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Abstract

This study differentiates p-hacking from publication bias by examining biases
resulting from selective reporting within studies versus selective publication of en-
tire studies. Analyzing a dataset of 400 meta-studies, which covers nearly 200,000
estimates from approximately 19,000 individual studies in economics and related
social sciences, I observe a notably higher incidence of p-hacking compared to se-
lective publication. Using various meta-regression methods, I find that selective
reporting within studies is about 20% more prevalent than publication bias arising
from selection among studies. This finding underscores the considerable influence
of practices such as p-hacking and method-searching, suggesting that they con-
tribute significantly to selection bias in the economic literature and could affect the
perceived reliability of published findings.
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1 Introduction
Selective reporting of empirical results can distort our understanding of how robust doc-
umented regularities are and give a false impression of their generalizability. Since the
early 1980s, the critical examination of empirical research, initiated by Edward Leamer,
has catalyzed what is now known as the credibility revolution in economics. This move-
ment has strongly emphasized the importance of meta-research and the replicability of
published work.1 The credibility of empirical research is the cornerstone of scientific
progress, yet it remains vulnerable to the influences of p-hacking and publication biases.

Publication bias arises when editorial teams and reviewers prefer studies that demon-
strate statistically significant results. Meanwhile, the perception that publication bias
is prevalent can lead researchers to abandon studies with unexpected or unpromising
results, exacerbating publication bias. On the other hand, p-hacking involves various
tactics researchers use, sometimes unintentionally, to achieve more favorable p-values,
including ”specification search,” ”p-hacking,” or ”data dredging” (Brodeur et al., 2020,
2023; Lang, 2023; Mathur, 2022). These tactics can include collecting data until the
results appear significant, adjusting econometric models, or setting specific sample cri-
teria to reach desired levels of statistical significance. The urge to engage in p-hacking
can come from the perceived importance of statistical significance for the probability of
publication (Andrews and Kasy, 2019).

Meta-regression analyzes are widely used to assess the extent of selection bias and
to estimate the true population mean, often referred to as ”mean-beyond bias” in the
literature.2 These methods generally conceptualize publication bias as a filtering mech-
anism that impacts a collection of point estimates, which are presumed to be unbiased
estimators of the true population effects.3 However, this foundational assumption is no-
tably vulnerable to selection bias caused by p-hacking, as noted by Irsova, Bom, et al.
(2023). The practice of p-hacking, which involves actively seeking specifications that
yield significant results, significantly undermines this crucial assumption. p-Hacking can
potentially modify both the effect size and the standard error, resulting in spurious pre-

1This wave of change has influenced research beyond economics to address what is commonly referred
to as the ”replication crisis” (Camerer et al., 2018), affecting fields such as medicine and epidemiology
with Ioannidis at the forefront (Begley & Ioannidis, 2015; Ioannidis, 2005; Ioannidis et al., 2017), as well
as psychology and social sciences. An expanding body of work explores the issues of potential publication
biases within economics and various other fields (Andrews & Kasy, 2019; Ashenfelter et al., 1999; Bruns
et al., 2019; De Long & Lang, 1992; Doucouliagos & Stanley, 2013; Ferraro & Shukla, 2020; Furukawa,
2019; Havránek, 2015; Ioannidis, 2005; Ioannidis et al., 2017; Leamer, 1983; Miguel et al., 2014; Stanley,
2005, 2008).

2There are two primary categories of statistical techniques for detecting and adjusting for publica-
tion bias. The first encompasses traditional methods, such as funnel plot analysis and the ”incidental”
truncation theorem outlined in Greene (1990), which are based on the assumption that results that are
statistically significant and align with the desired hypotheses are more likely to be published (Bom &
Rachinger, 2019; Duval & Tweedie, 2000; Egger et al., 1997; Furukawa, 2019; Ioannidis et al., 2017; Stan-
ley, 2008; Stanley & Doucouliagos, 2012, 2014). The second category involves modeling the relationship
between a study’s likelihood of being published and its p-value, thereby defining a parametric structure
for the distribution of population effects before selection. Models in this category, such as two-parameter
selection models, often show a bias toward the publication of positive results (Andrews & Kasy, 2019;
Hedges, 1984, 1992; Iyengar & Greenhouse, 1988; Van Assen et al., 2015; van Aert & Van Assen, 2021;
Vevea & Hedges, 1995).

3Publication bias is traditionally viewed as a sieve influencing the research submission and publication
process, involving decisions made by researchers, journal editors, and peer reviewers. This bias, resulting
from study-level selection, is termed ”selection across studies” (SAS) by Mathur (2022).
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cision (Irsova, Doucouliagos, et al., 2023). Although theoretically the difference between
publication bias and p-hacking is distinct, they are observationally equivalent. This ob-
servational equivalence challenges the classical metaregression analysis, since it cannot
differentiate between the two. The key presumption underpinning the metaregression
analysis is the statistical unbiasedness of point estimates and standard errors. The lit-
erature acknowledges the consequences of published p-hacked coefficients, but the extent
and measurement of p-hacking remain ambiguous. While Brodeur et al. (2023) argue for
the dominant role of p-hacking in publication bias, Lang (2023) finds limited evidence for
this phenomenon.

The selective publication of significant and large results causes a truncation in the
distribution of observed coefficient estimates. As shown in Greene (1990) and elaborated
in more detail in Section 2, this truncation leads to a correlation between the observed
coefficients (coefi) and their standard errors (SEi). Through meta-regression analysis,
the strength of this correlation (β) is estimated, serving as an indicator of the extent of
selection bias 4:

coefij = α + β · SEij + [ϵi + uij]

Meanwhile, the estimated intercept (α) from this analysis measures the true mean
beyond bias, adjusted to account for selection bias.

I define p-hacking as the biased selection of the reported point estimate and the
standard error pairs within the study, usually by the authors. By controlling for study-
specific characteristics, I isolate the bias arising from p-hacking:

FE: coef ij − coef j = βF E(SEij − SEj) + uij

Employing fixed-effects analysis enables the comparison of estimates while canceling
the impact of study heterogeneity. By doing so, it becomes possible to identify variations
in selection bias that are specifically attributable to variations in within-study coefficient
selection, known as p-hacking.

