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I study a sender who can privately acquire and partially disclose hard evidence

to persuade a receiver about a binary state of the world. The sender privately and

sequentially acquires noisy binary signals. Signals are time-stamped and costly to

acquire. When she stops, the sender discloses a left truncation of the signals. That is,

it is possible to omit some most dated signals. The receiver, uncertain of how many

signals the sender acquires, takes a binary action based on the difference between

the number of good and bad signals in the disclosure. If the cost is not too high,

there is a continuum of persuasion equilibria, and the receiver’s posterior belief is

supported on two points. This is akin to Bayesian persuasion. If full disclosure of

signals is mandatory, the game is equivalent to costly Bayesian persuasion. Mandating

full disclosure benefits the sender and hurts the receiver.
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1. Introduction

Evidence is often acquired over time. Consider a hedge fund manage (the sender) who

wants to persuade an investor (the receiver) to invest in her hedge fund by presenting the

latter with the fund’s recent trading records. Trading records are accumulated over time in

an incubation period using the manager’s personal capital. The manager can decide when

to seek investment and what to present to the investor. The investor does not know the

inception date of the hedge fund, hence the manager can lie about it by truncating away

older, possibly unfavorable returns and disclosing a subset of the most recent returns. The

investor, consequently, will not take the disclosed returns at face value.

In this example, the sender privately learns about the profitability of the hedge fund and

is not bound to share all her findings (i.e., the fund’s returns) with the receiver. This is in

contrast to Bayesian persuasion (Kamenica and Gentzkow, 2011) where learning is assumed

to be public. However, the sender cannot falsify her findings (i.e., make false statements

about past returns), nor can she cherry-pick her findings without restraint (i.e., disclose an

arbitrary subset of the returns). It is only feasible to disclose a truncated version of her

findings with possible omission at the beginning.

We study in this paper a persuasion problem where the sender can voluntarily and par-

tially disclose findings. The sender sequentially acquires binary signals about an unknown

binary state of the world à la Wald (1945). Learning is covert, that is, neither how much the

sender learns nor what she learns is observed by the receiver, and there is a cost of acquiring

each signal. When she stops learning, the sender discloses to the receiver a left truncation

of her signals. The receiver takes a binary action (e.g., invest or not) to match the state

of the world, but the sender wants to persuade the receiver into taking a particular action

regardless of the state of the world.

If full disclosure is mandatory, the game is equivalent to costly Bayesian persuasion

studied by Gentzkow and Kamenica (2014). There is a unique equilibrium. The receiver is

persuaded if the difference between the number of good and bad signals in the disclosure

is sufficiently high, and the sender stops acquiring additional signals if she is sufficiently

optimistic or pessimistic. This paper provides a natural and tractable way to relax the

assumption in Bayesian persuasion that the experiment’s outcome is public.

When disclosure is voluntary but only left truncation of signals is permitted, we focus on

a class of equilibria where, like in the mandatory disclosure case, the receiver is persuaded

if there are sufficiently more good signals than bad signals in the disclosure. The sender

stops acquiring additional signals as soon as she can persuade the receiver, or when her

private belief becomes sufficiently pessimistic. The latter scenario is characterized by a single
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threshold belief of the sender. Hence, whenever the sender fails to persuade the receiver,

the receiver shares the same posterior belief about the state of the world with the sender. If

the sender’s disclosure contains sufficiently more good signals than bad signals, the receiver

is uncertain about the sender’s private belief and tries to infer what signals are omitted.

However, every equilibrium is payoff equivalent to an equilibrium where the receiver cannot

infer the omitted signals from the disclosure, hence his posterior belief (conditional on the

event that the sender’s disclosure persuades the receiver) is independent of the disclosure. In

other words, the receiver’s posterior belief is supported on two points, depending on whether

he is persuaded. This is akin to the equilibrium of Bayesian persuasion.

If the cost of acquiring each signal is not too high, there is a continuum of equilibria

where the receiver is persuaded with positive probability. Since the Bayesian persuasion

solution is ex ante optimal for the sender, the sender’s payoff is lower in every equilibrium

compared to under mandatory full disclosure. The receiver, on the other hand, is better off.

His payoff is higher in all but one equilibrium than under mandatory full disclosure.

1.1. Related literature. Persuasion through public experimentation has been studied

extensively. Kamenica and Gentzkow (2011) study Bayesian persuasion, where a sender

commits to a costless Blackwell experiment to persuade a receiver about an unknown state

of the world. Gentzkow and Kamenica (2014) study an extension where experiments have

posterior separable costs (Caplin et al., 2022). Wald (1945) studies sequential sampling. A

sender sequentially acquires public, noisy signals about an unknown binary state of the world

before a receiver takes an action. There is a fixed cost for each signal. Morris and Strack

(2019) and Jiang (2024a) show the equivalence between a sequential sampling problem and

a costly Bayesian persuasion game where experiments have log-likelihood ratio costs and

the state is binary. The players’ posterior belief has the same two-point distribution in the

unique equilibrium of either game.

This paper studies private experimentation and assumes that the sender cannot commit

to how much she learns or to fully reveal the outcome. It contributes to a growing literature

relaxing the commitment assumption in Bayesian persuasion. Min (2021) and Lipnowski

et al. (2022) assume that the sender privately observes the state after choosing an experiment

and can substitute a cheap talk message for the outcome of the experiment with some

probability. Shishkin (2019) that an experiment produces evidence only with some exogenous

probability less than one, and the sender can suppress evidence. Nguyen and Tan (2021)

assumes that the sender privately observes the outcome of the experiment and can change

it at some cost. Guo and Shmaya (2021) assumes that the sender can ex ante assert the

meaning of each outcome subject to a miscalibration cost. Lin and Liu (2024) assumes
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that the sender chooses ex ante a contingency plan to replace the outcome such that the

distribution of the outcome is unchanged. In this paper, we restrict the ways the sender can

alter the outcome–it is only feasible to disclose a left truncation of the acquired signals. This

restriction naturally arises from the sequential sampling problem, instead of from assuming

a cost of lying or an exogenous probability of lying.

