learning is a method to find the optimal policy in this decision problem. Q–

learning is model–free in that it does not depend on the primitives u(·, ·) and q(·|·);
that is, Q-learning is designed to find the optimal policy when the rewards u(·, ·)
and the probability distribution q(·|·) are unknown.
Let the (unknown) value function of the decision problem be V ∗. A useful

concept is the state–action value function defined as

Q∗(s, a) = E[u(a, ω)|s].

By Bellman’s Principle of Optimality, maxaQ
∗(s, a) = V ∗(s).

The aim of Q–learning is to find Q∗. The algorithm is designed as follows. Fix
an initial guess Q0 : SQ ×AQ → R. At period t, when the state is s and the action
a is selected, the updated guess is

Qt(s, a) = (1− αnt)Qt−1(s, a) + αntu,

where u is the realized payoff, αt is an updating parameter, and nt is the number
of visits to (s, a) before period t. For all other state-action pairs (s̃, ã) ̸= (s, a), the
guess is not updated, i.e.,

Qt(s̃, ã) = Qt−1(s̃, ã).

14Our description of Q–learning differs from standard descriptions since the changes in the
environment, ωt, are assumed to be iid.
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Assume that the algorithm chooses actions εt–greedily, i.e., according to the
following rule. At period t and state s, it chooses the “greedy” action

a ∈ argmax
a′

Qt−1(s, a′)

with probability 1− εt, and with probability εt, each a ∈ AQ is chosen with proba-
bility 1/|AQ|.15 Specifying the updating parameters (αt) and the experimentation
rates (εt), the algorithm is well-defined.
Throughout, we make two assumptions on the parameters of the Q–learning

algorithm, one for the learning rates and one for the experimentation probabilities.

Assumption (Step-Size). The updating parameters (αt) satisfy

∞∑
t=0

αt = ∞

and
∞∑
t=0

(
αt
)2

< ∞,

as well as αt+1 ≥ αt(1− αt+1) for all t.

This assumption, also known as the Robbins and Monro (1951)-step-size condition,
is standard in the literature on learning and stochastic approximation. Intuitively,
the first part requires that each observation carries sufficient weight so that the
impact of the initial guess and any single observation washes out. The second part
requires that weights decay fast enough so that observing an outlier does not move
the estimate too much. The last condition says that the weight attached to the
payoff of the t+1-th update is at least as large as the weight attached to the payoff
in the t-th update.16

Assumption (Experimentation). The experimentation rates (εt) satisfy

∞∑
t=0

εt = ∞,

and εt → 0 monotonically as t → ∞.

15Assume ties are broken with equal probability.
16The condition αt+1 ≥ αt(1 − αt+1) is satisfied by commonly used specifications for the

updating parameters, including αt = α/ts, α > 0, s ∈ (1/2, 1]. While this condition is not needed
for convergence, it simplifies the analysis.
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The first condition says that the algorithm experiments often enough. The
second condition guarantees that the algorithm eventually plays according to the
optimal policy after it has learned it. Both conditions are needed to ensure that
the algorithm learns the optimal policy and plays asymptotically according to it.
Taken together, Assumptions (Step-Size) and (Experimentation) are the weakest
set of assumptions in the literature that guarantees that the algorithm’s asymptotic
behavior is optimal in a single-player environment, i.e., an environment in which
only the algorithm takes decisions. Thus, these assumptions are a starting point
for our analysis.

Theorem (Watkins). Assume that q(s) =
∑

ω∈s q(ω) > 0 for all states s ∈ SQ.
Then, under Assumptions (Step-Size) and (Experimentation), Qt(s, a) → Q∗(s, a)
almost surely as t → ∞ for all state-action pairs (s, a) ∈ SQ × AQ.

17

Example 1 (continued). We provide an alternative description of an algorithm.
While the precise specifications differ from the Q-learning algorithms we consider
in the sequel, readers who are not interested in technical details may wish to think
of the algorithm as described here. Most of the intuition remains the same.
Suppose the algorithm keeps track of the average payoff received in state s ∈ SQ

when having played the action aQ. When state s occurs, the algorithm either
chooses the action that has generated the highest average payoffs in that state s or
it experiments and picks an action at random. The probability of experimentation
decays to 0 but does so sufficiently slowly.■

3. Results

This section presents our main results. First, we discuss a benchmark, then
present the results for transparent and opaque algorithms. We compare the
outcomes for a transparent and for an opaque algorithm. Lastly, we compare the
outcomes to a benchmark in which the long-run player is strategic. Throughout,
we first illustrate the results using Example 1.

3.1. Benchmark

In this section, we present a benchmark in which the short-run players observe
the algorithm’s action perfectly before choosing their own actions. We argue that
this implies that the environment is stationary in the following sense: in each period,
the algorithmic player’s payoff depends only on the action it takes in that period,
and not on the actions taken or payoffs received in previous periods. We show that

17See Watkins and Dayan (1992) or Tsitsiklis (1994) for a proof.
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the algorithm attains the maximal payoff, given that the short-run players play a
best-response. This result obtains both for transparent and opaque algorithms.18

Example 1 (continued). Consider a benchmark case: before choosing whether to
return the product or ask for a repair, the consumer observes the quality of the
customer service. The optimal strategy of the consumer is immediate: ask for a
repair if the service quality is high and return the product otherwise. Hence, the
consumer’s action does not depend on the history of play or on her information
about the state. Taking this strategy as given, the profits the retailer receives are
as follows: in state s1, profits are higher when providing a high-quality service
than when providing a low-quality service; in state s2, profits are 2 when providing
high quality but 1 when providing low quality; in state s3, profits are strictly lower
when providing a high-quality service than when providing low quality.
The algorithm then behaves as follows. Irrespective of the initial guess, the

Q-values converge to the true profits: Qt(si, low quality) converges to the profit
the retailer receives when providing a low quality service and the consumer returns
the product in every state si; similarly, Qt(si, high quality) converges to the payoff
the retailer receives when providing high quality and the consumer asks for a repair.
The algorithm behaves asymptotically as follows: it provides high-quality service in
states s1 and s2, but provides a low-quality service in state s3. Hence, the algorithm
takes the same action a fully informed retailer would have taken if it could commit
to its preferred action. In the long–run, the retailer obtains the highest feasible
complete information payoff, given that the consumer’s decision is a best-response.
■

In this part, we assume that the short-run players observe the algorithm’s action.
Formally, the signalling structure is perfect.

Definition 3 (Perfect signalling). Signalling is perfect if for each action aQ ∈ AQ

there exists a signal ϕaQ such that p(ϕaQ |aQ) = 1, and |Φ| = |AQ|.

A posted-price mechanism is an example of a perfect signalling structure. The
algorithm posts a price. The consumer observes the price and then makes her
purchase decision.
Recall that, by Assumption 1, the algorithm has at least as much information

about ωt as the short-run player does. Hence, for any element s ∈ SQ there exists
s′ ∈ SSR such that s ⊂ s′.19 For a cell s′ ∈ SSR and an action aQ by the algorithmic

18A second natural benchmark is a setting in which the long-run player is not restricted to use
a Q-learning algorithm. Instead, the long-run player can employ history-dependent strategies.
We discuss this benchmark in Section 3.5.

19We use ⊂ to denote weak set inclusion; in particular, s ⊂ s′ allows for the case s = s′.
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player, the short-run player’s best response is

BR(aQ, s
′) = argmax

aSR

E[uSR(aQ, aSR, ω)|s′].

By genericity, the best-response is unique. Assumption 2 implies that the short-run
player’s best-response does not change if given more information about the realized
ω: BR(aQ, s

′) = BR(aQ, s) for any action aQ and any s ⊂ s′. Therefore, we
abuse notation and denote the short-run player’s best-response as a function of the
algorithm’s information s ∈ SQ, even when the short-run player does not have the
information s.

Definition 4. The algorithmic player’s Stackelberg payoff in state s ∈ SQ is

uStack
Q (s) = max

aQ
E[uQ(aQ,BR(aQ, s), ω)|s].

Call the action of the algorithmic player that achieves the Stackelberg payoff in
state s the Stackelberg action in state s, denoted by aStackQ (s). By genericity, the
Stackelberg action is unique.
The Stackelberg payoff is the highest payoff the algorithmic player could achieve

under two conditions. First, the algorithmic player has complete information about
the payoff functions, including the short-run player’s payoff function. Second, the
algorithmic player can commit to play a pure action to which the short-run player
best-responds.20 Our first result states that perfect signalling is sufficient for the
algorithm to learn the Stackelberg action.

Theorem 1 (Benchmark: observed actions). Assume signalling is perfect. Then
the algorithm learns to play the Stackelberg action and receives the Stackelberg
payoff in each state.
Formally, for all parameters ⟨Q0, (αt), (εt)⟩, and any state s ∈ SQ,

lim
T→∞

∑T
t=0 1{atQ = aStackQ (s)}1{ωt ∈ s}∑T

t=0 1{ωt ∈ s}
= 1

and

lim
T→∞

∑T
t=0 uQ(a

t
Q, a

t
SR, ω

t)1{ωt ∈ s}∑T
t=0 1{ωt ∈ s}

= uStack
Q (s)

almost surely.
Proof in Appendix A.1.

20By committing to a mixed action, the algorithmic player can achieve a weakly higher payoff
than the pure Stackelberg payoff. Since a Q-learning algorithm does not play a mixed strategy
asymptotically for generic parameters, the relevant comparison is to the pure Stackelberg payoff.
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The intuition behind Theorem 1 is as follows. When the signal perfectly reveals
the action of the algorithm, the action chosen by the short-run player depends only
on the action played by the algorithm and her own information about the state.
In particular, the short-run player’s action is independent of the history (and the
parameters of the algorithm). As a consequence, the payoff the algorithm receives
depends only on the action it has taken and its own information s: the situation
thus reduces to a single-player problem with random payoff

(s, aQ, ω) 7→ uQ (aQ,BR(aQ, s), ω) .

The usual convergence result for Q-learning, Watkins’s Theorem, then applies.
The first statement of Theorem 1 concerns the actions the algorithm plays. It

states that the fraction of periods in which the algorithm takes the Stackelberg
action converges to 1 almost surely. The action taken by the algorithm, however,
does not converge almost surely because the algorithm experiments infinitely often
with probability 1.21

Moreover, Theorem 1 states that the average payoff the algorithmic player
receives in state s converges almost surely to the Stackelberg payoff in state s. This
is an asymptotic result; little can be said about the actions played by the algorithm
and thus its payoff in the initial periods. Instead of considering the limit of average
payoffs, we could consider the δ-discounted expected payoff of the algorithm. Then
the corresponding result would be that the expected discounted payoff converges
to the Stackelberg payoff as the discount factor approaches 1.
We remark that Theorem 1 holds for transparent and opaque algorithms. When

the short-run player SRt observes the algorithm’s action perfectly, her best-response
does not depend on her belief about past play and the current state. The short-run
player’s action depends on the history only through the current, perfectly revealing
signal. Hence, the result obtains irrespective of the information the short-run
players have about the inputs of the algorithm.
We conclude that the convergence guarantees of Q–learning extend from single-

player environments to environments in which the algorithm’s actions are perfectly
observed. The algorithm learns the optimal action and plays this action in almost
every period asymptotically. Thus, the algorithmic player receives the same payoff
it could have gotten (i) had it known the payoff functions of the game, including
the payoff function of the short–run player, and (ii) could commit to playing an
action. Perfect observability of its action guarantees that the Q-learning algorithm
performs well. As we see next, this result relies on the signalling structure being
perfect.

21In fact, the probability that, in state s, the algorithm takes the Stackelberg action converges
to 1 almost surely. This is a stronger notion than the convergence of the empirical frequencies.
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3.2. Transparent algorithm

In the following, we drop the benchmark assumption that the short-run players
observe the algorithm’s action perfectly. This implies that the environment in
which the algorithm operates is non-stationary: the short-run players’ behavior
depends on their beliefs about the algorithm’s inputs and thus on the outcome
of past interactions. As we show, the outcomes differ depending on whether the
algorithm is transparent or opaque.
In this section, we discuss the main results when the algorithm is transparent,

i.e., when the short-run players observe its inputs. We show that the Q-learning
algorithm typically fails to learn the Stackelberg outcome and to obtain the Stackel-
berg payoff. Hence, the two properties of Q-learning in single-player environments —
learning the optimal action and attaining the maximal payoff — fail in the presence
of strategic short-run players if the algorithm is transparent.

Example 1 (continued). Drop the assumption that the consumer observes the
service quality before making her decision. Consider the case when the algorithm
is transparent.
In states s1 and s3 learning obtains irrespective of the consumer’s behavior: in

state s1, the retailer’s profits when providing high quality are at least 0, so that
the average realized payoff in state s1 when providing high quality is eventually at
least 0; similarly, the profits when providing low quality are at most −1 so that
the average realized payoff for low quality in state s1 eventually becomes negative.
Consequently, the algorithm learns to play the action the retailer would choose to
commit to under full information about the payoffs.
The situation is different in state s2. For the sake of exposition, suppose the

consumer’s signal about the service quality is pure noise. When the algorithm
is transparent, the consumer observes the outcome of past interactions. This
enables the consumer to compute the average realized profit for each state-action
combination in any period. Moreover, when the algorithm is transparent, the
consumer knows the state. This implies that the consumer can predict the service
quality the retailer provides, up to experimentation. Suppose in some period t,
the average payoff when providing low quality in state s2 is approximately 1, but
the average payoff in the periods in which the algorithm provided high quality is
strictly lower. Then the consumer expects the algorithm to provide low quality
and hence chooses to return the product. Consequently, the payoff the retailer
receives in state s2 is 0 when experimenting and providing high–quality service
but 1 when providing low quality. The average payoffs for low and high quality
converge to 1 and 0, respectively. The algorithm then provides low quality in state
s2 in the long-run; the algorithm in state s2 gets stuck in the Nash equilibrium
of a simultaneous-move game with the same payoff functions. In particular, the
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retailer does not achieve the profit it would have gotten if it had known the payoff
functions and could commit to a quality level.

