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Abstract

We experimentally show that game complexity systematically influences individuals’ strategic

sophistication within a refined Ring Game framework. Our novel identification strategy for

higher-order rationality enables us to examine three dimensions of complexity—Informational

Complexity, Structural Complexity, and the Salience of Strategy—within a unified experimental

setting. We are able to identify the ability bounds of players by controlling for subjects’ beliefs

about others, requiring them to interact only with a computerized opponent. Our findings reveal

that all three complexity dimensions significantly impact observed Level-k behaviour, albeit in

distinct ways. Participants tend to exhibit higher levels of strategic sophistication when payoff

matrix entropy is lower, when the Nash equilibrium requires more iterative reasoning, and when

a salient dominant strategy is present. Moreover, prior experience with strategic games plays

a crucial role in individuals’ ability to engage in iterative reasoning. These results highlight

that strategic sophistication is neither an inherent nor a fixed trait but is instead shaped by the

complexity of the decision environment and prior experience.
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1 Introduction

An important question in behavioural and experimental economics is whether individuals’

strategic sophistication is an inherent trait or a context-dependent outcome shaped by the deci-

sion environment. While previous studies have documented substantial variation in individuals’

revealed levels of higher-order rationality across different strategic settings (e.g., Georganas, 2015),

the mechanisms driving this variation remain unclear. Strategic decision-making often requires

individuals to engage in iterative reasoning, but the extent to which they can do so may be con-

strained by the complexity of the game they face. Understanding this relationship is crucial, as

it informs both theoretical models of bounded rationality and practical applications in mechanism

design, policy-making, and market behaviour. While the role of complexity in decision-making

has been widely acknowledged (Oprea, 2024), its specific influence on strategic sophistication in

game-theoretic environments has yet to be systematically examined.

In this paper, we design a novel N-Player N-Choice Ring Game, building on the framework of

Kneeland (2015), to examine how game characteristics shape players’ strategic sophistication under

the Level-k theory. Our design ensures that players at different levels of reasoning make distinct

choices, providing a straightforward and transparent identification strategy. To control for subjects’

beliefs, we have human participants interact with computer-controlled opponents programmed to

play the Nash equilibrium strategy, thereby fixing subjects’ expectations about their opponents

and eliciting their best responses at their highest level of sophistication. This experimental design

allows us to systematically vary game complexity and identify its causal effect on observed strategic

sophistication.

This paper provides novel evidence that individuals’ observed strategic sophistication is sys-

tematically influenced by the complexity of the game they are playing. Across a range of games,

we find that subjects exhibit, on average, a shift of more than one level of reasoning, a substantial

effect given that the highest identifiable level in most of our games is Level-4. The proportion of

Level-4 or above players ranges from 24.2% to 67.7%. These findings challenge the conventional

view that strategic sophistication is an inherent trait of individuals or endogenously decided by the

game stake or belief in other players (Alaoui and Penta, 2015). Instead, we argue that the revealed

level of strategic sophistication is context-dependent and shaped by the characteristics of the game
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itself.

A key feature of our experimental design is the elimination of belief-based confounds. Prior

research suggests that observed cognitive levels depend not only on individuals’ inherent reasoning

abilities but also on their beliefs about the sophistication of others (Agranov et al., 2012; Alaoui

et al., 2020). To isolate the causal effect of complexity on ability to perform higher-order iteration,

our experiment replaces strategic interaction between human subjects with interactions against

computerized opponents. This design ensures that observed differences in reasoning levels are not

driven by expectations about others’ behaviours but rather reflect the intrinsic cognitive demands

imposed by the game itself.

We further disentangle game complexity into three distinct dimensions: informational com-

plexity, structural complexity, and the presence of salient strategies. Our results reveal that in-

creased informational complexity reduces subjects’ observed strategic sophistication, whereas struc-

tural complexity enhances it1. Notably, the positive effect of structural complexity is amplified when

informational complexity is high, suggesting an interaction between these two dimensions. Addi-

tionally, we find that the existence of a dominant strategy significantly increases subjects’ observed

levels of reasoning. These findings highlight the multifaceted nature of game complexity and its

pivotal role in shaping strategic sophistication.

