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Abstract

How do large aggregate and sector-specific shocks affect the macroeconomy? To answer this
question, we develop a non-linear dynamic general equilibrium model featuring a disaggregated
production economy with networks and optimal decisions on the timing and size of price adjust-
ments. The interaction of our model ingredients creates equilibrium cascades: large movements
in aggregates trigger additional price adjustment decisions at the extensive margin. Crucially,
networks may dampen or amplify cascades, depending on the type of shock driving the business
cycle. When faced with large demand shocks, such as monetary interventions, networks dampen
cascades, thus slowing down price adjustment decisions and giving central banks substantial
power to stimulate the real economy with limited inflationary consequences. In contrast, under
aggregate or sector-specific supply shocks, networks amplify cascades, leading to fast increases
in the frequency of repricing and large inflationary swings. Applied to Euro Area data, we show
that it is the novel interaction of networks with pricing cascades that allows us to quantitatively
match the surges in inflation and the repricing frequency in the post-Covid era.
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1 Introduction

Large and granular shocks are the “new normal”. Understanding their transmission to macroeco-
nomic aggregates in a world with increasingly complex supply chains is challenging and requires
a substantial expansion of our modeling toolkit. In fact, established frameworks used to analyze
shock transmission to real and nominal variables almost exclusively focus on linearized single-sector
setups with aggregate shocks only (Woodford, 2004; Gaĺı, 2015). In this paper, we take a step to-
wards developing a framework suitable for the “new normal”. In particular, we build a dynamic
general equilibrium model that combines three ingredients that have so far been treated separately
in the literature. First, our model features a multi-sector setup, which allows for both aggregate,
sector-specific, and firm-level shocks, as well as a fully general input-output architecture across
firms in the economy. Second, firms are making pricing decisions in optimal state-dependent man-
ner subject to menu costs, such that the intensive and the extensive margins of pricing matter for
aggregate dynamics. Third, we solve the model non-linearly to study the dynamics of aggregates
following arbitrarily large and granular shocks.

A rapidly growing literature studies the transmission of both real and monetary shocks in
economies with production networks and nominal rigidities in price setting. However, the near-
exclusive focus has been on linearized setups with exogenous timing of price changes as in Calvo
(1983). In such settings, the existence of networks is shown to slow down the transmission of demand
shocks to prices and, hence, result in larger non-neutrality of money (Ghassibe, 2021; Rubbo,
2023). Much less is known about how large shocks, both demand- and supply-side, propagate
through production networks, especially when the timing of price changes is chosen in optimal state-
dependent fashion. This is particularly important, since the recent post-Covid episode featured
large inflationary swings, which came hand in hand with substantial increases in the frequency
of price adjustment, both in the US (Montag and Villar, 2022) and in the Euro Area (Cavallo
et al., 2024), stressing the relevance of the extensive margin of pricing. Unexplored is also the role
networks can play in the size- and sign-dependence of inflation and output dynamics in response to
large shocks. The model we develop aims to address the above issues in a unified general equilibrium
setup.

Our framework generates a novel interaction between large shocks, networks and pricing de-
cisions at the extensive margin, leading to endogenous fluctuations in the frequency of price ad-
justment, which is also quantitatively important for the dynamics of macroeconomic aggregates.
In particular, networks interact with pricing cascades: large movements in aggregate or sectoral
variables trigger possibly self-reinforcing adjustment decisions at the extensive margin. Whether
networks amplify or dampen such pricing cascades depends fundamentally on the type of shock that
hits the economy. For demand shocks, such as central bank monetary interventions, production
networks shrink the magnitudes of desired price changes at the firm level, which in turn compresses
the sizes of price gaps for all firms. As a result, the presence of networks dampens pricing cascades,
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lowering the response of the aggregate repricing frequency, ceteris paribus. Consequently, much
larger monetary stimuli are feasible in equilibrium, as much larger shocks are required to reach the
limit where all firms choose to adjust prices and the economy becomes money-neutral. Quantita-
tively, in a model estimated to match sectoral pricing moments in the Euro Area, under production
networks a one-time monetary intervention can stimulate aggregate GDP by a maximum of 5%;
meanwhile, removing input-output linkages shrinks the maximum possible stimulus to just over
2%.

In contrast, large aggregate and sector-specific supply shocks interact with the production net-
work in a manner that is completely opposite to that under demand shocks. In particular, produc-
tion networks amplify the firm-level desired price changes following supply shocks, hence expanding
the price gaps. As a result, they amplify cascades in pricing, making the decision to adjust more
likely ceteris paribus. As a result, large negative TFP shocks can lead to very fast increases in the
aggregate repricing frequency, leading to substantial inflationary spikes. Quantitatively, following
an aggregate TFP shock of -10%, production networks double the equilibrium fraction of adjusting
firms and more than triple the impact response of inflation (from 5% to 17% monthly). Moreover,
large TFP shocks to sectors with a high degree of network centrality, corresponding to important
suppliers to other producers in the economy, can also drive up the aggregate repricing frequency,
and thus create large aggregate inflationary responses, evolving non-linearly in the size of the shock.

As a further quantification of the role played by the interaction of networks with pricing cascades,
we subject our model to the key structural shock series experienced by the Euro Area economy in
the (post-)Covid years (2020-2024), and compare the model-implied dynamics of aggregate inflation
and repricing frequency to that observed in the data. In particular, we feed in four shock series,
corresponding to aggregate nominal demand, aggregate labor wedge, as well as the dynamics of
energy and food prices. We find that the model successfully matches the five percentage point
increase in the aggregate repricing frequency, as well as the aggregate inflation surge up to 11%
at the peak. In contrast, an otherwise identical model without networks generates at most a one
percentage point increase in aggregate repricing frequency, as well as an aggregate inflation surge
to only 5% at the peak. These results highlight the quantitative importance of our novel theoretical
channel – the interaction of networks with pricing cascades – for explaining aggregate business cycle
dynamics.

Literature review Our paper contributes to at least two broad strands of the literature. First,
we add to the vast literature on state-dependent pricing in macroeconomics; see Costain and Nakov
(2024) for a recent survey.1 Under state-dependent pricing, the probability of a price change is
affected by idiosyncratic and aggregate shocks, in contrast with time-dependent models such as
Taylor (1979) or Calvo (1983). Our main contribution is to the literature on general equilibrium

1See also Nakamura and Steinsson (2013) and Klenow and Malin (2010) for earlier surveys.
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implication of state-dependent pricing, marked by the works of Golosov and Lucas (2007), Gertler
and Leahy (2008) and Midrigan (2011) in the context of a single-sector model with small aggregate
shocks and fixed menu costs.2 This framework has been further explored analytically by Alvarez
and Lippi (2022) and others, whose results provide model-based sufficient statistics linking the
dynamics of macro aggregates to moments that can be measured in firm-level data. Subsequent
work also considers one-sector models with state-dependent pricing subjected to large aggregate
shocks, such as the papers of Karadi and Reiff (2019), Cavallo et al. (2024) and Blanco et al.
(2024a). As for multi-sector models with state-dependent pricing, the seminal work by Nakamura
and Steinsson (2010) studies the transmission of monetary shocks in a setup with heterogeneous
pricing and roundabout production. More recent work by Carvalho and Kryvtsov (2021) studies
a multi-sector framework with heterogeneous state-dependent pricing, but without networks, to
rationalize aggregate price adjustment facts.

Relative to the aforementioned papers, we contribute by developing a general equilibrium model
with an unrestricted input-output structure that we solve fully non-linearly for any aggregate or
sector-specific shocks, either demand- or supply-side. We also introduce a novel theoretical channel
that comes from the interaction of networks with pricing cascades.

Second, our paper is related to the growing literature on production networks and aggregate
fluctuations. The seminal work by Acemoglu et al. (2012) considers a flexible-price setup and shows
how production networks can amplify sector- or firm-specific shocks to create aggregate fluctuations.
Subsequent work by Baqaee and Farhi (2020) studies aggregation properties in inefficient economies
with networks. A separate strand of this literature analyzes linearized models with production
networks and time-dependent pricing, both positively (Pasten et al., 2020; Ghassibe, 2021; Afrouzi
and Bhattarai, 2023) and normatively (Rubbo, 2023; La’O and Tahbaz-Salehi, 2022).

We contribute to this literature by studying non-linear aggregate fluctuations in a setup with
state-dependent pricing and arbitrarily large aggregate or sector-specific shocks.

Roadmap The remainder of the paper is structured as follows. Section 2 outlines the optimiza-
tion problem faced by each type of agent in the economy and the numerical strategy to solve the
equilibrium dynamics. Section 3 explains the key model mechanisms in a simplified version of our
setup. Section 4 outlines our procedure for estimating the structural parameters of the model to
match key sectoral micro-pricing moments for the Euro Area. Section 5 shows our quantitative
results for monetary shocks. Section 6 turns to quantitative results for aggregate and sector-specific
TFP shocks. Section 7 considers extensions to our baseline results. Section 8 describes our quan-
tification exercise, where we assess the ability of our model to explain the aggregate dynamics of
inflation and repricing frequency in the Euro Area. Section 9 concludes.

2Several papers have developed “second generation” SDP models in which the price change probability is a smoothly
increasing function of the gain from adjustment, e.g. Caballero and Engel (1992), Nakamura and Steinsson (2008),
Costain and Nakov (2011), instead of the step function it is in the fixed menu cost model.
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2 Model

We begin by introducing our theoretical model, which presents a novel combination of three key
ingredients. First, it features a number of sectors populated by firms interconnected by production
networks, which facilitate trade in intermediate inputs, both within and across sectors. Second,
firms make optimal pricing decisions subject to menu costs. Third, we allow for both aggregate,
sector-specific and firm-level shocks, and present a numerical strategy that allows to compute the
economy-wide equilibrium dynamic response to an arbitrarily large disturbance of any origin.

2.1 Overview

Time is discrete and indexed by t ∈ {0, 1, 2, ...}. The economy is populated by three (types of)
agents: households, firms and the government. There is a continuum of identical households, each
consuming output and supplying labor. Firms are subdivided into N sectors, indexed by i ∈
{1, 2, ..., N}, each sector containing a continuum of monopolistically competitive firms of measure
one; we use Φi to denote the set of all firms in sector i. The government consists of the central
bank, which conducts policy by setting money supply, and the fiscal authority, which collects taxes
from firms and rebates them to households in a lump-sum fashion.

2.2 Households

The representative households chooses a sequence of consumption, labor supply, and one-period
nominal bond holdings to maximize expected lifetime utility:

max
{Ct,Lt,Bt}t≥0

E0

∞∑
t=0

βtu(Ct, Lt), (1)

subject to the period-by-period budget constraint

PC
t Ct + Et{Λt,t+1Bt+1} = Bt +WtLt +

N∑
i=1

∫ 1

0
Di,t(j)dj + Tt, (2)

where Ct is consumption, Lt is labor supply, Bt is the level of nominal bond holdings, Tt is the level
of lump-sum transfers from the government, Di,t(j) are the dividends received lump-sum from firm
j in sector i at time t, ΠC

t =
(
PC

t /P
C
t−1

)
is the gross CPI inflation rate, Wt is the nominal wage

and Λt,t+1 is the nominal stochastic discount factor of the household.
Total final consumption Ct is given by an aggregator over sector-specific varieties:

Ct = C(C1,t, ..., CN,t) (3)

where C(·) is homogeneous of degree one and non-decreasing in each of the arguments. The house-
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hold chooses consumption of each of the sector-specific varieties to minimize total expenditure∑
i Pi,tCi,t, subject to the aggregator in (3). The minimal cost of assembling such a basket of sectoral

varieties aggregating to Ct = 1 pins down the consumption price index as PC
t = PC(P1,t, ..., PN,t),

where PC is homogeneous of degree one and non-decreasing in each of the arguments.
Sectoral final consumption Ci,t is in turn given by the following aggregator over firm-specific

varieties:

Ci,t =
{∫ 1

0
[ζi,t(j)Ci,t(j)]

ϵ−1
ϵ dj

} ϵ
ϵ−1

, (4)

where ϵ > 1 is the within-sector elasticity of substitution, Ci,t(j) is the final demand for the output
of firm j ∈ [0, 1] in sector i at time t, and ζi,t(j) is a firm-specific idiosyncratic quality process. The
quality process follows a random walk in logs:

log ζi,t (j) = log ζi,t−1 (j) + σiεi,t (j) , (5)

where εi,t(j) is an i.i.d. Gaussian innovation with mean zero and standard deviation of one. The
final demand for firm j in sector i is given by:

Ci,t(j) = ζi,t(j)ϵ−1
(
Pi,t(j)
Pi,t

)−ϵ

Ci,t, (6)

and the sectoral price index of sector i is given by:

Pi,t =

∫ 1

0

(
Pi,t(j)
ζi,t(j)

)1−ϵ

dj

 1
1−ϵ

. (7)

The representative household is also subject to a cash-in-advance constraint, which requires
that the nominal money holdings are sufficient to cover the aggregate nominal final demand:

PC
t Ct ≤ Mt. (8)

The aggregate money supply process {Mt}t≥0 is set by the central bank, and agents treat this
process as exogenous.