What happens if the consumer observes the service quality almost perfectly
before making her decision? The consumer can then base her decision on the signal
she observes. The consumer’s posterior beliefs depend on the signal quality and her
belief about the retailer’s action. By design of the algorithm, the consumer expects
the retailer to take the action that has yielded the highest average payoff so far, up to
experimentation. As long as experimentation rates are large enough, the consumer’s
action is responsive to the signal she receives. However, as experimentation rates
vanish, the consumer expects the retailer to take the action that has yielded the
highest average payoff with probability close to 1. Hence, if the consumer expects
the retailer to provide a low–quality service, she attributes an observation of
any other signal to noise. As a consequence, the consumer’s behavior becomes
unresponsive to the signals: the situation becomes akin to the one in which the
signal is pure noise. Since the experimentation probabilities vanish, there comes a
time after which the consumer disregards the signals. ■

We dispose of the benchmark assumption that the short-run players observe the
algorithm’s action. Instead, we assume the signals about the algorithm’s actions
are noisy. Formally, we require that the signalling structure has full support.

Definition 5 (Full–support signalling). The signalling structure (Φ, p) has full
support if for all actions aQ ∈ AQ, each signal ϕ ∈ Φ realizes with positive
probability, p(ϕ|aQ) > 0.

Signalling structures that have full support nest many interesting cases. Signalling
has full support, for example, if a consumer has incomplete information about the
quality of a good or service before making her purchase decision (as in Example 1).
Moreover, full–support signalling includes the case when the signals are completely
uninformative. This captures situations in which the algorithmic player and the
short–run player move simultaneously.22

Recall that, when the algorithm is transparent, the short-run players and the
algorithm have the same information about the state. That is, the information
partitions of the short–run players and the algorithm coincide, SSR = SQ.
Fix a state s ∈ SQ = SSR. Define an auxiliary two-player simultaneous move

game by G(s) = ⟨AQ, ASR,E[uQ(·, ω)|s],E[uSR(·, ω)|s]⟩. In this auxiliary game, the
action sets correspond to the algorithmic player’s and the short-run player’s action
sets, and the payoff functions correspond to the expected payoff function of the

22Sequential move games in which the second mover observes the same signal independent of
the first mover’s action are strategically equivalent to simultaneous-move games; see Hart (1992)
for details.
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algorithmic player and the short-run player, respectively, conditional on the state
s. Let a∗(s) = (a∗Q(s), a

∗
SR(s)) be a strict Nash equilibrium of the game G(s).

Theorem 2 (Transparent algorithm). Suppose the signalling structure (Φ, p) has
full support. Suppose the algorithm is transparent.
Then any strict Nash equilibrium a∗(s) is an asymptotically stable outcome.
Formally, for any ξ > 0 there exists K ∈ N and, for each aQ ∈ AQ, an open
neighborhood OaQ around E[uQ(aQ, a∗SR(s), ω)|s] such that,

P

[
lim
T→∞

∑K+T
t=K 1{(atQ, atSR, st) = (a∗Q(s), a

∗
SR(s), s)}∑K+T

t=K 1{st = s}
= 1

∣∣∣∣∣ ∀aQ, QK(s, aQ) ∈ OaQ

]
≥ 1− ξ.

Proof in Appendix A.2.

Corollary 1. Under the hypotheses of Theorem 2, for any sequence of updating
rates (αt) and experimentation rates (εt), there exists K and an open set of initial
Q-values Q0(s, aQ), aQ ∈ AQ, such that

P

[
lim
T→∞

∑T−1
t=0 1{(atQ, atSR, st) = (a∗Q(s), a

∗
SR(s), s)}∑T−1

t=0 1{st = s}
= 1

]
≥ 1− ξ

when the algorithm’s parameters are ⟨Q0, (αK+t), (εK+t)⟩.

Theorem 2 should be interpreted as stating that Nash equilibria are asymptotically
stable.23 More precisely, Theorem 2 states that the vector (E[uQ(aQ, a∗SR(s), ω)|s])aQ∈AQ

— the expected payoff when the short-run player plays according to the Nash equi-
librium action a∗SR(s) — is a stochastically absorbing state in the space of Q-values.
If the Q-values in some late enough period K are close to the absorbing state, the
probability that the Q-values stay in the same neighborhood is close to 1. If the
Q-values remain in this neighborhood, the algorithm’s greedy action is to play
according to the Nash equilibrium. Theorem 2 states that, once this neighborhood
is reached, with probability at least 1− ξ, the fraction of periods in which state s
occurs and the Nash equilibrium a∗(s) is played (by both the algorithmic player
and the short-run player) converges to 1.
Theorem 2 is an asymptotic result in two ways. First, experimentation rates

need to be sufficiently low so that they do not affect the short-run players’ best-
responses. Since experimentation rates vanish, this is always satisfied after some
period. Second, the updating parameters need to be small enough. If updating
rates are close to 1, a single payoff observation moves the Q-values by a lot. Thus,

23Theorem 5 in the Online Appendix provides a generalization of the result for SQ ̸= SSR.
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updating needs to be slow enough to guarantee that the Q-values remain contained
in a neighborhood with high probability.
It is not sufficient to assume that the algorithm’s greedy action corresponds

to the Nash equilibrium action a∗Q(s) for the conclusion of Theorem 2 to obtain.
More precisely, it does not suffice that the Q–value assigned to the equilibrium
action a∗Q(s) is the highest Q–value at some period K. To see this, suppose the
Q–values for all actions are higher than the Nash payoff E[uQ(a∗Q(s), a∗SR(s), ω)|s].
Then the Q–values for all actions decrease (in expectation) while a∗Q(s) is played.
Consequently, the Q-value for a∗Q(s) may drop below the Q–value of some other
action: play moves away from the Nash equilibrium.
Theorem 2 is silent about the long-run payoffs attained by the algorithm. However,

conditional on the event that the Q-values lie in the neighborhood OaQ for all aQ
in some period t ≥ K, the following holds: the long-run average (expected) payoff
of the algorithm in state s belongs to the interval

[(1− ξ)E[uQ(a∗Q(s), a∗SR(s), ω)|s]− ξM, (1− ξ)E[uQ(a∗Q(s), a∗SR(s), ω)|s] + ξM ],

where M is an upper bound on the norm of the algorithmic player’s expected payoff
in state s, E[uQ(·, ·, ω)|s].
What is the intuition behind Theorem 2? When the algorithm is transparent, the

short-run player in period t knows the history of the states, the algorithm’s actions
and its realized payoffs before period t, i.e., SRt observes ht−1 ∈ (SQ × AQ × UQ)

t−1.
The Q-values in period t, Qt(s, aQ), s ∈ SQ, aQ ∈ AQ, are determined uniquely by
the history ht−1. Hence, SRt knows the Q-values in period t. Since SRt observes the
algorithm’s state in period t as well, stQ ∈ SQ, SR

t knows the action the algorithm
takes, unless it experiments.
When the signals are noisy and the experimentation probability is low enough,

the short-run player believes, with probability close to 1, that the algorithmic
player has chosen the greedy action, irrespective of the signal observed.24 Con-
sequently, the short-run player plays a best-response to the algorithm’s greedy
action, independently of the signal received and thus independently of the action
the algorithm has actually played. In other words, the short-run players play a
best-response against the expected action of the algorithm and ignore the signal ϕ.
When the greedy action corresponds to a Nash equilibrium action of the auxiliary

game G(s), the short-run players’ best-response is to play according to the Nash
equilibrium as well. Hence, as long as the algorithm’s greedy action does not
change and the short-run players ignore the signal ϕ, play is according to this

24The observation that imperfect signals convey little information when an action is chosen
with probability (close to) 1 is ubiquitous in economics and game theory. Prominent examples are
Bagwell’s (1995) study of the first-mover advantage or repeated games with private monitoring
(e.g., Matsushima (1991) and Bhaskar and Damme (2002)).
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Nash equilibrium (up to experimentation). Moreover, when the the short-run
players keep playing a∗SR(s), the Q-values converge to the corresponding expected
payoff for the algorithm, Qt(s, aQ) → E[uQ(aQ, a∗SR(s), ω)|s], for each aQ ∈ AQ.
If the Q-values are in a neighborhood of this limit already, they remain in the
neighborhood with high probability, provided that updating rates are sufficiently
small.25

It is instructive to contrast the intuition behind Theorem 2 with the reasoning
behind Theorem 1. The positive result under perfect monitoring obtains because
the short-run players play a best-response to the actual action of the algorithmic
player. Failure to converge to the Stackelberg outcome is due to the short-run
players playing a best-response to the expected action. Consequently, the payoff
the algorithm receives in period t depends not only on its actual, sampled action
but on the history. Therefore, convergence to the Stackelberg outcome fails.
The assumptions on the signalling structure in Theorem 2 are mild. Full support

signalling includes the important case of simultaneous-move games. However, it also
holds for signalling structures that are close to perfect signalling.26 Theorem 2 can
thus be viewed as a negative result: no matter how precise the signalling structure
is, Nash equilibria of the auxiliary game are asymptotically stable. Consequently,
there is no guarantee that the Stackelberg outcome will obtain for all parameters of
the algorithm. The positive result for perfect signalling, Theorem 1, is, therefore, a
knife-edge case.

3.3. Opaque algorithm

In this section, we discuss the case of opaque algorithms. Recall that the
algorithm is opaque if the short-run players do not observe its inputs. We show that
the results differ starkly from the ones obtained for transparent algorithms: when
the algorithm’s information about the realized shock and the short-run players’
signal about the algorithm’s action are sufficiently precise, the Q-learning algorithm
learns to play the Stackelberg action.

Example 1 (continued). Suppose that the algorithm is opaque. The consumer
neither observes past quality choices nor the current state of the economy. Suppose
the consumer observes the service quality almost perfectly: with probability close
to 1, the consumer sees a signal h when the retailer provides high quality and a
different signal l when the retailer provides low quality.

25If the algorithmic player’s payoff is deterministic conditional on the state s, then the Q-values
remain in the neighborhood with probability 1.

26Theorem 2 remains true if the order of moves is reversed: suppose that in each period t, the
short-run player SRt chooses an action, the algorithm observes a signal about the action and
then chooses its action. In that case, the signals can even be perfect. Hence, Nash equilibria (of
the auxiliary simultaneous move game) are stable under a wide range of conditions.
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As in the case with a transparent algorithm, in states s1 and s3 the algorithm
eventually learns to play the best action, i.e., to provide high–quality service in
state s1 and to provide low–quality service in state s3. What happens in state
s2? The algorithm’s and consumer’s behavior in the beginning depend on the
algorithm’s initial guess and the experimentation probabilities. Once the consumer
believes that learning in states s1 and s2 has occurred with probability close to 1,
the consumer expects the retailer to provide high-quality service in state s1 and
low-quality service in state s3. Consequently, the consumer believes the retailer
provides high–quality service with probability at least q(s1) and low-quality service
with probability at least q(s3), irrespective of the experimentation probabilities.

If the signals the consumer receives are precise enough, the consumer believes
that the service quality is high with probability close to 1 after observing signal
h; after observing signal l, she believes the service quality is high with probability
close to 0. Crucially, this is true irrespective of the retailer’s behavior in state s2.
Because the retailer keeps providing high quality in state s1 and low quality in
state s3, up to experimentation, the signals convey enough information in all future
periods. The consumer then behaves as follows: return the product if signal h is
observed and ask for a repair if the signal l is observed.

Given this behavior of the consumer, the algorithm eventually attaches a higher
average payoff to providing high–quality service than to providing low quality in
state s2. Because the signal is precise, the retailer obtains a payoff close to 2 —
the payoff the retailer would have gotten if it had complete information about the
payoffs and if it could commit to an action. Hence, if the algorithm is opaque, it
learns to play according to full information, full commitment benchmark in every
state. ■

When the algorithm is opaque, it learns the Stackelberg action under two
conditions. First, it has (payoff-relevant) information about the realized shock ω
that the short-run players do not have. Second, the short-run players observe a
precise enough signal about the algorithm’s action. The next two definitions make
these notions formal.

Definition 6 (Rich Partitions). A finite partition S of Ω is a rich partition if for
every ω ∈ Ω there exists s ∈ S such that

uQ(a, ω) ≥ uQ(a
′, ω) ⇐⇒ E[uQ(a, ω̃)|ω̃ ∈ s] ≥ E[uQ(a′, ω̃)|ω̃ ∈ s]

for every two action profiles a, a′ ∈ AQ × ASR.

A rich partition S requires the following: for every ordinal preference relation
over actions AQ ×ASR induced by the payoff function uQ(·, ω) for some realization
ω, there exists a cell s in the information partition S such that the expected payoff

21



function conditional on s represent the same ordinal preferences. A rich partition
exists for all Ω because action sets are finite.
We next introduce a formal notion of the precision of the signals ϕ about the

algorithmic player’s action.

Definition 7 (γ-perfect signalling). The signalling structure (Φ, p) is γ-perfect if
27

1. for each aQ, p(·|aQ) has full support;

2. for each aQ, there exists ϕaQ such that p(ϕaQ|aQ) ≥ 1− γ.

The main result for opaque algorithms is the following theorem.