Next, to identify the selection bias between studies, I apply the between-effect esti-
mation on means of coefficient and standard error pairs for each study.

BE: coef j = α + βBESEj + uj

This approach measures the magnitude of selection across studies, the selection type
that does not introduce bias in point estimates.

The focus is on five key bias correction estimators: the Egger equation, quantile
regression, the Precision-Effect Estimate with Standard Errors (PEESE), the combined
PET-PEESE approach, and the endogenous kink model (EK). My objective is to evaluate
the extent of selection bias arising from within-study manipulations versus across-study
biases. To control for the impressions in meta-regressions coming from the potential
presence of the p-hacking, I adopt the instrumental variable approach detailed by Irsova,
Bom, et al. (2023) for each estimation technique.

This study also stands out due to its extensive and unique data, encompassing 400
meta-studies that include nearly 200,000 estimates derived from about 19,000 distinct
studies. The data for these 400 meta-studies was obtained from the authors when not
available in online journal directories (see the Appendix for the list of meta-studies). Next,

4Equations in this section are presented for clarity. Please refer to the section 4.2 and 4.4 for further
details on theory and application
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I combined 412 distinct data sets, synchronizing meta-study and study-level journal titles,
and identified the status (working or published article) of the study at the time of meta-
study publication (in the journal of online series). Finally, I merged it with a dataset of
the SCImago Science Journal Rank on the journal research areas classification to identify
the field of meta-study. I base my analysis on this unique and comprehensive data set,
which provides a robust platform to examine how biases manifest in published research.

In my analysis of 412 meta-studies, I implement two sets of five key bias correc-
tion estimators, each employing an instrumental variable approach. I perform a fixed
effect analysis to estimate the extent of bias attributable to p-hacking. Whereas I use
a between-effect approach to assess the degree of selection bias arising from selection
across studies. This dual approach results in 412 bias estimates for each between- and
fixed-effect estimation, which is 4120 regressions in total. To analyze these findings fur-
ther, I employ a ratio to compare the between- and fixed-effect estimates. Theoretically,
as suggested by (Angrist & Pischke, 2009), this ratio, in absolute terms, should be less
than one due to the attenuation bias inherent in fixed-effect estimation. However, the
median ratio consistently exceeds 1 in all the methodological specifications in my study.
My analysis reveals that p-hacking is more prevalent compared to selection between stud-
ies, aligned with Brodeur et al. (2023). The results consistently show a higher level of
bias in fixed-effect analyzes, indicating a substantial contribution of practices such as
p-hacking to selection bias in the economic literature. This outcome indicates a substan-
tial contribution of practices such as p-hacking and method searching to selection bias in
the economic literature, leading to a potentially inaccurate perception of robustness in
published findings.

The paper is structured as follows. Section 2 discusses the theoretical foundations
of bias detection techniques. Section 3 examines the data. Section 4 introduces the
empirical techniques and discusses the results. The final section summarizes the findings
and implications.

2 Theoretical foundation
According to the traditional definition of publication bias, the research results are se-
lected for publication according to their direction and statistical significance. Although
this selective publication process partially truncates the overall distribution of reported
results in the literature, in most meta-literature, it is assumed that the chosen results
are unbiased estimations of the true underlying effect relative to their respective popu-
lation. Therefore, most publication bias detection and correction techniques rely on this
assumption.

However, Brodeur et al. (2016, 2023), Irsova, Bom, et al. (2023), and Mathur (2022)
point to the possible manipulation of design choices that influence standard errors and
coefficients to increase the probability of publication. In observational research, the
derivation of the standard error is subject to various complicated design choices and
with different choices of model specification, both effect size and standard error change.
Since both jointly contribute to statistical significance, design choices aiming at increased
significance can cause spurious precision and violate the core assumption of unbiased
estimates. Violation of this assumption renders meta-regression analysis incapable of
correcting for publication bias. Irsova, Bom, et al. (2023) state that in this case ”the
simple unweighted mean is often the best, but still no good”. Although the literature
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agrees on the potential consequences of published p-hacked coefficients, the significance
of the matter or the way to measure it is ambiguous.

In this section, I discuss the theoretical foundation of metaregression analysis
(MRA) and the importance of the underlying assumption of unbiasedness of the point
estimate. First, I present the theory behind identifying the true mean beyond bias, then I
discuss estimation techniques when the assumption of unbiasdness holds and when it does
not. Finally, I show my identification strategy to measure the magnitude of p-hacking
compared to selection across studies. For simplicity, I consider a strict rule of selection
bias where coefficient estimates that do not satisfy the significance requirement do not
get published.5

Consider a series of studies that estimate the effect size of a specific research ques-
tion6. Each study uses different sample specifications and techniques to achieve unbiased
estimates. In this scenario, the study i estimates an unbiased effect α̂i expected to be
close to the actual true effect, denoted as αi. The discrepancies between these estimated
and true effect sizes result from sampling errors and measurement inaccuracies; therefore
α̂i can be expressed as true effect αi plus error.

α̂i = αi + ui (1)

Following the Central Limit Theorem7, the distribution of the estimated effect size is:

α̂i ∼ N(αi, σ
2
i ) (2)

Furthermore, I follow the conventional assumption that the true effect size follows a
normal distribution with a Θ mean and ℵ2 variance8:

αi ∼ N(Θ,ℵ2) (3)

This assumption is widely assumed in the meta-research and implies that as the number
of studies increases, the distribution of their estimated effects, even with sampling and
measurement errors, tends to follow a normal distribution centered around the true effect:

α̂i ∼ N(Θ, σ2
i + ℵ2) (4)

Therefore:
α̂i = Θ + ui (5)

5Andrews and Kasy (2019) conclude that studies with a 5% significance level have 30 times higher
chances of being published than insignificant results. They estimate the publication probabilities based on
replication and meta-analysis approach and provide strong evidence of selectivity based on significance.

6Similarly to Jackson and Mackevicius (2023), I start by building the discussion from the point
estimates in each study.