Our model most closely resembles Felgenhauer and Schulte (2014), but they allow the

sender to disclose arbitrary subsets of her signals, hence in equilibrium, only good signals

are disclosed. As we explain in Section 2.2, our assumption that only left truncations are

allowed is natural and without loss of generality if signals are time-stamped. It also explains

the real-life observation that bad evidence is sometimes disclosed. Henry (2009) studies a

sender who commits ex ante to the number of signals and can disclose any subset of signals.

This paper is also related to hard evidence games (see, for example, Grossman (1981);

Milgrom (1981); Dye (1985); Bull and Watson (2007); Hart et al. (2017)) and strategic

sample selection (Di Tillio et al., 2021), where a sender privately observes some evidence,

which is a random draw from a state-dependent distribution. The verifiability of evidence is

modeled by assuming that the set of feasible disclosures depends on the sender’s evidence.

The current paper endogenizes the distribution of evidence, and the assumption that only

left truncation is permitted is natural in studying selection of time series data.

2. The Model

There is a sender and a receiver. Time t ∈ Z is discrete and unbounded in either direction.

At the outset of the game, Nature chooses a binary state of the world ω ∈ {G,B} and a

random date t0 ∈ Z. The sender and the receiver have a common improper prior that t0 is

uniformly distributed on Z and is independent of ω. Let π0 be the probability of the good

state (i.e., ω = G). The sender privately observes t0, and neither player observes the state

of the world ω.

At every t ≥ t0, the sender chooses between acquiring a noisy, binary signal st ∈ {g, b}
and irreversibly stopping. If the sender chooses to acquire information, she privately observes

st, and the game proceeds to date t + 1. The receiver does not observe the sender’s action

or the signal. If the sender stops, she makes a disclosure m to the receiver. The receiver

observes m, takes a binary action1 a ∈ {0, 1}, and the game ends.

2.1. Signal technology. Conditional on the state of the world, each signal is an indepen-

dent draw from a Bernoulli distribution. We assume that P(st = g|ω = G) = P(st = b|ω =

B) = p > 1
2
. That is, each signal is aligned with the state of the world with probability p,

1We relax the binary action assumption in Section 4.2.
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and it is misaligned with probability q := 1− p.
Let st1 , st2 , . . . , stk be some k signals, and let n be the difference between the number of

good signals and the number of bad signals among them. We define the face value of the

signals, πn, as the conditional probability of the good state

πn := P(ω = G|st1 , st2 , . . . , stk) =
π0p

n

π0pn + (1− π0)qn
.

It is pinned down by n. That is, adding two contradictory signals to the existing signals

does not change their face value.

2.2. Disclosure technology. A disclosure m ∈ ∪∞l=0{g, b}l =: H is a sequence of finitely

many binary signals. We call the disclosure of length zero the empty disclosure. The sender

can only disclose a left truncation of the signals she has previously acquired. That is, if the

sender stops at some date t > t0 after acquiring signals (st0 , st0+1, . . . , st−1), a nonempty

disclosure m is feasible if and only if m = (st−l, st−2, . . . , st−1) for some l ≤ t− t0. The empty

disclosure is always feasible. Specifically, if the sender stops at date t0 without acquiring

any signal, it is only feasible to make the empty disclosure. We write m - h if m is a left

truncation of h. This defines a partial order - on H.

An interpretation of this disclosure technology is that each signal is time-stamped, and

both the content of a signal and the date it is acquired are hard evidence. When the sender

stops at date t and disclose a signal from some date t′ < t, the receiver knows that the sender

has been continually acquiring signals since t′ the latest. This leads to unraveling, that is,

the sender discloses a left truncation even if she is allowed to disclose arbitrary subsets of

her signals.2

2.3. Payoffs. The receiver’s payoff u(a, ω) depends on his action a and the state of the

world ω. We assume that u(0, G) = u(0, B) = 0, u(1, G) = 1, and u(1, B) = −β̄/(1 − β̄),

where β̄ > π0 is common knowledge. Hence, it is optimal for the receiver to accept (i.e.,

choose a = 1) if and only if the probability of the good state is at least β̄.

The sender wants the receiver to accept regardless of the state of the world. She receives

a unit reward if the receiver accepts and pays a fixed cost c > 0 for each signal she acquires.

Hence, the sender’s payoff given the receiver’s action a, the starting date t0 and the stopping

date t is v(a, t0, t) = a− c(t− t0). Payoffs are not discounted over time.

Notice that the disclosure is not payoff relevant. The sender can disclose any left trunca-

tion of her signals at no cost. This differs from a signaling game (where signals’ costs depend

2Precisely, it is without loss of generality to focus on equilibria where the sender discloses a left truncation,
and if, for some dates t′ < t′′ < t, the sender discloses st′ but not st′′ , the receiver believes that st′′ = b.
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on the sender’s private information) or a cheap talk game (where feasibility of a message

does not depend on the sender’s private information). For the receiver, the disclosure is

purely informational.

2.4. Strategies. A private history h ∈ H of the sender is the sequence of signals since

the starting date t0.3 A stopping strategy of the sender is a (pure) stopping time τ adapted

to the natural filtration generated by private histories. In other words, τ is the number of

signals the sender acquires before stopping; the calendar time at which the sender stops is

t0 + τ . A pure disclosure strategy of the sender is m : H → H such that m(h) - h for all h.

It selects a feasible disclosure m(h) in the event that the sender stops after acquiring signals

h.

A pure strategy of the receiver is a : H → {0, 1}. It selects an action a(m) for every

possible disclosure m ∈ H of the sender. We focus on receiver strategies where his action is a

function of the difference between the number of the good and bad signals in the disclosure.

Formally, let n(m) be the difference between the number of good and bad signals in a

disclosure m. A receiver strategy is a threshold strategy if there exists an integer T > 0 such

that a(m) = 1 if and only if n(m) ≥ T .