Theorem 3 (Opaque algorithm). Suppose the signalling structure (Φ, p) has full
support. Suppose the algorithm is opaque and the algorithm’s state space SQ is a
rich partition.
When the signals about the algorithm’s action are precise enough, the algorithm
learns to play the Stackelberg action and receives approximately the Stackelberg
payoff in each state.
Formally, there exists γ > 0 such that for all γ-perfect monitoring structures (Φ, p)
with γ ≤ γ, for every state s ∈ SQ,

lim
T→∞

∑T
t=0 1{atQ = aStackQ (s)}1{ωt ∈ s}∑T

t=0 1{ωt ∈ s}
= 1,

and

lim
T→∞

∑T
t=0 uQ(a

t
Q, a

t
SR, ω

t)1{ωt ∈ s}∑T
t=0 1{ωt ∈ s}

∈
(
(1− γ)uStack

Q (s)− γM, (1− γ)uStack
Q (s) + γM

)
almost surely for all parameters ⟨Q0, (αt), (εt)⟩ of the algorithm. Here, M is a
bound on the norm of the algorithmic player’s expected payoff.
Proof in Appendix A.3.

Remark 1. The hypothesis that SQ is a rich partition can be weakened. It suffices
to assume instead that for every action aQ there exists a state saQ ∈ SQ such that28

min
aSR

E[uQ(aQ, aSR, ω)|saQ ] > max
aSR

E[uQ(a′Q, aSR, ω)|saQ ] ∀aQ ̸= a′Q. (1)

27The second condition can be replaced by: for each aQ there exists ΦaQ ⊂ Φ such that
p(ΦaQ |aQ) ≥ 1− γ and p(ΦaQ |a′Q) ≤ γ for all a′Q ̸= aQ.

28The Online Appendix discusses sufficient and necessary conditions under which the algorithm
converges to playing the Stackelberg action. The condition in equation (1) cannot be weakened
to strict dominance; see Example 6 in the Online Appendix.
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■

Theorem 3 makes two statements. First, it states that an opaque algorithm
learns to play the Stackelberg action in each state s: the fraction of periods in
which the algorithm plays according to the Stackelberg action converges to 1 almost
surely. Second, Theorem 3 states that an opaque algorithm achieves a long-run
payoff close to the Stackelberg payoff in every state. In the long-run, the payoff
the algorithmic player obtains is approximately equal to the highest payoff it could
obtain under full information about the payoff functions. When the algorithm
is opaque, the two main properties of Q-learning in single-player environments —
learning the optimal action and achieving the maximal payoff — carry over to the
strategic environment with short-lived, best-responding players!
Theorem 3 relies on two hypotheses. First, the algorithm’s information about

the realized ω is precise enough: the information partition SQ is rich according to
Definition 6. This implies, in combination with Assumption 3, that the algorithm
has enough payoff-relevant information that the short-run players do not have.
This is needed to guarantee that the short-run player’s expect the algorithm to play
each action with a probability that is independent of its parameters and strictly
positive.
Second, the signals the short-run players receive about the algorithm’s action

must be precise enough. Learning to play the Stackelberg action requires that
the short-run players’ behavior depends on the action sampled by the algorithm.
Precise signals are needed to ensure that the short-run players’ action is sensitive
to the action taken by the algorithm. However, as we argue in Section 3.2, precise
signals alone are not sufficient to ensure learning. It is the combination of a rich
information partition of the algorithm and precise signals that ensure learning of
the Stackelberg action when the algorithm is opaque.
The proof of Theorem 3 consists of three main steps. In the first step, we argue

that for every action aQ there is a state saQ ∈ SQ such that the worst possible
expected payoff for the algorithm is strictly higher when playing aQ than the highest
possible expected payoff when playing any other action a′Q. We then show that for
any strategy of the short-run players, the Q-value in that state saQ is eventually
highest for the action aQ. Since for any action aQ there exists such a state, there is
a period T such that the short-run players expect the algorithm to play each action
with a minimal probability q in every period t ≥ T . In particular, this minimal
probability does not depend on the experimentation rates (εt) or other parameters
of the algorithm.
In the second step we show that, eventually, the short–run players’ strategies

become close to stationary. If the signalling structure is precise enough, there is
a set of signals Φ′ such that the action the short-run players take after observing
a signal in Φ′ does not depend on the period t, provided t ≥ T . This makes the

23



short-run players’ strategies close to stationary.
In the third step, we use the approximate stationarity to provide bounds on the

long-run trajectories of the Q–values. Watkin’s Theorem does not apply because
the short-run players’ strategy is not stationary.29 However, we can show that,
with probability 1, for each state-action combination (s, aQ), the corresponding
Q-value is eventually contained in an interval. If signals are precise, those intervals
are small enough such that, for each state, the action aStackQ (s) that attains the
Stackelberg value has the highest Q-value. Consequently, with probability 1, the
greedy action corresponds to the action attaining the Stackelberg value. Play of
the algorithm converges, up to experimentation.
We remark that the strategies of the short-run players converge as well. There

exists a period T̃ such that σSRt = σ
SRT̃ for all periods t ≥ T̃ . However, the

short-run players’ strategies converge only after they believe, with probability close
to 1, that the algorithm’s greedy action has converged in every state s.
Precise signals about the algorithm’s actions play two distinct roles. First, they

ensure that the short-run players’ strategy eventually becomes close to stationary.
This then ensures that the Q-values converge to an interval, even if they do not
converge to a single point. Second, precise signals ensure that the short-run players
eventually best-respond to the sampled action with high probability. This ensures
that play of the algorithm converges. Moreover, best-responding with probability
close to 1 ensures that the algorithm learns to play according to the Stackelberg
outcome.
The precision of the signalling structure, γ, in the statement of Theorem 3 does

not depend on the parameters of the algorithm. It depends on the (expected)
payoff functions of the algorithmic player and the short-run players, the probability
distribution of the random variable ω, and the algorithm’s state space SQ.

3.4. Comparison between transparent and opaque algorithms

In this section, we compare the long-run outcomes for transparent and opaque
algorithms. We first focus on whether the algorithm learns to play according to the
Stackelberg outcome and on the long-run payoffs the algorithm obtains. We then
compare the long-run payoffs of the short-run players when facing a transparent
algorithm and when facing an opaque algorithm.
Recall that the short-run players’ information about the shock ω, given by the

information partition SSR, differs when the algorithm is transparent and when the
algorithm is opaque: SSR = SQ in the former case and SSR = {Ω} in the latter case.
Consequently, to make the comparison meaningful while ensuring that Assumption

29The Q-values need not converge if the action the short-run players take depend on the period
t.

24



2 holds, we assume here E[uSR(·, ω)|s] = E[uSR(·, ω)|s′] for all s, s′ ∈ SQ.

3.4.1. Algorithm’s learning and payoffs

Sections 3.2 and 3.3 show how the outcomes for transparent and opaque algo-
rithms differ both with regards to learning and with regards to payoffs. When the
algorithm is transparent, it need not learn to play according to the Stackelberg
outcome. Consequently, the expected long-run payoff may be lower than the
Stackelberg payoff. In contrast, an opaque algorithm learns to play according the
Stackelberg action and obtains a long-run payoff close to the Stackelberg payoff.
The algorithm performs better when opaque than when transparent.

The algorithm thus achieves higher payoffs when the short-run players have less
information about its inputs. The reason is that the information short-run players
have about the algorithm affects their behavior and consequently the algorithm’s
learning. When the short-run players have less information about the algorithm’s
inputs, learning the Stackelberg outcome obtains because the short-run players
condition their action on the signal they receive about the algorithm’s action.
Hence, the short-run players’ behavior remains responsive to the signals they see
about the algorithm’s action. In contrast, when the short-run players know the
algorithm’s inputs, their behavior eventually becomes independent of these signals
and thus independent of the action taken by the algorithm.
We remark that the algorithm does not benefit from the short-run players’

ignorance about the state because it exploits this ignorance. By Assumption 2, all
information about the short-run players’ payoff that is contained in state s ∈ SQ
is available to the short-run players as well. Hence, even if informed about the
algorithm’s state before making her decision — keeping her beliefs about the
algorithm’s action unchanged — the short-run player would not alter her choice.
Moreover, the algorithm’s profit when opaque are not higher because the short-

run players fail to best-respond to the action the algorithm has actually chosen.
Under the conditions of Theorem 3, the short-run players eventually best-respond
to the action played by the algorithm with probability at least 1− γ. Hence, any
payoff gains or losses that are due to the short-run players failing to best-respond
vanish as signals become precise.
The role asymmetric information about the realized state plays is different. If

the algorithm observes the state but the short-run player does not, the signals
about its action remain informative. The short-run players’ uncertainty about the
state prevents them from ignoring the signals.30 Hence, the signals convey enough

30Maggi (1999) finds a similar effect in a sequential quantity setting game. When the first-
mover’s cost of production is her private information and signals are sufficiently precise, equilibrium
payoffs are close to the Stackelberg payoff. There are important differences to our results. First,
Maggi’s (1995) result is an equilibrium analysis. In our setting, play need not converge to an
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information to affect the short-run players’ behavior. Eventually, the action the
short-run player takes depends on the signal received. This enables the algorithm
to learn the Stackelberg action in every state.
Opaque algorithms perform better than transparent algorithms not only with

regards to learning, but also with regards to the expected long-run payoffs. As the
signals ϕ become precise, the long-run expected payoffs for the opaque algorithm
are higher than for the transparent algorithm, irrespective of the algorithm’s
parameters. Proposition 1 makes this relation precise.
For fixed parameters of the algorithm, let

WQ,x
(Φ,p) = lim inf

T→∞

1

T

T−1∑
t=0

E
[
uQ
(
atQ, a

t
SR, ω

t
)]

be the long-run average expected payoff of the algorithm. Here, x = tra, opa
denotes whether the algorithm is transparent or opaque.

Proposition 1. Suppose the signalling structure (Φ, p) has full support.
Suppose for each aQ ∈ AQ there exists s ∈ SQ such that (1) is satisfied. Let
(Φ, pn) be a sequence of γn-perfect signalling structures with 0 < γn → 0. Then the
following hold:

1. For any parameters ⟨Q0, (αt), (εt)⟩ of the algorithm,

lim sup
n→∞

WQ,tra
(Φ,pn)

≤ lim
n→∞

WQ,opa
(Φ,pn)

= E
[
uStack
Q (s)

]
,

where the expectation is over the state s ∈ SQ.

2. Suppose the algorithm’s state space SQ is a rich partition. Unless the short-run
player has a strictly dominant action, for any parameters of the algorithm,

WQ,tra
(Φ,pn)

< E
[
uStack
Q (s)

]
for all n.

3. Suppose the algorithm’s state space SQ is a rich partition. Unless the short-
run player has a strictly dominant action, for any n large enough there exists

equilibrium of the auxiliary stage game. Moreover, Maggi (1999) assumes a continuum of actions,
states and signals as well as a specific payoff function. In our finite setting, private information
about the state and precise signals are not sufficient to guarantee convergence to the Stackelberg
outcome; see Example 6 in the Online Appendix for a striking example.
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parameters of the algorithm such that

WQ,tra
(Φ,pn)

≤ WQ,opa
(Φ,pn)

− δ

for a constant δ > 0 independent of (Φ, pn) and the algorithm’s parameters.

Proof in Appendix A.4.

The hypothesis that for each action aQ there exists a state s such that (1) holds
ensures that the algorithm learns the Stackelberg action when the signals are precise
enough; see Remark 1.
The first part of Proposition 1 states that the algorithmic player’s long-run

expected payoff is higher when the algorithm is opaque than when the algorithm
is transparent as signals become arbitrarily precise. Theorem 3 shows that the
opaque algorithm achieves the Stackelberg payoff in each state as signals become
perfect. However, the transparent algorithm need not learn the Stackelberg action
and thus achieves a lower payoff.
We focus on the limit payoffs as signalling becomes perfect to disentangle two

effects on the algorithm’s payoff: first, whether the algorithm learns to play the
Stackelberg action; second, whether short-run players best-reply to the algorithm’s
action. When the algorithm is opaque and signals are imperfect, the short-run
players play an action different from their best-response with positive, albeit small,
probability. Focusing on the limit as signals become perfect eliminates this second
effect – which can be positive or negative.
The second part of Proposition 1 states that for any fixed signalling structure

and any parameters of the algorithm, a transparent algorithm achieves a payoff
strictly less than the (expected) Stackelberg payoff; the algorithm fails to learn the
Stackelberg action with positive probability. The result holds under two conditions.
First, the short-run players do not have a strictly dominant action. If the short-run
players have a strictly dominant action, they play this action in every period and
after every history. Consequently, the algorithm faces a stationary environment,
and asymptotically achieves the Stackelberg payoff. The second condition is that
the algorithm’s state space is a rich partition. This condition rules out that a
transparent algorithm asymptotically plays the Stackelberg action with probability
1 in each state.

The first and the second part of Proposition 1 hold for arbitrary parameters
of the algorithm. The third part considers long-run payoffs when the algorithm’s
parameters are chosen adversely. It states that, for some parameters of the
algorithm, a transparent algorithm attains a payoff strictly below the payoff an
opaque algorithm attains. Recall that, when the algorithm is opaque, its long-run
payoff does not depend on its parameters. When the algorithm is transparent,
there exists parameters such that it fails to learn the Stackelberg action and thus
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achieves a payoff strictly below the Stackelberg payoff; see Theorem 2 and its
Corollary. Consequently, the transparent algorithm achieves a payoff strictly below
the expected Stackelberg payoff, and thus less than the long-run payoff an opaque
algorithm would achieve.