Finally, we provide evidence that individuals with greater exposure to formal game theory tend

to exhibit higher levels of strategic reasoning and are more likely to select equilibrium strategies.

This challenges the traditional assumption that equilibrium behaviour emerges naturally and in-

stead suggests that it may be acquired through learning and experience. Given the relative paucity

of research on this topic, our findings open an important avenue for future work on the role of

education and training in the development of strategic reasoning abilities.

This paper contributes to several strands of literature, foremost among them being the research

on bounded rationality. The limitations of Nash equilibrium in explaining experimental results from

games of initial play have long been recognized (Camerer, 2003). A widely adopted alternative is

to assume heterogeneous levels of strategic sophistication among subjects, a framework formalized

1Some players’ true reasoning levels may not be revealed in games where the Nash equilibrium requires only
a lower level of reasoning. Increasing the level required to reach the Nash equilibrium naturally raises the overall
average level. However, beyond this mechanical effect, we also observe an increase in reasoning levels among players
who were not restricted in games with lower structural complexity.
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in Level-k and Cognitive Hierarchy models (Nagel, 1995; Costa-Gomes et al., 2001; Camerer et al.,

2004).

However, an increasing body of literature has documented that observed strategic sophisti-

cation is not consistent across different types of games. Georganas et al. (2015)find that while

reasoning levels are stable within a given family of games, neither the absolute levels nor the rank-

ing of individuals’ sophistication exhibit cross-game consistency. Similarly, Hyndman et al. (2022)

studies a set of normal-form games and reports that 77% of subjects do not maintain stable reason-

ing levels across different game environments. These findings suggest that an individual’s strategic

sophistication is not fixed but context-dependent, though the precise ways in which it depends on

context remain unexplored

To address this inconsistency, our study builds on the framework of Kneeland (2015), who

is the first to introduce the network ring game as a method for identifying subjects with different

levels of thinking. While Kneeland’s framework provides a rigorous approach to distinguishing

strategic sophistication, our paper advances the identification strategy by simplifying the original

design while preserving its key strengths, such as the independence of Level-0 specification (See

Section 3.1 for details). This refinement enables a more practical and scalable investigation of how

different dimensions of game complexity shape strategic reasoning within a unified experimental

setting.

Beyond an individual’s intrinsic ability to engage in higher-order reasoning, another crucial

determinant of observed strategic sophistication is the belief about the sophistication of others.

Agranov et al. (2012) provide direct evidence that subjects’ choices depend on their beliefs about

their opponents’ reasoning levels by experimentally controlling for beliefs in the 2/3 guessing game.

In particular, their treatment condition includes manipulating participants’ believes by playing

against computer-generated opponents. Alaoui and Penta (2015) extend the analysis to an 11-

20 game, showing that the depth of reasoning is endogenously determined by a combination of

the player’s cognitive ability, their beliefs about opponents’ sophistication, and the payoffs, while

keeping the game’s sophistication exogenous. This highlights the importance of belief formation in

shaping strategic behaviour.

Similar observations have been made in the context of the Ring Game. Researchers have

distinguished between belief-bound and ability-bound subjects, recognizing that observed reasoning
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levels may not solely reflect cognitive limitations but also individuals’ expectations about others’

reasoning capacity. Jin (2021)introduces additional steps in the reasoning process compared to the

one used in Kneeland’s to separate belief-bound players from ability-bound ones and finds that

both cognitive ability and beliefs jointly determine observed strategic sophistication.

In contrast to Jin’s approach, which attempts to separate belief-bound and ability-bound

players ex-post, our study follows Agranov et al. (2012)and Alaoui and Penta (2015)by directly

manipulating players’ beliefs through experimental treatments. By systematically controlling for

beliefs, we directly focus on ability-bound players and also provide indirect evidence on the role of

belief formation in strategic sophistication.

Meanwhile, a growing body of literature highlights the importance of complexity in decision-

making, yet much of this research has focused on individual decision problems rather than strategic

interactions. Our paper contributes to this gap by examining how different dimensions of game

complexity influence higher-order rationality in strategic content.