2.5. Beliefs. After observing the sender’s disclosure, the receiver forms a belief about

the state of the world. Let β(m) be the probability he assigned to the good state after seeing

disclosure m. A system of beliefs of the receiver is β : H → [0, 1].

2.6. Equilibrium. A weak perfect Bayesian equilibrium of the game consists of the

sender’s stopping strategy τ and disclosure strategy m, and the receiver’s strategy a and

system of beliefs β, such that:

(Optimal stopping) Given the sender’s disclosure strategy and the receiver’s strategy, the

sender stops optimally. That is, given m and a,

E[a(m(hτ ))− cτ ] ≥ E[a(m(hτ ′))− cτ ′]

for all stopping times τ ′, where hτ denotes the private history when the sender stops;

(Optimal disclosure) Given a, a(m(h)) ≥ a(m′) for all m′ - h and h ∈ H;

(Receiver’s sequential rationality) Given β, a(m) = 1 if and only if β(m) ≥ β̄;

3We assume that the players’ strategies do not depend on calendar time, and accordingly the starting
date t0 is not part of the sender’s private history. For the receiver, calendar time is payoff irrelevant. For the
sender, only the time elapsed since the starting date matters, and this is precisely the length of her private
history. This assumption rules out the possibility that the sender signals the starting date by behaving
differently in two otherwise equivalent continuation games.
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(Belief consistency) The receiver updates belief β(m) using Bayes’ rule whenever possible.

Two equilibria are equivalent if they give each player the same equilibrium payoff. A threshold

equilibrium (or simply, an equilibrium) is a weak PBE where the receiver uses a threshold

strategy.

3. Threshold Equilibrium

3.1. Threshold stopping strategies. We start by solving the sender’s best response to

a threshold strategy T of the receiver. Given the receiver’s strategy, the sender stops and

discloses a left truncation containing at least T more good signals than bad signals whenever

possible, so we focus on her optimal stopping problem. Let

d(h) := max
m-h

n(m)

be the maximal difference between good and bad signals among all feasible disclosures given

a history h. Intuitively, d(h) determines what sequences of additional signals will lead to

acceptance by the receiver. If the sender can already make a disclosure that contains d < T

more good signals than bad signals, she only needs to acquire T − d more good signals than

bad signals in the future to persuade the receiver. On the other hand, the sender’s private

belief about the state of the world πn(h) determines the distribution of future signals.

The sender’s incentive to continue acquiring signals is increasing in d(h) and n(h). In-

tuitively, increasing d(h) means that the sender needs fewer good signals in the future to

persuade the receiver, while increasing n(h) means that each future signal is more likely to be

good. This implies that, in any equilibrium, the sender never stops with positive possibility

at a history h such that 0 < d(h) < T . Specifically, the sender never stops unsuccessfully

if her last signal is good, since she would have stopped one period earlier when her private

belief was lower and she needed more signals to persuade the receiver.

Hence, the sender has a best response in threshold stopping strategies. A stopping

strategy is a threshold stopping strategy if there exist t̄ > 0 and n ≤ 0 such that the sender

stops after acquiring signals h if and only if d(h) ≥ t̄ or n(h) − d(h) ≤ n.4 We denote by

n = −∞ the strategy that the sender stops if and only if d(h) ≥ t̄.5

Figure 1 shows an example of a threshold stopping strategy with t̄ = 3 and n = −6. The

set of histories H is partitioned into states, each identified by a distinct pair of n(h) and

4If the sender uses a threshold stopping strategy, histories such that n(h)− d(h) ≤ n and (n(h), d(h)) 6=
(n, 0) are unreached (an example is provided in Figure 1). The sender is indifferent at those histories, and
we assume that the sender stops acquiring signals immediately. The same applies to histories such that
d(h) > t̄.

5This is never an equilibrium strategy, but it may be a best response strategy (see Lemma 2).
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d(h). Notice that d(h) ≥ max{n(h), 0}, since making the empty disclosure and disclosing

the entire history are always feasible. States where the sender acquires additional signals are

marked by hollow points.

n(h)

d(h)

Figure 1: State transition given the sender’s threshold stopping strategy (t̄, n) = (3,−6)

The game starts in state (0, 0). If the first signal is good, the state transits to (1, 1), and

each time there is a good signal, the state moves from (n(h), d(h)) to (n(h) + 1, d(h) + 1).

If the first signal is bad, the state transits to (−1, 0), since at history h = (b), there is one

bad signal and no good signal, but the maximal difference among all feasible disclosures is

zero, which is obtained by making the empty disclosure. A bad signal moves the state from

(n(h), d(h)) to (n(h)−1,max{d(h)−1, 0}). Figure 1 maps all possible state transitions before

the sender stops. Red (blue) arrows indicate state transitions following a good (bad) signal.

Notice that the sender either stops unsuccessfully in state (−6, 0) or stops successfully in a

state (n, 3) where −2 ≤ n ≤ 3. States marked by solid gray points are unreached under the

threshold stopping strategy.

The following lemma summarizes the results. For generic values of the cost c of acquiring

signals, the sender has a unique best response, and it is a threshold stopping strategy.6

Hence, we focus on threshold stopping strategies in the remainder of the paper.

Lemma 1. Given any threshold strategy T of the receiver, for all but countably many

values of c, the sender has a unique best response, and it is a threshold stopping strategy.

Proof. See Appendix.