We now specify the functional forms for household preferences. First, for household preferences
over aggregate consumption and labor supply, we use the log-linear preferences of Golosov and
Lucas (2007):

Assumption 1 (Golosov-Lucas preferences). The utility function over consumption and labor sup-
ply is log-linear: u(Ct, Lt) = logCt − Lt.

Under such preferences, we obtain the following intra-temporal labor supply condition: Wt

P C
t

=
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Ct. When combined with the cash-in-advance constraint (8), it implies that the nominal wage
equals money supply in every period: Wt = Mt. In addition, the nominal stochastic discount factor
satisfies: Λt,t+1 = β

P C
t Ct

P C
t+1Ct+1

= β Mt
Mt+1

.
As for aggregation across final consumption of sectoral varieties, in the baseline model we assume

it to take the Cobb-Douglas form:

Assumption 2 (Consumption aggregation). The consumption aggregator C(·) is given by:

C(C1,t, ..., CN,t) = ιC
N∏

i=1
C

ωC
i,t

i , (9)

where ιC ≡
∏N

i=1 ω
C
i

−ωC
i is a normalization term and

∑
i ω

c
i = 1, ωc

i ≥ 0,∀i.

Under this assumption, the equilibrium sectoral final consumption shares are constant over
time: ωC

i,t ≡ Pi,tCi,t

P C
t Ct

= ωC
i .

2.3 Firms: production

The production function of firm j in sector i is given by:

Yi,t(j) = 1
ζi,t(j)

×Ai,t × Fi [Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] , (10)

where Fi(·) is homogeneous of degree one and non-decreasing in inputs; Li,t(j) is the labor used by
firm j in sector i at time t, Xi,k,t(j) is intermediate inputs bought by firm j in sector i from sector
k at time t. In addition, Ai,t is an exogenous sector-specific total factor productivity process, while
ζi,t(j) is the firm-level idiosyncratic quality process introduced in (5).

The intermediates demand Xi,k,t(j) is in turn an aggregator over intermediates bought from
each firm in sector k:

Xi,k,t(j) =
{∫ 1

0

[
ζk,t(j′)Xi,k,t(j, j′)

] ϵ−1
ϵ dj′

} ϵ
ϵ−1

, (11)

where Xi,k,t(j, j′) is intermediates bought by firm j in sector i from firm j′ in sector k, which satisfies
the following demand condition in equilibrium: Xi,k,t(j, j′) = ζk,t(j′)ϵ−1

(
Pk,t(j′)

Pk,t

)−ϵ
Xi,k,t(j).

Each firm chooses its labor and intermediate inputs in order to minimize the total cost of
production, subject to the production technology in (10). The latter delivers the following marginal
cost function for firm j in sector i at time t:

MCi,t(j) = ζi,t(j) × Qi(Wt, P1,t, ..., PN,t;Ai,t) (12)
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where Qi(·) is the common component of the marginal cost index for all firms within a sector,
which strictly falls in Ai,t and is homogeneous of degree one and non-decreasing in the prices of all
inputs.

In our baseline model, we assume that production technology takes a Cobb-Douglas form for
all firms in all sectors:

Assumption 3 (Production technology). The production technology Fi(·) for a firm j in sector i
is given by:

Fi[Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] = ιiLi,t(j)αi

N∏
k=1

Xi,k,t(j)ωik , (13)

where ιi ≡ α−αi
i

∏
ω−ωik

ik is a normalization term and αi +
∑

i ωik = 1, αi, ωik ≥ 0,∀i.

Under this assumption, the equilibrium labor cost shares and the input-output cost shares are
constant over time and the same for all firms within a sector: αi,t ≡ WtLi,t(j)

MCi,t(j)Yi,t(j) = α, ωi,k,t ≡
Pk,tXi,k,t(j)
MCi,tYi,t(j) = ωik.

2.4 Firms: equilibrium size

The goods market clearing condition for firm j in sector i is given by:

Yi,t(j) = Ci,t(j) +
N∑

k=1

∫ 1

0
Xk,i,t(j′, j)dj′. (14)

Aggregating up to the level of sectors, multiplying both sides by Pi and dividing by aggregate final
nominal demand PC

t Ct, one can express the sectoral sales share (Domar weight) λi ≡ Pi,tYi,t

P C
t Ct

as:

λi,t = ωC
i,t +

N∑
k=1

ωki,tλk,t × µ−1
k,t , (15)

where µ−1
k is the sales-weighted harmonic average of firm-level markups in a sector k : µ−1

k,t =∫ 1
0

1
µk,t(j′) × Pk,t(j)Yk,t(j)

Pk,tYk,t
dj. Using the downward sloping demand condition for each firm, one can

rewrite µ−1
k,t as:

µ−1
k,t = ∆k,t

Mk,t
, ∆k,t ≡ (Pk,t/Mt)ϵ

∫ 1

0

(
Pk,t(j′)
ζk,t(j′)Mt

)−ϵ

dj′, Mk,t ≡ Pk,t

Qk,t
, (16)

where ∆k,t is a measure of price dispersion within the sector and Mk,t is a measure of sectoral
markup. Stacking the equation for sales shares across sectors, we can write it as:

λt = ωC ,t + Ω̃T
t λt =⇒ λt = (I − Ω̃T

t )−1ωC ,t (17)
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where Ω̃t is a N ×N matrix whose [i, j] entry is given by [Ω̃t]i,j = ωij,t

{
∆i,t

Mi,t

}
. Having calculated

the sectoral sales shares, one obtains the sectoral total output as Yi,t = λi,t ×Mt/Pi,t and then the
size of an individual firm as Yi,t(j) = ζi,t(j)ϵ−1

(
Pi,t(j)

Pi,t

)−ϵ
Yi,t.

2.5 Firms: pricing

The nominal profit of firm j in sector i at time t is given by:

Di,t(j) = [(1 − τi,t)Pi,t(j) −MCi,t(j)] × Yi,t(j), (18)

where τi,t is an exogenous sector-specific and time-varying sales tax levied by the government.3

Denoting by P̃i,t(j) ≡ Pi,t(j)
ζi,t(j)Mt

the firm’s quality-adjusted real price and by P̃i,t ≡ Pi,t

Mt
the sectoral

real price index, we can write the firm-level real profits D̃i,t(j) ≡ Di,t(j)
Mt

as:

D̃i,t(j) =
(
Pi,t

Mt

)ϵ−1
×
[
(1 − τi,t)

Pi,t(j)
ζi,t(j)Mt

− Qi,t

Mt

]
×
(

Pi,t(j)
ζi,t(j)Mt

)−ϵ

× λi,t

= D̃

(
P̃i,t(j), τi,t,

{
P̃k,t,∆k,t, Ak,t

}N

k=1

)
. (19)

Note that keeping track of the firm-level real profits requires knowing the firm’s real quality-
adjusted price, the own sectoral sales tax, as well as the real sectoral prices, price dispersions and
productivities of all sectors in the economy.

Resetting the nominal price Pi,t(j) involves the firm paying a sector-specific and possibly time-
varying menu cost κi,t measured in units of labor. The optimal reset price maximizes the firm’s
value, taking into account that this new price may not change for some period of time. In particular,
when the nominal price does not change, the log of quality-adjusted real price pi,t(j) ≡ log P̃i,t(j)
evolves according to

pi,t(j) = pi,t−1(j) + log
(
Pi,t−1(i)
ζi,t(j)Mt

)
− log

(
Pi,t−1(j)

ζi,t−1(j)Mt−1

)
= pi,t−1(j) − σiεi,t −mt, (20)

where mt ≡ ∆ logMt.
Without loss of generality, let ηi,t(p) denote the probability that a firm in sector i with a quality

adjusted log relative price p resets its price at t . Consider a firm with a real quality adjusted price
p at the end of period t, and let p+ ≡ (p − σiεi,t+1(j) − mt+1). Then this firm’s real value at the

3The proceeds of these taxes are then rebated to households as a lump-sum transfer Tt =∑N

i=1 τi,t

∫ 1
0 Pi,t(j)Yi,t(j)dj.
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end of period t is given by the following Bellman equation:

Vi,t(p) = D̃i,t(p) + βEt

[
{1 − ηi,t+1 (p+)}Vi,t+1(p+) + ηi,t+1 (p+)

(
max

p′
Vi,t+1

(
p′)− κi,t+1

)]
, (21)

which consists of the current period real profits D̃i,t(p), as well as the discounted expected contin-
uation value. The latter is computed taking into account that at time t+ 1 the nominal price does
not change with probability 1 − ηi,t+1(·), whereas with probability ηi,t+1(·) the firm pays the menu
cost and optimally resets the nominal price.

Our formulation of the pricing problem covers a wide range of existing models of price setting,
corresponding to the different functional forms of ηi,t(·). In the baseline setup of our model, we
consider a specific functional form for the probability of adjustment function ηi,t(·). In particular,
following Golosov and Lucas (2007), we assume that a firm adjusts if and only if the value gain
from adjustment in a given period exceeds the menu cost:

Assumption 4 (Ss pricing). Consider a firm in sector i with the quality adjusted log relative price
p at time t. Then the probability that this firm adjusts its nominal price is given by:

ηi,t(p) = 1(Li,t(p) > 0) (22)

where 1(·) is the indicator function, and

Li,t (p) = max
p′

Vi,t
(
p′)− Vi,t(p) − κi,t (23)

is the gain from adjustment (or loss from inaction), net of the menu cost.

Note that although here we specify a problem of price setting under nominal rigidities, our setup
can automatically handle rigidities in nominal wage setting as well by appropriately parameterizing
the input-output structure. In particular, consider a setup with a sector i, which we call the labor
union, such that it only uses labor in production (αi = 1) and moreover it the only sector purchasing
labor directly from households (α−i = 0). Instead, other sectors purchase labor indirectly from the
labor union as an intermediate input, such that ωki, k ̸= i represents the empirical cost share of
labor for sector k. Then any rigidities in the price setting of the labor union sector are isomorphic
to nominal wage rigidities.
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2.6 Equilibrium definition and solution method

In addition to the goods market clearing condition in (14), the equilibrium in our economy is also
characterized by market clearing in the labor market:

Lt =
N∑

i=1

∫ 1

0
Li,t(j)dj +

N∑
i=1

κi,t

∫ 1

0
ηi,t(pi,t(j))dj, (24)

as well as in the market for bonds that are in zero net supply: Bt = 0.
Having specified the optimality and market clearing conditions, we can now formally define the

decentralized equilibrium in our economy:

Definition 1 (Equilibrium). The equilibrium is a collection of prices {Pi,t(j)|j ∈ Φi}N
i=1, alloca-

tions
{
Yi,t(j), Li,t(j), Ci,t(j), {Xi,r,t(j, j′)|j′ ∈ Φr}N

r=1 |j ∈ Φi

}N

i=1
, wage Wt and bond holdings Bt,

which given the realizations of firm-level quality process {ζi,t(j)|j ∈ Φi}N
i=1, sectoral productivities

{Ai,t}N
i=1, sectoral sales tax rates {τi,t}N

i=1 and money supply Mt satisfy agent optimization and
market clearing conditions in every period.