3.4.2. Short-run players’ payoff

Example 1 (continued). Consider again Example 1. Recall that in states s1 and
s3, the algorithm learns to play the Stackelberg action when it is transparent and
when it is opaque. The opaque algorithm learns the Stackelberg action in state s2 as
well. In contrast, a transparent algorithm need not learn the Stackelberg action in
state s2. The payoff for the consumer is maximized when she asks for a return and
the algorithm provides high quality. Hence, consumers benefit when the algorithm
learns to play the Stackelberg action in state s2. As a consequence, consumers
receive a higher average payoff when signals are precise and the algorithm is opaque
than when the algorithm is transparent. ■

How does the short-run players’ payoff depend on whether the algorithm is
transparent or opaque? Example 1 shows that the short-run players can, on
average, receive a higher payoff when the algorithm is opaque than when the
algorithm is transparent. However, this does not hold for all games. Under what
conditions are the short-run players, on average, better off when either all short-run
players know the algorithm’s inputs or when no short-run players has information
about the algorithm’s inputs? Put differently, under what conditions are the
short-run players better off with an opaque algorithm compared to a transparent
algorithm?
As a measure of the short-run players’ average payoff, we take the long-run

expected average of all short-run players’ payoffs, i.e., we consider

W SR,x
(Φ,p) = lim inf

T→∞

1

T

T−1∑
t=0

E
[
uSR

(
atQ, a

t
SR, ω

t
)]

.

Observe that each single short-run player SRt prefers having more information
about the algorithm’s inputs. This holds for two reasons. First, there is a single
short-run player in each period. Second, the action taken by SRt affects only the
short-run players of later periods, but leaves the strategy of short-run players that
precede SRt unchanged. Therefore, changing the information SRt has does not
affect the action chosen by the algorithm in period t. Thus, SRt faces, essentially,
a single-player decision problem, and having more information increases the payoff
of SRt.
However, changing the information of SRt affects the action she takes. This affects
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the payoff the algorithm receives in period t and thus its Q-values in subsequent
periods. There is thus an externality of SRt’s information on later short-run players
through the algorithm’s learning.
Having no information about the algorithm’s inputs can increase the short-run

players’ average payoff if the externality is positive. Sufficient for the short-run
players’ average payoff to be higher when the algorithm is opaque than when the
algorithm is transparent is that the short-run players benefit from the algorithm
playing the Stackelberg action in each state. The first part of Proposition 2 makes
this precise.

Proposition 2. Suppose the signalling structure (Φ, p) has full support.
Suppose for each aQ ∈ AQ there exists s ∈ SQ such that (1) is satisfied. Let
(Φ, pn) be a sequence of γn-perfect signalling structures with 0 < γn → 0. Then the
following hold:

1. Suppose that for each s ∈ SQ such that (1) is not satisfied for any aQ, the
Stackelberg action aStackQ (s) maximizes the short-run player’s payoff, i.e.,

E
[
uSR

(
aStackQ (s),BR

(
aStackQ (s)

)
, ω
)]

≥ E [uSR (aQ,BR(aQ), ω)]∀aQ.

For any parameters of the algorithm ⟨Q0, (αt), (εt)⟩,

lim sup
n→∞

W SR,tra
(Φ,pn)

−W SR,opa
(Φ,pn)

≤ 0.

2. Suppose that for each s ∈ SQ for which (1) is not satisfied for any aQ, the
auxiliary game G(s) has a pure Nash equilibrium that is Pareto-dominated
by the Stackelberg outcome (aStackQ (s),BR(aStackQ (s))). Suppose there is at
least one such state s. For any n large enough there exist parameters of the
algorithm such that

W SR,tra
(Φ,pn)

≤ W SR,opa
(Φ,pn)

− δ

for a constant δ > 0 independent of (Φ, pn) and the algorithm’s parameters.

Proof in Appendix A.5.

Proposition 2 imposes conditions on both the algorithmic player’s payoffs and on
the short-run players’ payoff function. The condition on the algorithmic player’s
payoffs guarantee that an opaque algorithm learns the Stackelberg action, provided
signals are precise enough. The conditions on the short-run player’s payoffs ensure
that the short-run players benefit from the algorithm playing the Stackelberg action.
In a state s such that equation (1) holds for some action aQ, the algorithm

plays the Stackelberg action asymptotically, irrespective of the short-run players’
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behavior. Consequently, the payoff for the short-run players in such a state does
not depend on whether the algorithm is transparent or opaque.
The first part of Proposition 2 says that the short-run players receive a higher

average payoff when the algorithm is opaque as signals become precise when the
Stackelberg outcome maximizes the short-run player’s payoff. When the Stackelberg
outcome maximizes the short-run player’s payoff, the short-run players’ benefit from
the algorithm’s learning of the Stackelberg action. Consequently, the short-run
players receive a higher payoff when the algorithm is opaque so that it learns to
play the Stackelberg action. This result holds irrespective of the parameters of the
algorithm.
The second part of Proposition 2 provides sufficient conditions such that, for

some parameters of the algorithm, the short-run players’ average payoff is higher
when the algorithm is opaque. By Theorem 2 and its Corollary, play can get stuck
at a Nash equilibrium of the auxiliary game when the algorithm is transparent.
If this Nash equilibrium is Pareto-dominated by the Stackelberg outcome, the
short-run players receive a higher payoff when the algorithm learns the Stackelberg
action. Hence, they receive a higher payoff when the algorithm is opaque. As a
result, the conditions in the second part of Proposition 2 ensure that short-run
players receive a higher average payoff with an opaque algorithm compared to a
transparent one when the algorithm’s parameters are selected to minimize their
payoff.31

Example 2. Product recommendation. Suppose the algorithmic player is an
intermediary who recommends products to a prospective consumer. Products
have two possible characteristics, a, b, that determine the consumer’s valuation;
suppose that the consumer’s valuation for the characteristics satisfies va < 0 < vb.
The intermediary can distinguish between the characteristics, and recommends a
product to the consumer. The consumer sees the product, but cannot perfectly
infer its characteristics.

If the consumer buys the product, her payoff equals its valuation. When making
a sale, the intermediary receives a fixed commission. If the consumer does not make
a purchase, she and the intermediary receive a payoff of 0. Moreover, assume that
there are states such that a product with characteristic a or b is not available.32

The actions of the intermediary are “recommend product with characteristic a”
and “recommend product with characteristic b”. The consumer’s best response to

31The conditions in the second part of Proposition 2 are not satisfied if the algorithm’s state
space is a rich partition. In this case, the proposition remains true if the probability of states
such that the auxiliary game G(s) has a pure Nash equilibrium that is Pareto-dominated by the
Stackelberg outcome is close enough to 1.

32Suppose that the intermediary’s profit from recommending a product that is not available is
negative.
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the intermediary’s action is to buy if the intermediary recommends the product
with characteristic b, and not to buy otherwise. The Stackelberg outcome is as
follows. The intermediary recommends the product with characteristic b if this
product is available, and recommends the product with characteristic a if this is
the only available product. The consumer buys the product if the intermediary
recommends the product with characteristic b. ■

3.5. Comparison to a strategic long-lived player

In this section, we ask whether the long-run Player 1 suffers or benefits from
using a Q-learning algorithm. We compare the payoffs the long-run player can
achieve when playing according to the algorithm to the payoffs he can achieve when
behaving optimally.33 Assume that the long-run Player 1 is not restricted to using
an algorithm. Instead, Player 1 can use history-dependent strategies. We compare
the equilibrium payoffs such a strategic long-lived player can obtain to the payoffs
a Q-learning algorithm can attain.
Suppose the long-lived player LR is not restricted to using a Q-learning algorithm.

Instead, he behaves strategically, in a way to maximize his own payoff in a repeated
game with the short-run players. Assume both the long-run player LR and the
short-run players (SRt) know the payoff functions (uQ(·, ω) ≡ uLR(·, ω), uSR(·, ω))
and the probability distribution q(·) over Ω.34
A strategy for the long-run player LR is a map

σLR :
⋃

t=0,1,...

(SQ × AQ × UQ)
t−1 × SQ → ∆(AQ) .

33It is not our goal to explain why firms might use such learning algorithms, as restrictive as
they might be. Aside from conceptual reasons (e.g., a prior-free instead of a Bayesian learning
procedure), there are computational reasons (complexity and speed) that make them attractive
in practice.

34The results remain unchanged if we instead assume that the long-run player does not know
the payoff functions. To be more precise, consider the following setting. Suppose for each ω
there are finitely many possible payoff functions {ukQ, (·, ω), ukSR(·, ω)}k∈K . Fix a prior probability
over the set of payoff functions ρ(k). Assume the short-run players observe the realized payoff
functions, i.e., the realized k, but the long-lived player does not. This defines a repeated game of
incomplete information.
Then the following holds. Let ukLR be a sequential equilibrium payoff for the long-run player in
the repeated game when payoff functions are known. Then there exists a sequential equilibrium
of the repeated game of incomplete information such that the long-run player’s payoff is ukLR
when {ukQ, (·, ω), ukSR(·, ω)} are the realized payoff functions.
This equivalence holds because we consider a patient long-term player who assesses payoffs based
on a limit-of-means criterion. By focusing on limit-of-means payoffs rather than discounted
payoffs, the emphasis shifts from what is optimal to learn in equilibrium to what can actually be
learned in equilibrium.
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For the strategies of the short-run players, we distinguish two main cases: whether
the short-run players observe the history of play or not. In the former case, the
short-run players observe the past states, past actions of the long-run player and
his past realized payoffs, in addition to their information about the realization of
the shock ω and a signal ϕ about the long-run player’s action. Formally, a strategy
of player SRt is a map35

σSRt : (SQ × AQ × UQ)
t−1 × SSR × Φ → ∆(ASR).

In the second case, the short-run players only observe their information about
the realization of the shock ω and a signal ϕ about the long-run player’s action.
Formally, a strategy of player SRt is a map36

σSRt : SSR × Φ → ∆(ASR).

Given a strategy profile for each player (σLR, (σSRt)), the payoff to the long-run
player is

U(σLR, (σSRt)) = lim inf
T→∞

T−1∑
t=0

E(σLR,(σSRt ))
[
uQ(a

t
LR, a

t
SR, ω

t)
]
.

This defines a repeated game. We focus on sequential equilibria in pure strategies
of this game which we refer to as equilibria for short.37

The next theorem compares the equilibrium payoffs of the strategic long-lived
player LR with the payoffs a Q-learning algorithm can obtain.

Theorem 4. Suppose the signalling structure (Φ, p) has full support.
Let v∗LR be the highest equilibrium payoff the strategic long-run player can achieve.
Let v∗Q be the highest payoff the Q-learning algorithm can achieve for any parameters
⟨Q0, (αt), (εt)⟩.38

35When SQ = SSR, this case corresponds to the case of a transparent algorithm according to
Definition 1.

36When |SSR| = 1, this case corresponds to the case of an opaque algorithm according to
Definition 2.

37When playing against an algorithm, the short-run players do not play a fully mixed strategy
in any equilibrium for generic payoff functions and parameters. Allowing for mixed strategy
equilibria in the game with a strategic long-run player would distort the comparison. We provide
sufficient conditions for the existence of a pure strategy equilibrium in Appendix A.6.

38Consider the following game. Suppose the algorithmic player knows the payoff functions
and the probability distribution q. The algorithmic player chooses parameters ⟨Q0, (αt), (εt)⟩
under the restriction that (αt) satisfies Assumption (Step-Size) and (εt) satisfies Assumption
(Experimentation). The choice of parameters is observed by the short-run players. Then the short-
run players play according to a Nash equilibrium of the resulting subgame. Then the following
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1. Suppose the short-run players observe the outcome of past interactions, i.e.,
the strategy for SRt is a map

σSRt : (SQ × AQ × UQ)
t−1 × SSR × Φ → ASR.

Then v∗LR ≥ v∗Q.

2. Suppose the short-run players do not observe the outcome of past interactions,
i.e., the strategy for SRt is a map

σSRt : SSR × Φ → ASR.

Then v∗LR ≤ v∗Q.

Proof in Appendix A.6.

Theorem 4 states that whether the long-lived player benefits from being commit-
ted to a Q-learning algorithm depends on the short-run players’ information about
past interactions. When short-run players observe the outcome of past interactions,
there exists an equilibrium in which the strategic long-run achieves a higher payoff
than a Q-learning algorithm can attain for any parameters ⟨Q0, (αt), (εt)⟩. In con-
trast, when the short-run players do not observe the outcome of past interactions,
there exist parameters of the algorithm such that the Q-learning algorithm achieves
a higher payoff than the strategic long-run player in any equilibrium. In both cases,
the gap is strict for some games.39

To illustrate the intuition behind the result, suppose that |Φ| = |SQ| = 1. When
short-run players observe past outcomes they can provide incentives to the strategic
long-run player by threatening to punish him if he deviates. The algorithm, however,
does not take the possibility of punishment into account. When the short-run
players’ strategy is constant across periods, the algorithm will learn to play a
(myopic) best-response to it. The algorithm fails to anticipate that the short-run
players change their behavior as a response to it’s learning.
When the short-run players do not observe past outcomes, they cannot condition

their strategy on the long-run player’s actions and thus cannot provide inter-
temporal incentives to him. Consequently, the long-run player must play a myopic
best-response to the short-run players’ strategy in almost all periods. Since the
short-run players are in best-reply, the strategic player’s payoff must equal an
equilibrium payoff of the static game.
The algorithm, however, need not play a myopic best-response to σSRt in any period

holds: the supremum of all ϵ-equilibrium payoffs of this auxiliary game (a Nash equilibrium need
not exist) for the algorithmic player equals v∗Q.