7The central limit theorem (CLT) states that the average from a random sample for any population
(with finite variance), when standardized, has an asymptotic standard normal distribution (Wooldridge,
2002). Here, estimates have not been standardized; therefore, they are normally distributed with mean
and variance.

8Normality assumption is not essential, here I rather adopt it for ease of demonstration. Most popular
meta-analysis techniques assume that the true coefficient estimate, αi, is statistically independent of its
standard error, sigmai, in the population, this easily follows if one assumes that both αi and α̂i have the
same constant mean Θ across the published studies within a research area. One of the straightforward
and most frequently assumed distributions that satisfies the aforementioned requirements in normal
distribution
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Figure 1: A normally distributed population

where ui ∼ iid N(0, σu) is noise due to the sampling or measurement error, as shown in
figure 1.

Let us now consider the classical definition of publication bias. Articles are selected
for publication on the basis of their coefficient estimate and significance. This selection
criterion leads to missing observations, conditional on coefficient size α̂i|α̂i > a, and
significance level α̂i|tα̂i

> c, where a and c are some constant thresholds. This truncation
then creates publication bias (see Figure 2.

The preferences for the coefficient estimate can be in its direction, magnitude, or
proximity to conventional beliefs. Let me assume that coefficients larger than some
constant a are preferred for simplicity. In the case of truncation based on the coefficient
value, only α̂ > a are observed; therefore, Equation (4) becomes α̂i|α̂i > a = α̂i+u|αi > a,
where E[u|αi > a] ̸= 0, and based on (3), to deduct the population mean of true effect
Θ bias introduced by truncation needs to be studied:

E[α̂i|α̂i > a] = Θ + E[ui|α̂i > a] (6)
= Θ + E[ui|ui > a− Θ]

where σi is estimated standard error from study i, E[ui|ui > a− Θ] = σiϕ(κ)/[1 − Φ(κ)]
and κ = (a − α̂i)/σi (see Greene, 1990, Theorem 2.2; Wooldridge, 2002; Johnson et al.,
1995). Therefore, the conditional expectation of the error term ui is the product of the
estimated standard error and the inverse Mill ratio, which is the ratio of the probability
density function to the complementary cumulative distribution function.

E[α̂i|α̂i > a] = Θ + σi
ϕ(κ)

[1 − Φ(κ)]
Therefore, the meta-regression is as follows:

E[α̂i|α̂i > a] = Θ + σiλ(κ) (7)
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Figure 2: Distribution truncated based on significance, no evidence of p-hacking

Thus, λ(κ) represents the inverse Mills ratio. If the truncation of the estimated coefficient
is above αi|αi < a, then λ(κ) = −ϕ(κ)/Φ(κ).

The truncation of the significance is similar to the truncation of the coefficient esti-
mate, also referred to as incidental truncation 9. Now, I look at E[α̂i|α̂i/σi > c], where
c is the critical value at which the coefficient estimate becomes significant (frequently
taken at c = 1.96 for the significance level of 5%. To apply the same logic here, it is
important to look at the distribution of α̂i and α̂i/σi. As discussed above, using CLT,
αi ∼ N(αi, σi), therefore,

α̂i/σi ∼ N(αi/σi, 1) (8)

with bivariate normal joint distribution. Therefore, following Theorem 2.5 in Greene
(1990)10

E[α̂i|t̂ > c] = Θ + σiρ
ϕ(κit)

1 − Φ(κit)
(9)

where t̂ = α̂i/σi, κt̂ = (c− t̂)/σit̂, and ρ = corr(αi, t̂) = 1. However, considering Equation
(7), ρ = 1 and κt̂ = (c − α̂i/σi) result in the same form of meta-regression as shown in
Equation (7):

E[α̂i|t̂ > c] = Θ + σiλ(κ) (10)

To estimate Θ, often referred to as mean beyond bias in the meta-literature, one needs
to consistently estimate λ(κ) first. However, in both cases, the conditional mean is a
complex non-linear function of the truncation value σ, α, and λ, while the second term of
the equation, λ(κ), is not constant with respect to α and σi. To express the complexity

9see in Greene (1990), Theorem 2.5; see Heckman (1979)
10first moment of incidental truncation is α + ρσλ(κt), where ρ is correlation coefficient. However,

here corr(α, α/se) = 1
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of this term, I take the derivative of E[α̂|truncation] with respect to σ, I drop i for
simplicity, however, it is assumed as before:

∂E[α̂|truncation]/∂σ = λ(κ) + σ∂λ(κ)/∂σ
= λ(κ) + σ∂λ(κ)/∂κ · (∂κ/∂σ)

where:

∂λ(κ)/∂κ = ϕ′(κ)[1 − Φ(κ)] + ϕ(κ)Φ′(κ)
[1 − Φ(κ)]2

= ϕ′(κ)[1 − Φ(κ)] + ϕ(κ)2

[1 − Φ(κ)]2 (11)

= − ϕ(κ) · κ
[1 − Φ(κ)] + ϕ(κ)2

[1 − Φ(κ)]2
= λ2(κ) − κ · λ(κ)

as also shown in Heckman (1979). Therefore, after plugging in this derivative and deriva-
tive of κ with respect to σ, I have:

∂E[α̂|truncation]/∂σ = λ(κ) + α

σ
[λ2(κ) − κ · λ(κ)]

Equations (7) and (10) is the statistical foundation of the meta-regression model for
bias detection, and Equation (2) shows the relation between the expected mean of the
truncated estimates and their standard error.