We now briefly outline our solution strategy, which we use to compute equilibrium prices and
quantities given the realizations of exogenous processes. Full details of the numerical strategy are
given in the Appendix C.

As a first step, we compute the steady-state of our economy, defined as the equilibrium evaluated
at the point where money supply growth and sectoral TFPs are at their unconditional mean values,
and the firm-level prices are in their stationary distribution. In particular, for each sector we
numerically solve the stationary Bellman equation and firms’ price distribution on an evenly spaced
grid of log quality adjusted real prices with step size ∆p, pj ∈

[
p, p+ ∆p, ..., p

]
, j = 1, .., J grid

points, so that Vj = V (pj). In the algorithm we introduce in Appendix C, we jointly search
across firm-level prices in each sector and sector-specific sales taxes {τ i}N

i=1, so that we satisfy the
equilibrium conditions and obtain steady-state real sectoral price indices equal to one.

Next, we compute the non-linear responses to a sequence of monetary and TFP shocks. We
operate under the assumption of perfect foresight over aggregate and sectoral exogenous shocks,
while maintaining uncertainty over the idiosyncratic innovations. To compute the responses, we
first assume that there exists a finite period T , at which the economy is back to steady state. Then,
starting from a guess for the sequences of sectoral and aggregate variables, we iterate backward from
t = T to t = 0 to solve for the micro value functions. Having obtained the micro value functions,
we iterate forward from t = 0 to t = T , and numerically aggregate to obtain sectoral and aggregate
variables. We repeat this backward-forward iteration until convergence. Appendix C formally
details the algorithm to perform the backward-forward iteration.
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3 Pricing cascades and networks: formal results

We now use a simplified version of our model in order to formally introduce the notion of pricing
cascades: large movements in aggregates creating possibly self-reinforcing price adjustment deci-
sions at the extensive margin. Moreover, we present analytical results regarding a novel interaction
of pricing cascades with networks. In particular, we formally show that networks dampen cascades
whenever the aggregate cycle is driven by demand shocks, whereas they amplify cascades driven by
supply shocks. We also present several examples with particular network arrangements in order to
solidify the intuition behind our novel theoretical results.

3.1 Static economy

In order to obtain intuition regarding the transmission of large shocks in our model, we now consider
a simplified setup obtained under two additional assumptions. First, we assume the setup to be
static in the sense that agents fully discount the future:

Assumption 5 (Myopia). Agents fully discount the future in their objective function, so that β = 0.

In particular, this setting implies that any firm’s value function is simply given by contempo-
raneous profits, and hence the optimal quality-adjusted real reset price for any firm in a sector i is
given by:

P̃ ∗
i,t = 1

1 − τi,t

ϵ

ϵ− 1 × 1
Ai

N∏
k=1

P̃ωik
i,t = Γi,t × Q̃i,t. (25)

where Γi,t ≡ 1
1−τi,t

ϵ
ϵ−1 is the (exogenous) desired markup, whose variation across time and sectors

is pinned down by the movements in the sectoral tax rates τi,t.
Second, we assume a specific form of time-variation of the sector-specific menu cost κi,t:

Assumption 6 (Sectoral menu costs). The sector-specific menu cost follows the following process:
κi,t = κi(1 − τi,t)[P̃i,t/P̃

∗
i,t]ϵ−1λi,t, where κi is a sector-specific constant.

The above two assumptions allow us to derive closed-form results regarding the interaction
between networks, price adjustment decisions at the extensive margin, and the type of shocks
hitting the economy.

The decision to change prices is based on whether the value gain from adjustment exceeds
the menu cost. In the static setup, we can obtain a tractable approximation for the gain from
adjustment as a function of the price gap, or the difference between the current and the optimal
reset price:
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Lemma 1 (Adjustment gains). Suppose Assumptions 1-5 hold. Let p̃i,t(j) ≡ log P̃i,t(j) − log P̃ ∗
i,t be

the price gap for a firm j in sector i at time t. Then the profit gain from price adjustment satisfies:

D̃∗
i,t(j) − D̃i,t(j) = 1

2(ϵ− 1)(1 − τi,t)[P̃i,t/P̃
∗
i,t]ϵ−1λi,t × [p̃i,t(j)]2 + O[p̃i,t(j)]3 (26)

where D̃∗
i,t(j) is profits at the optimal reset price, Pi,t is the real sectoral price index and λi,t is the

sectoral sales share (Domar weight).

To illustrate the interaction between networks and price adjustment decisions, consider the
initial period (t = 0) in our economy. If the firm chooses to not adjust its nominal price, then the
quality-adjusted real price in the initial period is given by:

log P̃i,0(j) = pi,−1(j) − σiεi,0(j) −m0 (27)

where pi,−1(j) is the initial (exogenous) quality-adjusted real price of firm j in sector i, εi,0(j) is the
realization of the firm-level quality shock in period t = 0, and m0 ≡ log(M0/M−1) is the realization
of money growth at t = 0. Given the expression for the optimal reset price in (25), we can write
the firm-level price gap in the initial period as:

p̃i,0(j) = −σiεi,0(j) −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 + (pi,−1(j) − γi). (28)

where γi ≡ log ϵ
ϵ−1

1
1−τ i

, ai,0 ≡ logAi,0 and γi,0 ≡ log Γi,0 − γi.
Without loss of generality, normalize pi,−1(j) = log ϵ

ϵ−1 ; then given the realizations of aggregate
and sectoral variables, the magnitude of the price gap of the specific firm j is pinned down by the
realization of its idiosyncratic quality innovation εi,0(j). We can use the approximate profit gain
in Lemma 1 to determine the sector-specific inaction regions, defining the ranges for idiosyncratic
innovations under which the firm will choose not to adjust:

Lemma 2 (Inaction region). Suppose Assumptions 1-6 hold. Given the realizations of aggregate
and sectoral variables and normalizing pi,−1(j) = log ϵ

ϵ−1
1

1−τ i
, let εi,0 and εi,0 be thresholds such

that a firm in sector i will not adjust the price if it draws an innovation in [εi,0, εi,0]. Then,

[σiεi,0, σiεi,0] = −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 ±

√
2κi

ϵ− 1 , (29)

where m0 ≡ log(M0/M−1), γi,0 ≡ log Γi,0 − γi, ai,0 ≡ logAi,0 and γi ≡ log ϵ
ϵ−1

1
1−τ i

.

Given the realizations of monetary, productivity, and desired markup shocks, which are indepen-
dent of the presence of input-output linkages, we can now derive the effect of removing input-output
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Figure 1: Networks and inaction regions

(a) Dampening under monetary shocks

(b) Cascades under TFP/markup shocks

Notes: the figure shows the contribution of production networks to the movements in the inaction region follows
monetary and aggregate TFP shocks, respectively.

linkages (ωi,k = 0,∀i, k) on the firm-level decision to adjust its price.
Consider an increase in the money supply m0 > 0. According to Lemma 2, this increase in

money supply, ceteris paribus, implies a leftward shift of the inaction region. In other words, more
extreme (negative) realizations of idiosyncratic innovations are needed to prevent adjustment. At
the same time, Lemma 2 also implies that as long as the pass-through of the money supply to
sectoral prices is incomplete (log P̃k,0 < 0, ∀k), the presence of networks attenuates the leftward
shift of the inaction region for all firms that have a non-zero cost share of intermediate inputs. As
a result, this weakly lowers the probability of price adjustment for any firm, creating dampening
in price changes. Panel (a) of Figure 1 provides a graphical illustration of this mechanism. In the
following, we formalize the notion that networks create attenuation in price adjustment decisions
after monetary shocks:

Proposition 1 (Cascades and demand shocks). Suppose Assumptions 1-6 hold. Consider an in-
crease in the money supply m0 > 0. Then, as long as the pass-through of the money supply to
sectoral prices is incomplete (log P̃k,0 < 0,∀k), production networks (weakly) lower the probability
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of adjustment for any firm following the monetary shock.

In contrast, consider a sectoral productivity deterioration ai,0 < 0. According to Lemma 2, this
productivity change creates a leftward shift of the inaction region for all firms in sector i. Moreover,
as long as this productivity decline leads to a rise in price indices of other sectors (log P̃k,0 > 0, ∀k),
then Lemma 2 also implies that networks will further amplify the leftward shift in the inaction
region for all firms in sector i, as long as the cost share of intermediates in that sector is non-zero.
In other words, even more extreme (negative) realizations of idiosyncratic innovations are needed
to justify non-adjustment. As a result, contrary to the case of monetary shocks, the presence of
networks weakly raises the probability of price adjustment for any firm in sector i, thus creating
cascades in price changes. Panel (b) of Figure 1 illustrates this mechanism graphically.

Note that an identical mechanism of cascades also applies in the case of shocks to desired
markups. Following an increase in desired markups, γi,0 > 0, there is a leftward shift in the
inaction region, which is further moved to the left as long as the markup shock is inflationary in
the aggregate (log P̃k,0 > 0, ∀k). In the following, we formalize the notion that networks create
cascades in price adjustment decisions after TFP and markup shocks:

Proposition 2 (Cascades and supply shocks). Suppose Assumptions 1-6 hold. Consider a decrease
in sectoral TFP ai,0 < 0 or an increase in sectoral desired markup γi,0 > 0. Then, as long as such
shocks lead to a rise in price indices of other sectors (log P̃k,0 > 0, ∀k), production networks (weakly)
increase the probability of adjustment for any firm in any other sector.

In addition, note that a productivity or desired markup shock in a sector i can, in principle,
increase the probability of price adjustment for firms in any other sector i′. This is true as long
as the price indices of sectors used as suppliers by sector i′ (k : ωi′k > 0) rises following the
productivity deterioration or markup increase in sector i.

3.2 Simple examples

We now turn to the dynamic version of our model. First, we consider several simple network
arrangements in order to clarify the intuition behind key mechanisms. To facilitate further compa-
rability between monetary and TFP shocks, for the remainder of this section we assume that both
follow AR(1) in levels with persistence ρ ∈ (0, 1).

Example 1 : roundabout production economy

First, we consider a one-sector roundabout economy (N = 1), where firms trade intermediate
inputs with other firms in the same sector. Figure 2(a) illustrates such an arrangement graphically.
Naturally, in the limit where we set the cost share of labor at one (α1 = 1), the economy collapses
to the standard arrangement, where firms only use labor and there is no network.
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Figure 2: Three example economies

(a) Roundabout production economy

(b) Two-sector vertical chain economy

(c) N -sector vertical chain economy

Notes: the figure shows three example economies, as well as the responses of aggregate frequency of adjustment to
monetary and TFP shocks.

We use this simple example to illustrate how the presence of the network affects the response of
the aggregate fraction of adjusting firms to monetary and productivity shocks of different sizes. As
can be seen in the right panel of Figure 2(a), when there are no networks (α1 = 1), monetary and
productivity shocks are isomorphic in their effect on aggregate frequency. However, as soon as we
add the roundabout production structure (α1 < 1), the aggregate adjustment frequency responds
much faster to productivity shocks relative to monetary shocks. This is because under monetary
shocks, the network structure generates dampening in price adjustment decisions, manifesting itself
in slower increases in the aggregate fraction of adjusters. In contrast, under TFP shocks, networks
create cascades in adjustment decisions, leading to faster increases in the aggregate proportion of
firms that choose to adjust.
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Example 2 : two-sector vertical chain economy

Second, we consider a two-sector example to illustrate how position in the supply chain affects
the transmission of sectoral productivity shocks to aggregate frequency. As can be seen in the left
panel of Figure 2(b), the first sector is the upstream one, which uses labor to produce inputs for
the second, downstream, sector, which sells the final output to households. Importantly, the two
sectors have the same size in equilibrium.

We now consider sector-specific productivity shocks of different sizes and record their effect
on the aggregate adjustment frequency. In the right panel of Figure 2(b) one can see that large
shocks to the upstream sector deliver faster increases in the aggregate frequency, relative to equally
sized shocks to the downstream sector. This is because shocks to the upstream sector additionally
affect the optimal reset price, and hence the price gaps of the downstream sector. Hence, shocks
to the upstream sector also trigger additional extensive margin price adjustment decisions in the
downstream sector. The opposite, however, is not true: shocks to the downstream sector only
affect price gaps in the downstream sector itself and do not affect price adjustment decisions in the
upstream sector.