The complexity of a game can manifest in multiple ways. A well-established strand of research

in individual decision-making, particularly in financial contexts, has shown that complexity system-

atically shifts behaviours away from equilibrium predictions. Breunig et al. (2021) conducted an

investment experiment on a representative group of German households and found that more com-

plicated investment options cause systematically weaker responses to incentives. Similarly, Abeler

and Jäger (2015) experimentally studied how complexity in tax systems affects workers’ behavioral

responses. They found that workers underreact to tax changes in more complex environments, sug-

gesting that cognitive constraints distort decision-making under complexity. Oprea (2020)further

demonstrates that implementing rules is cognitively costly and that individuals exhibit an aversion

to complexity, which affects adherence to optimal decision-making.

Beyond its effect on observed strategic sophistication, our study also examines perceived com-

plexity by analyzing deliberation time. Response time has frequently been used as a measure of

cognitive effort in decision-making tasks (e.g., Alós-Ferrer and Buckenmaier (2020) in the 11-20

game) and has been viewed as a subjective measure of complexity. Grabiszewski and Horenstein

(2022) use response time to gauge tree complexity in decision trees, illustrating how deliberation

duration can capture cognitive constraints. Similarly, Huck and Weizsäcker (1999)find that indi-

viduals prefer simpler decision tasks, as evidenced by their behaviour in lottery choices.
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Another body of literature relevant to this paper examines the impact of experience on strategic

sophistication. Specifically, whether the Level-k behaviour is a natural result of profit-maximizing

or it can be taught or triggered by experience in game theory remains unclear. Marchiori et al.

(2021), using eye-tracking to study a normal-form game, found that comprehensive feedback from

previous games significantly enhances strategic complexity. Game theory experience can be viewed

as analogous, as players with more experience in game theory tend to undergo systematic learning

in the discipline.

The rest of the paper is structured as follows. Section 2 introduces the conceptual background.

Section 3 outlines the experimental design. Section 4 presents the results, and Section 5 discusses

their implications and concludes.

2 Conceptual Background

2.1 Ring Games

The Ring Game is a type of network game characterized by sequential dependencies, designed

to explore decision-making and strategic interaction in circular or interdependent environments. It

was first introduced by Kneeland (2015) as an empirical framework for studying strategic reasoning.

Compared to the traditional Level-k literature, the Ring Game significantly reduces the reliance on

structural assumptions. For instance, distinguishing Level-k reasoning in the classic beauty contest

game requires strong assumptions about the distribution of Level-k types to infer higher-order

rationality from choice data. Kneeland’s framework eliminates the need for these assumptions and

avoids dependence on the specification of level-0 behavior.

This methodological advance provides a robust foundation for examining the relationship

between higher-order rationality and game complexity. However, Kneeland’s framework, which in-

volves only human players, captures higher-order rationality as influenced by both players’ intrinsic

abilities (e.g., cognitive capacities and best-response capabilities) and their beliefs about opponents.

These beliefs include expectations about opponents’ strategies and behaviors.
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2.2 Belief bound and Ability Bound

For a player identified as Level-k(Lk), there are two possible explanations. First, their reason-

ing ability is constrained to allow precisely k iterations of strategic thinking. Second, their behavior

reflects the best response to the belief that their opponent is an Lk-1 player. We define the for-

mer as ability-bound players, whose cognitive capacities have reached their upper limit, preventing

further iterations of reasoning. These players represent the true focus of our study on Lk-level

reasoning. In contrast, we define the latter as belief-bound players, whose capabilities may allow

for additional iterations of reasoning. However, due to their belief that their opponents are of Lk-1,

their best response behaviorally aligns with Lk, without necessitating further reasoning steps. For

these players, the upper limit of their cognitive ability remains unobservable, as it is masked by

their belief structure. This distinction is critical for our analysis, as our framework aims to iso-

late and study ability-bound Lk players, whose strategic reasoning is shaped by inherent cognitive

constraints rather than beliefs about their opponents.