39See Examples 3 and 4 in Appendix A.6.
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t, even absent experimentation. The reason is that the Q-learning algorithm’s
play exhibits some inertia due to its slow learning. When the short-run players
play a strategy independent of the period in which they are active, the algorithm
will eventually converge to playing a best-response. However, this can induce the
short-run players to alter their action, changing in turn the algorithmic player’s
best-response. As a consequence, play need not correspond to a Nash equilibrium
of the static game. The algorithmic player can thus achieve a payoff strictly above
any Nash equilibrium payoff of the static game. In contrast, a strategic long-run
player knows the action SRt plays in equilibrium, and hence can play a (myopic)
best-response. It is the Q-learning algorithm’s failure to play a best-response in
every period that leads to higher payoffs than a strategic player can obtain.
We remark that the algorithm does not achieve higher payoffs than the strategic

player simply because it has commitment power. Indeed, the long-run player’s
commitment to the algorithm does not change depending on whether the short-run
players observe past outcomes or not. Yet, the comparison between the payoffs
attained by the algorithm and by the strategic player depend on the short-run
players’ information about past outcomes. The role commitment to the algorithm
plays is more subtle. Under complete information about the payoff functions, the
long-run player would like to commit to the Stackelberg action. Commitment to
the Stackelberg action is beneficial when the Stackelberg outcome is not a Nash
equilibrium of the auxiliary simultaneous-move game so that the Stackelberg action
is not a (myopic) best-response to the short-run player’s action. Behaving according
to a Q-learning algorithm provides a different kind of commitment: the algorithm
is committed to learning and playing a best-response to any stationary strategy
of the short-run players. Indeed, if the short-run players choose a constant action
for a long enough horizon, the algorithm will play a best-response to that action.
Commitment to learning a best-response against every stationary strategy of the
short-run players is not optimal: there exist games in which the long-run player
receives a strictly higher payoff when committed to not playing a best-response
against a stationary strategy of the short-run players.40

4. Related literature

The algorithm we consider, Q-learning, was developed by Watkins (1989) and
Watkins and Dayan (1992) for single-agent, Markov decision problems. However,
Q-learning has been applied to study the interaction between multiple algorithms
(so called multi-agent reinforcement learning); see Sandholm and Crites (1996),
Leslie and Collins (2005), Rodrigues Gomes and Kowalczyk (2009), and Kianercy

40See the discussion of Examples 3 and 4.
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and Galstyan (2012) to name but a few.41 Bertrand et al. (2023), Dolgopolov
(2024) and Schäfer (2022) study under what conditions two Q-learning algorithms
play collusive outcomes in a Prisoner’s Dilemma. More recently, Banchio and
Mantegazza (2023), Cartea et al. (2022), and Possnig (2024) analytically study
long-run outcomes of multiple reinforcement learning interacting with each other.42

Our contribution to that literature is two-fold. First, we consider the interaction
between an algorithm and myopically best-responding players as opposed to the
interaction between multiple algorithms. Second, we delineate what properties
of Q-learning extend from a stationary single-player environment to a strategic
multi-player environment.
Q-learning has become the workhorse model for learning algorithms in the

economics literature, and has been applied to study several topics. The most
prominent application is to algorithmic collusion. Early papers are Kephart, Hanson,
and Greenwald (2000), Gerald Tesauro and Kephart (2002), and Waltman and
Kaymak (2008). More recently, the topic has gained renewed interest in Calvano
et al. (2020), Klein (2021) and Asker, Fershtman, and Pakes (2022).43 These
papers study oligopoly games played by multiple Q-learning algorithms. Wang
et al. (2023) study a pricing game between an artificial intelligence – modelled
as a Q-learning algorithm – and a firm using a heuristic pricing rule. Johnson,
Rhodes, and Wildenbeest (2023) study the design of a platform’s recommendation
rule when sellers set prices using Q-learning algorithms. Johnson, Rhodes, and
Wildenbeest (2024) examine algorithmic steering of consumers on platforms and
the effects of advertisement. Barberis and Jin (2023) use Q-learning to model
how boundedly-rational agents make investment decisions. Decarolis et al. (2023)
study the effect of privacy restrictions on ad auctions when advertisers submit bids
using Q-learning algorithms. Our paper focuses on the interaction between a single
algorithm and a myopically best-responding player. We do not restrict the class of
games we study, but allow for general finite games.44

Our second contribution is to the understanding of the interaction between

41There is a literature that aims to design variants of Q-learning that lead to equilibrium play
when employed by all players; see, e.g., Arslan and Yüksel (2016).

42The approximation techniques in Cartea et al. (2022) and Possnig (2024) are not applicable
in our setting because the short-run players’ best-responses lead to a violation of the required
Lipschitz continuity.

43See also Calvano et al. (2019, 2021), Asker, Fershtman, and Pakes (2023), Abada and Lambin
(2023), and Qiu et al. (2023). Werner (2023) studies collusion with human and algorithmic price-
setters in lab experiments. Hettich (2021) studies collusion of Deep Q-Network algorithms that
combine Q-learning with function approximation via deep neural networks. Hansen, Misra, and
Pai (2021) assume that firms employ upper-confidence bound algorithms instead of Q-learning
algorithms. A critique of the literature can be found in Dorner (2021), Boer, Meylahn, and
Schinkel (2022), and Lambin (2024).

44The aforementioned papers are based on simulations whereas our methods are analytical.
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strategic players and algorithms in games. Waizmann (2024) studies the repeated
play of a patient (instead of a myopic), strategic player against a Q-learning
algorithm. That paper focuses on whether the algorithm can be manipulated as
opposed to what the algorithm can learn. Deng, Schneider, and Sivan (2019),
Mansour et al. (2022), and D’Andrea (2023) derive bounds on the payoffs a patient
strategic player can achieve when interacting with no-regret algorithms.45 Our
paper focuses on whether the algorithm can learn the Stackelberg outcome in
a strategic environment whereas those papers aim to characterize the strategic
player’s maximum payoff.46

Thirdly, we contribute to the literature on algorithms in economics. Salcedo
(2015), Lamba and Zhuk (2022),47 and Levine (2023)48 study pricing games in
which sellers choose algorithms. The algorithms they consider are finite automata.
Sellers learn each others’ algorithms and have the opportunity to adjust their own
algorithms at random times. Brown and MacKay (2023b) study how an algorithm’s
speed of adjustment affects competition.49 In contrast to our paper, these papers
feature no learning dynamics: all players know the payoff functions. Consequently,
the role algorithms play in these paper differ from ours. Rather than an instrument
for learning, the algorithms in those papers serve as commitment devices.
Lastly, we contribute to the literature on learning in (repeated) games; see

Fudenberg and Levine (1998), Young (2004), and Hart and Mas-Colell (2013). In
contrast to this literature, we consider learning with two asymmetric players: one
behaving according to a fixed reinforcement learning rule while the second one
plays a myopic best-response.50 Kalai and Lehrer (1993), Nachbar (1997), and
Wiseman (2005) study learning in repeated games. They focus on patient, strategic
players whereas we consider a reinforcement learning algorithm interacting with
myopic players.
There is a large literature on learning in Stackelberg games, i.e., repeated leader-

follower interactions. Our paper differs from this literature in two regards. First,
we consider a fixed algorithm as opposed to examining how to design an algorithm
with desirable properties. Second, this literature either assumes that the follower

45See Guruganesh et al. (2024) for a similar exercise in a repeated contracting environment.
46A main challenge in those papers is to find conditions under which the strategic player can

achieve a payoff strictly above his Stackelberg payoff.
47See also their follow-up paper, Lamba and Zhuk (in progress).
48Levine (2023) considers the cases of “observable commitment” and “unobservable commit-

ment” to an algorithm – essentially, if the other player observes the choice of algorithm or not.
This is different from our distinction between transparent and opaque algorithms which captures
the short-run players’ information about the algorithm’s inputs. In Levine (2023), the algorithms’
inputs are the outcome of past interaction and are observed by all players.

49See also Brown and MacKay (2023a).
50Some papers in this literature, e.g., Börgers and Sarin (1997), consider reinforcement learning

procedures.
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perfectly observes the leader’s (mixed) action,51 or assumes that the follower behaves
according to a fixed algorithm.52 We assume that the follower – the short-run
players in our model – plays a history dependent best-response without assuming
that the leader’s – the algorithm’s – action is perfectly observed.

5. Conclusion

Despite their pervasive use, the impact of learning algorithms on firm-consumer
relations is not well explored. This paper seeks to fill this gap by studying how
learning algorithms interact with strategic consumers. We examine conditions
under which the algorithm achieves the maximal payoff even in an environment
where consumers best-respond and therefore adapt their behavior.
We highlight the role of consumers’ information about the algorithm’s inputs.

We examine transparent algorithms, whose inputs are observed by consumers, and
opaque algorithms, whose inputs are hidden from consumers. We show that an
algorithm performs better when consumers have less information about its inputs,
and provide conditions such that consumer surplus is higher in that case as well.
Moreover, we find that an algorithm can achieve higher payoffs than a strategic
firm when consumers do not observe its inputs. Our results thus provide a novel
rationale for why algorithms are often opaque.

A. Proofs

A.1. Proof of Theorem 1

Proof. When signalling is perfect, the short-run player assigns probability 1 to the
algorithm having played aQ when observing the signal ϕaQ . Hence, when observing
ϕaQ the short-run players play BR(aQ, s

′) in state s′ ∈ SSR. Moreover, when the
algorithm chooses aQ the signal ϕaQ realizes with probability 1.
Consequently, when playing aQ in state s ∈ SQ, the algorithm’s (random) payoff

is
uQ(aQ,BR(aQ, s), ω).

This payoff is distributed according to q(·|s). Since the distribution of payoffs
is sub-Gaussian, the expectation with respect to q(·|s) is well defined, and the

51See, e.g., Letchford, Conitzer, and Munagala (2009), Brückner and Scheffer (2011), Marecki,
Gerry Tesauro, and Segal (2012), Balcan et al. (2015), Blum, Haghtalab, and Procaccia (2014),
G. Yang, Poovendran, and Hespanha (2019), and Zhao et al. (2023).

52For example, Braverman et al. (2018), Fiez, Chasnov, and Ratliff (2019), Camara, Hartline,
and Johnsen (2020), and Zrnic et al. (2021). Haghtalab, Podimata, and Yang (2023) assume the
follower makes a calibrated forecast of the leader’s action to which it then best-responds
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variance of the random payoff is finite.
Hence, Theorem (Watkins) applies:

Qt(aQ, s) → E[uQ(aQ,BR(aQ, s), ω)|s] (2)

almost surely as t → ∞. The limit on the right-hand side of equation 2 equals
the expectation of the payoff the algorithm receives when playing aQ in state s.
The maximum over the algorithm’s actions of the quantity on the right-hand side
equals the Stackelberg payoff uStack

Q (s).
Because actions are selected 1− εt-greedily and εt → 0, the claim follows.

A.2. Proof of Theorem 2

Proof. By the hypothesis that a∗(s) is a strict Nash equilibrium, there exists δ > 0
such that

E[uQ(a∗Q(s), a∗SR(s), ω)|s] ≥ max
aQ ̸=a∗Q(s)

E[uQ(aQ, a∗SR(s), ω)|s] + 2δ.

Choosing K large enough, one may assume that εK is close enough to 0 such that
the best-response of SRt in state s is a∗SR(s) irrespective of the realized signal when
Qt(s, a∗Q(s)) > Qt(s, aQ) for all aQ ̸= a∗Q(s) and t ≥ K. Consequently, on the event
Qt(s, a∗Q(s)) > Qt(s, aQ), the payoff the algorithm receives at state s when selecting
action aQ is (the random variable) uQ(aQ, aSR, ω)|ω∈s.
Applying Lemma 6 to each of the processes Qt(s, aQ), aQ ∈ AQ, the probability
that Qt(s, a∗Q(s)) < Qt(s, aQ) for some aQ ̸= a∗Q(s), t ≥ K can be made smaller
than ξ by choosing K large enough.

A.3. Proof of Theorem 3

Proof. First, the richness condition, Assumption 3 implies that for every aQ there
exists ω ∈ Ω such that

min
aSR

uQ(aQ, aSR, ω) > max
aSR

uQ(a
′
Q, aSR, ω) ∀a′Q ̸= aQ.

Since the algorithm’s information partition is rich, there exists saQ ∈ SQ such
that

min
aSR

E[uQ(aQ, aSR, ω)|s] > max
aSR

E[uQ(a′Q, aSR, ω)|s] ∀a′Q ̸= aQ.

Such a state saQ exists for each action aQ of the algorithm. Let q = minaQ q(saQ).
Since q(·) has full support and SQ is finite, q > 0.
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Second, let ξ > 0 be such that, for all aQ, BR(aQ) is the unique best-reply of
the short-run players if the algorithmic player plays the action aQ with probability
at least ξ. Such a ξ exists because the short-run players’ payoff function is generic.
Suppose the signalling structure is γ-perfect. For each action aQ, denote by ϕaQ
the signal that satisfies p(ϕaQ |aQ) ≥ 1− γ. Let γ1 > 0 satisfy

Pτ [aQ|ϕaQ ] ≥ ξ

for any fully mixed strategy τ ∈ ∆(AQ) with τ(aQ) ≥ q/2 for each aQ; i.e., the
posterior probability that the algorithmic player has played aQ after observing ϕaQ
is at least ξ for any strategy that plays each action a′Q with probability at least
q/2. Such a γ1 exists by Lemma 3.

Let aStackQ (s) be the action that achieves the Stackelberg payoff in state s; that is,

aStackQ (s) = argmax
a′Q

E[uQ(a′Q,BR(a′Q), ω)|s].