Example 3 : N-sector vertical chain economy

Third, we illustrate that as sectors become increasingly more “central”, in terms of their importance
as suppliers to the rest of the firms in the economy, large shocks to them can deliver increasingly
larger increases in the aggregate fraction of adjusting firms. In the left panel of Figure 2(c), we
illustrate a vertical chain production economy consisting of N sectors. Sector 1 has the largest
“centrality”, as it supplies, directly or indirectly, to the rest of the economy. As one moves down
the chain, sectors’ centrality falls, with sector N being the least central, since it only supplies final
output to consumers.

In the right panel of Figure 2(c), we set N = 10 and plot the aggregate frequency response to
large (−20%) sector-specific productivity shocks in each sector. One can see that the shock to the
most central sector 1 delivers the largest increase in aggregate frequency. Moreover, the aggregate
frequency response falls monotonically as we move down the supply chain and consider increasingly
less central sectors.

4 Full model with Euro Area data

We now move to the quantitative analysis of our full dynamic model. In this section we outline
the strategy to bring our model to the Euro Area data. In particular, we discipline the structural
parameters of the model in order to make it consistent with the Euro Area economy disaggregated
to 38 sectors. The household preferences and firms’ production function parameters are estimated
to match the observed consumption and input-output shares in the World Input-Output Tables. As
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for the sector-specific menu costs and variances of idiosyncratic shocks, those are estimated to fully
match the observed sectoral frequencies and standard deviations of price changes in the PRISMA
dataset for the Euro Area.

4.1 Parameterization and Calibration

We discipline the structural parameters of our model at monthly frequency for Euro Area data.
Table 1 summarizes our calibration.

For the aggregate parameters, the households’ discount factor is set to β = 0.961/12 as in
Golosov and Lucas (2007). The within-sector elasticity of substitution across varieties is ϵ = 3 as
in Midrigan (2011). We assume that aggregate money supply follows a random walk with drift:

logMt = π + logMt−1 + εM
t , (30)

where π is the trend growth rate for money supply, which is also the equilibrium level of trend
inflation; εM

t is an i.i.d. mean zero money growth innovation. The steady-state money growth rate
is π = 2% per year, in line with the inflation target of the European Central Bank (ECB). As for
the sectoral total factor productivities, we assume those to follow an AR(1) process:

logAi,t = ρ logAi,t−1 + εA
i,t, (31)

where ρ ∈ (0, 1) is the persistence parameter and εA
i,t is an i.i.d. mean zero sector-specific produc-

tivity innovation. We set the persistence of TFP processes equal to ρ = 0.9.
We calibrate our economy to 38 production sectors of the Euro Area economy, following the

classification in the World Input-Output Database (WIOD). The final consumption shares {ωC
i }N

i=1
and the input-output cost shares {ωik}N

i,k=1 are taken from the 2014 input-output tables for the
Euro Area based on WIOD. Regarding the sectoral cost shares of labor {αi}N

i=1, they are taken from
the 2014 National Income Accounts for the Euro Area, published by the EU KLEMS database. In
order to capture the possibility that wages are also sticky, we introduce an auxiliary labor union
sector. In particular, we assume that the labor union sector is the only one that directly purchases
labor from households and then sells it to the rest of the sectors as an intermediate input. In
general, we work with N = 39 sectors: 38 production sectors and the auxiliary labor union sector.

Unlike in Section 3.1 above, we do not allow time variation in the sectoral menu costs. Instead,
we consider the more conventional fixed menu cost setup (Golosov and Lucas, 2007), allowing the
menu costs to vary in the cross section only:

Assumption 6′ (Fixed menu costs). The sector-specific menu cost follows the following process:
κi,t = κi, where κi is a sector-specific constant.

This leaves us with two parameters per sector to estimate: the menu cost κi, and the standard

18



Table 1: Parameter values (Euro Area, monthly)

Aggregate parameters

β 0.961/12 Discount factor (monthly) Golosov and Lucas (2007)
ϵ 3 Goods elasticity of substitution Midrigan (2011)
π 0.02/12 Trend inflation (monthly) ECB target
ρ 0.90 Persistence of the TFP shock Half-life of seven months

Sectoral parameters

N 39 Number of sectors Data from Gautier et al. (2024)
{ωC

i }N
i=1 Sector consumption weights World IO Tables

{ωik}N
i,k=1 Sector input-output matrix World IO Tables

{αi}N
i=1 Sector labor weights World IO Tables

Firm-level pricing parameters

{κi}N
i=1 Menu costs Estimated to fit frequency, std dev.

{σi}N
i=1 Std. dev. of firm-level shocks of ∆p from Gautier et al. (2024)

deviation of firm-level shocks σi. In line with evidence in Gautier et al. (2023), we assume that the
sectors “Coke and Petroleum Products” and “Mining and Quarrying” have fully flexible prices at
monthly frequency. We calibrate the price setting parameters in the labor union sector to match
the frequency and standard deviation of nominal wage changes in Costain et al. (2022). For the
remaining 36 sectors, we estimate the parameters {κi}N

i=1 and {σi}N
i=1 to match the frequency and

standard deviation of price changes in each sector in the Euro area, taken from Gautier et al.
(2024), in steady state.

4.2 Sectoral characteristics

In order to better understand the cross-sectional properties of the sectors we consider in our quan-
titative setup, we introduce two different measures of sectoral centrality. First, in order to capture
the full degree to which a sector is important as a buyer of intermediate inputs from the rest of the
economy, we use the following customer centrality metric:

Customer Centralityi ≡
N∑

j=1
(I − Ω)−1

ij − 1 (32)

Intuitively, the customer centrality measure captures the total reliance of a sector on inter-
mediate inputs, both direct and indirect. Naturally, if a sector only uses labor in production, its
customer-centrality measure collapses to zero.

Second, in order to capture the degree to which a sector is important as a provider of interme-
diate inputs to the rest of the economy, we introduce the following supplier centrality metric:

19



Supplier Centralityi ≡
N∑

j=1
(I − ΩT )−1

ij − 1 (33)

The supplier centrality measure captures the total importance of a sector as a seller, either
directly or indirectly, of intermediate inputs to the rest of the economy.

5 Quantitative results: monetary shocks

For our first set of quantitative results, we present the general equilibrium dynamics of our economy
following monetary shocks of different sizes. First, we show that the aggregate repricing frequency
response to large monetary shocks is substantially attenuated by the presence of networks, so that
the effect of cascades dampening is sizable quantitatively. As a result, the econoomy with networks
features much stronger monetary non-neutrality, which is summarized by a substantial flattening
of the fully non-linear Phillips Curve. Second, we study sectoral frequency and price responses, and
show that,ceteris paribus, sectors with a larger customer centrality exhibit larger movements in the
fraction of adjusting firms and feature more size-dependence in their sectoral price responses.

5.1 Aggregate dynamics

Figure 3(a) shows the normalized responses of aggregate CPI inflation, aggregate GDP, as well as
the unscaled fraction of adjusting firms to monetary shocks of two different magnitudes: 1% and
10%. Two key features are apparent. First, the normalized response of inflation increases in the
size of the monetary shock, which represents a strong size effect. As can be seen in the frequency
panel, this happens as the fraction of adjusting firms increases rapidly with larger shocks, reaching
almost 30% for the 10% monetary shock.

Second, as shown in Figure 3(b), the contribution of production networks to the magnitudes
of responses differs markedly between shocks of different sizes. For the small 1% shock, networks
dampen the response of inflation and, as a result, amplify the response of aggregate GDP. This
is the effect of production networks known from previous papers, which employ linearized models
with time-dependent pricing: input-output linkages create pricing complementarities, dampening
inflation and amplifying the consumption response. At the same time, for the large 10% shock, the
amplification of the aggregate GDP response due to networks is much greater. Importantly, this
is because the 10% monetary shock delivers a markedly smaller increase in the repricing frequency
relative to the “no-network” scenario, which is the dampening effect introduced earlier.

In Figure 4(a), we further investigate the interaction between networks and the response of
repricing frequency to monetary shocks. One can see that networks consistently dampen the re-
sponse of aggregate repricing frequency to monetary shocks of all sizes that we consider. For
example, following a 10% monetary expansion, the aggregate frequency rises close to 45% in the
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Figure 3: Effect of networks on aggregate responses

(a) Responses of aggregates to monetary shocks

(b) Network contribution to aggregates’ responses

Notes: the figure shows the responses of aggregate GDP, inflation and frequency of adjustment in response to mon-
etary shocks of different sizes.
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Figure 4: Aggregate frequency of adjustment after monetary shocks

(a) Aggregate frequency response (b) Contribution of the extensive margin

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.

multi-sector economy without networks, but increases only to 27% in an otherwise identical econ-
omy with input-output linkages.

In order to further quantify the contribution of shock dampening to aggregate inflation re-
sponses, we decompose the effect of the money shock on inflation into three channels, following
Blanco et al. (2024a) and Costain and Nakov (2011). Note that, up to a first-order approximation,
inflation in the absence of the shock is equal to

π =
∫
p̃η(p̃)dg(p̃) (34)

where p̃ is the desired log price change, η(p̃) is the adjustment hazard, and g(p̃) is the ergodic
distribution of desired price changes across firms and sectors. The money shock increases all firms’
desired price changes to p̃+α, where α = p∗

1 − p∗ + ∆m and where p∗
1 is the average across sectors

of the log reset price in the first period after the money shock and p∗ is the average across sectors
of the log reset price in the absence of the shock. The money shock changes the inflation rate
to π1 =

∫
(p̃ + α)η1(p̃)dg(p̃) where η1(p̃) is the new adjustment hazard after the shock. Following

Blanco et al. (2024a), the change in inflation can then be decomposed into

∆π = α

∫
η(p̃)dg(p̃)︸ ︷︷ ︸
Calvo

+α

∫
(η1(p̃) − η(p̃))dg(p̃)︸ ︷︷ ︸

extensive

+
∫
p̃(η1(p̃) − η(p̃))dg(p̃)︸ ︷︷ ︸

selection

. (35)

In Figure 4b we show the resulting decomposition of the differential inflation responses in our
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Figure 5: Inflation and GDP responses to monetary shocks

(a) Impact inflation response (b) Impact GDP response

Notes: the figure shows the impact responses of inflation and GDP to monetary shocks of different sizes, in different
configurations of the model.

model with networks compared to that without networks. The difference between the network and
no-network cases is explained mainly by the selection effect for smaller shocks, and by the extensive
margin component for shocks greater than 5 percent in absolute value. Therefore, for large shocks,
most of the network contribution to the slowing down of the inflation response works through the
dampening in pricing.

The dampening effect of networks on the repricing frequency has important implications for the
responses of CPI inflation and aggregate consumption to large monetary interventions. In Figure
5 (a), we show that as the size of the monetary shocks increases, inflation in our baseline economy
rises in a non-linear fashion: a 5% shock delivers 2% inflation on impact, whereas tripling the shock
to 15% delivers a five-fold increase of inflation to 10%. At the same time, the figure also shows that
an otherwise identical economy without networks features inflation rising even faster with larger
monetary shocks. The fact that inflation rises relatively more slowly in the economy with networks
reflects mainly the slower response of the fraction of adjusters, as documented in Figure 4. In order
to quantify the importance of nonlinearity and state-dependent pricing, in Figure 5 (a) we also
consider a version of our model with time-dependent pricing (Calvo, 1983), calibrated to match the
sectoral frequencies of adjustment in steady state. Under such a time-dependent setup, even when
solved fully non-linearly, inflation is rising more slowly as the monetary shock gets larger. The
latter reflects the contribution of both the selection effect (for smaller shocks) and the extensive
margin effect (for larger shocks) in delivering faster pricing increases in the state-dependent pricing
model.

