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Abstract

We propose an empirical structural inflation model that allows for non-linear transmission

of shocks. Most existing methods assume a linear contemporaneous effect of shocks on the

economy. Using state-of-the-art machine learning techniques, we develop a non-linear Bayesian

time series model that combines VARs with regression trees and allows for non-linear effects

of shocks for all impulse response horizons. Shock identification is achieved via sign, zero,

and magnitude restrictions through a non-linear factor model. Using euro area data and

focusing on energy shocks, we find evidence supporting non-linearities with respect to the size

of the shock. Inflation reacts stronger to large shocks, while small shocks trigger no significant

reactions. Such non-linearity is present along the pricing chain, more visible upstream and

gets attenuated moving downstream. For policy makers, the finding that large shocks transmit

differently implies that they may require a differentiated response.
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1 Introduction

Economists tend to agree that economic shocks have a non-linear impact on inflation and the

effects might be subject to time-variation. Starting with the seminal idea of Phillips (1958), wage

inflation is linked to unemployment in a non-linear way. In a tight labour market, wages are more

flexible, as firms bid up wages rapidly, while in a downturn, wages would fall more slowly. Yet,

mainstream inflation models tend to be linear. When non-linearities are investigated, modellers

frequently impose ex-ante a certain type of non-linearity in a rigid way. This increases the risk

of model mis-specification, eventually translating into larger forecast errors of inflation such as

the ones observed during the post-pandemic recovery.

The extent to which inflation surprised economists during the post-pandemic recovery

made it clear that some elements were missing from traditional models. There was an interest

to employ larger models that are able to account for more (and new) sources of inflation-

ary pressures (such as global supply side bottlenecks or more types of energy price shocks).

Yet, even when employing a large linear model for inflation (e.g., Bańbura, Bobeica, and

Mart́ınez Hernández (2023)), the post-pandemic surge cannot be fully reconciled. We argue

that an important element that economists missed in this period is that large shocks can am-

plify the pass-through to inflation whereas small shocks should not trigger substantial reactions

of inflation. Investigating this non-linearity is the main contribution of this paper. But to do so,

we also need to develop a new econometric framework that allows us to answer such questions

with minimal assumptions on the form of non-linearities.

There has been much work on estimating and analysing non-linear relationships using

parametric models. Recently, Benigno and Eggertsson (2023) and Gitti (2024) show that infla-

tion reacts differently to labour market tightness when it exceeds a certain threshold. To capture

this effect, they construct a dummy variable interacted with labour market slack. More broadly,

empirical macroeconomic studies make various assumptions regarding possible non-linear rela-

tionships: parameters change abruptly (e.g., Hamilton and Lin (1996), Krolzig (2013), Hamilton

and Perez-Quiros (1996)), slowly varying (Cogley and Sargent (2001), Cogley (2005), Primiceri

(2005), Del Negro and Primiceri (2013)), evolve smoothly or after a threshold (Hubrich and

Teräsvirta (2013), Galvao and Marcellino (2014), Bruns and Piffer (2023)), a combination of the

abrupt and slow variation (Prüser (2021)), or use quantile regressions (Adrian, Boyarchenko,

and Giannone (2019), Ghysels, Iania, and Striaukas (2018), Lopez-Salido and Loria (2022)).

In contrast to this literature, machine learning methods allow for remaining agnostic on
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the precise form of the regression relationship. While machine learning models have proved to be

promising for forecasting (Huber and Rossini (2022), Clark, et al. (2023a), Huber, et al. (2023),

Lenza, Moutachaker, and Paredes (2023), Hauzenberger, et al. (2024), Goulet Coulombe (2024),

among many others), so far their use for structural analysis has been limited. Notable examples

are Hauzenberger, et al. (2025), using a recursive identification strategy, and Mumtaz and Piffer

(2022), for non-linear local projections. However, all these studies have a serious shortcoming:

shocks are allowed to transmit non-linearly to the macroeconomy only with a lag while impact

reactions are restricted to be linear.

The model we propose aims to address this shortcoming. We develop a flexible non-

parametric framework that builds on the model proposed in Clark, et al. (2023b). This model

combines Bayesian Additive Regression Trees (BART, see Chipman, George, and McCulloch

(2010)) with vector autoregressions (VARs). As mentioned above, one shortcoming of this

specification is that economic shocks are allowed to influence a set of macroeconomic aggregates

only linearly on impact, possibly masking important non-linear dynamics that arise immediately

after the shock hit the model economy. Our model assumes that the reduced-form errors are

driven by a few latent factors. These factors enter the model in a non-linear way through an

additive specification that is the sum of a linear function and an unknown, non-linear component.

This enables non-linear impact effects of the factors. The factors are interpreted as a set of

fundamental economic shocks and, following Korobilis (2022), economic identification is achieved

through sign, zero, and magnitude restrictions on the linear component. The resulting empirical

framework therefore addresses an important gap in the literature by providing a structural and

fully non-linear approach that can also be used to compute competitive forecasts.

In our empirical work, we use a moderately-sized euro area dataset and identify four

structural shocks. We first provide a brief overview on how inflation reacts to differently-sized

shocks and then zoom into energy price shocks. This is predicated by the fact that they can

be an important source of inflation volatility and the years since the outbreak of the COVID-19

pandemic have seen a sequence of large energy shocks unprecedented for the euro area. Also, a

large part of what we missed from the post-pandemic inflation surge is attributable to energy

shocks, as shown for the case of the euro area by Chahad, et al. (2023).

Our results suggest that inflation reacts non-linearly with respect to the size of the energy

shocks. In particular, small shocks trigger no significant reactions of prices whereas larger shocks

have disproportionally stronger effects. We, moreover, find that these non-linearities increase in
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a smooth fashion with shock sizes, providing evidence that models that introduce a few regime

shifts are not necessarily consistent with actual inflation dynamics. Taking a more granular view

suggests that the non-linear behaviour of prices is present along the pricing chain, more visible

upstream when looking at the reaction of energy commodity prices and producer prices and gets

attenuated moving downstream towards consumer prices. Also, the non-linearity is more visible

for positive shocks, but also present for negative ones.

To highlight that our approach can also be used to produce accurate density forecasts, we

employ our model to predict the conditional distribution of year-on-year inflation. This exercise

reveals that the flexible non-parametric model yields predictions that are on par with the ones of

a linear Bayesian VAR for one-month-ahead but improvements become sizeable for higher-order

forecasts, reaching more than 10 percentage points vis-á-vis the linear model.

The remainder of the paper is organised as follows. The next section provides empirical

evidence, discusses some theoretical channels for non-linear effects and highlights the related lit-

erature while Section 3 introduces our structural BART model with a non-linear factor structure.

In Section 4 we give details about our data base, the identification scheme, and the key results

of the paper. We further validate our structural model in terms of forecasting performance in

Section 5. The last section concludes the paper.