A common approach in the literature to detect bias is to employ a truncated regression
model (see Equation 7), also known as the Egger’s equation.11

α̂i = α + λσi + ϵi (12)

This model aims to determine the presence of bias and to deduce the mean of the tar-
get coefficient adjusted for bias from the observed truncated distribution. To alleviate
heteroskedasticity, this equation is estimated using weighted least squares, weighted by
precision, where ti is the reported t statistics.

ti = λ+ α(1/σi) + ui (13)

The test H0 : α = 0 is known as the Precision Effect Test (PET) in the literature
and provides a valid test to determine whether there is a nonzero empirical effect after
correcting for publication bias (Stanley, 2008). However, Egger’s equation struggles to
correctly identify the true mean α in cases of nonzero effect size. This is intuitive after
comparing Equation (12) with (7), since Egger’s regression estimates λ as a constant,
while it is a complex function λ(κi) of α̂ , σ, and the truncation value c, see Equations 11
& 2. Therefore, Egger’s equation can correctly measure the extent of bias and identify
the mean beyond bias if the underlying empirical effect is zero (α = 0), granting the
second quadratic term of Equation 2 obsolete - ∂E[α̂|truncation]/∂σ = λ(κ) and leading
to a linear relation between the expected effect and the standard error. However, nonzero
cases remain challenging for PET approach.

11Frequently written as coefi = α + βSEi + ui in the literature, where coef is a coefficient estimate,
and SE stands for the standard error. However, here I opted to follow the initial notation.
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Figure 3: Study A, no evidence of p-hacking, simulation

In this figure, I present the example of Study A, where there is no evidence of p-hacking
since the t = 1.96 is not a binding constraint and all results naturally fell on the left side
of the line. Hypothetically speaking, study with all naturally significant results would
suffer from no selection within study.

The literature strand successfully addresses this issue, using different weighting and
Taylor approximation techniques to appeal to the second-order structure of the equation
2 (Bom & Rachinger, 2019; Havránek, 2010; Ioannidis et al., 2017; Stanley, Doucouliagos,
et al., 2007; Stanley & Doucouliagos, 2012, 2014). Stanley and Doucouliagos (2014) rec-
ommends adopting a quadratic approximation approach, using the weighted least squares
(WLS) estimate of the mean beyond bias α.

α̂i = α + λσ2
i + ϵi or (14)

ti = λσi + α(1/σi) + ui (15)

where meta-regression (6) is using 1/σi or 1/σ2
i as the weights for the weighted least

squared estimation. In the literature, the estimated α is called the precision effect
estimate with standard error (PEESE) (Havránek, 2010; Stanley, Doucouliagos, et al.,
2007; Stanley & Doucouliagos, 2012). Stanley and Doucouliagos (2014) suggest employing
the PEESE estimator, Equation 15 only when there is evidence of a nonzero effect (i.e.,
rejecting H0 : α = 0), and the PET estimator, Equation (12) when accepting H0 : α = 0,
which results in the PET-PEESE estimator.

Bom and Rachinger (2019) improve PET-PEESE by proposing the endogenous kink
(EK) metaregression model, offering a novel approach to correct for publication bias. A
distinctive feature of the EK model is the presence of a ’kink’ at a specific cut-off value
of the standard error. Below this cutoff point, publication selection is deemed unlikely.
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Figure 4: Distribution truncated based on significance, with the evidence of p-hacking

Therefore, the EK model approximates λ(κ) using a piecewise linear metaregression:

α̂i = α + δ[σi − a]Iσi≥a + ϵi (16)

where, Iσi≥a is an indicator function that takes the value of one if σi is greater than or
equal to a, and zero otherwise. Similarly to PET, PET-PEESE, the EK model addresses
the heteroskedasticity of α̂i by dividing each term by 1/σi. The EK model endogenously
determines the cutoff value based on a preliminary estimate of the true effect and a
predefined threshold of statistical significance.

However, the literature is silent on bias detection and correction techniques in the
case of spurious precision. All of these methods are based on the implicit belief that
the reported nominal precision accurately reflects the true underlying precision. Irsova,
Bom, et al. (2023) show that the simple unweighted mean can often outperform com-
plex estimators even when the share of reported spurious precision is very low in the
meta-sample. Thus, they argue that when reported standard errors are manipulated
conventional solutions, designed to address publication bias, lead further away from true
mean. In observational studies, calculating the standard error is often a crucial part
of the research process. The process is complex, and varying the computation of confi-
dence intervals will lead the researcher to report different levels of precision for the same
estimated effect size, potentially leading to misleading results and spurious precision.

Figure 4 illustrates the distributional consequences of various actions such as cheating,
clustering, correcting for heteroskedasticity, and addressing non-stationarity, all under-
taken to obtain statistically significant results without a solid theoretical or reasonable
basis.

The action of p-hacking can take place in the cases in which researchers increase their
selection efforts towards larger estimates in response to noise (larger standard errors) in
their data or methods leading to imprecision and insignificance. With these manipula-
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Figure 5: Study B, evidence of p-hacking, simulation

(a) Reporting only significant coefficients
(b) Manipulating model specifications to
achieve significance

tions, the most precise estimates stay close to the true effect. Therefore, inverse-variance
weighting plays a role in reducing bias and improving the efficiency of the aggregated es-
timate. In contrast, researchers may also achieve statistical significance by reducing the
standard error. However, in this case, there is no bias in the reported effect sizes; both
the filled and hollow circles would represent identical effect sizes, with the only difference
being in precision. The straightforward unweighted average of these estimates is unbi-
ased, but applying inverse-variance weighting would introduce an additional downward
bias.

Figure 5 presents the two scenarios of p-hacking, in (a) the author, after conducting
a number of estimations and robustness checks, reports only significant results; while
(b) shows the case where the author adjusts the specifications of the exercise to achieve
significance at the 5% level. The presence of p-hacking introduces the spurious rela-
tion between coefficient estimate and standard error, undermining the effectiveness of
techniques for detecting and correcting bias.

To control for the spurious relation between estimated coefficients and their standard
errors, I use the Meta-analysis Instrumental Variable Estimator (MAIVE) model, where I
instrument standard error with the inverse of the sample size12 , i.e., replace the reported
standard error with the portion of the error that can be explained by the sample size.
Since in most contexts, the sample size is more difficult to increase than the standard
error, the adjusted measure potentially captures the underlying precision better.