Figure 5 (b) shows that in the baseline economy with networks, the aggregate consumption
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Figure 6: Output amplification

Notes: the figure shows the contribution of networks to the impact responses of GDP to monetary shocks of different
sizes.

response is hump-shaped in the size of monetary shocks and is maximized following a 12% monetary
expansion, delivering an increase of almost 6%. At the same time, the equivalent economy without
networks has its consumption response maximized following a 5% monetary shock, corresponding
to a smaller increase of just over 3%. The higher maximal response of consumption under networks,
as well as the fact that it occurs following a larger monetary shock, reflect the slower response of
the fraction of adjusters, as documented in Figure 4. Figure 5 (b) (a) also shows the responses in
the alternative setup with time-dependent Calvo (1983) pricing. With time-dependent pricing, one
can see that even for very large shocks and a non-linear solution, the time-dependent setup has
aggregate consumption rise quasi-linearly in the size of the monetary shock. Moreover, the non-
linear time-dependent pricing results deviate substantially from the non-linear state-dependent
solutions.

In order to formally measure the contribution of networks to the output response, in Figure
6 we construct, for each size of the monetary shock, the difference between the output response
with and without networks, as a fraction of the former. One can see that for small monetary
shocks, the contribution is in the neighborhood of 10-20%. Such magnitudes are consistent with
prior estimates of network contributions in linearized time-dependent setups: for example, Ghassibe
(2021) estimates the contribution to be just below 30% in such a setup. At the same time, one can
also appreciate that as the size of the shock increases, the contribution of the network increases
dramatically, reaching almost 80% for a 15% monetary expansion. This reflects the fact that for
such large shocks, the fraction of adjusters rises much less in the economy with networks, delivering
a much larger aggregate pass-through to inflation and hence a larger consumption response.

Figure 7 illustrates the trade-off between output stimulus and inflation under monetary in-
terventions of different sizes. In particular, the figure traces a non-linear “Phillips curve” in the

24



Figure 7: Phillips curves

Notes: the figure shows the fully non-linear Phillips curves in the various configurations of the model.

cumulative output gap–CPI inflation space, under different model configurations. In the network-
based baseline economy, a cumulative output stimulus up to 5% or so can be achieved with little
inflationary response, reflecting a locally flat Phillips curve. However, in a counterfactual economy
without networks, the Phillips curve is steeper for small shocks and low output gap values. This
suggests “flattening” of the Phillips curve due to networks, documented in previous studies under
time-dependent pricing. Moreover, once the shocks are sufficiently large, the Phillips curve with-
out networks becomes backward bending, with a maximum possible cumulative output stimulus
of around 15%. This happens because, under very large shocks, the fraction of adjusters increases
much faster in the economy without networks, as documented in Figure 4.

5.2 Disaggregated dynamics

Having analyzed the behavior of macroeconomic aggregates, we now move to studying sector-level
behavior following monetary shocks of different sizes.

To better understand the role production networks play in dampening frequency responses, in
Figure 8 (a) we plot a linear relationship between the sectoral frequency responses and a measure of
customer centrality, given by the sum of rows of the Leontief inverse matrix, representing the total
(direct and indirect) exposure of a sector to purchases of intermediate inputs from other sectors.
As can be seen, a higher centrality of customers is associated with a smaller increase in frequency
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Figure 8: Sectoral responses vs total intermediates exposure

(a) Sectoral frequency responses (b) Size-dependence of sectoral prices

Notes: the figures plots the responses of frequencies and sectoral price indices to a large monetary shock.

after the 10% monetary shock.
Similarly, we also investigate the association between customer centrality and the degree of size

dependence in sectoral price responses to small vs. large monetary shocks. In Figure 8 (b) we
plot a measure of size dependence in sectoral price responses, given by the difference in normalized
responses to 10% and 0.1% monetary shocks, against the measure of customer centrality. Consis-
tently with our mechanism, a higher total exposure to intermediate inputs lowers size dependence
in the sectoral price response.

6 Quantitative results: TFP shocks

For our second set of quantitative results, we turn to the general equilibrium dynamics following
aggregate and sector-specific total factor productivity (TFP shocks). First, we show that following
large aggregate TFP shocks, the economy with networks features much stronger response of the
repricing frequency, implying that the cascades amplification channel is indeed quantitatively im-
portant. The amplification of cascades in turn generates much stronger response of aggregate for
a given shock, relative to the otherwise identical economy with time-dependent pricing. We also
show that sectoral with a larger customer centrality exhibit stronger responses of the fraction of ad-
justers and more size dependence in sectoral price responses following large aggregate TFP shocks.
Second, our results suggest that TFP shocks specific to sectoral with a large supplier centrality
lead to more sizeable movements in the aggregate repricing frequency.
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6.1 Aggregate TFP shocks

6.1.1 Aggregate dynamics

In Figure 9 (a), we report normalized responses of aggregate GDP and CPI inflation, as well as
the aggregate fraction of adjusters in response to two negative aggregate TFP shocks: -1% and
-10%. Just as with monetary shocks in the previous section, there is substantial size dependence:
for the -1% shock the normalized response of GDP is -1%, whereas it is just under -2% for the -10%
shock. At the same time, the normalized response of CPI inflation increases in the magnitude of
the aggregate TFP shock, implying that the aggregate price changes rise more than proportionally
in the size of the innovation. Quantitatively, the -1% shock generates a normalized impact response
of CPI inflation of 0.6%, whereas the -10% corresponds to a normalized response of almost 1.7%
on impact. Key to the observed size dependence is the endogenous response of the fraction of
adjusters: for the -1% shock it remains unchanged, whereas the larger -10% shock brings the
fraction of adjusters to almost 80%.

In order to understand the contribution of networks to the observed size dependence, in Figure
9 (b) we additionally document the responses to the same aggregate TFP in an otherwise identical
economy without networks. For the -1% shock, networks amplify the response of aggregate GDP by
a factor 2, while the normalized response of CPI inflation is nearly 0.3% without networks, compared
to 0.6% under networks. Significantly, for the larger shocks of -10%, the network amplification of
both aggregate consumption and CPI inflation is greater than under the small -1% shock. When it
comes to the response of inflation, this is the opposite of what we observed under monetary shocks,
where the amplification of inflation response was weakening as shocks became larger. To understand
the difference, it is instructive to look at the response of adjustment frequencies. One can see that
for the -10% shock, the fraction of adjusters increases substantially more in the economy with
networks. This is the exact opposite of what is observed under monetary shocks, in which networks
dampen the response of adjustment frequencies, and which represents the cascades effect.

In Figure 10(a), we further investigate the interaction between the aggregate repricing frequency
and the size of the aggregate TFP shock. Contrary to what we established for monetary shocks,
networks consistently and substantially amplify the response of the aggregate fraction of adjusters
to aggregate TFP shocks. For example, following a -10% aggregate TFP shock, the economy with
networks predicts a rise in the fraction of adjusters to 75%, while in an otherwise identical model
without networks the corresponding increase in the aggregate adjustment frequency is up to just
below 40%.

In Figure 10(b) we show the decomposition of the differential inflation responses in our model
with networks compared to the one without networks. The difference between the network and
no-network cases is explained mainly by the selection effect for smaller shocks, and by the frequency
component for aggregate TFP shocks greater than 3 percent in absolute value.

The fact that networks amplify the response of adjustment frequency to aggregate TFP shocks
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Figure 9: Responses to aggregate TFP shocks

(a) Responses of aggregates to aggregate TFP shocks shocks

(b) Network contribution to aggregates’ responses

Notes: the figure shows the responses of aggregate GDP, inflation and frequency of adjustment in response to aggregate
TFP shocks of different sizes.
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Figure 10: Aggregate frequency responses to aggregate TFP shocks

(a) Aggregate frequency response (b) Contribution of the extensive margin

Notes: the figure shows the impact responses of aggregate frequency of adjustment to aggregate TFP shocks of different
sizes, with and without networks.

also has notable implications for the dynamics of aggregate CPI inflation and GDP. In Figure 11
(a), we plot the impact response of aggregate CPI inflation to aggregate TFP shocks of different
signs and sizes. The inflation response rises much faster in the economy with networks relative to
the no-network benchmark, being almost 3.5 times higher after a -10% shock. We also report the
inflation responses in an economy with networks, but with time-dependent (Calvo, 1983) pricing,
matching the same sectoral frequencies of adjustment in steady state. One can see that the economy
with time-dependent pricing predicts much smaller inflation responses.

6.1.2 Disaggregated dynamics

We now turn to analyzing the responses of individual sectors to aggregate TFP shocks of different
sizes.

In Figure 12(a), we plot a relationship between the sectoral frequency responses to the -10%
aggregate TFP shock and the measure of customer centrality. There is a clear positive relationship
between the two: ceteris paribus, increasing a sector’s total exposure to intermediate inputs in-
creases the fraction of firms in that sector that choose to adjust following the large aggregate TFP
shock.

The established relationship between frequency response and exposure to intermediate inputs
also has implications for the degree of size dependence in sectoral price dynamics. To see that, in
Figure 12(b) we plot the linear relationship between a measure of sectoral price size dependence,
given by the difference between normalized responses to -10% and -0.1% aggregate TFP shocks,
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Figure 11: Inflation and output responses to aggregate TFP shocks

(a) Impact inflation response (b) Impact GDP response

Notes: the figure shows the responses of aggregate inflation and GDP to large aggregate TFP shocks under different
configurations of the model.

and the sectoral customer centrality. The estimated relationship is positive, implying that a higher
total exposure to intermediate inputs is associated with a greater degree of size dependence in the
sectoral price response to a large aggregate TFP shock.

6.2 Sectoral TFP shocks

We now turn to the study of the transmission of sector-specific TFP shocks. We focus on the
transmission of large contractionary sectoral shocks, modeled as a -20% reduction in sector-specific
TFP.

In Figure 13(a), we show the responses of the aggregate fraction of adjusting firms to sector-
specific TFP shocks. First, for all sectors, networks amplify the aggregate frequency response to
sector-specific TFP shock. Second, for the majority of sectors, the effect of their own shock on
aggregate frequency is relatively modest and not much bigger than in the otherwise identical econ-
omy without networks. Third, for a number of sectors, such as “Food and Beverages”, “Chemicals
and Chemical Products” and “Warehousing”, networks deliver a substantial amplification of their
own TFP shocks on aggregate adjustment frequency.

We also study the response of aggregate CPI inflation to sectoral TFP shocks. Specifically,
in Figure 13(b) we depict normalized impact responses of aggregate CPI inflation to large (-20%)
negative sectoral TFP shocks. First, networks amplify the aggregate CPI inflation responses for
all sectoral TFP shocks. Second, just as with aggregate frequencies, for the majority sectors,
the network amplification is relatively modest. Third, some sectors are an exception: “Food and
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Figure 12: Sectoral responses to aggregate TFP shock vs total intermediates exposure

(a) Sectoral frequency responses (b) Size-dependence of sectoral prices

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.

Beverages”, “Mining and Quarrying” and “Chemicals and Chemical Products” have their own TFP
shocks affect the aggregate CPI inflation response substantially.

In Figure 14, we investigate the relationship between a sector’s supplier centrality and the
aggregate consequences of that sector’s TFP shocks. In Figure 14(a), one appreciates a very strong
positive relationship between the effect of a sectoral TFP shock on the aggregate frequency of
adjustment and the centrality measure of that sector.

7 Extensions and robustness checks

In this section present three extensions to our baseline model. First, we consider a version of our
economy in the cashless limit, where the central bank conducts monetary policy by setting the
nominal interest rate, which endogenously responds to aggregate inflation and output according
to a Taylor rule. Second, we relax the assumption of fixed menu costs, and consider a version of
our economy with random free adjustment opportunities. Third, we extend our baseline model
with a constant elasticity of substitution (CES) aggregation across sectors, which allows for the
consumption and input-output shares to vary endogenously along the intensive margin.