3.2. The sender’s best response. Restricted to threshold stopping strategies, the sender

sets t̄ = T , so we simply need to find the threshold n in the sender’s best response. We

focus on the sender’s optimal stopping problems in states (n, 0). Since the sender never

stops unsuccessfully, the sender chooses in each state (n, 0) between stopping immediately

6For nongeneric values, the sender has two best response threshold stopping strategies (see Lemma 2).
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and acquiring additional signals until either state (n − 1, 0) or (n + T, T ) is reached. If

she reaches state (n − 1, 0), the optimal stopping problem continues; if she reaches state

(n+T, T ), she stops immediately, discloses an accepted truncation and gets payoff 1. Hence,

letting V (n;n) be the sender’s continuation payoff in state (n, 0) when she uses a threshold

stopping strategy n, we have

(1) V (n;n) =
πn − πn−1

πn+T − πn−1

+
πn+T − πn
πn+T − πn−1

V (n− 1;n)− κ(n, T )

for all n < n ≤ 0, where πn−πn−1

πn+T−πn−1
is the probability that the sender reaches state (n +

T, T ) first, πn+T−πn
πn+T−πn−1

is the probability that she reaches state (n − 1, 0) first, and κ(n, T )

denotes the expected cost of acquiring signals before either state is reached. When she stops

unsuccessfully, V (n;n) = 0.

If the cost c of acquiring each signal is sufficiently low, it is optimal for the sender to

continue in every state (n, 0). For example, suppose that T = 1 and c ≤ q. That is, the

sender stops successfully when she acquires a single good signal. Since the probability of

getting a good signal is strictly greater than q, the sender’s expected payoff from acquiring

an additional signal always outweighs its cost. Therefore, she never stops until she has a

good signal (i.e., n = −∞). If the cost is not too low, the sender has a unique best response

n ≤ 0 for generic model parameters, and it is weakly increasing in c and in T . That is, the

sender acquires information more aggressively if the cost per signal is lower, or if the receiver

uses a lower threshold.

Lemma 2. Given a threshold strategy T of the receiver, the sender has a best response

n ∈ Z− ∪ {−∞}. Moreover, there exist c̄0 > c̄−1 > c̄−2 > . . . such that:

(i) n = −∞ is the sender’s unique best response if and only if c ≤ c̄−∞, where c̄−∞ =

limn→−∞ c̄n > 0;

(ii) n < 0 is the sender’s best response if and only if c ∈ [c̄n, c̄n+1];

(iii) n = 0 is the sender’s best response if and only if c ≥ c̄0;

(iv) c̄n is decreasing in T for all n ∈ {−∞} ∪ Z−.

Proof. See Appendix.

3.3. The receiver’s belief. Given a threshold strategy T of the receiver and a threshold

stopping strategy of the sender where n < 0, the sender stops unsuccessfully only in state

(n, 0). Hence, the receiver’s posterior belief if the sender fails to persuade him, i.e., P[ω =

G|n(m) < T ], is the same as the sender’s private belief πn.

Recall that in every state (n, 0) where the sender acquires information, she reaches state
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(n−1, 0) with probability πn+T−πn
πn+T−πn−1

. Hence, the sender stops unsuccessfully with probability

0∏
n=n+1

πn+T − πn
πn+T − πn−1

=
π0p

n + (1− π0)qn

λn
,

where

λ :=
pq(pT − qT )

pT+1 − qT+1
.

By the martingale property of beliefs, the receiver’s average posterior belief conditional

on seeing an accepted disclosure m, i.e., P[ω = G|n(m) ≥ T ], is

β̃(n, T ) :=
π0(λn − pn)

π0(λn − pn) + (1− π0)(λn − qn)
,

which is increasing in n and T . The following lemma shows that we can focus on equilibria

where the receiver’s posterior belief after seeing any accepted disclosure is precisely β̃(n, T ).

That is, β(m) = β̃(n, T ) for all disclosures m such that n(m) = T .

Lemma 3. Every equilibrium is equivalent to an equilibrium where the receiver’s posterior

belief after seeing any accepted disclosure is β̃(n, T ).

Proof. Given an equilibrium, we replace the sender’s disclosure strategy by the following:

she discloses the shortest optimal left truncations. This merely changes how the sender breaks

ties when disclosing, hence it yields an equivalent equilibrium.7 Moreover, given the tie-

breaking rule, disclosed signals and omitted signals are independent. Intuitively, consider two

disclosures m1 and m2 that are accepted on the equilibrium path. Since n(m1) = n(m2) = T ,

they differ by the same number of good and bad signals. Suppose that m1 contains k more

good (bad) signals than m2. Regardless of the omitted signals, m1 is disclosed (pq)k times

more likely than m2. Therefore, the receiver cannot infer the omitted signals from the

disclosure.

That the receiver cannot infer the omitted signals from the disclosure is not an artifact

of the particular tie-breaking rule.8 It can be justified by introducing a small uncertainty

to the receiver’s payoff à la Harsanyi (1973).9 If the sender is uncertain about the receiver’s

7In the original equilibrium, the receiver’s average posterior belief when persuaded is β̃(n, T ). We are to
show that given the new disclosure strategy, the receiver’s posterior belief after seeing any accepted disclosure
is β̃(n, T ), hence the receiver’s sequential rationality is intact.

8It is true as long as the sender does not signal her omitted evidence through tie-breaking of her disclosure
strategy. That is, for all h, h′ ∈ H such that argmaxm-h a(m) = argmaxm′-h′ a(m′), m(h) = m(h′). The
tie-breaking rule in favor of the shortest truncation is just one example of many.

9Since the sender’s disclosure is payoff irrelevant, our model is a game with nongeneric payoffs, and
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threshold belief for acceptance, the sender discloses the left-truncation that maximizes the re-

ceiver’s posterior belief. Hence, the receiver’s posterior belief conditional on being persuaded

must be the same in any purifiable equilibrium (i.e., robust to small payoff uncertainties).

To summarize, despite the different settings of our model and Bayesian persuasion, the

receiver’s posterior belief is supported on two points. On the equilibrium path, the receiver’s

posterior belief is πn if he sees a disclosure m such that n(m) < T and β̃(n, T ) if he sees a

disclosure m such that n(m) ≥ T .

3.4. Equilibria. The receiver’s threshold T and the sender’s threshold n determines the

players’ payoffs. Since the sender’s best response is essentially unique, we focus on the

receiver’s equilibrium threshold strategy T .