Recall that Assumption 2 implies that the short-run players’ best response against
aQ does not depend on the state s. By genericity, the action aStackQ (s) is unique for
every state s. Let γ2 be such that for each s ∈ SQ,

(1− γ)uStack
Q (s) + γmin

aSR
E[uQ(aStackQ (s), aSR, ω)|s]

> (1− γ)E[uQ(a′Q,BR(a′Q), ω)|s] + γmax
aSR

E[uQ(a′Q, aSR, ω)|s] ∀a′Q ̸= aStackQ (s)

for all γ ≤ γ2. Such a γ2 exists by genericity of the algorithm’s payoffs and the
finiteness of SQ. Choose γ = min{γ1, γ2}.
Third, fix a γ-perfect monitoring structure (Φ, p) with 0 < γ < γ. Let (σSRt) be

an optimal joint strategy of the short-run players. Because of Assumption 3 and the
hypothesis that the algorithm’s information partition SQ is rich, Lemma 1 applies.
Hence, there exists a period T such that the short-run players believe the algorithm
takes each action with probability at least q/2 in each period t ≥ T , irrespective
of the experimentation rates (εt).53 By our choice of γ, any optimal σSRt must
satisfy σSRt(ϕaQ) = BR(aQ) for all t ≥ T . Hence, Lemma 2 can be applied with
Φ′ = {ϕaQ|aQ ∈ AQ}. Consequently, for every ξ > 0 chosen small enough, the

53The period T depends on the experimentation probabilities (εt).

39



Q-values are eventually almost surely contained in an interval. Specifically∑
ϕa′

Q
∈Φ′

p(ϕ′
aQ
|aQ)E[uQ(aQ,BR(a′Q), ω)|s]

+

(
1−

∑
ϕ∈Φ′

p(ϕ|aQ)

)
min
aSR

E[uQ(aQ, aSR, ω)|s]− ξ

≤ Qt(s, aQ) ≤∑
ϕa′

Q
∈Φ′

p(ϕ′
aQ
|aQ)E[uQ(aQ,BR(a′Q), ω)|s]

+

(
1−

∑
ϕ∈Φ′

p(ϕ|aQ)

)
max
aSR

E[uQ(aQ, aSR, ω)|s] + ξ,

Since γ < γ2, the bounds are such that for each state s, the Q-value corresponding
to the Stackelberg action is the highest Q-value in that state; that is, there exists
a (random) period T̃ such that for all t ≥ T̃ and states s ∈ SQ,

Qt(s, aStackQ (s)) > Qt(s, aQ) ∀aQ ̸= aStackQ (s).

Since the experimentation probabilities vanish, the algorithmic player chooses
the Stackelberg action in each state s with probability approaching 1. Moreover,
the short-run players’ strategies are such that they best-respond to the Stackelberg
action, when played by the algorithm, with probability at least 1− γ. The claim
then follows.

Lemma 1. Suppose s ∈ SQ, aQ ∈ AQ are such that

min
aSR∈ASR

E [uQ(aQ, aSR, ω) | s] > max
aSR∈ASR

E
[
uQ(a

′
Q, aSR, ω)

∣∣ s]
for all a′Q ̸= aQ.
Fix any joint strategy (σSRt) of the short-run players where

σSRt : Φ → ∆(ASR).

For every ξ > 0 there exists a (deterministic) period Tξ such that for all t ≥ Tξ,

P(σSRt )[Qt(s, aQ) > max
a′Q ̸=aQ

Qt(s, a′Q)] ≥ 1− ξ.
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Proof. Denote by H t the set of histories of length t, i.e.,

H t = (SQ × AQ × UQ)
t .

Denote the set of outcomes by

H∞ = (SQ × AQ × UQ)
∞ .

Let {Ft}t be the filtration generated by the H t. Recall that any ht ∈ H t de-
termines the Q–values at period t, i.e., Qt(ht). To simplify notation, denote by
P[·] = P(σSRt )[·] the probability measure induced by the algorithm’s and the short–
run players’ strategies. Note that the SR-players’ strategy is measurable with
respect to the filtration {Ft}t.

Because the experimentation probabilities (εt) satisfy
∑

t ε
t = ∞ and the distribu-

tion q on Ω has full support, the event {ωt ∈ s, atQ = aQ for infinitely many t} oc-
curs with P-probability 1. Apply Lemma 5 to the processes (Qt(s, aQ))t, (Q

t(s, a′Q)t)t,

and conclude that there exists a random time T̃ such that, for a η > 0 small enough,

Qt(s, aQ) ≥ inf
k

∑
ϕ∈Φ

p(ϕ|aQ)E
[
uQ
(
aQ, σSRk

(ϕ), ωk
)
| ωk ∈ s

]
− η/2

Qt(s, a′Q) ≤ sup
k

∑
ϕ∈Φ

p(ϕ|a′Q)E
[
uQ
(
aQ′, σSRk

(ϕ), ωk
)
| ωk ∈ s

]
+ η/2

Moreover, T̃ < ∞ P-almost surely. We remark that the random time T̃ is a function
of the outcome h ∈ H∞. T̃ is not a stopping time with respect to the filtration
{Ft}t.
Choosing η small enough, by the hypothesis that

min
aSR∈ASR

E [uQ(aQ, aSR, ω) | s] > max
aSR∈ASR

E
[
uQ(a

′
Q, aSR, ω)

∣∣ s]
for all a′Q ̸= aQ, we conclude that for all t ≥ T̃ ,

Qt(s, aQ)− η > Qt(s, a′Q) ∀aQ ̸= a′Q.

Since T̃ < ∞ for P-almost all h ∈ H∞, there exists a (deterministic) Tξ ∈ N such
that P[T̃ ≤ Tξ] ≥ 1− ξ. The claim follows.
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Lemma 2. Let σSRt : Φ → ASR.
54 Suppose there exists Φ′ ⊂ Φ such that

σSRt(ϕ) = σSRt′
(ϕ) ≡ σSR(ϕ) ∀t, t′, ϕ ∈ Φ′.

Fix ξ > 0. There exists a random time Tξ such that for every s ∈ SQ and aQ ∈ AQ,

∑
ϕ∈Φ′

p(ϕ|aQ)E[uQ(aQ, σSR(ϕ), ω)|s] +

(
1−

∑
ϕ∈Φ′

p(ϕ|aQ)

)
min
aSR

E[uQ(aQ, aSR, ω)|s]− ξ

≤ Qt(s, aQ) ≤∑
ϕ∈Φ′

p(ϕ|aQ)E[uQ(aQ, σSR(ϕ), ω)|s] +

(
1−

∑
ϕ∈Φ′

p(ϕ|aQ)

)
max
aSR

E[uQ(aQ, aSR, ω)|s] + ξ,

for all t ≥ Tξ. Moreover, Tξ < ∞ almost surely.

Proof. For aQ ∈ AQ, s ∈ SQ fixed, denote by 1{(atQ, st) = (aQ, s)} the random
indicator variable that the state-action combination in period t was (aQ, s). Let
nt(s, aQ) be the number of times the state-action pair (aQ, s) has been visited
before time t.
The Q-values evolve as follows:

Qt+1(s, aQ) = Qt(s, aQ) + αnt(s,aQ)1{(atQ, st) = (aQ, s)}
(
−Qt(s, aQ) + utQ

)
,

where utQ is the payoff the algorithm receives in period t. Conditional on (s, aQ)
the payoff utQ is the random variable

utQ = uQ(aQ, σSRt(ϕt), ωt)

where ϕt is distributed according to p(·|aQ) and ωt according to qω∈s(·). Note that
ϕt and ωt are independent, conditional on (s, aQ).
Let {Ft} be the σ-algebra generated by (SQ × AQ × UQ)

t, and {Gt} the σ-algebra
generated by (SQ × AQ × UQ)

t × SQ × AQ.

Note that 1{(atQ, st) = (aQ, s)} and αnt(s,aQ) are Gt-measurable. Define an

alternative process Q̃t(s, aQ) recursively by

Q̃t+1(s, aQ) = Q̃t(s, aQ)+αnt(s,aQ)1{(atQ, st) = (aQ, s)}
(
−Q̃t(s, aQ) + utQ − E[utQ|Gt]

)
,

and Q̃0(s, aQ) = Q0(s, aQ).

54Extending the Lemma to allow for mixed strategies of the short-run players is straightforward.
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The event {1(atQ,s
t)=(aQ,s) for infinitely many t} occurs with probability 1 be-

cause the experimentation probabilities (εt)t satisfy
∑

t ε
t = ∞. Consequently,

Q̃t(s, aQ) → 0 almost surely. One computes that, almost surely,

E[utQ|Gt] =
∑
ϕ∈Φ

p(ϕ|aQ)E[uQ(aQ, σSRt(ϕ), ω)|sQ]

≥
∑
ϕ∈Φ′

p(ϕ|aQ)E[uQ(aQ, σSR(ϕ), ω)|sQ] +

(
1−

∑
ϕ∈Φ′

)
min
aSR

E[uQ(aQ, aSR, ω)|sQ].

The first line uses that the distribution of the signal ϕ is independent of ω, condi-
tional on sQ and aQ. The inequality follows from our hypothesis on the strategy
σSRt for signals ϕ ∈ Φ′. Note that the second term on the last line does not depend
on the period t.
By an analogous computation,

E[utQ|Gt] ≤
∑
ϕ∈Φ′

p(ϕ|aQ)E[uQ(aQ, σSR(ϕ), ω)|sQ]

+

(
1−

∑
ϕ∈Φ′

)
max
aSR

E[uQ(aQ, aSR, ω)|sQ].

Applying Lemma 5 to each process Qt(s, aQ), the claim follows.

Lemma 3. Suppose Assumption 2 hold. Let aQ, ϕaQ be as in definition 7. For any
µ > 0, there exists γ > 0 such that

1. if P[atQ = aQ] ≥ µ for all aQ ∈ AQ,

2. and (Φ, p(·|·)) is γ-perfect for γ ≤ γ,

then SRt plays BR(aQ) after observing signal ϕaQ, i.e., σSRt(ϕaQ) = BR(aQ).
55

Proof. Because the short-run players’ payoffs are generic, there exists 0 < η < 1
such that SRt plays BR(aQ) if the probability that atQ = aQ is at least η. Since AQ

is finite, η can be taken independent of aQ.
Since the signal distribution p has full support, one computes that

P[atQ = aQ|ϕaQ ] ≥
(1− γ)µ

(1− γ)µ+ γ(1− µ)
.

The RHS of the inequality is greater than η for any µ > 0 if γ is close enough to
0.

55This Lemma is reminiscent of Lemma 1 in Van Damme and Hurkens (1997).
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A.4. Proof of Proposition 1

Proof. 1. Theorem 3 implies that

WQ,opa
(Φ,pn)

→ E[uStack
Q (s)].

which shows the first assertion.
Let M be a bound on the algorithmic player’s expected payoff. When the
algorithm is transparent, the expected payoff the algorithm receives in period
t and state s is bounded from above by (1− εt)uStack

Q (s) + εtM for all t large

enough. Hence, lim supWQ,tra
(Φ,pn)

is bounded from above by E[uStack
Q (s)].

2. When the short-run player does not have a dominant action, there exists
a′Q ̸= a†Q such that

BR(a′Q) ̸= BR(a†Q).

By Assumption 3, there exists ω ∈ Ω such that

a) uQ(a
†
Q,BR(a

†
Q), ω) > uQ(aQ,BR(aQ), ω) ∀aQ ̸= a†Q;

b) uQ(a
′
Q,BR(a

†
Q, ω) > uQ(a

†
Q,BR(a

†
Q), ω);

c) uQ(a
′
Q,BR(a

′
Q), ω) > uQ(aQ,BR(a

′
Q), ω) ∀aQ ̸= a′Q

d) uQ(a
′
Q,BR(a

′
Q), ω) > uQ(a, ω)

∀a ∈ AQ × ASR \ {(a′Q,BR(a′Q)), (a′Q,BR(a
†
Q), (a

†
Q,BR(a

†
Q))}.

The first condition states that a†Q is the Stackelberg action in the auxiliary
game G({ω}). The second condition states that this Stackelberg outcome is
not a Nash equilibrium of the auxiliary game G({ω}). The third condition
states that there is a Nash equilibrium of G({ω}). The last condition requires
that the only action pairs that yield a higher payoff for the algorithmic player
than the Nash equilibrium (a′Q,BR(a

′
Q)) are the Stackelberg outcome and

(a′Q,BR(a
†
Q).

By the hypothesis that SQ is a rich partition, there exists s ∈ SQ such that
E[uQ(·, ω′)|s] induces the same preference relation over AQ ×ASR as uQ(·, ω).
In particular, the conditions on a†Q, a

′
Q hold for the expected payoff conditional

on s. Note that a†Q = aStackQ (s).
When the algorithm is transparent, we know from the proof of Theorem 2
that, since the signalling structure has full support, there exists a period K
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such that for all periods t ≥ K

σSRt(ht−1, s, ϕt) = BR(argmax
aQ

Qt(ht−1)(s, aQ)

for all signals ϕ. That is, the short-run player SRt plays a best-response to
the greedy action in state s irrespective of the signal ϕt.

Assume toward a contradiction that the Stackelberg outcome is played in
almost every period, i.e., the fraction of periods in which the Stackelberg
outcome in state s is played converges to 1 almost surely. Then it must be
that for t large enough, uStack

Q (s) ≈ Qt(s, a†Q) > Qt(s, aQ) for all aQ ̸= a†Q and

SRt plays BR(atQ). By condition 2, there exists a (random but almost surely
finite) period T such that Qt(s, a′Q) > Qt(s, aQ) for all aQ ̸= a′Q.