2 Empirical evidence, theoretical channels and related litera-

ture

Empirical evidence suggests that inflation reacts more strongly to large shocks, particularly

in the post-pandemic period. To provide some empirical motivation, Figure 1 illustrates the

relationship between euro area headline inflation and the inflation rate of a synthetic energy

commodity price index, which combines oil and gas prices based on the euro area’s energy import

shares. Given the unprecedented composition of energy shocks in recent years, we employ this

synthetic energy commodity price index to better capture energy inflation dynamics.

The figure reveals two simple stylized facts. First, there has been a shift in the inflation-

synthetic indicator relationship between the first part of the sample (1996 to 2020) and the second

part of the sample (2021 to 2024). Second, and more importantly, this link likely changed and

strengthened due to the unprecedented shocks that occurred in the post-pandemic period.

The empirical literature investigating the role of large shocks on consumer price inflation
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Notes: Expressed in annual growth terms; headline inflation lagged by 7 months.

Figure 1: Inflation and energy commodity prices

is rather limited. Focusing on monetary policy shocks, Ascari and Haber (2022) apply smooth

local projections and find that large absolute shocks disproportionately affect prices on impact

but are less persistent and have weaker real effects. In general, empirical papers tend to focus

more on the role of the inflation regime for the transmission of shocks. The literature documents

that inflationary shocks have a stronger impact in high-inflation regimes. De Santis and Tor-

nese (2023) find that energy shocks propagate more intensely when inflation is elevated, while

Bobeica, Ciccarelli, and Vansteenkiste (2020) show a similar pattern for labour cost shocks.

Focusing on the post-pandemic inflation surge, several studies highlight an increased sensi-

tivity of inflation to shocks. Adolfsen, et al. (2024) examine gas market shocks and find stronger

price reactions when incorporating 2020–2022 data, suggesting a structural break in the re-

lationship between energy markets and euro area prices. Allayioti, et al. (2024) and Zlobins

(2025) document a stronger reaction of inflation to monetary policy shocks when the estimation

sample covers the ECB’s tightening cycle, which was deployed to address the inflation surge fol-

lowing the pandemic. Szafranek, Szafrański, and Leszczyńska-Paczesna (2024) similarly report

increased persistence of inflationary shocks since COVID-19.

Theory backs up the idea that large shocks have disproportionate effects. Ball and Mankiw

(1995) argue that firms adjust prices in relation to large shocks, but not to small shocks. This

is due to the presence of menu costs which make price adjustment more expensive. Insights

from micro studies of price setting support the idea that large shocks are associated with a

disproportionally larger impact on inflation. According to state-dependent models, the frequency
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of price changes and the size of these changes are endogenous, they depend on various economic

states linked for instance with large shifts in demand or to the size of inflationary shocks.

Available micro evidence for the post-pandemic recovery period suggests that indeed, firms

practised state-dependent pricing with a large frequency of price adjustment and a rise in the

overall size of price changes both in the euro area (see Gautier, et al. (2024), Dedola, et al.

(2024)) and in the US (Montag and Vallenas (2023)).

In recent years, there has been significant development in state-dependent models of price

setting, bringing them closer in scope to medium-scale models used in policy institutions. Cav-

allo, Lippi, and Miyahara (2023) adapt a New Keynesian model to the price-setting patterns

observed in granular data allowing for a sizeable component of state-dependent pricing deci-

sions. They allow for the frequency of price changes to increase sharply after a large shock and

derive a punchy conclusion: ‘large shocks travel faster than small shocks’. Karadi, et al. (2024)

introduce a micro-founded model with state-dependant pricing, where the reaction of inflation

to economic activity increases after large shocks due to an endogenous rise in the frequency of

price changes. Empirical evidence supports the finding that prices are more flexible under large

shocks (Karadi and Reiff (2019)). Also, state-dependent models imply that prices are more

flexible when inflation is higher (Alvarez, et al. (2019)).

Indeed, a rich strand of literature argues that the pass-through of shocks is stronger when

inflation is high. Harding, Lindé, and Trabandt (2023) enhance a workhorse macroeconomic

model with real rigidities in price and wage setting by incorporating additional strategic com-

plementarities in firms’ price-setting behaviour, which lowers the sensitivity of prices to marginal

costs for a given degree of price-stickiness. As a result, cost-push shocks can propagate more

than four times stronger in the non-linear model, relative to the linearized model when infla-

tion is high. They also argue that among different types of shocks, cost-push shocks propagate

stronger to inflation than demand and technology shocks when inflation is high and rising. An

important policy implication of their work is that in a high-inflation regime, central banks face

a more severe trade-off between inflation and output.

Head, Kumar, and Lapham (2010) suggest a different channel for why the pass-through

of shocks increases with the level of inflation, linked to the search intensity of consumers. When

inflation is low, consumers can better perceive changes in the price dispersion and any given

shock would make them increase their search intensity. When inflation is high, price dispersion

is higher and hence any given shock has only a limited impact on price dispersion and the search
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intensity of consumers, which makes it easier for firms to increase their prices.

Taken together, these arguments suggest a stronger transmission of shocks during the

inflation surge episode. We argue that a suitable econometric model should be able to reproduce

these asymmetries with minimal assumptions on the form of non-linearities.

3 Econometric framework

The main goal of this paper is to analyse how economic shocks transmit non-linearly to inflation.

To do so, we avoid introducing strong parametric restrictions on the functions determining the

conditional mean of the process and the contemporaneous effects from structural shocks. We

introduce the features of the model, discuss structural identification, and sketch the estimation

approach in the following subsections.

3.1 A non-parametric multivariate time series model

We model the non-linear interactions between a panel ofM macroeconomic time series, which we

store in a vector yt = (y1t, . . . , yMt)
′, and a lower dimensional vector of Q fundamental shocks,

which are denoted by qt. Our multivariate model assumes that yt is an unknown function of

xt = (y′
t−1, . . . ,y

′
t−p)

′, which is a K(= Mp)−dimensional vector that includes the p lags of yt

and the fundamental shocks (henceforth simply called factors) in qt. Formally, the model reads:

(1) yt = f(xt) + g(qt) + εt, qt ∼ N (0M , IM ),

where f : RK → RM and g : RQ → RM are unknown (and possibly non-linear) functions that

relate xt and qt to yt, respectively. εt is a set of Gaussian measurement errors with zero mean

and a diagonal covariance matrix Ω.

This model is extremely flexible and nests several prominent models used in the literature.

If we set f(xt) = Axt where A is an M ×K matrix of coefficients and let q(qt) = Qqt+εt with

Q being the lower Cholesky factor of an M ×M covariance matrix Σ = QQ′ we end up with a

linear VAR with factor structure (as in Korobilis (2022), Chan, Eisenstat, and Yu (2022), and

Bańbura, Bobeica, and Mart́ınez Hernández (2023)). If we set f(xt) = Axt + f̃(xt) we end up

with the mixture BART specification used in, e.g., Clark, et al. (2023b) and Baumeister, Huber,
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and Marcellino (2024). In what follows, we employ this specification so that Eq. (1) becomes:

(2) yt = Axt + f̃(xt) + g(qt) + εt.