By Lemma 2, the sender has a best response n < 0 if and only if T is bounded by some

T ?. If T > T ?, acquiring no signal (i.e., n = 0) is a best response of the sender, and this

is always an equilibrium. Since the receiver can form any belief upon seeing a nonempty

disclosure, he can form beliefs that justify the threshold strategy.

If T ≤ T ?, the sender has a best response n < 0. A persuasion equilibrium is an

equilibrium where the sender is persuaded with positive probability, and it exists if and only

if the receiver’s posterior belief β̃(n, T ) ≥ β̄. The following proposition shows a tight upper

bound on c such that a persuasion equilibrium exists.

Proposition 4. Let T̄ be the smallest integer such that πT̄ ≥ β̄, and c̄0(T̄ ) the threshold

defined in Lemma 2 given T = T̄ . A persuasion equilibrium exists only if c ≤ c̄0(T̄ ), and a

persuasion equilibrium exists if c = c̄0(T̄ ).

Proof. Observe that β̃(−1, T ) = πT for all T > 0. Intuitively, if the sender stops un-

successfully whenever her belief is below the prior, full disclosure is optimal when she stops

successfully, so the receiver take the disclosure at face value. If c > c̄0(T̄ ), the sender’s unique

best response to any T ≥ T̄ is n = 0, and the receiver’s posterior belief β̃(n, T ) ≤ πT < β̄

for all T < T̄ and n ≤ 0. Therefore, no persuasion equilibrium exists. If c = c̄0(T̄ ), the

threshold stopping strategy n = −1 is a best response to the receiver’s threshold strategy T̄ .

And since β̃(−1, T̄ ) = πT̄ ≥ β̄, T̄ is an equilibrium threshold strategy.

The condition c ≤ c̄0(T̄ ) is not sufficient for equilibrium existence due to the discreteness

of the players’ strategies.10 Suppose that a persuasion equilibrium exists, and let T? be

purification can be used as a refinement. Jiang (2024b) applies purification as a refinement in disclosure
games with exogenous evidence. Relatedly, Bhaskar and Thomas (2019) applies it as a refinement in dynamic
games, and Diehl and Kuzmics (2021) in cheap talk games.

10For example, suppose that c̄0(T̄ +1) < c < c̄−1(T̄ ) and πT̄ = β̄. The sender’s does not acquire any signal
if T > T̄ . For all to T ≤ T̄ , her best response n < −1, hence β̃(n, T ) < πT ≤ β̄. This leads to nonexistence
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the receiver’s smallest equilibrium threshold. Recall that the sender’s best response n is a

weakly increasing step function of T , and β̃(n, T ) is increasing in n and T . Hence, every

integer T ∈ [T?, T
?] is an equilibrium threshold strategy, and the set of persuasion equilibria

is ordered by the receiver’s posterior belief β̃(n, T ) when he is persuaded.

4. Discussion and Extensions

4.1. Mandatory full disclosure. We study a benchmark where only full disclosure is

possible. This is equivalent to a symmetric information game where signals are publicly

observed. Hence, the players have common belief πn(h) about the state at every history h.

The following lemma shows that a persuasion equilibrium exists under mandatory full

disclosure if and only if the cost c of acquiring signals is bounded by the same upper bound

in Proposition 4. That is, if signals are too costly such that persuasion is not possible when

left truncation is permitted, mandating full disclosure cannot help.

Lemma 5. A persuasion equilibrium exists under mandatory full disclosure if and only

if c ≤ c̄0(T̄ ).

Proof. Every equilibrium is equivalent to one where the sender acquires signals if and

only if n < n(h) < T̄ for some threshold n ∈ Z−∪{−∞}. We show in Appendix A.4 that the

sender’s payoff is a single-peaked function of n. Therefore, a persuasion equilibrium exists

if and only if the sender’s payoff from choosing n = −1 is nonnegative. Notice that this

strategy induces the same outcome as the strategy profile T = T̄ and n = −1 in the model

where left truncation is permitted. Hence, the sender’s payoff is the same. By Lemma 2, it

is nonnegative if and only if c ≤ c̄0(T̄ ).

The mandatory full disclosure benchmark is equivalent to costly Bayesian persuasion

with the log-likelihood ratio cost of experiments (see Morris and Strack (2019) and Jiang

(2024a)). Since we model learning in discrete time, we have the additional constraint that

the posterior belief is supported on a subset of {πn}n∈Z. For the next result, we assume

that this constraint is satisfied, so mandatory full disclosure yields the Bayesian persuasion

solution. We compare the players’ equilibrium payoffs when left truncation is permitted to

their payoffs in the Bayesian persuasion solution. We show that allowing left truncation

benefits the receiver but hurts the sender.

Proposition 6. Assuming that πT̄ = β̄ and a persuasion equilibrium exists when left

truncation is permitted:

of persuasion equilibrium.
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(i) The receiver’s payoff is weakly higher in all equilibria and strictly higher in all but one

equilibrium than in the Bayesian persuasion solution;

(ii) The sender’s payoff is lower in all persuasion equilibria than in the Bayesian persuasion

solution if c 6= cB for some cB ∈ [c̄−1(T̄ ), c̄0(T̄ )]; if c = cB, the Bayesian persuasion

solution is equivalent to the unique persuasion equilibrium.

Proof. (i) The receiver’s payoff in the Bayesian persuasion solution is 0. That in any

equilibrium is nonnegative. Since equilibria are ordered by the receiver’s posterior belief

β̃(n, T ), except for possibly one equilibrium, β̃(n, T ) > β̄, and the receiver’s payoff is positive.

(ii) Let β and β̄ be the posterior beliefs induced by the Bayesian persuasion solution.