When focusing on the effects of complexity on higher-order rationality, it becomes essential to

disentangle the impact of ability limitations from belief-related factors. This distinction is partic-

ularly crucial because discussing beliefs about others becomes irrelevant when players themselves

struggle to reason effectively in complex environments. Building on Kneeland’s framework, Jin

(2019) addressed this limitation by introducing a sequential game that adds an additional reason-

ing step. This allows the differentiation between ability-bounded and belief-bounded players, as

ability-bounded players fail to perform at level-k reasoning under the added complexity.

While Jin’s method successfully distinguishes belief-bounded from ability-bounded players, it

inherits several limitations of the Kneeland framework. For example, players are required to play the

same game in different roles, implicitly assuming that their level of reasoning (or difficulty of iterated

reasoning) remains consistent across positions. Additionally, this framework assumes no learning

effects, a strong assumption given the repeated use of the same payoff table. Over successive rounds,

players may learn strategic reasoning patterns, leading to potential misclassification of reasoning

levels during identification.

Another limitation arises from the framework’s reliance on multiple plays to identify higher-

order reasoning. To identify level-k reasoning, at least k distinct plays are required. This means
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that increasing the complexity of the task would demand even more plays. Since our primary focus

is on within-subject performance across varying levels of complexity, higher required rounds become

impractical, both in terms of experimental feasibility and the potential for learning effects.

To address these challenges, we developed a novel identification strategy based on Kneeland’s

framework, aiming to eliminate learning effects at the individual level and maintain practical ex-

perimental design. This strategy introduces a robot player approach to distinguish belief-bounded

from ability-bounded players. Instead of having participants repeatedly interact with each other,

as in Kneeland’s setup, we introduce computer-controlled players programmed to always select the

equilibrium choice.

Our game retains the structure of Kneeland’s dominant-solvable design, where a unique Nash

equilibrium exists. The robot players, by playing equilibrium strategies, fully exploit the iterative

reasoning limits of their assigned positions. For example, in a 4-player game Player 4, having a

dominant strategy, only needs to exhibit L1 reasoning to choose the equilibrium option. Players 3,

2, and 1 must demonstrate L2, L3, and L4 reasoning, respectively, to play their optimal choices at

equilibrium.

By programming robot players to consistently perform at their reasoning capacity in all posi-

tions, we eliminate the influence of participants’ beliefs about their opponents. During instructions

and comprehension tests, participants are informed of the robot players’ decision rules. Rather

than explicitly describing the game as dominant-solvable, we use neutral language, explaining that

robot players analyze all payoff tables, assume all players aim to maximize their payoff and select

the highest achievable outcome. This explanation conveys the robots’ decision-making processes

without leading participants to anticipate the dominant-solvable nature of the game.

This design fixes participants’ beliefs about their opponents, ensuring that choices reflect only

their reasoning capacities. For players with Lk reasoning, where k ≥ N or the ability to do iterative

learning is greater than the highest identifiable level (N) of the game, they can identify the only one

dominant strategy of the game and find out the optimal choice using backward induction, which

is the equilibrium strategy. For k ≤ N , the best response reflects the maximal level of iterative

reasoning achievable. By removing the influence of belief-bounded players, our results capture only

ability-bounded participants, isolating the effect of complexity on reasoning ability.
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2.3 Our design

This study builds on the classic framework of the Ring Game introduced by Kneeland (2015)

to investigate subjects’ higher-order rationality, introducing several key innovations to address

limitations in the original design. In Kneeland’s framework, the game involves four players arranged

in a closed-ring structure, each selecting from three possible options. A player’s payoff depends on

their own choice and the choice of their direct opponent in the ring—Player 1 is paired with Player

2, Player 2 with Player 3, and so forth, with Player 4 looping back to Player 1. The structure

allows all payoffs to be captured using four 3×3 payoff matrices.

Our experiment modifies this framework by introducing an N-player, N-choice Ring Game,

where N corresponds to the highest level of reasoning (Lk) that the game can identify. For example,

in a four-player game (N=4), each player is given four choices (N=4), enabling complete separation

of player decisions through the design of payoff matrices. This structure ensures that individuals

with varying reasoning levels will select different options, allowing their reasoning level (Lk) to be

inferred directly from their choice. Unlike traditional frameworks, this revised design allows the

identification of reasoning levels within a single round, significantly reducing the number of rounds

required for analysis.