σ2
i = ϕ0 + ϕ1(1/ni) + νi (17)

σi =
√
ϕ0 + ϕ1(1/ni) + νi (18)

where Equation 17 is the first stage regression for the PEESE and Equation 18 for the
PET estimation techniques; σi is the standard error of the effect size as reported in a
primary study; ψo is the constant term, ni denotes the sample size of the primary study,
and νi is an error term. The error term of the first stage regression, νi, absorbs the

12here I follow Irsova, Bom, et al. (2023), who offer the MAIVE technique to control for the spurious
relation
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spurious components of the reported standard error that are attributable to p-hacking.
Irsova, Bom, et al. (2023) simulate a realistic p-hacking scenario, suggesting that the
MAIVE version of PET-PEESE, without additional inverse variance weights, is more
resistant to spurious precision than other existing methods.

The primary objective of the paper is to assess the degree of selection bias resulting
from selection within studies (p-hacking) compared to selection across studies (publication
bias, file drawer effect). To this end, I plan to conduct my analysis using the instrumental
approach as outlined by Irsova, Bom, et al. (2023). My focus is on the five bias correction
estimators mentioned above: linear meta-regression, quantile regression, precision effect
estimate with standard errors (PEESE), PET-PEESE, and the Endogenous Kink (EK)
model. I begin with the linear Egger equation. This is in line with the consensus in the
literature that Egger’s method is a reliable tool for detecting the presence of selection
bias.

3 Data description
This thesis investigates the sources of selective reporting by examining within-study se-
lection and across-study selection in 400 meta-analyzes, encompassing more than 20,000
studies and 200,000 coefficient estimates from various fields of social sciences, mainly
economics. The meta-data set is a collection of data from previous and newly published
meta-studies. It contains meta-study and study-level information on authors, titles, pub-
lication years, and journals. In addition, the metadata contain coefficient estimates, their
respective standard errors, and the sample size of each estimation technique from each
study.

Many meta-studies examine closely related questions, often analyzing multiple coef-
ficients of interest corresponding to different true means. In such cases, data from these
meta-studies are classified into separate categories and included in the analysis as distinct
entities at the meta-level. For example, Balima et al. (2020) analyze the impact of pub-
lication selection bias on the macroeconomic effects of inflation targeting. They consider
a variety of macroeconomic indicators, including the effects of inflation targeting on in-
flation, GDP, interest rate volatility, inflation volatility, growth volatility, exchange rate
volatility, and deficit. I retain the categorization of Balima et al. (2020)’s data, assigning
a unique meta-ID to each category and treating them as independent meta-studies.

An analysis of the journals where these meta-studies have been published reveals a
concentration in various economic disciplines. Figure 6 presents this distribution, cat-
egorizing research areas according to the SCImago Journal Rank (SJR). It also shows
the frequency of publications within each research area. In particular, the fields of Eco-
nomics, Econometrics, and Finance, with more than 100 meta-analyses, are also men-
tioned as part of the majority of other area classifications. The repeated appearance of
the Economics, Econometrics, and Finance classification throughout Figure 6 indicates
that our data set mainly comprises estimates drawn from economic research.
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Figure 6: The meta-analyses published in journals areas

Note: Journal research areas classification according to the SCImago Science Journal Rank
(SJR), https://www.scimagojr.com/journalrank.php?area=2000

Figure 7: Meta-analyses per journal

Note: a list of journals that are the most frequent publishers of meta-studies included in the
dataset. 13



Figure 6 shows the journals that most frequently publish meta-analyses in the data.
Not surprisingly, it reflects the picture that can be seen in Figure 6, where the most
frequent research area is economics. In Figure 7, it is apparent that these meta-studies
are published more frequently in economic outlets, sometimes psychology, or in interdis-
ciplinary journals such as Journal of Health Economics. I present only those journals
that have published meta-study in the sample at least twice; however, similarly to Fig-
ure 6, the economic journals are the majority of the journals, and social science and
interdisciplinary journals are the second most frequent and rarely medicine.

Figure 8: Distribution of Selectivity in Empirical Economics.

Note: Bias estimated from Egger’s regression, coefi = α + βSEi + ϵi. The bias is considered
small to modest if |β < 1|, substantial if 1 ≤ |β| ≤ 2, and severe for |β > 2|. I find substantial
selectivity across 91 different topics and severe in 44 topics in economics & social sciences. For
278 areas, bias falls in the little to modest category.

To understand the extent of bias in the literature, I use Egger’s regression coefij =
α+βSEij + ϵij, where coefij & SEij is the estimated coefficient and standard error pair j
of study i, α is the mean beyond bias, β estimates the extent and existence of bias. I run
this regression analysis separately on data from k meta-studies, obtaining the k number
of β coefficients for each topic. Figure 8 shows the distribution of βk on different topics.
Doucouliagos and Stanley (2013) categorizes the biases in little to modest category if
|β < 1|, substantial if 1 ≤ |β| ≤ 2 and severe for |β > 2|. I find substantial selectivity
across 91 different topics and severe in 44 topics in economics & social sciences. For 278
areas, bias falls into the little to modest category.

Finally, in Figure 9, I look at the distribution of t-statistics in published articles and
show evidence of potential p-hacking, as discussed in Brodeur et al. (2023). I use the
de-rounding technique and weight the z-statistics (measured as coefij/SEij) with the
inverse of the number of tests present in each article and superimpose an Epanechnikov
kernel density curve on the histogram. De-rounding does not change the shape of the
distribution; it only smooths potential discontinuities in histograms. Figure 9 presents
the two-humped camel-shaped pattern, bunching at z = 1.96, indicating the existence
of p-hacking. However, as pointed out in Kranz and Pütz (2021), this approach cannot
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Figure 9: De-rounded & weighted distribution of z-statistics of published papers.