The key novel feature of this model is the presence of g(qt). This implies that the funda-

mental shocks are allowed to trigger an immediate and possibly non-linear effect on yt. This is in

stark contrast to models such as the one proposed in Clark, et al. (2023b) which sets g(qt) = Λqt,

with Λ being an M × Q matrix of factor loadings. In this case, the impact reaction of yt to a

shock to factor j, qjt, is simply given by the jth column in Λ, ∂yt/∂qjt = λj . As opposed to this

specification, the model we propose is much more flexible since it allows to accommodate differ-

ent forms of non-linearities. For instance, a popular, yet simple way, of handling non-linearities

would be by setting g(qt) = Λ2q
2
t +Λ1qt and thus assuming that larger shocks trigger a different

effect than smaller shocks. Other, deterministic choices of g are possible and commonly used in

the literature (see, e.g., Yalcin and Amemiya, 2001; Bai and Ng, 2008; Song and Dunson, 2022;

Hauzenberger, Huber, and Klieber, 2023; Forni, et al., 2022). This assumption, however, is very

restrictive and we wish to remain agnostic on possible non-linearities and/or interaction effects

between the elements in qt. We describe how we achieve this in the next sub-section.

3.2 Non-linear structural factor models

We aim to infer the function g from the data. This is achieved through a non-parametric factor

model (see, e.g., Song and Lu (2012), Li and Chen (2016), Xu, Herring, and Dunson (2023)).

Subtracting f(xt) = Axt + f̃(xt) from yt, our model is given by:

ỹt = g(qt) + εt,

with ỹt = yt − f(xt). Without further restrictions, this specification is not identified. There

are, at least, four identification issues. First, as noted in Yalcin and Amemiya (2001), if we

consider a one-to-one non-linear transformation q̃t = h(qt) so that qt = h−1(q̃t). In this case,

g(qt) = g∗(h(qt)). The second and third relate to the sign and scale of qt, and the fourth relates

to the fact that, without further information, the different factors have no economic meaning.

If interest is solely on forecast distributions, neither of these translates into major issues.

However, given our interest on structural inference and economic interpretation of the factors,

we need to introduce further restrictions. We have already introduced the restriction that the
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factors are standard normally distributed. This identifies the scale of the factors but does not

fix the sign nor gives the factors an economic interpretation.

To attach an economic meaning to each of the elements in qt and to fix the sign, we

decompose g(qt) in a linear and non-linear component:

(3) g(qt) = Λqt + g̃(qt).

Hence, g(qt) consists of two ingredients. First, we include a linear part that implies a linear

relationship between ỹt and qt. This part serves to capture the main effects of variations in qt

on the responses and we will place sign, zero, and magnitude restrictions on Λ. The second

ingredient is yet another unknown and possible non-linear function g̃(qt). This part serves

to control for higher-order effects such as interactions between shocks or other forms of non-

linearities. A similar decomposition in the context of Bayesian non-parametric instrumental

variables estimation is used in McCulloch, et al. (2021). The inclusion of the linear part will

form the basis of our structural identification strategy.

Our model also implies that if yt is mostly driven by the fundamental shocks qt, the

measurement error variance matrix Ω will be close to zero. In this case, learning f and g

becomes difficult since the likelihood becomes flat (see Stella and Stock (2013) for a similar issue

in the context of a multivariate unobserved components model). As a solution, we introduce

the restriction that around five percent of the total variation in yt is neither explained through

f(xt) nor g(qt). This is achieved by fixing Ω = 0.05 × diag(σ̂2
y,1, . . . , σ̂

2
y,M ) with σ̂2

y,j denoting

the empirical variance of yjt.

3.3 Structural identification using truncated priors

We adopt a Bayesian approach to estimate our model. This calls for setting up suitable priors on

all the unknowns of the model. In our case, these are the functions f̃ and g̃, the coefficients in A,

and the linear factor loadings Λ. We will discuss the precise priors on f̃ and g̃ in subsection 3.4.

In this section, our focus is on the prior onΛ and how we use it to achieve structural identification

of the model and to determine the signs of the factors.

To attach an economic meaning to the different factors in qt, we follow Korobilis (2022)

and specify sign, zero, and magnitude restrictions on the elements of Λ. This is not done by

exploiting the rotation invariance of Λ and qt but through truncated priors with truncation

sets defined to capture possible signs of the responses consistent with economic theory (see
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Baumeister and Hamilton, 2015, 2018).

Let λij denote the (i, j)
th element of Λ. Moreover, we let S denote an M ×Q matrix that

determines the sign restrictions, with sij ∈ {−, 0,+, c, ∗}. Values of −, 0,+ imply negative, no,

or positive linear effects of qjt on variable i, while c indicates that we restrict the corresponding

loading λij = c. An asterisk points towards an unrestricted effect.

The resulting restrictions are then introduced by truncating the prior on λij . The prior

takes the form:

p(λij |sij) =



N0,∞(λij |0, ϕij) if sij = +

N−∞,0(λij |0, ϕij) if sij = −

δ0(λij) if sij = 0

δc(λij) if sij = c

N (λij |0, ϕij) if sij = ∗,

where δc denotes the Dirac delta function with pole at c, Nl,u is the truncated Gaussian distri-

bution restricted to the open set (l, u), l and u denote a lower and upper bound, respectively.

The prior hyperparameters ϕij can be fixed or estimated. In this paper, we set them equal to

ϕij = 102 for all i, j.

The set of restrictions helps us determine the precise ordering of the factors in qt. For

instance, if the restrictions on λ1, the first column of Λ, are consistent with our theoretical

intuition about how an energy shock impacts the economy, we can set up suitable sign restrictions

for selected series, allowing us to interpret q1t as the energy shock. Similarly, if the restrictions

on λ2 are consistent with the signs one would expect from a demand shock, we can label q2t as

the demand shock.

It is also worth stressing that the presence of the non-linear term g(qt) could imply that

the contemporaneous reactions to a particular shock violate the sign restrictions. However, our

identification strategy hinges on the intuition that the main effects are captured by the linear

factor model Λ whereas g(qt) covers deviations from linearity.

Identification in our framework can be sharpened through the inclusion of additional re-

strictions, leading to a framework close to the blended identification approach developed in

Carriero, Marcellino, and Tornese (2024). For instance, magnitude restrictions (as in, e.g.,

Corsetti, Dedola, and Leduc (2014)) could be introduced by suitable changing the truncation

sets of the prior on λij .
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Narrative or historical restrictions in the spirit of Antoĺın-Dı́az and Rubio-Ramı́rez (2018)

can also be introduced by changing the state evolution equation on qt as follows. Since the

state equation qt ∼ N (0, IQ) can be interpreted as a prior on qt, we can modify the prior to

reflect information coming from other sources. For instance, suppose we have information that

a particular shock, qjt was negative in a particular point in time t = τ . In this case, we can

assume that

p(qjτ ) = N−∞,0(qj,τ |0, 1),

while the prior remains unrestricted in periods t ̸= τ . This ensures that in time τ , the resulting

shock is non-positive.