7.1 Endogenous monetary policy

In our baseline results, the central bank conducts policy by setting an exogenous path of money
supply. We now consider an extension that adds realism to the monetary policy conduct. In par-
ticular, we use the cashless limit setup of Woodford (2004) and Gaĺı (2015), where the central bank
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Figure 13: Aggregate responses to sectoral TFP shocks

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.

conducts policy by setting the level of the nominal interest rate, which also responds endogenously
to movements in macroeconomic aggregates. In particular, we assume that the nominal interest
rate i follows a Taylor-type rule:

log(1 + i) = log(Π/β) + ϕπ log(ΠC
t /Π) + εi

t, (36)

where Π is the steady-state level of CPI inflation, ϕπ > 0 pins down the strength of the central
bank reaction to inflation deviations from target and εi

t is the monetary policy shock.
In Appendix D.2 we detail the full alternative version of our model in the cashless limit with

the Taylor-type rule for the nominal interest rate. Here we present an overview of the key results.
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Figure 14: Aggregate responses to sectoral TFP shock vs sector centrality

(a) Sectoral frequency responses (b) Size-dependence of sectoral prices

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.

7.2 Random menu costs

In our baseline results, we work under the assumption that nominal price re-setting is subject to
a fixed sector-specific menu cost as in Golosov and Lucas (2007). In order to illustrate that our
novel channel of interaction between networks and pricing cascades is not limited to the fixed menu
cost setup, as an extension, we consider a random menu cost setup. More specifically, we use the
CalvoPlus setup of Nakamura and Steinsson (2010), which assumes that each period a randomly
selected fraction of firms within each sector draws a menu cost of zero, whereas the complementary
fraction is still subject to the fixed menu cost.

Formally, the CalvoPlus setup corresponds to the following functional form of the probability
of adjustment function ηi.t(.):

Assumption 4′ (CalvoPlus pricing). Consider a firm in sector i with the quality adjusted log
relative price p at time t. Then the probability that this firm adjusts its nominal price is given by:

ηi,t(p) = ℓi + (1 − ℓi) × 1(Li,t(p) > 0) (37)

where ℓi is the sectoral probability of drawing a zero menu cost, 1(·) is the indicator function, and

Li,t (p) = max
p′

Vi,t
(
p′)− Vi,t(p) − κi (38)

is the gain from adjustment (or loss from inaction), net of the menu cost.

Crucially, as the non-zero menu cost tends to infinity (κi → ∞), the pricing problem collapses
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to the time-dependent model of Calvo (1983), as only the randomly selected fraction ℓi in each
sector gets to adjust. At the same time, setting the probability of drawing a zero menu cost to zero
(ℓi = 0) collapses the pricing problem in that sector to the fixed menu cost setup of Golosov and
Lucas (2007).

In order to quantitatively discipline the probabilities of free adjustment, we estimate them so
that, in steady state around 75% of all price adjustments are free in each sector, following Nakamura
and Steinsson (2010) and Blanco et al. (2024b). As before, the non-zero menu costs and standard
deviation of idiosyncratic shocks are estimated to jointly match the sector-specific frequencies and
standard deviations of price changes in the Euro Area.

In Figure D.3 we study the responses of aggregate repricing frequency and GDP to monetary
shocks of different sizes under CalvoPlus pricing. In panel (a) one can see that the response of
aggregate repricing frequency, both with and without networks, is dampened relative to otherwise
identical economies with fixed menu costs. This is because the presence of free adjustment oppor-
tunities implies that much larger shocks are needed for firms to get pushed out of their inaction
region. At the same time, just like in the economy with fixed menu costs, the economy with net-
works features smaller frequency movements, which is the effect of dampening pricing cascades. As
for the GDP responses in panel (b), the economy with networks and random menu costs features
much stronger non-neutrality than an otherwise identical economy without networks.

As for the propagation of supply shocks, in Figure D.4 we report the responses of aggregate
repricing frequency and CPI inflation to aggregate TFP shocks of different sizes. Panel (a) show
that, as with monetary shocks, the introduction of random menu costs dampens the responses of
frequency to aggregate TFP shocks, both with and without networks. At the same time, one can
see that conditional on CalvoPlus pricing, the economy with networks features stronger movements
in aggregate frequency, implying that networks amplify cascades, just as in the economy with fixed
menu costs. The amplification of pricing cascades creates a strong nonlinearity in aggregate CPI
dynamics, as can be seen in panel (b). For a -10% aggregate TFP shock, networks amplify the
aggregate CPI response from 0.03 to 0.08 on impact.

7.3 Alternative elasticity of substitution across sectors

In our baseline analysis, we use Cobb-Douglas aggregation across sectors, as well as a Cobb-Douglas
production technology. In this subsection we relax this assumption, and consider more general
constant elasticity of substitution (CES) aggregation across sectoral consumptions, as well as across
productive inputs.

First, we consider the following CES final consumption aggregator:
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Assumption 2′ (CES consumption aggregation). The consumption aggregator C(·) is given by:

C(C1,t, ..., CN,t) =
(

N∑
i=1

ωC
i

1
θcC

θc−1
θc

i,t

) θc
θc−1

, (39)

where θc > 0 is the elasticity of substitution across sectoral varieties and
∑

i ω
C
i = 1, ωC

i ≥ 0,∀i.

Under this assumption, the equilibrium final consumption shares are given by:

ωC
i,t ≡ Pi,tCi,t

PC
t Ct

= ωC
i ×

P̃ 1−θc
i,t∑N

k=1 ω
C
k P̃

1−θc
k,t

(40)

which is constant in the special case when the sectoral consumption aggregator is Cobb-Douglas
(θc = 1). It follows that the final consumption shares are time-varying and depend on relative
movements in (real) sectoral price indices. Whenever final sectoral varieties are complements (θc ∈
(0, 1)), a relative increase in a sectoral price index leads to a rise in that sector’s final consumption
share, and vice versa whenever the varieties are substitutes (θc > 1).

Similarly, we also assume the following CES production technology:

Assumption 3′ (CES production technology). The production technology Fi(·) for a firm j in
sector i is given by:

Fi[Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] = 1
ζi,t(j)

×Ai,t ×
(
α

1
θi
i N

θi−1
θi

i,t (j) +
N∑

k=1
ω

1
θi
ikX

θi−1
θi

i,k,t (j)
) θi

θi−1

, (41)

where θi > 0 is the elasticity of substitution across inputs and αi +
∑

i ωik = 1, αi, ωik ≥ 0,∀i.

Such a production technology delivers the following equilibrium cost shares of labor and inter-
mediate inputs:

αi,t ≡ WtNi,t(j)
MCi,t(j)Yi,t(j)

= αi × 1
αi +

∑N
k′=1 ωik′P̃ 1−θi

k′,t

(42)

ωik,t ≡ Pk,tXi,k,t(j)
MCi,t(j)Yi,t(j)

= ωik ×
P̃ 1−θi

k,t

αi +
∑N

k′=1 ωik′P̃ 1−θi
k′,t

(43)

which are constant in the special case when the production function is Cobb-Douglas (θi = 1). As
with consumption aggregation, time variation in the input cost shares is pinned down by relative
movements in (real) input prices. As before, whenever inputs are complements, a relative increase
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in the price of an input leads to an increase in the cost share of that input, and vice versa whenever
inputs are substitutes.

We now revisit our key quantitative exercises in an economy with fixed menu costs and CES ag-
gregation. We calibrate θc = θi = 0.001, ∀i, to consider an economy where goods are almost perfect
complements, capturing the potential difficulty of substituting both consumption and production
varieties. This may represent the supply chain disruptions that we observed during and after the
Covid pandemic across the globe.

In Figure D.5, we study the propagation of monetary shocks in our economy with CES aggre-
gation. First, once can see that, just like under Cobb-Douglas, networks dampen the response of
frequency to monetary shocks. In other words, our key mechanism of interaction of networks and
the extensive margin continues to hold under CES aggregation. Quantitatively, conditional on the
presence of networks, moving from Cobb-Douglas to CES with θc = θi = 0.001,∀i delivers slightly
larger frequency movements for expansions and slightly smaller frequency movements under mon-
etary contractions. This is because under complements, sectors with rising prices see their input
and consumption shares rise, thus creating a pro-inflation asymmetry.

As for supply disturbances, in Figure D.6 we study the propagation of aggregate TFP shocks.
Just as in the economy with Cobb-Douglas, networks amplify the response of aggregate repricing
frequency to aggregate TFP shocks. Therefore, our key mechanism that networks amplify pricing
cascades continues to hold under CES aggregation. Also, as with monetary shocks, the fact that
sectoral varieties are complements creates a pro-inflation asymmetry: conditional on networks,
CES aggregation amplify frequency movements after negative TFP shocks, and dampens frequency
movements following positive TFP shocks.

8 Application: post-COVID inflation in the Euro Area

We would now like to assess whether the novel interaction between networks and pricing cascades
is important for quantitatively explaining macroeconomic dynamics in the Euro Area in the (post-
)Covid era. To do that, we feed four shock series into our model, corresponding to four major
drivers of business cycles: money supply, energy price movements, food price movements and the
dynamics of earnings in the labor market. We show that when subject to those four series, our
model successfully captures the rise in the aggregate repricing frequency as well as the surge in
consumer price inflation in the Euro Area. At the same time, removing either state-dependent
pricing or networks dramatically worsens the quantitative performance of the model.

8.1 Matching selected time series

In our exercise, we consider four exogenous shock series. First, we feed in the Euro Area nominal
GDP in order to approximate the aggregate money supply series {Mt}2024:6

2019:1. Second, we are going
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Figure 15: Explaining the observed surge in frequency and inflation surge

(a) Baseline model: menu costs and networks

(b) Alternative models

Notes: the figure shows the model-implied changes in aggregate frequency of adjustment and aggregate CPI inflation
versus the actual observed values in the Euro Area. Panel (a) considers the baseline model with production networks,
whereas panel (b) considers an an otherwise identical economy without networks.

to estimate an exogenous TFP process in the labor union sector {AUNION
t }2024:6

2019:1 so as to exactly
match the Euro Area nominal hourly earnings series in equilibrium. Third, we fit an exogenous
TFP process in the “Mining and Quarrying” sector {AENERGY

t }2024:6
2019:1 in order to exactly match the

real IMF Energy Price Index in equilibrium. Finally, we also feed in an exogeneous TFP series in
the “Crop and Animal Production” sector {AFOOD

t }2024:6
2019:1 in order to exactly match the real IMF

Food Price Index.

8.2 Explaining the surge in frequency and inflation

Figure 15 shows the actual vs. model-implied changes in aggregate frequency of adjustment and
aggregate CPI inflation in the Euro Area. In panel (a), one sees that the baseline non-linear
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model with state-dependent pricing and production networks successfully produces a surge in the
aggregate frequency of adjustment of the magnitude observed in the Euro Area microdata. In
addition, the baseline model can also generate an increase in aggregate CPI inflation of the same
magnitude as observed in the actual data.

At the same time, as can be seen in panel (b) of Figure 15, an otherwise identical model without
production networks fails to match the data, both when it comes to the frequency of adjustment
and when it comes to CPI inflation. One sees that the aggregate frequency of adjustment remains
essentially flat in the model without networks, apart from a minor uptick at the very beginning. At
the same time, the model without networks generates an inflation increase only up to 4% annualized,
while in the data it increased to as much as 10%.

9 Conclusions

In this paper, we develop and solve a novel quantitative dynamic general equilibrium model that
allows us to study the transmission of large aggregate and sector-specific shocks in economies
with realistic input-output linkages and state-dependent pricing decisions as in Golosov and Lucas
(2007). Our framework makes predictions about the interactions of production networks with
pricing decisions at the extensive margin, which is also quantitatively relevant for the dynamics of
macroeconomic aggregates.