Figure is showing the distribution of z-statistics of coefficient estimates in the published papers.
The distribution is de-rounded to control for the Note: The two-humped camel-shaped pattern,
similar to Brodeur et al. (2020, 2023), is evident. I superimpose an Epanechnikov kernel density
curve.

explain the excess share of observed z-statistics near zero.
The observed distribution of z-statistics, even adjusted for rounding, consistently

shows two distinct peaks, one at zero and one around z = 2, Figure 9. However, Kranz
and Pütz (2021) point out that this second peak does not necessarily indicate p-hacking or
publication bias. It could also be explained by a latent mixed distribution resulting from
varying research objectives. For example, some studies could refine previous findings
with significant effects, while others could be more exploratory, lacking a solid prior
assumption of the actual effects being present. To demonstrate this numerically, Kranz
and Pütz (2021) consider 5,000 random samples from a combination of three Cauchy
distributions, each with a scale parameter of 0.8: one distribution has a center at 0,
representing exploratory research, while the other two, centered at -2 and 2, represent
more focused research. They show that the resulting distribution of absolute z-statistics
is very similar to the empirical distribution in the pooled data in Figure 9. This paper
contributes to this discussion by analyzing similar questions based on metaregression
analysis.

4 Estimation and results
There should be no correlation between estimates and standard errors if there is no
publication bias, that is, selection within (SWS) or across studies (SAS). Therefore, for
now I assume that any correlation between the coefficient coef ij and its standard error
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SEij indicates the existence of bias. Therefore, the correlation between coef ij and SEij

within the study indicates bias from SWS, and the correlation between the mean study
estimates indicates bias due to SAS13. I run 800 regressions to estimate bias coefficients
for each research question and separately evaluate the extent of the selection of the results
coming from the within-study and between-study variation.

I estimate the extent of selection for each meta-analysis k, study j, and estimate i,
using the following meta-regression:

coef ij = α + βSEij + ej + uij (19)

Where coef ij is the coefficient estimate i of the study j; SEij is the corresponding stan-
dard error; ej indicates characteristics specific to the study and uij is the error term.
This regression cannot differentiate between the selection within- and between-studies,
however, it can serve as a benchmark for the comparison. Meta-regression of this type is
most frequently used in the literature; however, there can be two issues that present the
problem of identifying the estimated β as a measure of selection bias as a whole. First,
it is implausible that the pairs of (coeffij; SEij) and (coeffkj and SEkj) are indepen-
dent. This assumption can be relaxed if one assumes that the authors and editors select
each coefficient estimate independently and separately.14 However, if the researcher is
involved in p-hacking, then the assumption that each coefficient estimate was selected on
its own merit is implausible. The second problem arises when one considers the existence
of p-hacking, since the necessary assumption that estimated standard errors are unbiased
SEij is also unlikely, therefore, equation 19 suffers from the spurious correlation and can-
not accurately estimate the extent of selection bias β in the literature. To address this
issue, I use the Meta-analysis Instrumental Variable Estimator (MAIVE) and instrument
standard errors using the respective sample size in the first stage to replace the reported
standard error, SEij, with the portion of the error that can be explained by the sample
size. Irsova, Doucouliagos, et al. (2023) argue in favor of using the sample size as an in-
strument for reported standard errors. The reported variance (SE2) is a linear function
of the inverse of the sample size used in the primary study by definition. The sample size
is not estimated, so it is free from measurement error. Changes in methodology generally
have no effect on the sample size and neither do the choice of control variables. The
sample size appears to be more resistant to selection bias, as gathering additional data is
more challenging than manipulating the standard error to reach significance. Endogeneity
might still persist if researchers, anticipating smaller effects, opt for larger experiments.
However, in the context of observational studies, researchers generally use all available
data.

To isolate the bias coming from within-study selection, I need to control the study-
specific characteristics. I do this by applying fixed effects estimation, demeaning the
estimates by the study mean effect and mean standard error:

FE: coef ij − coef j = βF E(SEij − SEj) + uij (20)

The fixed effect estimator takes care of the fixed effect of ej for the unobserved study by
subtracting the mean estimates of the study. This approach allows me to estimate the
measure of bias, β̂F E, coming from the within-study variation.

13The caveat here is that coefficients within study are less likely to be independent, however when
controlling for the fixed effects, in case of SWS, and taking mean estimates, in case of SAS, this issue
should resolve.

14see Andrews and Kasy (2019) for more detailed discussion.
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Next, to study the extent of publication bias, I look at the extent of selection between
studies. Here, I need to proxy a selection criterion for each study - ideally, it would be
a main result or a set of results based on which the paper was selected for publication.
Unfortunately, I do not have information on which of the estimates is more important in
the pool of reported estimates. Therefore, I revert to taking mean estimates as the average
story told in the manuscript and the average criteria based on which the publication
decision is made.

BE: coef j = α + βBESEj + uj (21)

Therefore, I study the variations between studies using the averages of the estimates for
each study.

Finally, with similar rationality, I employ the PEESE, PET-PEESE, and EK model
approaches to consistently estimate the extent of selection bias. As above, I run these
regressions on demeaned reported estimates first and mean estimates second, to analyze
the extent of selection bias that arises from selection within the study and between the
studies, respectively.

Figure 10: Different types of selection biases influencing published work

Figure presents the distribution of estimated β̂ from fixed effect, between effect and OLS esti-
mations, where βF E is extent of within study selection - measure of p-hacking, βBE measures
the extent of publication bias defined as selection across study, βOLS estimates the average
selectivity in the literature and is the most common version of the meta-regression. Note that
these results are retrieved from analysis of Published Paper sub-sample.

4.1 Selection within vs. across study
The Figure 10 shows the distribution of β coefficient from the Fixed-effect (20), between-
effect (21), and OLS (19) estimated for 400 subsamples separately. The distribution of
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the coefficient β estimated from the OLS regressions, presented as the gray shadow in
the figure, is the average effect of selection in the published literature. The measure of
bias from the within-study variation indicates the extent of p-hacking (in green); and
the measure of bias coming from the between-study variation indicates the extent of
publication bias (in red). In Figure 10, when looking at part of the distribution that
shows little or no bias |β| < 1, as well as the moderate level of bias 1 < |β| < 2, the
selection between studies seems to be more relevant. But as the severity of the selection
bias increases, p-hacking plays a larger role in the selection bias.

Figure 11: Distribution of Ψk = |βF E
k /βBE

k |

Figure shows comparison of within |βF E
k | and between |βBE

k | selection using ratio.

Finally, I calculate βF E
k and βBE

k and derive ψk = βF E
k /βBE

k for each meta-study k
based on the subsample of published results. Figure 11 shows the distribution of ψk with
a significant part of the distribution on the right side of red line indicating threshold
where βF E

k > βBE
k has a long tail.