Notice, however, that this restriction does not imply a statement about the relative im-

portance of a particular shock in a particular point in time. To do so, we can easily introduce

additional restrictions. Suppose that we have information that the jth shock has been the dom-

inant driver of macroeconomic dynamics in time τ . This restriction can be incorporated by

specifying:

p(qjτ ) = N (qj,τ |0, ξ2j ),

where the variance ξj can be set so that ξj ≫ ξi for all i ̸= j. This assumption, through the

prior, makes large realizations of qjτ more likely whereas it shrinks realizations of qiτ towards

zero.

We stress that the sign restrictions on Λ fix the ordering issue and allow us to interpret

shocks structurally. If we believe that identification is weak (e.g., by having too little structural

information on the sign restrictions or the necessity to identify multiple shocks within a family

of shocks, such as demand or supply) one can easily incorporate these additional restrictions in

our framework.

3.4 Bayesian Additive Regression Trees

Up to this point we remained silent on how we infer f̃ and g̃. We achieve this by estimating

them using Bayesian Additive Regression Trees (BART, see Chipman, George, and McCulloch
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(2010)). BART approximates unknown functions by summing over R trees:

f̃(xt) ≈
R∑

r=1

w(xt|T f
r ,µf

r ),

g̃(qt) ≈
R∑

r=1

w(qt|T g
r ,µ

g
r).

Here, we let w denote a tree function that is parametrized by tree structures T i
r and terminal

node parameters µi
r for i ∈ {f, g}. The dimension of µi

r is bir. These tree structures are

determined by binary decision rules that ask whether xjt (in the case of f̃) or qjt (in the case of

g̃) exceed a threshold or not. Formally, this implies that each tree is:

w(xt|T f
r ,µf

r ) =

bfr∑
s=1

µf
r,sI(xt ∈ Ωf

s ), w(qt|T g
r ,µ

g
r) =

bgr∑
s=1

µg
r,sI(qt ∈ Ωg

s),

with T i
r = {Ωi

s}
br
s=1 and Ωi

s, for i ∈ {f, g}, denoting a sequence of decision rules that run from

the root of the tree down to the final node of a particular branch of the tree. This form of the

tree suggests that, conditional on the tree structures, we end up with a regression model with

explanatory variables being equal to a set of indicator functions. These explanatory variables are

latent and effectively split the input space into disjoint subsets, with each subset being assigned

a terminal node parameter µi
r,s.

t ≥ 2020 : M3

∆IPt ≥ 3%

π̂t ≈ 6% π̂t ≈ −2%

π̂t ≈ 0%

Notes: If a particular condition is fulfilled, move down the left branch of the tree.

Figure 2: A very simple regression tree for year-on-year inflation.

Trees are best understood through a simple example. Suppose that yt includes only

inflation (πt) and xt includes the first lag of industrial production (IP) and a time trend. A

simple tree is given in Figure 2. The tree starts with a root and associated terminal node that

uses time as a splitting variable. The threshold is set equal to March 2020. If time exceeds that

date, we move down the left branch of the tree, ending up in a new node with decision rule

∆IPt ≥ 3%. If industrial production exceeds three percent, we end up predicting an inflation
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rate of around six percent. If not, we predict a deflation of around two percent. Moving back up

to the root of tree, we find that for periods prior to March 2020, we end up predicting inflation

to be close to zero.

This simple example shows that mean inflation can take on only three distinct values

µf = (−2%, 0%, 6%) and hence the model might be overly simplistic. This is where BART

comes in. Summing over many trees that differ in their decision rules and their depths, implies

a joint model that is much more flexible and can approximate the time series behaviour of,

e.g., inflation particularly well (for predictive evidence, see, e.g., Clark, et al. (2023b)). In our

empirical work, we fix R = 50. This choice is motivated by predictive evidence for European

data in Huber, et al. (2023) who document that for R ≥ 50, predictive performance does not

improve substantially. Hence, this choice strikes a balance between computational complexity

and empirical performance.

3.5 Priors on the trees and remaining model parameters

We elicit standard priors on the parameters of the different trees as well as the VAR coefficients.

On the tree parameters, we follow Chipman, George, and McCulloch (2010) and define a tree

generating stochastic process. This process is defined recursively and consists of three steps.

First, we start with a tree that consists simply of a root node. Second, with a certain probability

we split this terminal node. Third, if the node is split a decision rule (defined through a threshold

variable and a threshold) is constructed. This is done by randomly picking one of the covariates

(in our case different elements in xt for f and different shocks in qt for g) and then, conditional

on the selected covariate, randomly select a threshold over all the possible outcomes of that

particular variable. This decision rule is then used to split the input dataset into a left and right

node. Given this new tree, go back to step one and repeat the three steps until every node is

terminal.

Step 1 of this process depends on the probability that a given node is split (i.e., it is

non-terminal). Chipman, George, and McCulloch (2010) suggest that this probability equals:

(4) psplit(T i
r , n) =

α

(1 + ζs)β
,

where n refers to a particular node of a tree, ζs is the depth of the node within tree T i
r and

α ∈ (0, 1) is a base probability while β ≥ 0 is a parameter that controls the penalty on growing

complex trees under this prior process. Notice that if β = 0, we end up with a prior that does
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not penalize tree complexity and the probability that a certain node is non-terminal is equal to

α. If β > 1 we end up with a prior probability of splitting nodes that decreases in the complexity

(ζs) of the tree. We follow recommendations in Chipman, George, and McCulloch (2010) and

set α = 0.95 and β = 2.

On the terminal nodes µi
r = (µi

r,1, . . . , µ
i
r,bir

), we use a Gaussian prior with zero mean

and standard deviation σµ = 0.5/(R
√
κ), where κ is a hyperparameter. Chipman, George, and

McCulloch (2010) suggest this choice based on rescaling xt and qt during estimation so that

the values range from −0.5 to 0.5 and recommend fixing κ = 2. We follow their suggestions.

Notice that this specification makes the prior variance a function of the numbers of trees. With

a larger number of trees, the prior variance is increasingly forced to zero, implying that large

values of µi
r become increasingly unlikely under the prior. This has the immediate implication

that each of the trees will explain only a small fraction of the variation in the responses. In

machine learning terminology, this implies that each tree is a “weak learner.”

On the VAR coefficients, a = vec(A), we use a Minnesota prior (Litterman (1979), Litter-

man (1980), Kadiyala and Karlsson (1997)). The prior mean is set so as to force the dynamics

of the elements in yt towards a persistent AR(1) process with persistence parameter 0.8 (as sug-

gested by Carriero, Clark, and Marcellino (2015)). Within the equation for the ith element in

yt, the prior variance-covariance matrix is specified to induce stronger shrinkage on coefficients

associated with lagged dependent variables of the endogenous variables other then variable i.