For aggregate nominal shocks, such as a change in the money supply, production networks
shrink the magnitudes of desired price changes at the firm level, which in turn compresses the sizes
of price gaps for all firms. As a result, the presence of networks slows the extensive margin of
price adjustment decisions, lowering the response of the aggregate repricing frequency. At the same
time, large aggregate and sector-specific total factor productivity (TFP) shocks interact with the
production network in a manner opposite to that under monetary shocks. In particular, production
networks amplify firm-level desired price changes following TFP shocks, expanding the price gaps,
and making the decision to adjust more likely, ceteris paribus. As a result, large negative TFP
shocks can lead to fast increases in the aggregate repricing frequency, and to rapid inflationary
surges.
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A Proofs

Proof of Lemma 1. We want to find a second-order approximation of the firm-level profit function
D̃i,t(j) in the log quality-adjusted real price of that firm log P̃i,t(j) near the optimum log P̃ ∗

i,t. By
definition of the optimal reset price, ∂D̃i,t(j)

∂ log P̃i,t(j) |P̃i,t(j)=P̃ ∗
i,t

= 0. As for the second derivative, one can
show that:

∂2D̃i,t(j)
∂ log P̃i,t(j)2 =

[
(1 − τi,t)e(1−ϵ) log P̃i,t(j)(1 − ϵ)2 − ϵ2Q̃i,te

−ϵ log P̃i,t(j)
]

× P̃ ϵ
i,tYi,t. (A.1)

Evaluating the second derivative at log P̃ ∗
i,t, and after some algebra one obtains:

∂2D̃i,t(j)
∂ log P̃i,t(j)2 |P̃i,t(j)=P̃ ∗

i,t(j) = −(ϵ − 1)(1 − τi,t)
[
P̃i,t/P ∗

i,t

]ϵ−1
λi,t. (A.2)

Therefore, one can write the second-order approximation as:

D̃i,t = D̃∗
i,t + 1

2
∂2D̃i,t(j)

∂ log P̃i,t(j)2 |P̃i,t(j)=P̃ ∗
i,t(j) × [p̃i,t(j)]2 + O[p̃i,t(j)3], (A.3)

where p̃i,t(j) ≡ [log P̃i,t(j)−log P̃ ∗
i,t] is the firm-level price gap. Inserting the expression for the second

derivative, one obtains:

D̃∗
i,t − D̃i,t = 1

2(ϵ − 1)(1 − τi,t)
[
P̃i,t/P̃ ∗

i,t

]ϵ−1
λi,t × [p̃i,t(j)]2 + O[p̃i,t(j)3]. (A.4)

Proof of Lemma 2. Focusing on period t = 0, a firm adjusts its price if the profit gain from
adjustment exceeds the menu cost:

D̃i,0(j)∗ − D̃i,0(j) ≥ κi,0 (A.5)

Using the approximation for the profit gain in Lemma 1, as well as the menu cost form in Assumption
6, one can further rewrite the adjustment condition as:

1
2(ϵ − 1)(1 − τi,0)

[
P̃i,0/P̃ ∗

i,0

]ϵ−1
λi,0 × [p̃i,0(j)]2 ≥ κi(1 − τi,0)[P̃i,0/P̃ ∗

i,0]ϵ−1λi,0, (A.6)

=⇒ [p̃i,0(j)]2 ≥ 2κi

ϵ − 1 . (A.7)
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Using the expression for the price gap in (28), as well as the normalization pi,−1(j) = log ϵ
ϵ−1

1
1−τ i

,
the adjustment condition becomes:

∣∣∣∣∣−σiεi,0(j) − m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0

∣∣∣∣∣ ≥
√

2κi

ϵ − 1 . (A.8)

Therefore, the inaction region is given by:

[σiεi,0, σiεi,0] = −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 ±

√
2κi

ϵ − 1 , (A.9)

where m0 ≡ log(M0/M−1), γi,0 ≡ log Γi,0 − γi, ai,0 ≡ log Ai,0 and γi ≡ log ϵ
ϵ−1

1
1−τ i

Proof of Proposition 1. Before providing a proof for Proposition 1, it is useful to formally estab-
lish an auxiliary technical result:

Lemma A1. Define f+(x; c) ≡ Φ(c+x)−Φ(−c+x) and f−(x; c) ≡ Φ(c−x)−Φ(−c−x), where c > 0
is a parameter and Φ(.) is standard normal CDF. Then both f+(x; c) and f−(x; c) are decreasing in
x for all x > 0.

Proof. First, consider f+(x; c). Notice that f
′

+(x) = Φ′(c + x) − Φ′(−c + x) = ϕ(c + x) − ϕ(−c + x),
where ϕ(.) is standard normal PDF. Hence, f

′

+(0) = ϕ(c) − ϕ(−c) = 0. As for any x ∈ (0, c],
one can deduce that f

′

+(x) = ϕ(c + x)︸ ︷︷ ︸
<ϕ(c)

− ϕ(−c + x)︸ ︷︷ ︸
>ϕ(−c)

< 0. Further, for any x > c it follows that

f
′

+(x) = ϕ(c + x) − ϕ(−c + x) < 0, since standard normal PDF is decreasing in positive inputs. All
in all, we conclude that f

′

+(x) < 0 for all x > 0.
Similarly, f

′

−(x) = −Φ′(c − x) + Φ′(−c − x) = −ϕ(c − x) + ϕ(−c − x). As before, f
′

−(0) =
−ϕ(c) + ϕ(−c) = 0. For any x ∈ (0, c], f

′

−(x) = − ϕ(c − x)︸ ︷︷ ︸
>ϕ(c)

+ ϕ(−c − x)︸ ︷︷ ︸
<ϕ(−c)

< 0. As for any x > c,

f
′

−(x) = −ϕ(c − x) + ϕ(−c − x) < 0, since standard normal PDF is increasing in negative inputs. In
total, we conclude that f

′

−(x) < 0 for all x > 0.

Armed with the additional result in Lemma A1, we are now ready to prove Proposition 1. Con-
sider a monetary expansion m0 > 0. The probability that a firm draws an idiosyncratic innovation
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that lies in the inaction region following the monetary expansion is given by:

Pr(εi,0 ≤ εi,0(j) ≤ εi,0) = Φ
(

1
σi

√
2κi

ϵ − 1 − 1
σi

{
m0 +

N∑
k=1

ωik log P k,0

})

− Φ
(

− 1
σi

√
2κi

ϵ − 1 − 1
σi

{
m0 +

N∑
k=1

ωik log P k,0

})

= f−

(
1
σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
, (A.10)

where f−(.) is defined in Lemma A1. Now, as long as the pass-through of the monetary expansion to
sectoral prices is incomplete, log P̃k,0 < 0, ∀k, it follows that m0 +

∑N
k=1 ωik log P k,0 < m0. Moreover,

since f−(.) is falling in its positive inputs, it immediately follows that:

f−

(
1
σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
> f−

(
1
σi

m0; 1
σi

√
2κi

ϵ − 1

)
. (A.11)

Hence, ceteris paribus, the probability of drawing a shock in the inaction region following a monetary
expansion is higher in the economy with networks.

Similarly, consider a monetary contraction m0 < 0. The probability that a firm draws an id-
iosyncratic innovation that lies in the inaction region following the monetary contraction is given
by:

Pr(εi,0 ≤ εi,0(j) ≤ εi,0) = Φ
(

1
σi

√
2κi

ϵ − 1 + 1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

})

− Φ
(

− 1
σi

√
2κi

ϵ − 1 + 1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

})

= f+

(
1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
, (A.12)

where f+(.) is defined in Lemma A1. Now, as long as the pass-through of the monetary contraction
to sectoral prices is incomplete, log P̃k,0 > 0, ∀k, it follows that −m0 −

∑N
k=1 ωik log P k,0 < −m0.

Moreover, since f+(.) is falling in its positive inputs, it immediately follows that:

f+

(
− 1

σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
> f+

(
− 1

σi
m0; 1

σi

√
2κi

ϵ − 1

)
. (A.13)

Hence, ceteris paribus, the probability of drawing a shock in the inaction region following a monetary
contraction is higher in the economy with networks.
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Proof of Proposition 2. Consider a productivity deterioration ai,0 < 0 and/or a rise in desired
markups γi,0 > 0 in sector i. The probability that a firm in sector i′ (which may or may not be the
same as i) draws an idiosyncratic innovation that lies in the inaction region following productivity
deterioration/markup increase in sector i is given by:

Pr(εi′,0 ≤ εi′,0(j) ≤ εi′,0) = Φ
(

1
σi′

√
2κi′

ϵ − 1 − 1
σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

})

− Φ
(

− 1
σi′

√
2κi′

ϵ − 1 − 1
σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

})

= f−

(
1

σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

}
; 1

σi′

√
2κi′

ϵ − 1

)
,

(A.14)

where f−(.) is defined in Lemma A1. Now, as long as the productivity deterioration/markup increase
in sector i leads to a rise in sectoral prices of all other sectors, log P̃k,0 > 0, ∀k, it follows that
−ai′,0 + γi′,0 +

∑N
k=1 ωik log P k,0 > −ai′,0 + γi′,0, ∀i′. Moreover, since f−(.) is falling in its positive

inputs, it immediately follows that:

f−

(
1

σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

}
; 1
σi′

√
2κi′

ϵ − 1

)
< f−

(
1

σi′
{−ai′,0 + γi′,0} ; 1

σi′

√
2κi′

ϵ − 1

)
.

(A.15)
Hence, ceteris paribus, the probability that a firm in sector i′ draws shock in the inaction region
following a productivity deterioration/markup increase in sector i is lower in the economy with
networks.

Similarly, consider a productivity improvement ai,0 > 0 and/or a fall in desired markups γi,0 < 0
in sector i. The probability that a firm in sector i′ (which may or may not be the same as i) draws an
idiosyncratic innovation that lies in the inaction region following productivity improvement/markup
decrease in sector i is given by:

Pr(εi′,0 ≤ εi′,0(j) ≤ εi′,0) = Φ
(

1
σi′

√
2κi′

ϵ − 1 + 1
σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

})

− Φ
(

− 1
σi′

√
2κi′

ϵ − 1 + 1
σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

})

= f+

(
1

σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

}
; 1

σi′

√
2κi′

ϵ − 1

)
,

(A.16)

where f+(.) is defined in Lemma A1. Now, as long as the productivity improvement/markup decrease
in sector i leads to a fall in sectoral prices of all other sectors, log P̃k,0 < 0, ∀k, it follows that
−ai′,0 + γi′,0 +

∑N
k=1 ωik log P k,0 < −ai′,0 + γi′,0, ∀i′. Moreover, since f+(.) is falling in its positive
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inputs, it immediately follows that:

f+

(
− 1

σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

}
; 1
σi′

√
2κi′

ϵ − 1

)
< f+

(
− 1

σi′
{ai′,0 − γi′,0} ; 1

σi′

√
2κi′

ϵ − 1

)
.

(A.17)
Hence, ceteris paribus, the probability that a firm in sector i′ draws shock in the inaction region
following a productivity deterioration/markup increase in sector i is lower in the economy with
networks.

Note that while we provide a proof for sector-specific productivity/markup shocks, results are
equivalent for aggregate productivity/markup shocks. This is the case since an aggregate productivity
shock a is merely a combination of equally-sized sector-specific productivity shocks ai = a, ∀i, and
similarly for an aggregate markup shocks.
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B Additional calibration details (Euro Area)

Table B.1: Sectors with Consumption Weights, Suppliers, and Customers Centrality

Sector Name Consumption Supplier Customer
Share Centrality Centrality

Crop and animal production 0.0290 2.1266 3.4452
Fishing and aquaculture 0.0039 0.1070 3.2103
Mining and quarrying 0.0051 2.5263 3.1919
Food and beverages 0.1430 3.2264 3.9448
Textiles, clothes, leather 0.0403 1.4829 3.6296
Wood and wooden products 0.0044 1.3072 3.6121
Paper and paper products 0.0079 2.6301 3.9664
Printing and recorded media 0.0035 1.0667 3.3331
Coke and petroleum products 0.0398 3.0308 4.3485
Chemicals and chemical products 0.0162 6.1838 4.2462
Pharmaceuticals 0.0140 0.7374 3.4977
Rubber and plastic 0.0088 2.0056 3.7245
Non metallic minerals 0.0066 0.9865 3.3615
Metal products 0.0081 3.2480 3.1201
Computer and electronics 0.0175 1.9379 3.2884
Electrical equipment 0.0115 1.4046 3.3162
Machinery 0.0066 2.1823 3.3086
Motor vehicles 0.0514 1.5453 3.8439
Other transport 0.0057 0.8266 3.6416
Furniture 0.0224 0.6181 3.1077
Repair of machinery 0.0030 1.1591 2.9322
Land and pipeline transport 0.0398 3.6878 2.9952
Warehousing 0.0125 3.9047 3.1653
Accommodation and food services 0.1475 1.0026 2.9424
Publishing 0.0138 0.7571 2.9781
Movies, video, TV 0.0131 1.2814 2.9446
Computer and information services 0.0069 2.5026 2.4193
Financial services 0.0391 4.4781 2.6784
Insurance and pension 0.0502 1.4619 3.2978
Legal, accounting, management 0.0079 6.5099 2.2538
Architectural/engineering services 0.0037 2.0129 2.3319
Science and R&D 0.0020 0.2637 2.4415
Advertising and marketing 0.0020 1.1808 2.8706
Other professional activities 0.0069 0.9650 2.3978
Administration and support 0.0293 7.5903 2.4434
Education 0.0261 0.5206 1.5508
Healthcare 0.0743 0.2930 2.0342
Other personal services 0.0765 1.3971 2.3334
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Figure B.2: Distributions of supplier and customer centrality (Euro Area, 38 sectors)

(a) Supplier centrality (b) Customer centrality

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.