I estimate the ψk ratio from the fixed effect and between the effect models15 and I
present the median and mean values of ψk with the 95% confidence interval (CI) con-

15winsorized on 1, 2.5, and 5%. Table 1 shows the results of the most liberal 1% winsorization.
However, 2.4% and 5% winsorization showed very similar results.
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structed using t statistics for mean and bootstrapping with a sample with multiple repe-
titions for the median. Next, to alleviate the effect of outliers, I apply median regression
on the original data without winsorization. The both results are consistent in that, they
both predict over 10% larger effect of p-hacking compared to the publication bias in the
bias caused by selection of the results for publication. Next, in Table 2, I show the analy-

Table 1: Selection within vs. across study, published papers

Linear Regression Quantile Regression
Median 1.18 1.11

[1.03; 1.48] [0.96; 1.28]

Mean 7.78 9.52
[5.13; 10.44] [4.31; 14.73]

Number of Meta-Studies 409 407
In the table, the median and mean values of ψk are detailed, each accompanied by a 95%
confidence interval (CI). These intervals are calculated using the t-statistics for the mean and
using bootstrapping with multiple repetitions for the median. Additionally, the data set has
been winsorized at the 1st and 99th percentiles to enhance its statistical robustness. The data
set comprises estimates exclusively from published papers.

sis based on PEESE, PET-PEESE, and EK regressions. To control for possible p-hacking
and more accurately estimate the extent of biased selection, I instrument the reported
standard errors, SEi, in the first stage 16 with the inverse of the sample size to the in-
strument for the standard errors. In Table 2 I report the median and means of estimates
that show strong correlation on the first stage as evidence of instrument’s relevance.

Table 2: Selection within vs. across study, published papers

PEESE PET-PEESE EK
Median 1.33 1.29 1.22

[ 1.15; 1.51] [1.05; 1.76] [1.07; 1.44]

Mean 7.44 7.58 4.41
[1.66; 13.22] [1.91; 13.25] [2.66; 6.17]

Number of Meta-Studies 191 191 191
In this table, the median and mean values of ψk are presented, derived from the Instrumental
Variable (IV) regressions of the PEESE, PET-PEESE and EK models. These values are accom-
panied by 95% confidence intervals (CIs), which are constructed using t-statistics for the mean
and bootstrapping with multiple repetitions for the median. The dataset has been winsorized
at the 1st and 99th percentiles. The number of meta-studies included in this analysis has been
reduced to 206, as ψk values from regressions with first-stage F statistics less than 10 have been
excluded. The data set comprises estimates exclusively from published papers.

In all five approaches (Tables 1 & 2), I find that the bias arising from the variation
16suggestions Irsova, Bom, et al. (2023)
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within the study is greater than the selection between studies. Although the mean value
is greater than 5 in all cases, this is probably due to the long tails of selection bias
and ration ψk, see the figures 10 and 11. Therefore, looking at the median value of ψk

is essential. Together, the median and mean values of the ratio suggest that selection
within studies is consistently larger compared to selection across studies, pointing to the
prevalent evidence of practices like method searching and p hacking in the published
literature.

Table 3: Selection within vs. across study, all papers

Linear Regression Quantile Regression
Median 1.16 1.12
Median CI [1.06; 1.46] [0.97; 1.38]

Mean 7.85 8.84
Mean CI [4.84; 10.87] [1.63; 16.06]

Number of Meta-Studies 412 368
In the table, the median and mean values of ψk are detailed, each accompanied by a 95% confi-
dence interval (CI). These intervals are calculated using t-statistics for the mean and bootstrap-
ping with multiple repetitions for the median. Additionally, the data set has been winsorized
at the 1st and 99th percentiles to enhance its statistical robustness.

These conclusions are drawn from looking at the published results. Next, I look at
a complete dataset that contains results from published papers and working papers to
evaluate the comparison of selection within and across studies in general.

Table 4: Selection within vs. across study all papers

PEESE PET-PEESE EK
Median 1.21 1.28 1.28
Median CI [1.12; 1.44] [1.10; 1.82] [1.08; 1.51]

Mean 8.33 7.02 4.45
Mean CI [2.21; 14.44] [1.73; 12.31] [1.93; 6.96]

Number of Meta-Studies 206 206 206
In this table, the median and mean values of ψk are presented, derived from the Instrumental
Variable (IV) regressions of the PEESE, PET-PEESE, and EK models. These values are accom-
panied by 95% confidence intervals (CIs), which are constructed using t statistics for the mean
and bootstrapping with multiple repetitions for the median. The data set has been winsorized
at the 1st and 99th percentiles. The number of meta-studies included in this analysis has been
reduced to 206, as the ψk values of regressions with first-stage F -statistics less than 10 have
been excluded.

However, Tables 4 and 5 demonstrate that the findings derived exclusively from the
published literature are consistent with those obtained from the entire data set. The
Selection Within Studies (SWS) is consistently found to be more pronounced than Se-
lection Across Studies (SAS). This pattern reinforces the notion that significant selection
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occurs at the research stage, indicating a tendency to report certain results while omitting
others, potentially to strengthen the researcher’s argument or narrative.

The patterns of selection across and within studies are repeated when analyzing the
whole dataset consisting of over 15000 published and 3500 working papers. Next, I look
at the selection bias in working papers in comparison to published papers.

4.2 Working papers vs published papers
To understand how to correct and potentially prevent selection bias within and between
studies, it is important to explore the stages at which selection occurs. Selection across
studies may occur at the submission and revision stage, or much earlier, when the re-
searcher decides whether or not to write the paper. Moreover, while previous results have
suggested the existence of a significant level of within-study selection, understanding the
effect of the publication process on p-hacking is crucial. To this end, in this section,
I first investigate the extent of within and between study selection in a working paper
subsample, comparing these two types of biases. Subsequently, I compare the within and
between study selection in working papers with that in published papers.