β is decreasing in c, so there exists a unique cB such that β = π−1. When c = cB, the

same posterior distribution is induced by the strategy profile T = T̄ and n = −1. Since the

Bayesian persuasion solution is ex ante optimal for the sender and β̃(−1, T̄ ) = β̄, this is the

unique equilibrium strategy profile. By Lemma 2, cB ∈ [c̄−1(T̄ ), c̄0(T̄ )].

Let T and n be a persuasion equilibrium strategy profile, and assume that c 6= cB.

The Bayesian persuasion solution gives the sender a higher payoff than the experiment that

induces posterior beliefs πn and β̃(n, T ). The latter gives the sender a weakly higher payoff

than her equilibrium payoff, since the sender’s posterior distribution in the equilibrium is a

mean-preserving spread of the two-point distribution {πn, β̃(n, T )}, so the cost of acquiring

signals in the equilibrium is at least the log-likelihood ratio cost of the experiment.

4.2. Finite receiver actions. Our analysis can be extended to finite receiver actions.

Suppose that the receiver chooses one of K + 1 actions a0 < a1 < · · · < aK . We assume that

the receiver’s strategy is according to some thresholds 0 < T1 ≤ T2 ≤ · · · ≤ TK , that is, after

seeing disclosure m, he takes action a0 if n(m) < T1, takes action ak if Tk ≤ n(m) < Tk+1

for all 1 ≤ k ≤ K − 1, and takes action aK if n(m) ≥ TK .

Lemma 2 shows that, if K = 1, the sender has a best response threshold n1 to the

receiver’s threshold strategy T1. Now consider the case of K = 2, and the receiver uses

thresholds T1, T2. The sender’s best response features a threshold n2 such that in state

(n2, 0), the sender forgoes the possibility of reaching the higher threshold T2; if n2 > n1, she

will continue acquiring signals until she reaches the lower threshold T1 or state (n1, 0). The

threshold n2 can be solved from a dynamic programming problem similar to (1), but the

sender’s continuation payoff in state (n2, 0) is that from continuing according to the threshold

stopping strategy (T1, n1). It is easy to see that n2 is a weakly decreasing step function of a2.

If action a2 is sufficiently lucrative compared to a1 for the sender, n2 ≤ n1, and the sender

never stops at the lower threshold T1. This is similar to the result in Bayesian persuasion: the

sender never induces an action if her payoff given the action lies below the concavification

12



of her indirect utility function. By induction on K, the sender has an essentially unique

best response featuring thresholds n1 ≤ n2 ≤ . . . nK ≤ 0, such that she continues in state

(n, n+ d) if and only if nk ≤ n and 0 ≤ d < Tk for some k.11

If nk < nk+1, the receiver’s posterior belief β̃k after seeing any disclosure with Tk more

good signals than bad signals can be similarly derived as in the binary action case. The

receiver’s strategy {Tk}Kk=1 and the sender’s best response {nk}Kk=1 are supported by an

equilibrium if and only if action ak is receiver optimal given belief β̃k for all k such that

nk < nk+1.

Notice that in equilibrium, all K actions may be taken with positive probability. This

is different from the Bayesian persuasion solution, where at most two actions are induced.

This is because in Bayesian persuasion, the sender can induce any posterior distribution that

is a mean-preserving spread of the prior, but in our model, the receiver’s posterior belief

is endogenously determined by the players’ thresholds. This restricts the set of posterior

distributions the sender can induce.

5. Conclusion

We study persuasion via sequentially acquired evidence. A sender privately and sequen-

tially acquire noisy signals about a binary state of the world and can disclose a left truncation

to persuade a receiver. This relaxes the commitment assumption in Bayesian persuasion.

Indeed, the Bayesian persuasion solution is the equilibrium of a game where full disclosure

of signals is mandatory.

We show that in equilibrium, the receiver’s posterior belief is supported on two points

when his action is binary. This is akin to the Bayesian persuasion solution. When the cost is

not too high, there exists a continuum of persuasion equilibria. Compared to the Bayesian

persuasion solution, the sender is worse off in all equilibria, while the receiver is weakly

better off.

11If the sender never stops at threshold Tk, it is without loss to set nk = nk+1.
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Appendix A. Omitted Proofs

We first prove Lemma 2 and some auxiliary results on the sender’s continuation value.

We then prove Lemma 1. The last section contains results relating to the mandatory full

disclosure benchmark, which are used to prove Lemma 5.

A.1. Proof of Lemma 2

Proof. By Proposition 10 of Jiang (2024a),

κ(n, t) = H(πn)− πn − πn−1

πn+t − πn−1

H(πn+t)−
πn+t − πn
πn+t − πn−1

H(πn−1),

where H(x) := − c
(p−q) ln p

q
(2x − 1) ln

(
x

1−x

)
. Notice that ln

(
πn

1−πn

)
− ln

(
π0

1−π0

)
= n ln p

q
.

Therefore,

κ(n, t) =
c

p− q

[
n(2πn − 1)− πn − πn−1

πn+T − πn−1

(n+ T )(2πn+T − 1)− πn+T − πn
πn+T − πn−1

(n− 1)(2πn−1 − 1)

]
=− c

p− q

[
T (2πn − 1)− πn+T − πn

πn+T − πn−1

(T + 1)(2πn−1 − 1)

]
,

where
πn+T − πn
πn+T − πn−1

= λ
π0p

n−1 + (1− π0)qn−1

π0pn + (1− π0)qn

is the probability of reaching state (n− 1, 0) before (n+ T, T ). Hence, letting

(A.1) Ṽ (n;n) = [π0p
n + (1− π0)qn]

[
V (n;n)− 1 +

c

p− q
T (2πn − 1)

]
,

the difference equation (1) can be rewritten as

Ṽ (n;n) = λṼ (n− 1;n) +
cλ

p− q
[π0p

n−1 − (1− π0)qn−1].