This degree of shrinkage increases quadratically with the lag length. The hyperparameter con-

trolling shrinkage on the own lags of a given variable is set equal to 0.05 while the one controlling

shrinkage on other lagged variables is set equal to 0.1× 0.05. These choices, while being tight,

ensure that the VAR soaks up persistent dynamics in yt whereas stationary dynamics are, a

priori, explained through f(xt) and g(qt).

3.6 Posterior simulation

We simulate from the posterior of the parameters and latent states using a Markov chain Monte

Carlo (MCMC) algorithm. Here, we briefly sketch the main steps of our sampler. Since all of

the steps are standard we refer to the relevant literature.

Our sampler cycles between the following steps:

1. Sample the rows of A independently conditional on the factors from a multivariate Gaus-

sian posterior. The moments take a standard form and further details can be found in,
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e.g., Koop and Korobilis (2010).

2. Sample the latent factors {qt}Tt=1 on a t-by-t basis using a random walk Metropolis Hastings

update. The covariance matrix of the random walk proposal is set equal to the covariance

of the conditional posterior of the factors under linearity. The resulting sampler achieves

acceptance probabilities that are between 20 and 40% for all t.

3. Since our model is a standard BART, conditional on the factors, the tree structures and

terminal nodes are sampled through the algorithm proposed in Chipman, George, and

McCulloch (2010).

4. The factor loadings are simulated, row-by-row, from a truncated Gaussian posterior. The

exact form of the posterior can be found in Korobilis (2022).

We repeat this algorithm 30,000 times and discard the first 15,000 draws as burn-in. To speed up

computation, we use thinning to end up with 1,000 final draws on which we base our inference.

The main computational bottleneck is the computation of the generalized impulse responses.

3.7 Computation of the dynamic responses to economic shocks

Our model is highly non-linear and hence standard impulse response analysis cannot be applied

directly. To analyse the dynamic reactions of yt to changes in qt, we rely on generalized impulse

responses (GIRFs, see Koop, Pesaran, and Potter (1996)).

In our framework, we compute the GIRFs as follows. Let p(yt+h|It, qjt = δ) denote

the predictive distribution that sets the jth element of qt equal to a constant δ. It is the

available information set in time t. This predictive distribution is obtained recursively for each

h = 0, . . . ,H. The unconditional distribution is given by p(yt+h|It).

Both predictive distributions are available via simulation. The h−step-ahead responses

are then obtained by subtracting a simulated path of the data {y(qjt=δ)
t+h ∼ p(yt+h|It, qjt = δ)}Ht=0

from the conditional forecast distribution as well as a simulated path {yt+h ∼ p(yt+h|It)}Hh=0.

One draw from the posterior of the responses is then computed as:

ξ(t+ h, j) = y
(qjt=δ)
t+h − yt+h for h = 0, . . . ,H.

The fact that we condition on the information set up to time t and that our model is

non-linear implies that ξ(t+ h, j) depends on the current state of the economy (i.e., yt and xt).
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Since we are interested in the average dynamic effects of economic shocks we need to integrate

over all possible states in the model. This is achieved by computing:

GIRF(h, j) =
1

T

T∑
t=1

ξ(t+ h, j),

leading to the GIRFs on which we focus in the following sections. These quantities are computed

for each draw from the MCMC output, implying that we end up with a posterior distribution

of GIRFs which we can use to carry out inference.

4 Non-linear effects of economic shocks

This section includes the main findings of the paper. Before discussing them, we give a brief

description of the dataset, provide details on the specification of the model and discuss structural

identification. Then, we briefly summarize how inflation reacts to all the shocks in the model

before focusing on the non-linear transmission of energy shocks on inflation.

4.1 Data, model specification and identification

We estimate our model using a monthly data set, shown in Table 1. Our data ranges from

1996:01 to 2024:11. As our key inflation measure we rely on headline euro area inflation based

on the total Harmonised Index of Consumer Price (HICP) index.

Table 1: Data description

Variable Description Source Trans.

HICP headline Total HICP Eurostat y-o-y

Synthetic
Synthetic indicator summarising oil and gas commodity prices

ECB y-o-y
covering 60% and 40%, respectively

CCI Consumers’ confidence indicator, balance of responses, euro area European Commission no trans
GSCPI Global Supply Chain Pressure Index NY Fed no trans.
Selling price expectations 3 months ahead expectations in manufacturing European commission no trans.
PMI supplier delivery Purchasing Managers’ Index, manuf., supplier delivery times Markit no trans.
PPI total Total Producer Price Index, domestic sales Eurostat y-o-y
PPI energy Producer Price Index, domestic sales, MIG energy NACE Rev2 Eurostat y-o-y
EUR/USD Exchange rate EUR/US dollar ECB y-o-y
EURIBOR 1Y EURIBOR rate at 1 year maturity ECB no trans.

We include 10 endogenous variables that apart from HICP inflation cover various aspects

of inflation drivers. Since the effects from gas prices have become more prominent in the analysis

of euro area inflation after the post-pandemic inflation surge, we opt for a synthetic indicator

of energy prices which covers the developments of both oil and gas prices. We include two

timely survey-based indicators provided by the European Commission, namely the consumers’
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Table 2: Structural shock identification

Variable/Shock Energy Global supply chains Domestic supply Demand

HICP headline + + + +
Synthetic σy 0 0
Price expectations manuf. + + σy +
CCI - - - σy
PPI + + + +
PPI energy +
PMI supplier delivery -
GSCPI σy 0
EUR/USD
EURIBOR 1Y

Notes: Restrictions are assumed at the contemporaneous horizon, where +/− denote a positive/negative reaction,
0 means no response, σy reflects a normalisation restriction, and an empty entry means no restriction.

confidence indicator (CCI) and the short-term selling price expectations in manufacturing. To

account for the effects of global supply chain disruptions, we consider the Global Supply Chain

Pressures Index from Benigno, et al. (2022), which comprises global dynamics, as well as the

PMI supplier delivery times, targeting euro area dynamics. We further include additional drivers

such as the total producer price indicator and its energy component, as well as the EUR/USD

exchange rate, and the EURIBOR at the one year maturity. Most variables are transformed to

a year-on-year (y-o-y) growth rate and prior to estimation we standardise the data. The model

includes p = 2 lags of the endogenous variables.

We identify four structural shocks related to energy, global supply chains, domestic supply,

and demand. Our identification approach, displayed in Table 2, is based on a set of sign and

zero restrictions assumed at the contemporaneous horizon.

The three supply-side shocks – energy, global supply chains, and domestic supply – affect

prices and consumer confidence in opposite directions. In our database this materialises in an

increase of consumers’ headline inflation and total producer prices inflation; and a decrease in

consumer confidence.