Because (a′Q,BR(a
′
Q)) is a strict Nash equilibrium of the auxiliary game

G(s), the algorithmic player receives a strictly lower payoff when playing
ãQ ̸= a′Q against BR(a′Q) Hence, there exists a period N , a sequence of
actions of the algorithm (atQ)

N
t=T and realizations (ωt)Nt=T , ω

t ∈ s such that
that if (atQ,BR(a

′
Q)) is played and ωt realized in periods t = T, . . . , N , (i)

QN(s, a
′
Q) is in a neighborhood of radius δ/2 of E[uQ(a′Q,BR(a′Q), ω)|s] for

a small δ > 0, (ii) E[uQ(a′Q,BR(a′Q), ω)|s] − δ > QN(s, aQ) for all aQ ̸= a′Q,
and (iii) Qt(s, a′Q) > Qt(s, aQ) for all aQ ̸= a′Q and t = T, . . . , N . Condition

(iii) ensures that SRt plays BR(a′Q) in periods t = T, . . . , N . Because εt > 0,
such a sequence of actions occurs with positive probability. However, by an
argument similar to the proof of Theorem 2, conditional on the event (i) and
(ii),

P

[
lim
T→∞

∑N+T
t=N 1{(atQ, atSR, st) = (a′Q,BR(a

′
Q), s)}∑N+T

t=N 1{st = s}
= 1

]
≥ ξ

for a ξ > 0. Consequently,

lim
T→∞

∑T
t=0 uQ(a

t
Q, a

t
SR, ω

t)1{ωt ∈ s}∑T
t=0 1{ωt ∈ s}

< uStack
Q (s)

with positive probability, a contradiction. Consequently, WQ,tra
(Φ,p) < E[uStack

Q (s)].

3. For each s, let w(s) equal the lowest payoff for the algorithmic player in any
strict Nash equilibrium of the auxiliary game G(s) if G(s) admits a strict
Nash equilibrium, and w(s) = uStack

Q (s) for all other states. By Assumption 3

and the hypothesis that SQ is a rich partition, E[w(s)] < E
[
uStack
Q (s)

]
. Let

δ = E
[
uStack
Q (s)

]
−E[w(s)]. By Theorem 3, WQ,opa

(Φ,pn)
≥ E

[
uStack
Q (s)

]
−δ/3 for all
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n large enough. Moreover, for all n large enough, Theorem 2 and its corollary
there exists parameters of the algorithm such that WQ,tra

(Φ,pn)
≤ E[w(s)] + δ/3.

The claim follows.

A.5. Proof of Proposition 2

Proof. 1. By Lemma 4, in a state s such that for some aQ equation (1) holds,
the algorithm plays aQ eventually (up to experimentation), irrespective of
the short-run players’ strategy. In particular, this holds when the algo-
rithm is transparent and when the algorithm is opaque. Consequently, the
highest asymptotic payoff the short-run player obtain in such a state is
E [uSR(aQ,BR(aQ), ω)].

By Theorem 3 and Remark 1, the opaque algorithm learns the Stackelberg
action when signalling is precise enough. Consequently, when the algorithm
is opaque the expected payoff the short-run player receives for all periods t
large enough converges to E[uSR(a

Stack
Q (s),BR(aStackQ (s), ω)] as n → ∞. Given

the hypotheses of the claim, this is the highest expected payoff the short-run
players can achieve.

2. The proof follows along the same lines as the third part in the proof of
Proposition 1.

Lemma 4. Suppose that for some state s ∈ SQ and some action aQ ∈ AQ equation
(1) holds, i.e.,

min
aSR∈ASR

E [uQ(aQ, aSR, ω)|s] > max
aSR∈ASR

E
[
uQ(a

′
Q, aSR, ω)|s

]
for all a′Q ̸= aQ.

Fix any joint strategy (σSRt) of the short-run players where

σSRt : (SQ × AQ × UQ)
t−1 × SQ × Φ → ASR.

Then{
h ∈ (SQ × AQ × UQ)

∞ ∣∣ ∃T ∈ N : Qt(h)(s, aQ) > Qt(h)(s, a′Q) ∀t ≥ T
}

occurs with probability 1.

Proof. Let s, aQ satisfy equation (1). Let a′Q ̸= aQ. Consider the stochastic process
(Qt(s, aQ))t. Since (st, atQ) = (s, aQ) for infinitely many t and Qt+1(s, aQ) =
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Qt(s, aQ) if (st, atQ) ̸= (s, aQ), one may assume that (st, atQ) = (s, aQ) for all t.
Letting {Ft}t be the filtration generated by the SR players’ information, vtaSR(ω) =
uQ(aQ, aSR, ω) and ξtaSR

(ht) = σSR(h
t)(aSR) the SR player’s behavioral strategy at

ht, one can apply Lemma 5 to the processes (Qt(s, aQ)). One concludes that for
every δ > 0 there exists T (δ, aQ) almost surely finite such that

Qt(s, aQ) ≥ min
aSR∈ASR

E[uQ(aQ, aSR, ω)|s]− δ

for all t ≥ T (δ, aQ).
By an analogous reasoning, once concludes that
Qt(s, a′Q) ≤ maxaSR∈ASR

E[uQ(a′Q, aSR, ω)|s] + δ for all t ≥ T (δ, a′Q) for an almost
surely finite T (δ, a′Q). Choosing δ > 0 such that

min
aSR∈ASR

E[uQ(aQ, aSR, ω)|s]− max
aSR∈ASR

E[uQ(a′Q, aSR, ω)|s] > 2δ,

the claim follows.

A.6. Proof of Theorem 4

Proof. First, note by Assumptions 1 and 2, it is without loss of generality to assume
that |SSR| = 1; otherwise, all statements hold conditional on each s ∈ SSR.
Consider the following auxiliary extensive-form game between the algorithmic

player and one short-run player. The algorithmic player has |SQ|-many types.
Each cell s ∈ SQ corresponds to a type of the algorithmic player. Each type of
the algorithmic player has the same set of actions AQ. First, nature draws the
algorithmic player’s type s which is private information of the algorithmic player.
After being informed of its type, the algorithmic player selects an action aQ ∈ AQ.
After the algorithmic player takes its action aQ, a signal ϕ ∈ Φ is drawn according to
p(·|aQ). The short-run player observes the signal ϕ and takes an action aSR ∈ ASR.
For each a ∈ AQ × ASR the payoffs of the short-run player is given by E[uSR(a, ω)]
and the payoff of the algorithmic player is given by E[uQ(a, ω)|s] if its type is s.
Denote this auxiliary game by G(SQ, (Φ, p)).
Let τQ : SQ → AQ and τSR : Φ → ASR be a strict Nash equilibrium of

G(SQ, (Φ, p)).
56 To ensure existence of a Nash equilibrium of the repeated game

between the strategic LR player and the short-run players in pure strategies, we
make the following assumption.

Assumption 4. The game G(SQ, (Φ, p)) admits a Nash equilibrium in pure strate-
gies.

56The assumption that the signalling structure (Φ, p) has full support ensures that each Nash
equilibrium of the auxiliary extensive-form game is outcome-equivalent to a sequential equilibrium.
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Moreover, assume payoffs in (normal form game of) G(SQ, (Φ, p)) are generic.This
is a slightly stronger assumption than the genericity assumption on the payoff
functions we impose throughout; see Section 2. The reason is that the genericity
condition here also includes condition on the distributions q and p.
We divide the proof into two cases. In the first case, we characterize payoffs when

the short-run players observe the outcome of past interactions. In the second case,
we characterize payoffs when the short-run players do not observe the outcome of
past interactions.

Case 1: suppose σSRt : (SQ × AQ × UQ)
t−1 ×Φ → ASR. For τLR : SQ → AQ, call

τSR : Φ → ∆(ASR) a best-response (in the auxiliary game G(SQ, (Φ, p))) to τLR if

E(τLR,τSR) [uSR (aLR, aSR(ϕ), ω)]

≥ E(τLR,τ
′
SR) [uSR (aLR, aSR(ϕ), ω)] ∀τ ′SR.

Denote the best-response to τLR by BR(τLR) Let

v∗ = sup
τLR:SQ→ALR

E(τLR,BR(τLR)) [uLR(a, ω)] ,

i.e., the highest payoff the long-lived player can achieve in auxiliary gameG(SQ, (Φ, p))
by committing to a pure strategy and the short-run player playing a best-response.
Let τ ∗LR be the strategy of the long-lived player that achieves this maximum payoff
and τ ∗SR = BR(τ ∗LR).
Construct an equilibrium (σLR, (σSRt) of the repeated between the strategic long-

run player LR and the short-run players as follows. Fix a pure Nash equilibrium
(τLR, τSR) of the auxiliary game G(SQ, (Φ, p))). Let

Rt =
{
rt ∈ (SQ × AQ) |rt = (s1, τLR(s

1), . . . , st, τLR(s
t))
}
.

σLR(h
t−1, st) =

{
τ ∗LR(s

t) t = 0 ∨ ht−1 ∈ Rt−1;

τLR(s
t) t ≥ 1 ∧ ht−1 /∈ Rt−1.

σSRt(ht−1, ϕt) =

{
τ ∗SR(ϕ

t) ht−1 ∈ Rt−1;

τSR(ϕ
t) ht−1 /∈ Rt−1.

It is easy to see that (σLR, (σSRt) thus defined constitute a Nash equilibrium with
payoff v∗ for LR. Consequently, v∗LR ≥ v∗.
Now consider the Q-learning algorithm for fixed parameters ⟨Q0, (αt), (εt)⟩.

Because SRt observes the history ht−1 ∈ (SQ × AQ × UQ)
t−1, SRt knows the Q-
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values. Moreover, since εt → 0, there exists T ∈ N such that for all t ≥ T , SRt

plays a best-response (in G(SQ, (Φ, p))) to

s 7→ argmax
aQ∈AQ

Qt(s, aQ)(h
t−1)

at the history ht−1. Consequently, the algorithm’s expected payoff is less than
(1− εt)v∗ + εtM for an upper bound M on E[uQ(·, ·, ω)]. Consequently, v∗Q ≤ v∗.

Case 2: suppose σSRt : Φ → ASR. Let (τLR, τSR) be the pure Nash equilibrium
of the auxiliary game G(SQ, (Φ, p)) that maximizes the algorithmic player’s payoff.
Denote by v the expected payoff of the long-lived player from (τLR, τSR). We claim:
v∗LR ≤ v.
Let σ = (σLR, (σSRt)) be an equilibrium of the repeated game. Denote by

vtLR = Eσ[uQ(atLR, atSR, ωt)] the expected payoff of the long-run player in period t.

Suppose that limT→∞
∑T−1

t=0 vtLR/T exists.57

Denote by τ tLR the (mixed) strategy in the auxiliary game G(SQ, (Φ, p)) defined
by

τ tLR(s) =
∑

ht−1∈(SQ×AQ×UQ)
t−1

Pσ[ht−1]σLR(h
t−1, s).

Since σ is an equilibrium, σSRt = BR(τ tLR).
Fix a δ > 0 and let

N ⊃ Γ(δ) = {t|vtLR ≥ v + δ}.

Suppose toward a contradiction that Γ(δ) has positive density, i.e.,
∑T−1

t=0
1{t∈Γ(δ)}

T
=

µ > 0. Since vtLR ≥ v+δ and σSRt = BR(τ tLR), it cannot be that τLRt = BRLR(σSRt).
Moreover, since δ > 0 there exists δ1 > 0 such that τLRt is not within δ1 of
BRLR(σSRt) for any t ∈ Γ(δ). Hence, there is δ3 > 0 such that LR can raise his
payoff by δ3 by playing σ

′
LR(h

t−1) = BRLR(σSRt) instead of σLR(h
t−1) for t ∈ Γ(δ),

contradicting the hypothesis that σ is an equilibrium. Thus, for every δ > 0, Γ(δ)
has density 0. Consequently, limT→∞

∑T−1
t=0 vtLR/T ≤ v so that v∗LR ≤ v.

Now consider the Q-learning algorithm. Let (τLR, τSR) be the pure Nash equilib-
rium of the auxiliary game G(SQ, (Φ, p)) that maximizes the algorithmic player’s
payoff. Denote by v the expected payoff of the long-lived player from (τLR, τSR).
Applying Claim 1 for trivial partitions, i.e., |P t| = 1 for each t, there exists a se-
quence ⟨Q0

n, (α
t)n, (ε

t)n⟩n of parameters for the algorithm such that the algorithm’s
payoff with parameters ⟨Q0

n, (α
t)n, (ε

t)n⟩ is at least v − 1/n. Consequently, v∗Q ≥ v.

The next claim provides a partial characterization of the payoffs some algorithm

57Adjusting the proof if the limit does not exist is straightforward.
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can achieve when the short-run players can condition their actions on a subset of
the outcomes of past interactions. For any period t let P t be a partition of the set
of histories58

(SQ × AQ × UQ)
t .

A strategy for the short-run player in period t, SRt is a map

σSRt : P t−1 × Φ → ∆(ASR).

Claim 1. Fix any sequence of partitions {P t}.
For any ξ > 0 there exists an open set of parameters ⟨Q0, (αt), (εt)t⟩ and for each
(s, aQ) an open neighborhood O(s,aQ) of∑

ϕ∈Φ

p(ϕ | aQ)E[uQ(aQ, τSR(ϕ), ω)|s]

such that if Q0(s, aQ) ∈ O(s,aQ) for each (s, aQ), then

P

[
lim
T→∞

∑T
t=0 1{(atQ, st) = (τQ(s), s)}∑T

t=0 1{st = s}
= 1

]
≥ 1− ξ,

in any equilibrium
(
σ∗
SRt

)
where

σ∗
SRt : P t−1 × Φ → ∆(ASR)

Proof. Fix ξ > 0.
Let η > 0 be such that for each s ∈ SQ,∑

ϕ∈Φ

p(ϕ|τQ(s))E[uQ(τQ(s), τSR(ϕ), ω)|s]− η

>
∑
ϕ∈Φ

p(ϕ|aQ)E[uQ(aQ, τSR(ϕ), ω)|s] + η ∀aQ ̸= τQ(s).