C Details of the numerical algorithm

C.1 Steady state computation on a grid

For each sector, we solve the stationary Bellman equation and price distribution on an evenly
spaced grid of log prices Γ with step size ∆p, pj ∈

[
p, p+ ∆p, ..., p

]
, j = 1, .., J grid points, so

that Vj = V (pj). The expectation E [V (p− σεt+1 − π)|p = pj ] is calculated as T V where we define
transition matrix

T =


T1,1 T1,2 · · · T1,J

T2,1 T2,2 · · · T2,J

...
... . . . ...

TJ,1 TJ,2 · · · TJ,J

 .

with elements

Tj,k =
∫ pk+1/2

p=pk−1/2

ψ

(
p− (pj − π)

σ

)
dp = Ψ

(
pk+1/2 − (pj−π)

σ

)
− Ψ

(
pk−1/2 − (pj − π)

σ

)
,

and where pk−1/2 ≡ (pk−1 + pk)/2, pk+1/2 ≡ (pk + pk+1)/2, ψ(·) is the standard normal probability
density function, and Ψ(·) is the standard normal cumulative distribution function.
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Figure B.3: Matching pricing moments for each sector

We also define the vectors

ϕ =


ϕ1

ϕ2
...
ϕJ

 , η =


η1

η2
...
ηJ

 , V =


V1

V2
...
VJ

 , D =


D1

D2
...
DJ


The Bellman equation in matrix notation is then given by

V = D + β
[
T ((1 − η) · V ) + T

(
η ·
(
ϕ′V − κw

))]
where · denotes element-by-element multiplication. Vector ϕ distributes unit probability mass to
grid points adjacent to p∗ according to the logit formula

ϕ = exp(V /χ)∑
Γ exp (V /χ)

with χ = 0.0005. Note that ϕ′V performs smooth maximization as in eq.(21).
To solve the problem for N sectors with input-output linkages, we use the following algorithm.

Start with a guess for the vector of steady-state price dispersions ∆k and sectoral taxes τk, then:4

1. Given π = π, compute the transition matrix T

2. Using W
M ≡ w = 1, compute5 ωik = ωik × (Pk/M)1−θi

αi+
∑N

k′=1 ωik′ (Pk′ /M)1−θi
= ωik

4We start with the guess ∆k = 1 and τk = −1/ϵ
5We are searching for taxes τk such that the steady state equilibrium is symmetric in sectoral prices, Pk/M = 1
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3. λ is given by eq.(15) and η by eq.(22)

4. With that, construct the profit matrix D as in eq.(19)

5. Iterate backward on the value function V above to convergence

6. To compute the distribution, iterate forward on

g = (1 − η) · (T ′g) + ϕη′ (T ′g
)
. (C.1)

until convergence of g.

7. Given the distribution, compute the residual vectors resid1 and resid2 as in

resid1 = ∆k − (Pk/M)ϵ
∫ 1

0

(
Pk(j′)
ζk(j′)M

)−ϵ

dj′, (C.2)

resid2 = Pk/M −
∫ 1

0

(
Pk(j′)
ζk(j′)M

)1−ϵ

dj′ (C.3)

8. Search for a vector of sectoral price dispersions and taxes such that resid → 10−14.

C.2 Solving for impulse-responses in sequence space

We compute fully non-linearly the responses to an MIT shock in the space of sequences, iterating
backward in time on the value function and forward in time on the law of motion of the distribution,
under the assumption of perfect foresight. The steps are similar to those for computing the steady
state; only this time we keep track of the sequences over time. We start by guessing sequences
for time t from 1 to T = 500 months, for sectoral prices and price dispersions (our starting guess
simply equals the steady-state value for these variables). The key assumption is that all stationary
variables must return to steady state by period T . Given this initial guess, we compute the price
of the final good and consumption over time using their definitions. Given that, we calculate λt

as in eq.(15). We compute the profits Dt as in eq.(19). Iterating backward in time from t = T to
t = 0, we solve for the value function as in eq.(21). Given the value function, we can compute the
gain from adjustment Lt and the adjustment hazard ηt. Once the backward iteration on the value
function reaches period 0, we start from the steady-state distribution and iterate forward in time
on the law of motion of the price distribution from period 1 until period T . Given the distribution,
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we can compute via eq.(7) the sectoral price indices, and by

∆k,t ≡ (Pk,t/Mt)ϵ
∫ 1

0

(
Pk,t(j′)
ζk,t(j′)Mt

)−ϵ

dj′

the sectoral price dispersions. This provides us with an updated guess, with which we repeat the
previous steps until the change in the sequences (of sectoral prices and price dispersions) becomes
near zero.

D Additional results, extensions and robustness

D.1 Additional figures for main text

In Figure D.1 (a) we report the impact responses of sectoral fractions of adjusters to a 10% monetary
shock. First, for all sectors, the fraction of adjusters increases by more in the economy without
networks, relative to the baseline economy with input-output linkages. For some sectors, such as
“publishing”, the percentage of adjusters increases to almost 100%.

Beyond frequency responses, in Figure D.1 (b) we additionally document impact responses of
sectoral price indices, normalized by the size of the monetary shock (10%). Like with the frequency
responses, the baseline economy with networks features a smaller response relative to an otherwise
identical economy without networks.

In Figure D.2(a) we report responses of sector-specific fractions of adjusting firms to a -10%
aggregate TFP shock. First, for all sectors the fraction of adjusters is larger in the baseline economy
with networks, relative to the otherwise identical economy without networks. Second, for a number
of sectors, such as “Warehousing” and “Land and Pipeline Transport” the fraction rises almost
to 100% following the shock. At the same time, for some other sectors, such as “Computer and
Information Services”, the frequency rises relatively modestly.

In Figure D.2(b) we additionally report the impact responses of sector-specific prices to a -10%
aggregate TFP shock. Importantly, for all sectors, the overall price response is larger in an economy
with networks, relative to the otherwise identical economy without networks.

D.2 Cashless limit

The representative household chooses a sequence of consumption, labor supply and one-period
nominal bond holdings to maximize expected lifetime utility:

max
{Ct,Lt,Bt}t≥0

E0

∞∑
t=0

βtu(Ct, Lt), (D.1)
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subject to the period-by-period budget constraint

PC
t Ct +Bt = (1 + it−1)Bt−1 +WtLt +

N∑
i=1

∫ 1

0
Di,t(j)dj + Tt, (D.2)

where Ct is consumption, Lt is labor supply, Bt is the level of nominal bond holdings, Tt is the level
of lump-sum transfers from the government, Di,t(j) are the dividends received lump-sum from firm
j in sector i at time t, ΠC

t =
(
PC

t /P
C
t−1

)
is the gross CPI inflation rate, Wt is the nominal wage

and it is the nominal interest rate set by the central bank.
The nominal interest rate is set by the central bank according to the following Taylor rule:

log(1 + it) = log(Π/β) + ϕπ log(ΠC
t /Π) + εi

t, (D.3)

where Π is the steady-state level of CPI inflation, ϕπ > 1 pins down the strength of the central
bank’s reaction to inflation deviations from target and εi

t is the monetary policy shock.
We assume the following form of households’ preferences:

u(Ct, Lt) = C1−σ
t − 1
1 − σ

− L1+φ
t

1 + φ
. (D.4)

Note that the Golosov-Lucas log-linear preferences which we use in the main text arise as a special
case when σ → 1 and φ = 0.

Given the presence of possibly non-zero steady-state inflation and the non-stationarity of the
quality processes, we appropriately normalize our variables. Unlike in the main text, where we
normalize by money supply, in the current cashless setting, we instead normalize by the aggregate
CPI price level PC

t−1. In particular, we let P̃i,t(j) ≡ Pi,t(j)
ζi,t(j)P C

t−1
be the quality-adjusted real price,

P̃i,t ≡ Pi,t

P C
t−1

be the real sectoral price, and W̃t ≡ Wt

P C
t−1

be the real wage. Then the equilibrium
conditions for the aggregate real variables are given by:

C−σ
t = βEt

[
1 + it
ΠC

t+1
C−σ

t+1

]
(D.5)

Cσ
t L

φ
t = W̃t/ΠC

t (D.6)

Lt = ΠC
t

Ct

W̃t

[
1 −

N∑
i=1

λi,t

(
1 − ∆i,t

Mi,t

)]
+

N∑
i=1

κi,t

∫ 1

0
ηi,t(j)dj. (D.7)

where λi,t is the sectoral Domar weight (sales) share, ∆i,t is the within-sector dispersion of real
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prices and Mi,t is the sectoral markup, which are given by:

λi,t = ωC
i,t +

N∑
k=1

ωk,i,tλk,t
∆i,t

Mi,t
, ∆i,t ≡ P̃ ϵ

i,t

∫ 1

0
P̃i,t(j)−ϵdj, Mi,t ≡ P̃i,t

Q̃i,t
. (D.8)

The real sectoral price indices and marginal costs in turn satisfy:

P̃ 1−ϵ
i,t =

∫ 1

0
P̃i,t(j)1−ϵdj, Q̃i,t = Qi

[
W̃t, P̃1,t, ..., P̃N,t;Ai,t

]
, ΠC

t = PC
[
P̃1,t, ..., P̃N,t

]
.

(D.9)

If the nominal price is not adjusted, then the quality-adjusted real price evolves according to:

pi,t(j) = pi,t−1(j) − σiεi,t(j) − πC
t−1, (D.10)

where πC
t−1 ≡ log ΠC

t−1.
The per-period real profits of a firm are given by:

D̃i,t(j) = P̃ ϵ−1
i,t

[
(1 − τi,t)P̃i,t(j) − Q̃i,t

]
P̃i,t(j)−ϵ × λi,t × Ct × ΠC

t . (D.11)

Finally, consider a firm with real quality-adjusted price p at the end of period t, and let p+ ≡
(p − σiεi,t+1(j) − πC

t ), where πC
t ≡ log ΠC

t . Then this firm’s real value at the end of period t is
given by the following Bellman equation:

Vi,t(p) = D̃i,t(p) +

+ βEt

[
{1 − ηi,t+1 (p+)}

C−σ
t+1

C−σ
t

ΠC
t

ΠC
t+1

Vi,t+1(p+)
]

+

+ βEt

[
ηi,t+1 (p+)

C−σ
t+1

C−σ
t

ΠC
t

ΠC
t+1

(
max

p′
Vi,t+1

(
p′)− κi,t+1W̃t+1

)]
.
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Figure D.1: Sectoral responses to a monetary shock

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.
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Figure D.2: Sectoral responses to a aggregate TFP shock

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.
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Figure D.3: Frequency and GDP responses to monetary shocks: CalvoPlus

(a) Aggregate frequency response (b) Impact GDP response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.

Figure D.4: Frequency and inflation responses to agg. TFP shocks: CalvoPlus

(a) Aggregate frequency response (b) Impact inflation response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.
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Figure D.5: Frequency and GDP responses to monetary shocks: CES aggregation

(a) Aggregate frequency response (b) Impact GDP response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.

Figure D.6: Frequency and inflation responses to agg. TFP shocks: CES aggregation

(a) Aggregate frequency response (b) Impact inflation response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.
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