Our generic energy shock bundles different aspects in the oil and natural gas markets such

as supply, market-specific demand, and inventories. This shock is characterised by an increase

in the synthetic indicator comprising the dynamics of oil prices and natural gas prices. Fur-

thermore, an energy shock also rises producer prices linked to energy. For the remaining supply

shocks — global supply chains and domestic supply — we assume a recursive-like identification

such that the energy shock is the only supply-side shock that affects the synthetic indicator

contemporaneously.
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Following Bańbura, Bobeica, and Mart́ınez Hernández (2023), we identify a global supply

chain shock by assuming that it increases the Global Supply Chain Pressures Indicator (GSCPI)

and decreases the PMI survey related to supplier delivery times, to sharpen the effects for

the euro area.2 Especially when considering the period that followed after the pandemic it is

important to control for such supply disruptions, as they played a notable role in the inflation

surge.

Moreover, we distinguish between global supply chain shocks and domestic supply shocks

such that the latter does not affect the GSCPI contemporaneously. We identify domestic supply

shocks as being ones that increase prices, as well as near-term price selling expectations of firms

in the manufacturing sector.3

We identify demand shocks by assuming an increase in prices and in the consumers’ con-

fidence confidence indicator (based on the survey-based timely and monthly indicator provided

by the European Commission). Such a generic demand shock in the economy can capture for

instance the effects of monetary policy, fiscal spending, and global demand shocks.

To sharpen identification, we assume additional normalisation restrictions, i.e., we set

sij = c, and c = σy where c is the empirical standard deviation of the variable that is being

normalised. Restrictions of this sort imply that a unit/one standard deviation shock to energy,

global supply chains, domestic supply, and domestic demand contemporaneously triggers an

immediate, linear reaction in the synthetic indicator, the GSCPI, the price expectations in

manufacturing, and the CCI by one standard deviation, respectively. The presence of the non-

linear term in Eq. (3) implies that deviations from these restrictions are possible. But these can

than be exclusively attributed to non-linear dynamics in impact reactions to economic shocks

and provide us with information whether the linear restrictions are at odds with the information

in the data.

While the selection of the synthetic indicator and the GSCPI as normalisation variables

2A reading in the euro area PMI supplier delivery times below 50 indicates that delivery times have deteriorated

(e.g., delays), while a reading above 50 is interpreted as an improvement in the delivery conditions. For more

details see the S&P Global website.
3We investigated a wide range of alternative identification strategies for the four identified shocks and our

results stay robust with respect to minor alterations in the restrictions used on Λ. In particular, when it comes

to the domestic supply shock, we also investigated robustness with respect to normalising the reactions of other

economic indicators such as industrial production, the survey-based indicator of confidence in manufacturing or

PMI output.
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is clear, given the direct link between the variables and the shock, we further explain our

rationale for the normalisation of domestic supply and domestic demand shocks. We normalise

domestic supply shocks to the price expectations in manufacturing for two reasons. First, the

survey is conducted to firms in the manufacturing sector and therefore it is likely to capture

developments in supply to a large degree. Second, the expectations are of short-term nature and

it covers timelier economic developments. In a similar fashion, we select the CCI to normalise

domestic demand shocks since it is based on a timely survey conducted to consumers, whose

answers likely reflect a demand component rather than a supply one.

4.2 The reaction of inflation to economic shocks

In this section, we discuss how inflation reacts to all identified economic shocks. To provide a

rough overview of the effects and their asymmetries, we will focus on the reactions of inflation

h = {0, 6, 12}-steps-ahead.

Figure 3 depicts the horizon-specific reactions of inflation to all identified shocks in the

form of barplots. The figure suggests that non-linearities are present for all shocks and horizons

considered. The finding that small shocks trigger no discernible reaction on impact carries over

to demand and supply shocks. Only for global supply chains we find that neither shock size

triggers an immediate reaction of inflation. This pattern carries over to higher-order responses.

Only in the case of global supply chain shocks, our findings suggest significant reactions after

around one year, but only if the shock is large.

When comparing asymmetries across shocks, we find somewhat less evidence of asymme-

tries than we do for energy shocks. Only for supply shocks we find similar a similar degree

of asymmetries when moving from the small to the moderately-sized shock. Notice, however,

that in this case the asymmetries when moving from a medium to a large shock is quite muted.

In sum, we can say that our results point to visible non-linearities with respect to the size of

the shock, putting into perspective the way one interprets results from linear models which are

traditionally employed.

Why do we find more asymmetries for energy shocks as compared to the other shocks

considered? One answer for this can be rooted in the statistical nature of energy shocks. Partic-

ularly during the last period of our sample, we observe a larger incidence of large energy shocks.

Figure A4 in the Appendix displays the estimated energy shocks, which tend to follow the broad

patterns in the developments in the synthetic energy indicator. The last period of the sample
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Figure 3: Reaction of inflation to the identified structural shocks

Notes: Bars show the 68% credible interval. Shock sizes and impulse response horizons are on the X-axis. IRFs
are normalised for comparability across the three shock sizes.

marks a different behaviour of the estimated shock, with the series portraying both larger shocks

and more volatility.

Another reason why non-linearities are more visible for energy shocks is that these are pure

upstream shocks. Unlike other shocks, the buffering efforts of firms can be mitigated because the

impact of upstream shocks is amplified by the integrated network structure of the economy until

it reaches more downstream sectors. Figure 3 also highlights that large shocks are estimated

with larger uncertainty in the case of demand and domestic supply shocks.

Given their importance and the fact that our analysis reveals strong asymmetries with

respect to the size of the shock, we now focus on how inflation reacts to energy shocks in more

detail.
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4.3 The non-linear transmission of energy shocks on inflation

Figure 4 illustrates the responses of euro area headline inflation to small (1 standard deviation,

in gray), medium (2 standard deviations, in light red), and large (3 standard deviations, in

dark red) energy shocks up to the 2-years ahead horizon. We label these shocks as being small,

medium, and large based on the reaction they elicit in the synthetic energy commodity price

indicator. Specifically, a one standard deviation shock triggers a small increase in the synthetic

indicator, occurring in less than 10% of all increases in our sample. A two standard deviation

shock elicits an average-sized increase in the synthetic indicator, with half of the increases in our

sample being smaller and half larger. Finally, a three standard deviation shock causes a large

increase, occurring in around 10% of all recorded increases (see Figure A2).
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Figure 4: Reaction of inflation to small, medium, and large energy shocks

Notes: thick lines are median estimates and the shaded areas are the 68% credible interval. IRFs are normalised
to a one standard deviation shock for comparability.

Figure 4 highlights the fact that larger shocks have disproportionate effects. Impulse

responses are being rescaled for comparability to the reaction to a one standard deviation shock,

implying that in a linear VAR all responses would evidently overlap. Small shocks do not yield

significant effects on inflation, also in line with the theory laid down by Ball and Mankiw (1995)

where firms have a range of inaction to small shocks as price adjustments are costly. Instead,

medium-sized or larger shocks elicit significant inflation reactions, as firms pass them on to

consumer prices. It is worth stressing that without adding g̃(qt) to the model, even small shocks

would trigger significant impact reactions of inflation. But these are merely artefacts that arise
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from truncating the prior (and hence the posterior).