Since SQ is finite, such a η > 0 exists by the hypothesis that (τQ, τSR) is a strict
Nash equilibrium of G(SQ, (Φ, p)).
Let O(s,aQ) be the open set(∑
ϕ∈Φ

p(ϕ|aQ)E[uQ(aQ, τSR(ϕ), ω)|s]− η,
∑
ϕ∈Φ

p(ϕ|aQ)E[uQ(aQ, τSR(ϕ), ω)|s] + η

)
,

58When the partition P t is trivial in every period t, i.e., |P t| = 1, the algorithm is opaque.
When P t = {(SQ ×AQ × UQ)

t} for each t, the algorithm is transparent.
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for all s ∈ SQ, aQ ∈ AQ.
Let (α̃t) and (ε̃t) be sequences of updating parameters and experimentation rates
satisfying Assumptions (Step-Size) and (Experimentation), respectively.
Because (τQ, τSR) is a strict Nash equilibrium of G(SQ, (Φ, p)), there exists ξ1 > 0
such that τSR is the unique best-response when the algorithmic player plays τQ(s)
with probability at least 1− ξ1 for all s ∈ SQ.
Fix a 0 < ξ2 < min{ξ, ξ1} to be determined below. As ε̃t → 0, there exists

M1 ∈ N such that for all t ≥ M1(ξ2), (1εt)(1− ξ2) ≥ 1− ξ1.
Hence, for any t ≥ M1 and pt−1 ∈ P t−1, such that

P
[
∀s ∈ SQ, Q

t(s, τQ(s)) > Qt(s, aQ), aQ ̸= τQ(s) | pt−1
]
≥ 1− ξ2,

the short-run player SRt’s (unique) best-response is σSRt(pt−1, ϕ) = τSR(ϕ).
Consequently, it suffices to show that there are ⟨Q0, (αt), (εt)⟩ such that, for all

s, t,

Qt(s, τQ(s)) > Qt(s, aQ) ∀aQ ̸= τQ(s) (3)

with probability at least 1 − ξ2. For each (s, aQ) choose Q0(s, aQ) ∈ O(s,aQ). By
definition of O(s,aQ), equation (4) holds for t = 0. Because the payoffs are sub-
Gaussian, we can apply Lemma 6 to each of the processes Qt(s, aQ). Hence, there
exists M2 such that, if

QM2(s, aQ) ∈ O(s,aQ),

then the probability of the event{
∀s, aQ, t ≥ M2, Q

t(s, aQ) ∈ O(s,aQ)

}
occurs with probability at least 1−ξ2 if the algorithm’s parameters are ⟨Q0, (α̃t), (ε̃t)⟩.
Denote M = max{M1,M2}. Choosing αt = α̃M+t, εt = ε̃M+t and Q0 as before,{

∀s, aQ, tQt(s, aQ) ∈ O(s,aQ)

}
occurs with probability at least 1− ξ2. The claim follows.

Example 3. For this example, suppose that the signal about the long-run player’s
action is uninformative, i.e., |Φ| = 1. Assume expected payoffs are given as in
Figure 3. Suppose that the prior probability over the states satisfies 1/2 < q(s1).

Suppose that SQ = {s1, s2, s3} Suppose the short-run players observe past
interactions so that the strategy for SRt is a map

σSRt : (SQ × AQ × UQ)
t−1 → ∆(ASR).
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long-lived player

SR
L R

T 2, 1 1, 0
B 0, 0 0, 1

s1

SR
L R

T 0, 1 0, 0
B 1, 0 5, 1

s2

SR
L R

T 0, 1 20, 0
B 1, 0 1, 1

s3

Figure 3: The game for Example 3.

long-lived player

SR
L M R

T 2, 3 3, 0 −1,−1
M 4, 0 1, 1 −2,−2
B −3,−3 −4,−4 0, 0

Figure 4: The payoff matrix for Example 4. Payoffs are deterministic.

The Stackelberg payoffs are uStack(s1) = 2, uStack(s2) = 5, and uStack(s3) = 1.
By Lemma 4, any Q-learning algorithm eventually plays T in state s1. The unique
best-response by the short-run players is then to play L, irrespective of the action
the algorithm takes in states s2 and s3. Consequently, eventually the algorithm
plays B in s2 and s3 to achieve an expected payoff of 1 + q(s1).

Suppose the strategic long-run player LR plays B in both states s1 and s2
and T in state s3. The best-response of the short-run player is then R. By the
preceding proof, playing according to this strategy in every period is an equilibrium
outcome of the repeated game. The expected payoff of the long-run player is
5q(s2) + 20q(s3). For an open set of parameters, this payoff is strictly greater than
2q(s1) + 5q(s2) + q(s3), the expected Stackelberg payoff state-by-state. ■

Example 4. Suppose there is a single state, |SQ| = 1. Suppose each player has
three actions, AQ = {T,M,B}, ASR = {L,M,R}. Suppose – for ease of exposition
– that payoffs are deterministic and as given in Figure 4. Assume the signalling
structure (Φ, p) has full support. Suppose the short-run players do not observe
past interactions so that a strategy for SRt is a map

σSRt : Φ → ∆(ASR).

By an argument similar to the one in Case 2 of the proof of Theorem 4, the
unique equilibrium payoff for the strategic long-run player is 0.

Claim 2. There exist parameters for the algorithm ⟨Q0, (αt), (εt)⟩ such that the
Q-learning algorithm with these parameters achieves a payoff strictly above 0.
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Proof. Suppose Q0(T ) = 2, Q0(M) = 3, and Q0(B) = 0. Observe that there
exists x > 0 such that R is a best-response by the short-run player to a strategy
τ ∈ ∆(AQ) only if τ(B) ≥ x. Assume that the experimentation rates εt are low
enough such that, given the signalling structure, the posterior probability that B
was played after any signal ϕ is less than x for all strategies τ that put probability
at most ε1 on B.
For any T , if σSRt(ϕ) ∈ ∆({L,M}) for all ϕ ∈ Φ and t ≤ T , then Qt(R) ≤ 0
and Qt(T ) ≥ 2, Qt(M) ≥ 1 almost surely. Given Q0 and the condition on the
experimentation probabilities, for σSRt puts probability 0 on R after any signal ϕ.
Moreover, as long as

P[Qt(B) < max{Qt(T ), Qt(M)}] ≤ x′

for some x′ > 0 small enough, σSRt+1 puts probability 0 on R after any signal ϕ.
This, however, implies that Qt(B) < max{Qt(T ), Qt(M)} for all t almost surely.
As a consequence, σSRt+1 puts probability 0 on R after any signal ϕ for each period
t.
Consequently, the expected payoff of the algorithm in period t is weakly larger
than 1− 6εt. The claim follows.

We remark that the conclusions hold if we perturb the signalling structure or
the payoffs. Moreover, payoffs can be random with their expectation given as in
Figure 4. ■

The examples highlight illustrate the nuanced role commitment to an algorithm
plays. In Example 3, the algorithm achieves a lower payoff than the strategic
long-run player because the algorithm learns a myopic best-response. In Example
4, the long-run player achieves a lower payoff than the algorithm because, absent
dynamic incentives and commitment power, the strategic long-run player plays a
best-response to the short-run players’ strategy in almost all periods. In equilibrium,
the strategic player knows the action chosen by the short-run players and hence
can choose a best-response to it, even if the short-run player’s behavior changes
from one period to the next. However, the algorithm need not play a best-response
when the short-run player’s behavior differs across periods.

A.7. Auxiliary lemmas

A.7.1.

Let {F⊔}t be a filtration on a probability space. For an index set B ⊂ [0, 1], let(
vbt
)
t,b∈B be a collection of independent random variables. Assume that (vbs)b,s≥k
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are independent of Ft∀k, t ≤ k. For each t, let χbt be a collection of Ft-measurable
random variables with χbt ∈ [0, 1] and

∫
B
χbt db = 1 a.s.

Set wt =
∫
b∈B χbtv

b
t+1 db. wt is Ft+1-measurable. For ease of exposition, assume

B is finite so that wt =
∑

b∈B χbt · vbt+1.
Let (αt) be a sequence in (0, 1) that satisfies Assumption (Step-Size). Define a

stochastic process {Wt} by

W0 = 0 a.s.,

Wt+1 =
(
1− αt

)
Wt + αtwt.

Lemma 5. Assume supt,b∈B E[(vbt )2] = σ2 < ∞. For all ξ > 0, there exists a
random time Tξ such that

Wt ≥ inf
t,b∈B

E[vbt ]− ξ

for all t ≥ Tξ, and Tξ < ∞ with probability 1.

Proof.Step 1 Assume E[vbt ] = 0 ∀b, t. Then

E[wt|Ft] =
∑
b∈B

χbtE[vbt+1|Ft] = 0.

The first equality holds because χbt is Ft–measurable and the second equality
holds because vat+1 is independent of Ft so that E[vbt+1|Ft] = E[vbt+1] = 0. By
a similar argument,

E[w2
t |Ft] =

∑
b

(
χbt
)2 E[(vbt+1)

2] ≤ sup
b

E[(vbt+1)
2] ≤ σ2.

Hence, limt→∞ Wt = 0 with probability 1 by, for example, Lemma 1, p. 190,
in Tsitsiklis (1994).

Step 2 Consider the process

W̃t+1 = (1− αt)W̃t + αtw̃t w̃t ≡ wt − E[wt|Ft].

Clearly, E[w̃t|Ft] = 0 so that, by Step 1, W̃t → 0 with probability 1. Observe
that, for every t,

W̃t+1 = Wt+1 −
∑
s≤t

βs,tE[ws|Fs]

for deterministic scalars βs,t ≥ 0,
∑

s≤t βs,t ≤ 1. Because
∑

t α
t = ∞,
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limt→∞
∑

s≤t βs,t = 1. Moreover, for each t,

E[wt|Ft] =
∑
b

χbtE[vbt+1|Ft] =
∑
b

χbtE[vbt+1] ≥ inf
a
E[vbt+1]

with probability 1. The second inequality holds because vbt+1 is independent
of Ft. By an analogous argument, E[wt|Ft] ≤ supb E[vbt+1].

Fix ξ > 0. Because W̃t → 0, there exists (a random variable) T̃ξ/2 such

that W̃t ≥ −ξ/2 for t ≥ T̃ξ/2. Let T̂ be such that
∑

s≤t βs,t infb∈B E[vbs+1] ≥
inft,b∈B E[vbt+1]− ξ/2 for t ≥ T̂ . It follows that

Wt ≥ inf
t,b

E[vbt ]− ξ

for t ≥ Tξ ≡ max{T̂ , T̃ξ/2}. Moreover, Tξ < ∞ with probability 1.

Remark 2. The assumption that B is finite can be relaxed.

A.7.2.

Lemma 6. Suppose (wt)t are independent, E[wt] = 0, wt is sub-Gaussian for
each t with norm ||wt||ψ2 = Kt.

59 Suppose suptKt < ∞. Assume (αt) satisfies
Assumption (Step-Size).
For a W0 with E[W 2

0 ] < ∞, define the process (Wt)t recursively by

Wt+1 = (1− αt)Wt + αtwt.

Fix δ > 0. Then, for every ξ > 0 there exists M ∈ N such that if WM = 0 then

P[{for some t, |WM+t| ≥ δ}] < ξ.

Proof. First, note that if WM = 0, then WM+t =
∑t

i=1 βi(M, t)wM+i for some
constants βi(M, t) > 0,

∑t
i=1 βi(M, t) ≤ 1. Note that the βi(M, t) depend on

M and t. By the assumption that αt+1 ≥ αt(1 − αt+1), for fixed M, t, it is
βi(M, t) ≤ αM+t.
Second, since the (wt) are independent, have mean 0 and are sub-Gaussian, we

59Recall that the sub-Gaussian norm is defined as

||w||ψ2
= inf{c > 0|E[exp(w2/c2)] ≤ 2}.
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can apply Hoeffding’s Inequality:60 there exists a constant c > 0 such that,

P[|WM+t| ≥ δ] ≤ 2 exp

(
− cδ2∑t

i=1 β
2
i (M, t)

)
.

Third, note that, for each t,M ,
∑t

i=1 β
2
i (M, t) ≤ 1

αM+t
α2
M+t = αM+t.

Hence, for a constant c(γ), independent of M ,

P[{for some t, |WM+t| ≥ γ}] ≤ c(γ)
∞∑
t=M

exp(

(
− 1

αt

)
.

Note that for every s > 0 and t large enough, exp(−1/αt) < exp(−s log(t)). To
see this, suppose that exp(−1/αt) ≥ exp(−s log(t)).

exp(−1/αt) ≥ exp(−s log(t))

⇐⇒− 1

αt
≥ −s log(t)

⇐⇒ 1

s2 log2(t)
≤ αt2

=⇒
∑
t

αt2 ≥
∑
t

1

s2 log2(t)
≥
∑
t

1

s2t
= ∞,

a contradiction to Assumption (Step-Size).
Consequently,

P[{for some t, |WM+t| ≥ γ}] ≤ c(γ)
∞∑
t=M

exp (−2 log(t)) = c(γ)
∞∑
t=M

1

t2
< ∞.
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