The innovation retains the conceptual elegance of the original framework while improving its

efficiency and allowing for precise manipulation of game complexity. Additionally, the experiment

employs a within-subject design, providing better control over individual effects and isolating the

impact of game complexity on rationality. These enhancements reduce practical constraints, such

as excessive rounds, while maintaining rigorous analysis of strategic reasoning.

3 Experiment Design

Our experiment implements a variation of the Ring Game described in Section 2, employing

a within-subject design in which human subjects interact with pre-programmed robot players.

3.1 Ring Games

In this experiment, we identify subjects’ Lk levels using a set of 18 N-player, N-choice dominant-

solvable Ring Games, where N varies by treatment (see Section 3.3). These games are designed
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to capture key factors influencing complexity in decision-making, as established in the behavioural

literature. Each game is presented using payoff matrices that summarize all possible choices and

their corresponding payoffs based on different choice combinations. Below is a screenshot of one of

the games used in our experiment.

Figure 1: Screenshot of one of the Ring Games played in the main section

In these matrices, subjects always assume the role of the row player, while the columns rep-

resent the potential choices of their direct opponent. The table displays all possible choices for

each individual and the corresponding payoffs. For example, if Player 1 selects B1 and Player 2

selects A2, Player 1 receives a payoff of 8. If Player 4 selects A4, their payoff is 7. Throughout

the experiment, human subjects always play as Player 1, while their opponents are robot players

programmed to always select the equilibrium strategy. Subjects are informed of this rule before

the experiment begins and can refer to printed instructions at any time.

In each round, human and robot players make their decisions simultaneously. However, sub-

jects do not receive feedback on the robot players’ choices; they only learn their own payoffs at the

end of the experiment. Each game lasts between 30 seconds and 3 minutes. The ”Submit” button

becomes available only after 30 seconds, and a timer is displayed on the top right throughout the

round. When only 30 seconds remain, the timer turns red. If a subject fails to make a selection

before time expires, they are automatically advanced to the next game. Subjects can highlight any

cell by clicking on it, with choice cells highlighted in green and payoff cells highlighted in yellow.
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To control for individual differences, the experiment employs a within-subject design. Each

subject participates in 9 groups of games, with each group containing 2 Ring Games, totaling 18

Ring Games. This structure follows the Natural Exclusivity condition used in Kneeland (2015),

where the only difference between the two games within a group is the location of specific options

(see Section 3.2 on the identification strategy). The 18 games consist of: 2 games with 3 players

and 3 choices, 2 games with 5 players and 5 choices, and 14 games with 4 players and 4 choices.

3.2 Identification strategy

As discussed in Section 2, this paper introduces an innovative method to identify subjects’ level

of reasoning. Rather than imposing assumptions on subjects, we embed the necessary identification

mechanism directly within the game’s payoff matrices. The specially designed N-player, N-choice

Ring Games offer several key advantages. First, the number of choices available to each player, N,

is equal to the total number of players, ensuring that the highest identifiable level of reasoning is

LN. In theory, this allows us to separate L1 through LN subjects by designing games where their

choices systematically diverge based on their iterative reasoning ability. Second, the structure of

the Ring Game ensures that boundedly rational Lk players do not engage in an additional round

of reasoning beyond their cognitive limit. This enables us to construct payoff matrices that guide

subjects of different Lk levels toward distinct choices.

Finally, in our dominance-solvable Ring Game, only one player has a dominant strategy, and

the unique Nash equilibrium is derived through backward induction. Critically, the reasoning steps

required to reach equilibrium vary across players, depending on their strategic role in the game.

Consequently, observing a player’s choice allows us to infer their level-k reasoning ability with

precision.