It has a unique solution

(A.2) Ṽ (n;n) = λnC̃(n) +
cλ

p− q

(
π0p

n

p− λ
− (1− π0)qn

q − λ

)
,

where

(A.3) C̃(n) =

[
c

p− q

(
T − λ

p− λ

)
− 1

]
π0p

n

λn
+

[
c

p− q

(
λ

q − λ
− T

)
− 1

]
(1− π0)qn

λn
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is solved from the boundary condition V (n;n) = 0. Since V (n;n) is an affine transformation

of C̃(n) for all n ≤ n ≤ 0, n is a best response if and only if it maximizes C̃(n).

Notice that

λ

q − λ
− T =

T∑
t=1

[(
p

q

)t
− 1

]
>

T∑
t=1

[
1−

(
q

p

)t]
= T − λ

p− λ
> 0

for all T ≥ 1. Therefore, if

c ≤ c̄−∞ :=
p− q
λ
q−λ − T

,

C̃(n) is decreasing in n, and the sender’s unique best response is n = −∞. Notice that

c̄−∞ > 0 and is decreasing in T . If c ≥ p−q
T− λ

p−λ
, C̃(n) is increasing in n, and the sender’s

unique best response is n = 0.

Now suppose that c ∈
(
c̄−∞,

p−q
T− λ

p−λ

)
. We show that C̃ is single-peaked. Taking deriva-

tive of (A.3) with respect to n, we have

(A.4) C̃ ′(n) =

[
c

p− q

(
T − λ

p− λ

)
− 1

]
π0

(p
λ

)n
ln
p

q
+ ln

q

λ
C̃(n).

It has at most one zero on (−∞, 0], since

C̃ ′′(n) =

[
c

p− q

(
T − λ

p− λ

)
− 1

]
π0

(p
λ

)n
ln
p

λ
ln
p

q
+ ln

q

λ
C̃ ′(n) < 0

if C̃ ′(n) = 0. Moreover, (A.4) is positive when n is sufficiently large in absolute value.

Therefore, C̃ is maximized at at most two (adjacent) integers in n ∈ Z− if (A.4) is negative

at n = 0; otherwise, it is maximized at n = 0.

By (A.3), for all n < 0, C̃(n) > C̃(n+ 1) if and only if[
c

p− q

(
T − λ

p− λ

)
− 1

]
πn
p− λ
λ

+

[
c

p− q

(
λ

q − λ
− T

)
− 1

]
(1− πn)

q − λ
λ

< 0,

that is,

(A.5)
c

p− q

[
1− 2πn + T

(
πn − q
λ

+ 1− 2πn

)]
<
πnp+ (1− πn)q

λ
− 1.
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Taking derivative of the bracket on the left-hand side of (A.5) with respect to T yields

(A.6)
πn − q
pq

p2T+1 + q2T+1 − pT qT
[
1 + T (p− q) ln p

q

]
(pT − qT )2︸ ︷︷ ︸

=:χ

+1− 2πn.

Notice that

χ− q =
pT qT (p− q)
(pT − qT )2

[(
p

q

)T
− 1− T ln

p

q

]
> 0,

χ− p = −p
T qT (p− q)
(pT − qT )2

[(
q

p

)T
− 1− T ln

q

p

]
< 0,

and (A.6) is linear in πn. Hence, (A.6) is bounded from below by

min

{
1− χ

p
,
χ

q
− 1

}
> 0.

That is, the bracket on the left-hand side of (A.5) is increasing in T . Since it is linear in πn,

it is bounded from below by

min
{

1 + T
(
− q
λ

+ 1
)
,−1 + T

(p
λ
− 1
)}
≥ min

{
p− q
q

,
p− q
p

}
> 0.

Since λ < q is increasing in T , the right-hand side of (A.5) is positive and decreasing in T .

Hence, (A.5) defines an upper bound c̄n+1 > 0 of c. c̄n is decreasing in T , and C̃(n) > C̃(n+1)

if and only if c < c̄n+1. Since C̃ is single-peaked, c̄n is increasing in n. As n → −∞, (A.5)

becomes c < c̄−∞. Hence, limn→−∞ c̄n = c̄−∞.

A.2. Results Relating to the Sender’s Continuation Value

We first show that, given a threshold strategy of the receiver and a best response threshold

stopping strategy of the sender, the sender’s continuation value in state (n, 0) is increasing

in n.

Lemma A.1. Fix a threshold strategy T of the receiver, and let n < 0 be a best re-

sponse threshold stopping strategy of the sender. The sender’s continuation value V (n;n) is

increasing in n for all n > n.
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Proof. By (A.1), (A.2) and (A.3),

V (n;n) = λnC̃(n) +
cλ

p− q

(
π0p

n

p− λ
− (1− π0)qn

q − λ

)
=

[
c

p− q

(
T − λ

p− λ

)
− 1

]
πn

[(p
λ

)n−n
− 1

]
+

[
c

p− q

(
λ

q − λ
− T

)
− 1

]
(1− πn)

[( q
λ

)n−n
− 1

]
.

(A.7)

If n = −∞, that is, c ≤ c̄−∞,

V (n;−∞) = −
[

c

p− q

(
T − λ

p− λ

)
− 1

]
πn −

[
c

p− q

(
λ

q − λ
− T

)
− 1

]
(1− πn).

Recall that λ
q−λ − T > T − λ

p−λ . Hence, V (n;−∞) is increasing in n.

If −∞ < n < 0, c ∈ (c̄−∞, c̄0). That is,

c

p− q

(
T − λ

p− λ

)
− 1 < 0 <

c

p− q

(
λ

q − λ
− T

)
− 1.

Hence, by (A.7), for all n > n, V (n + 1;n + 1) > V (n;n). But n is a best response of the

sender, so V (n;n) ≥ V (n+ 1;n+ 1). Therefore, V (n+ 1;n) > V (n;n). That is, the sender’s

continuation value V (n;n) is increasing in n for all n > n.

Fixing any n > n, we now show that the sender’s continuation value in state (n + d, d),

which we denote by V̂ (n+ d, d), is increasing in d.

Lemma A.2. The sender’s continuation value V̂ (n+d, d) is increasing in d for all n > n

and 0 ≤ d ≤ T .