In terms of magnitude (and after rescaling), a medium-sized shock would imply a 2.5

times stronger reaction of inflation to energy shocks compared to a small shock. While the most

noticeable effect occurs when moving from a small to medium-sized shock, the further increase in

the size of the shock adds to the non-linear effect. In this case, a large shock triggers a response

which is about 1.5 times larger than the inflation response to a medium-sized one. Figure A3

in the Appendix shows that there is evidence of non-linearity also when it comes to negative

shocks, albeit somewhat less pronounced.

Sources of such non-linear behaviour are provided by the theoretical literature mentioned

in the introduction and broadly linked to price adjustment costs, increased frequency of price

adjustments with larger shocks and decreased attention of consumers when hit by larger shocks,

which allows firms to pass on costs.

Another explanation for the non-linear behaviour resides in the amplification impact via

second-round effects. Variables like wages or expectations adjust to shocks with a delay and

feed-through to prices amplifying the initial effects of shocks. This adjustment likely varies over

time. Ampudia, Lombardi, and Renault (2024) find that wages have adjusted more prominently

to inflationary shocks in the high inflation period following the pandemic. Acharya, et al. (2023)

show that increased consumers’ inflation expectations may have interacted with an increase in

firms’ pricing power to make the effects of the original supply shocks more persistent (Acharya,

et al. (2023)). While, in normal times, firms are hesitant to raise prices not to lose customers,

once consumers expect higher inflation, firms can more easily pass on increases in costs.

One aspect that can add to the non-linearity observed in Figure 4 is more mechanical in

nature. A large part of the consumer energy price level is excise taxes for both fuel and gas

applied to the price level. Together with broadly stable refining and distribution margins, this

implies that a certain percentage change in the euro price of oil triggers a lower percentage

change in consumer energy prices when oil prices are low compared with when they are at high

levels.4

The discussion so far highlighted asymmetries in the reactions to shocks to three different

sizes. To better understand whether there exist threshold effects of the form that inflation

4Another mechanical source of non-linearity could be related to the fact that higher energy prices (with little

substitution possibility for energy quantities) implies higher nominal expenditures and a higher weight in the

consumption basket, augmenting the impact of energy shocks on total inflation.
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Figure 5: Reaction of inflation to energy shocks over a sizes grid

Notes: Black lines are median estimates and the blue lines denote the 16/84 percentiles of the posterior distri-
bution. Responses are normalised to a one standard deviation shock for comparability.

reactions change markedly beyond certain shock sizes, we consider horizon-specific IRFs over a

grid of shock sizes. This grid ranges from 0.25 to 3 units in 0.25 increments. The corresponding

IRFs for h ∈ {0, 3, 6, 12} months are provided in Figure 5. All four panels are normalised so that

differences in the posterior percentiles of the response distribution suggest non-linear reactions.

The figure highlights two facts about non-linearities in inflation reactions. First, when we

consider the median reaction we either have little evidence for non-linearities (this holds for the

impact reaction) or a rather gradual and smooth increase in the reaction of inflation, effectively

questioning the assumption of regime-switching models frequently used in the literature (see,

e.g., Sims and Zha, 2006). Second, when we take into account posterior uncertainty we find that

shocks below a certain size trigger no significant reactions. This result can be attributed to the

non-linear factor specification. Once shocks become sizeable enough (which means that they

exceed a shock size of about 1.5 to 2), posterior uncertainty declines and IRFs turn significant.

4.4 Transmission of energy shocks along the pricing chain

Next, we analyse how energy shocks transmit along the pricing chain, starting with the reaction

of the synthetic energy commodity price index, then showing how producer prices for energy

react and how these reactions then compare to the overall inflation reactions. The corresponding

IRFs are shown in Figure 6. For comparability, the reaction of inflation is shown as well.

At a general level (and for all shock sizes except the small ones) we find that the reactions

to shocks decline when moving down the pricing chain. This is expected and consistent with the

declining role of energy as we move downstream. It is also worth noting that the timing of the

peak reaction differs across the various prices. The synthetic energy commodity price indicator

reacts instantaneously to energy shocks, while reactions of producer prices for energy peak after
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(a) Synthetic energy commodity price index (b) Producer prices for energy
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Figure 6: Transmission of energy shocks of various sizes along the pricing chain

Notes: Thick lines are median estimates and the shaded areas are the 68% credible interval. IRFs are normalised
for comparability.

about 6 months and finally, the impact on consumer prices is more persistent and peaks after

about one year.

Turning to differentiated impacts, Figure 6 indicates that the non-linear behaviour of

prices is present along the pricing chain, more visible upstream and gets attenuated moving

downstream. As the role of energy among production inputs declines, firms are able to buffer

shocks to a larger degree to smooth variation in prices. More precisely, the synthetic energy

commodity price index (see panel (a)) reacts in a highly non-linear way to differently-sized

energy shocks. These differences mostly stem from different impact reactions. Again, we find

that small shocks trigger no significant reaction and larger shocks translate into slightly more

persistent reactions for the first 5 to 7 months.

Shock size asymmetries decline when moving down the pricing chain. Substantial differ-

ences for medium-term reactions of producer prices for energy (see panel (b)) are visible. Again,

these are most pronounced when moving from small to medium-sized shocks. For producer

prices, we still find appreciable asymmetries but these are somewhat less pronounced than in

the case of producer prices for energy and finally, differences are smaller for consumer prices.
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4.5 A closer look at the pre-pandemic period

In this section, we focus on the impact that pandemic and post-pandemic periods have on the

IRFs shown in Figure 4. To this end, we estimate the model over two sub-samples. The first

uses data through 2019 and hence does not include any information on the pandemic and post-

pandemic period. The second is based on just using data from 2020:01 onwards. This exercise

tells us whether transmission mechanisms have changed during and after the pandemic.
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Figure 7: Reaction of inflation to large energy shocks over two sub-samples

Notes: Red areas denote the 68% credible intervals for the period from 2020:01 to 2024:11 while blue areas are
the 68% credible intervals for the period from 1996:01 to 2019:12.

The resulting IRFs are depicted in Figure 7. Comparing Figure 4 and Figure 7 reveals

substantial differences in the reaction of inflation before and when considering only the pandemic

and post-pandemic period. Three differences across IRFs are worth highlighting. First, we can

say that energy shocks have a much stronger effect on inflation when we focus on the final part

of the sample for training the models.

Second, the shape of the IRFs differs appreciably when comparing both samples. The

degree of persistence is significantly greater when considering the full sample. The peak response

of inflation to energy shocks in the pandemic and post-pandemic sample occurs 10 months after

the shock, compared to around 7 months in the pre-COVID sample.