Figure 12 shows the distribution of selection bias, p-hacking and publication bias in
working papers. In the realm of working papers, ”publication bias” should be viewed
as the decision by researchers to write the paper after receiving initial results or not.
The phenomenon in which the research chooses to write the research paper according to
the obtained results is frequently referred to as a ”file-drawer problem” in the literature.
Here, also, selection across studies dominates for the low selectivity in reported results,

Figure 12: Selection bias in working paper |βW P
k | subset.

and as the selection bias becomes more severe in different fields of research, the effect of
selection within study becomes more prominent. To compare the effect of the publication
process on bias, I perform a similar analysis as before and compare the extent of these
selection biases in the results reported in the working and published articles, see Table 5.
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In Table 5. I have reported results from linear, quantile, PEESE, PET-PEESE, and
endogenous kick model estimations. As before, the last three use the instrumental variable
approach to control for the spurious relation caused by the existence of p-hacking. The
first section of the table shows the medians of the Ψk =

∣∣∣βW P ;k
/
βP ;k

∣∣∣ ratio comparing
the average selection bias in the results of the working and published papers. Although
linear estimations show larger selectivity in the results reported in the working papers,
non-linear estimation models do not show such a large difference.

Next, to explore the question of whether the publication process accelerates or re-
duces selection, I look at the within- and between-study selection comparison separately.
Comparison of p-hacking in the working and published papers shows that within-study
selection is significantly larger in the results reported in the working papers. In contrast,
there are no significant differences in the selection between studies in published papers
compared to working papers.

The results in Tables 1, 2 and 5, show that the p hacking dominates compared to
the publication bias in published research; however, published results suffer from less
within-study selection compared to working papers. Table 5 shows on average greater
evidence of p-hacking in working compared to published papers. Therefore, I conclude
that the publication process filters out a significant portion of p-hacked results.17

These results highlight the widespread nature of selection biases in academic research.
The upper section of Table 5 shows that the decision to write a research paper suffers
from a selection bias similar to the journal’s decision to publish. In essence, the biases
affecting what gets written are strongly mirrored in what gets published. However, the
primary driver of this phenomenon remains unclear, whether it is shaped more by the
anticipations and decisions of journals and editors, or by researchers’ beliefs about what is
likely to be accepted. On the one hand, researchers could potentially correctly foresee the
publication potential of their work and choose not to draft a manuscript that has a lower
chance of acceptance. On the other hand, they might only submit manuscripts that they
believe to likely be published, thereby limiting the array of choices available to journals,
creating a self-fulfilling prophecy: even if journals exhibit no selection bias, they end
up publishing only a partial narrative because they receive a non-representative sample
of research outcomes. However, these results also point to the mitigating role of the
publication process in the selection of estimates within the study. Table 5, middle section
shows that selection within study dominates in working paper sub-sample, leading me to
believe that significant portion of p-hacking is filtered before the studies are published.

17This conclusion is inline with the findings in Brodeur et al. (2023).
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Table 5: Comparison of biased selection in working and published papers

Linear Quantile PEESE PET-PEESE EK

Selective Reporting Ψk =
∣∣βW P ;k

/
βP ;k

∣∣
Median 1.23 1.27 1.02 1.13 1.08

[1.05; 1.55] [1.06; 1.61] [0.86; 1.22] [1.00; 1.44] [0.88; 1.21]

Meta-Studies 269 284 187 186 152

p-Hacking, Selective Reporting within study, ΨF E
k =

∣∣βF E
W P ;k

/
βF E

P ;k
∣∣

Median 1.16 1.76 1.31 1.67 1.12
[0.86; 1.28] [1.36; 2.11] [0.90; 1.74] [1.12; 2.32] [0.99; 1.68]

Meta-Studies 194 282 169 169 169

Publication Bias, Selective Reporting between studies, ΨBE
k =

∣∣βBE
W P ;k

/
βBE

P ;k
∣∣

Median 1.16 1.34 0.93 1.05 0.97
[0.86; 1.29] [1.13; 1.66 ] [0.74; 1.07] [0.85; 1.24] [0.86; 1.07]

Meta-Studies 195 288 134 134 134
This table shows the comparison of biased selection in working papers and published papers.
For this, I show the median values of Ψk =

∣∣βW P ;k
/
βP ;k

∣∣; while, ΨF E
k compares the extent of

p-hacking and ΨBE
k compares the extent of publication bias in working and published papers.

In the columns (1) & (2), the median and mean values of ψk are detailed, each accompanied
by a 95% confidence interval (CI). These intervals are calculated using the t-statistics for the
mean and using bootstrapping with multiple repetitions for the median. Additionally, the data
set has been winorized at the 1st and 99th percentiles to enhance its statistical robustness. In
columns (3) to (5), the median and mean values of ψk are presented, derived from the Instru-
mental Variable (IV) regressions of the PEESE, PET-PEESE, and EK models. These values
are accompanied by 95% confidence intervals (CIs), which are constructed using t-statistics for
the mean and bootstrapping with multiple repetitions for the median. The data set has been
winsorized at the 1st and 99th percentiles. The number of meta-studies included in this analysis
has been reduced to 206, as psik values of regressions with first-stage F -statistics less than 10
have been excluded. The data set comprises estimates exclusively from published papers.
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5 Conclusion
In this study, I have conducted an analysis of a comprehensive meta-dataset comprising
more than 200,000 estimates from more than 19,000 studies across 400 different fields.
Utilizing key meta-regression methodologies, I present substantial evidence of selective
reporting of coefficient estimates within studies that also find their way into the published
literature.

This paper highlights the importance of p-hacking in the academic literature, con-
tributing to the emerging body of work such as Brodeur et al. (2023), Lang (2023),
Irsova, Doucouliagos, et al. (2023). It supports the issues raised by Irsova, Bom, et al.
(2023), underscoring the critical need for meta-analytical methodologies that address the
biases of p-hacking in conjunction with selection biases across studies. Furthermore, the
paper underscores the risks posed by practices such as p-hacking and method searching
to the robustness of established academic beliefs. It provides evidence challenging the
notion that these practices are merely concerns for unpublished research, indicating their
broader implications in the field.
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