Proof. Notice that for all n > n and 0 < d < T ,

(A.8) V̂ (n+ d, d) = γn+dV̂ (n+ d+ 1, d+ 1) + (1− γn+d)V̂ (n+ d− 1, d− 1)− c,

where πn+d = πn+dp + (1 − πn+d)q is the probability that the next signal is good in state

(n+ d, d). (A.8) can be rewritten as

(A.9) γn+d[V̂ (n+d+1, d+1)− V̂ (n+d, d)] = (1−γn+d)[V̂ (n+d, d)− V̂ (n+d−1, d−1)]+c,
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In state (n, 0), we have

V̂ (n, 0) = γnV̂ (n+ 1, 1) + (1− γn+d)V̂ (n− 1, 0)− c.

By Lemma A.1, V̂ (n, 0) > V̂ (n − 1, 0). Therefore, V̂ (n + 1, 1) > V̂ (n, 0). By (A.9), we

conclude that V̂ (n+ d+ 1, d+ 1) > V̂ (n+ d, d) for all n > n and 0 ≤ d < T .

As a corollary, if n is the sender’s unique best response, i.e., c ∈ (c̄n, c̄n+1), the sender’s

continuation payoff is positive in all states (n, d) such that n > n and 0 ≤ d ≤ T .

Corollary A.3. If c ∈ (c̄n, c̄n+1), the sender’s continuation value V̂ (n + d, d) > 0 for

all n > n and 0 ≤ d ≤ T .

A.3. Proof of Lemma 1

Proof. Given a threshold strategy T of the receiver, the sender discloses an accepted

truncation whenever possible, so she gets payoff 1(d(h) ≥ T ) from stopping at history h.

Her optimal stopping problem is to choose τ to maximize E[1(d(hτ ) ≥ T )− cτ ].

We first show that the sender has a best response in threshold stopping strategies. Let

τ be an optimal stopping strategy, and at every history h that is reached with positive

probability under τ , denote by V̂ (h) the sender’s continuation payoff. We show that V̂ (h) is

a function of n(h) and d(h), and it is weakly increasing in d(h). Let h and h′ be two histories

such that n(h) = n(h′) and d(h) ≥ d(h′). The distributions of future signals conditional

on h and h′ are the same, and for all sequences of future signals h̃, d((h, h̃)) ≥ d((h′, h̃)).

Consider the following strategy in the continuation game starting from h: the sender stops

at (h, h̃) if and only if she stops at (h′, h̃) under τ . It gives the sender at least payoff V̂ (h′)

in the continuation game. Therefore, V̂ (h) ≥ V̂ (h′). This also implies that, if the sender

continues at h′ under τ , it is optimal to continue at h. By abuse of notation, we will write

V̂ (n(h), d(h)) for V̂ (h).

Let n ∈ Z− ∪ {−∞} be the infimum of integers n such that state (n, 0) is reached under

τ .12 We show that V̂ (0, 0) = V (0;n). That is, the threshold stopping strategy n gives the

sender the same payoff as τ . Hence, it is a optimal.

If n = 0, this is trivial. If n < 0, let n̂ > n be the largest integer such that state (n̂+T, T )

is reached under τ . That is, it is optimal to continue in all states (n̂+d, d) where 0 ≤ d < T .

By monotonicity, it is optimal to continue in all states (n̂ − 1 + d, d) where 1 ≤ d < T ; it

is also optimal to continue in state (n̂ − 1, 0) if n̂ − 1 > n. Hence, by induction on n, it is

12Since τ is not necessarily stationary, we say state (n, d) is reached under τ if there exists a history h
that is reached with positive probability under τ , and n(h) = n and d(h) = d.
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optimal for the sender to continue in all states (n, d) such that n < n ≤ n̂ and 0 ≤ d < T .

That is, n is optimal among all threshold strategies, and V̂ (n̂, 0) = V (n̂;n). We are left to

show that n̂ = 0. Suppose by way of contradiction that n̂ < 0. Then V̂ (0, 0) < V̂ (n̂, 0)− c.
This is because the sender needs to reach state (n̂, 0) before she can persuade the receiver,

and this requires acquiring at least one signal. But by A.1, V (n;n) is increasing in n, so

V̂ (0;n) > V (n̂;n) = V̂ (n̂, 0). That is, the threshold strategy is a profitable deviation, a

contradiction.

We now show uniqueness. By Lemma 2 and Corollary A.3, for all but countably many

values of c, V̂ (n + d, d) > 0 for all n > n and 0 ≤ d ≤ T . Hence, under all optimal

stopping strategies, the sender strictly prefers continuing when she continues, and she stops

if n(h) = n and d(h) = 0. Hence, the threshold strategy n is the unique optimal stopping

strategy.

A.4. Results Relating to Mandatory Full Disclosure

Lemma A.4. Let v(n) be the sender’s payoff from acquiring signals if and only if n <

n(h) < T̄ in the game with mandatory full disclosure. v(n) is a single-peaked function.

Proof. By Jiang (2024a), for all n < 0,

(A.10) v(n) =
π0 − πn
πT̄ − πn

−
[
H(π0)−

π0 − πn
πT̄ − πn

H(πT̄ )− πT̄ − π0

πT̄ − πn
H(πn)

]
,

Since πn is increasing in n, it is sufficient to show that the right-hand side of (A.10) is a

single-peaked function of πn. With abuse of notation, we write v(πn) for v(n). Notice that

v′(πn) = − πT̄ − π0

(πT̄ − πn)2
[1 +H(πT̄ )−H(πn)] +

πT̄ − π0

πT̄ − πn
H ′(πn),

and

v′′(πn) =
2

πT̄ − πn
v′(πn)− πT̄ − π0

πT̄ + πn
H ′′(πn).

Since H is concave, v′′(πn) < 0 if v′(πn) = 0. That is, (A.10) is a single-peaked function of

πn.
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