Using the Ring Game illustrated in Figure 1 as an example, the payoff matrices represent one

of the baseline games used in this study. All players have access to all payoff matrices. Human

subjects always act as Player 1 (P1), while the remaining players are computer-controlled (robot)

players programmed to act as equilibrium players. Among the four players, Player 4 (P4) has a

dominant strategy, and the game’s unique equilibrium can be derived via backward induction. For

this game, there exists only one Nash equilibrium (B1, A2, D3, C4). At the Position of P4, an

L1 player has sufficient intelligence to recognize the dominant strategy C4. While at the position
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Figure 2: Example of one Ring Game

of P3, and P2, it requires at least L2 and L3 respectively to recognize the dominant strategy of

P4 is C4 and iteratively figure out the best response D3, A2. At the position of P1, which is the

only position played by our human subjects, it requires at least L4 to identify the only dominant

strategy among all the players and best respond to this by choosing B1. So, if a subject chose B1

at position P1, we know that he/she is at least an L4 player.

Since our human subject only plays the role of P1, we still need the identification strategy for

L0 to L3 player at P1. The identification strategy begins with the assumption that L0 players are

non-strategic, selecting options randomly. L1 players, by contrast, best respond to L0 behaviour

or employ heuristic decision rules such as risk dominance or aiming for the highest possible payoff.

The payoff matrix is designed to ensure that these rules lead to the same choice. For instance, in

the payoff matrix above, option C1 satisfies multiple criteria: it has the highest expected payoff

when assuming Player 2 (P2) chooses randomly, it aligns with the risk-dominant strategy, and it

contains the maximum payoff value of 10 in the first matrix.

L2 players best respond to an opponent being one level lower than theirs, that is L2 players

at P1 must consider their own payoff matrix as well as P2’s and believe their opponent P2 is at

L1. A rational L1 player at P2, will repeat the decision process of L1 as discussed previously and

choose D2. Therefore, the best response for L2 at P1 will be to choose A1. At this stage, this L2

player is only an ability-bounded L2 player and cannot be a belief-bounded L3 or above player,

meaning their behaviour only reflects their reasoning capacity rather than they are best responding

to some incorrect beliefs. Use an example to illustrate this, when a belief-bounded L3 player at P1

chose A1, this can be a best response of believing P2 is L2 and choosing D2, based on the Level-k

literature, this also implies that P3 believes P2 do this because his opponent P3 is of L1 and is
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choosing B3. However, that’s where the conflict arises, if P3 is of L1, he should have the ability

to reason out that B3 is a never best response at P3 and shouldn’t choose B3 as a rational player.

This means that an L2 player at P2 should also know this and update his behavioural accordingly,

and an L3 player at P1 should also update this and never choose A1. Therefore, if a player chooses

A1 at P1, he cannot be a belief-bounded L3 player, but only an ability-bounded L2 player. Because

only L2 player at P1 will believe his opponent is of L1 and only look at the payoff matrices of P1

and P2 but not P3. As long as the player checked the payoff matrices of P3, he should figure out

that B3 should never be chosen.

The identification of Level-3 players follows a similar pattern. L3 players can perform up

to three iterations of reasoning. Such players, assuming P3 selects C3, would infer that P2 will

choose B2, leading to D1 as P1’s response. Importantly, this behaviour remains “ability-bound,”

as one additional iteration would reveal that B4 is not a best response. Given that P4 has a

dominant strategy, the only optimal response for P1 is B1. Consequently, subjects selecting B1 can

be identified as Level-4 or higher.

Figure 3: Iteration Path for players of different Levelwhere C4 for Player 4 is the only dominant
strategy among the 4 matrices

The iteration path of different Lk player is highlighted in different colours, equilibrium choice

or the choice path for players of L4 or above is highlighted in yellow, L3 players’ iteration path is in

green, L2’s path in purple and L1’s in blue. The only dominant strategy of all the payoff matrices

is circled in yellow. In summary, for human players who always play at P1, if they are of level-4 or

above, they should go through all the payoff matrices and iteratively figure out that only P4 has a

dominant strategy, and have the ability to do backward induction to best response at P1 position.

The iteration path for L4 or above player is C4-D3-A2-B1, once figure out the dominant strategy
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of C4, L4 player has sufficient cognitive ability to do best respond at the position of P3, P2, which

results in belief P3 will choose D3 and P2 will chose A2, and finally, as P1, will choose B1. Similarly,

L3 player can only do three times of iteration and go through the path C3-B2-D1, and L2 player’s

path is D2-A1, while L1 player will assume their opponent P2 playing non-strategically and best

respond by choosing the risk dominant strategy C1.