Third, the pre-pandemic energy shock fully passes through to inflation within one year,

while when adding the post-pandemic observations the energy shock only dissipates after two

years. In this particular episode, this delay was amplified by the atypical role of gas, for
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which certain studies find a more protracted impact compared to oil (Bańbura, Bobeica, and

Mart́ınez Hernández (2023)). This holds also when it comes to direct effects. Model-based

evidence for the euro area suggests that the pass-through of crude and refined oil prices to con-

sumer prices is generally complete and quick, within 3-5 weeks. The pass-through of wholesale

gas prices is slower, with about three to six months on average (Kuik, et al. (2022)).

5 Predictive evidence for our model

The IRFs provide evidence of substantial non-linearities in the pass-through of economic shocks

to inflation. These responses are consistent with intuition and economic theory. However, to

further test the validity of our model, we assess whether it can also generate accurate infla-

tion predictions. This is what we do in this section. Given that linear VARs with stochastic

volatility are highly competitive models when it comes to forecasting inflation (see, e.g., Ban-

bura, Lenza, and Paredes (2024)), we benchmark the predictive properties for inflation of our

proposed structural factor BART (sfBART) model to a linear BVAR with Horseshoe priors and

factor stochastic volatility. This also allows us to understand the role of the non-linear features

of our model on the predictive distribution of inflation.

Our forecasting experiment is recursive. We estimate the model using data through De-

cember 2008 to train the models. After doing so, we iteratively compute the predictive distri-

bution of year-on-year inflation for h ∈ {1, 3, 6, 12}. Once these are obtained, we add the next

observation (January 2009) to the training sample and re-do the analysis. This is done until the

end of the sample is reached.

To compare the models in terms of density forecasting, we consider the quantile weighted

continuous rank probability scores (qw-CRPS), where a smaller number denotes a higher fore-

casting accuracy. One of the merits of considering qw-CRPSs is that these measures puts more

weight on certain regions of the distribution. We consider three different metrics:

1. Right-tailed CRPS: Puts more weight on the right tail of the forecast distribution of

inflation (deflation risk)

2. Centered CRPS: Puts more weight on the center of the distribution

3. Left-tailed CRPS: Puts more weight on the left tail of the forecast distribution of inflation

(high inflation risks)

26



Table 3: CRPS of BART models relative to CPRS of BVAR model

CRPS Model Horizon

1 3 6 12

Left sfBART 0.96 0.91 0.88 0.89

Center sfBART 0.98 0.91 0.87 0.92

Right sfBART 0.98 0.89 0.84 0.91

We report the qw-CRPSs of sfBART relative to ones of the linear BVAR in Table 3,

averaged over the hold-out period that ranges from January 2009 and November 2024. Numbers

below one indicate that the our sfBART model outperforms the linear model and are highlighted

by the green cells, with darker shade representing a better forecasting accuracy of the model for

the respective forecasting horizon.

The table shows that our model produces forecasts that are competitive to the benchmark

linVAR model at the one-month-ahead horizon. This holds for all three regions of the predictive

distribution considered. When we increase the forecast horizon we find that the predictive

accuracy gradually increases. For h = 3 we find improvements that range from around 9

percentage points (pps, Left and Center) to about 11 pps (right tail).

These improvements further increase if we turn to the 6-months-ahead predictions. In

this case, we observe improvements that exceed 12 pps for all three metrics, with a maximum

improvement of staggering 16 pps when it comes to predicting high inflation outcomes. Gains

slightly deteriorate for 12-steps-ahead. Improvements in higher-order forecast accuracy stem

from the fact that the non-linear model is less prone to mis-specification (see Clark, et al.

(2023b)).

The accuracy gains for h = 3 and h = 6 in the right tail can be attributed to the high

inflation period of 2021 to 2023. During this period, using a non-linear specification pays off.

As a by-product of our analysis, we compare the forecast errors of this model with those

of the official ECB inflation projections in Figure 8. Our model yields similar errors in more

quiet times, but improves precisely during the high inflation period. A key distinction between

the ECB staff projections and our analysis is that the ECB projections are conducted as a

pure real-time exercise. Although this is an important difference, we would not expect large

differences in our results if we were to construct vintages of the data, since most of the variables

in the model do not get revised or only have minor revisions.

Our forecasting results therefore validate the model as an adequate model that, besides
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Figure 8: Forecast errors: sfBART versus ECB projections

providing a structural interpretation of inflation, it also produces accurate forecasts.

6 Conclusions

This paper addresses the non-linear transmission of structural shocks to euro area inflation. To

fully answer this question, we developed a novel econometric model that accommodates non-

linearities for all impulse response horizons while achieving structural identification within a

unified econometric framework. Our model, leveraging state-of-the-art machine learning tech-

niques, remains agnostic on the functional form of the relationship between lagged endogenous

variables and economic shocks.

The post-pandemic inflation debate has put into the spotlight the different impact of large

shocks, considered to have a disproportionately larger impact on inflation (see Cavallo, Lippi,

and Miyahara (2023)). In this paper we empirically show that non-linearities are significant

when inflation is hit by large shocks.

Large shocks have disproportionate effects. We find that non-linearities increase in a

smooth fashion with shock sizes, suggesting that models that introduce a few regime shifts

portray the behaviour of inflation in a simplified way. We also show that the non-linear behaviour

of prices is present along the pricing chain, more visible upstream when looking at the reaction of
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energy commodity prices and producer prices and gets attenuated moving downstream towards

consumer prices.

Workhorse macroeconomic models used in policy institutions are typically linear, thereby

potentially missing non-linearities when shocks are large and inflation is elevated. Nevertheless,

linear models are a good approximation when inflation is stable and aggregate shocks are small.

A relevant policy implication of this paper is that optimal monetary policy should place

greater emphasis on stabilising inflation in response to exceptionally large cost-push shocks.

This is because the endogenous increase in the frequency of price changes leads to a stronger

reaction of inflation. While central banks can afford to “look through” small supply shocks when

designing monetary policy, they cannot ignore larger ones.
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Allayioti, Anastasia, Lucyna Górnicka, Sarah Holton, and Catalina Mart́ınez Hernández (2024), “Mone-
tary policy pass-through to consumer prices: evidence from granular price data.”

Alvarez, Fernando, Martin Beraja, Mart́ın Gonzalez-Rozada, and Pablo Andrés Neumeyer (2019), “From
Hyperinflation to Stable Prices: Argentina’s Evidence on Menu Cost Models,” The Quarterly Journal
of Economics, 134, 451–505.
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A Additional Results
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Figure A1: Reaction of PPI energy to the identified structural shocks

Notes: Bars show the 68% credible interval. Shock sizes and impulse response horizons are on the X-axis. IRFs
are normalised for comparability across the three shock sizes.
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Figure A2: Synthetic energy indicator and contemporaneous reaction to shocks of different
sizes
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Figure A3: Reaction of inflation to negative small, medium, and large energy shocks
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Figure A4: Estimated energy shocks
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