Figure 4: An Example of Applying Natural Exclusive Restriction

One concern in this framework is the limited number of choices, which may lead to misidenti-

fication. To address this, the study incorporates Kneeland’s (2015) natural exclusivity restriction

that subjects do not respond to payoff changes exceeding their capacity for reasoning, by relabelling

options and repeating the game, expanding the choice portfolio from 4 to 16. Since the player of

Lk will not be affected by the changing in Lk+1’s choice, or in our game, an Lk player at P1 will

not take into account the payoff table of Pk+1’s. As shown in the screenshots below, from Round
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1 to Round 2, we changed the order of P4’s dominant strategy, in Round 1, P4’s dominant strategy

is C4 while in Round 2, P4’s dominant strategy is A4.

To retain the attractive features of our Ring Games that we can lead people of different

levels to different choices, payoff matrices for P1 and P3 are also relabelled. Otherwise, some risk-

dominant choices will correspond to the equilibrium choice and we will not be able to separate

belief-bound players and ability-bound players. For example, if we only change the order of P4’s

dominant strategy as following P4’s payoff table from Round 2, and keep using the other three

payoff matrices from Round 1, we will have the equilibrium choice D2 of P2 the same as the risk

dominant strategy, which will violate our identification strategy. And since we don’t change the

numbers inside the payoff matrices but purely the order of the payoff matrices, this will not affect

the complexity we want to measure and also prevent subjects from learning from the same payoff

matrices.

Moreover, since we don’t make any assumptions about the behaviour of L0 players and assume

they are choosing randomly, only subjects who exhaust their time without selecting an option are

classified as L0 players. For conservative analysis, a subject’s final level for each game is assigned

as the lower level when ambiguous behaviour is observed during playing the two rounds of game in

one group, thereby minimizing the risk of misidentification. Following table summarize the choice

portfolio for Lk players when playing the above two rounds of games. We are using a conservative

identification strategy, there will be a lower probability of being identified at a higher level.

L0 L1 L2 L3 L4

Time out (C1,A1) (A1,A1) (D1,B1) (B1,B1)

in any (C1,B1) (B1,A1) (B1,D1)

round (A1,C1) (D1,A1) (D1,D1)

(B1,C1) (A1,B1)

(C1,C1) (A1,D1)

(D1,C1)

(C1,D1)

Table 1: Summary of LK Player’s Choice Profile
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3.3 Treatment

Building upon our identification strategy, this study examines how the complexity of games

influences subjects revealed higher-order rationality. The key idea is to systematically vary the

complexity of the game and analyze how individuals adjust their behaviour in response. Since

we employ a within-subject design, we can largely eliminate individual heterogeneity and isolate

changes in iterative reasoning behaviour.

Hypothesis 1: Subjects’ higher-order rationality is affected by the complexity of a

game.

This study further investigate three key faces of complexity, namely the Structural Complexity,

Informational Complexity and the Salience of Strategy.

Structural Complexity

Structural complexity in strategic interactions refers to the extent to which a game’s struc-

ture—defined by the number of players and available choices—affects decision-making. In our

setting, the number of players always equals the number of available choices for identification pur-

poses, meaning that structural complexity is captured by N, where each game consists of N players

and N choices. Instead of fixing N=4, we introduce additional variation by incorporating games

with N=3 and N=5.

Structural complexity is important because it exponentially expands the strategy space. In

a 3 × 3 game, there are only 27 possible choice combinations, whereas in a 4 × 4 game, this

increases to 256, and in a 5 × 5 game, the number of possible combinations escalates to 3,125.

As structural complexity increases, subjects must engage in deeper levels of iterative reasoning.

This may push some players beyond their cognitive constraints, leading to bounded rationality and

reliance on heuristic-based decision-making. Conversely, in less complex strategic environments,

players may find it easier to infer others’ intentions and converge more closely to equilibrium

behaviour. Understanding the role of structural complexity is therefore essential for explaining when

and why individuals exhibit strategic sophistication or systematic biases in interactive decision-

making.

Hypothesis 2: Structural complexity decreases the revealed level of subjects.

We distinguish between a mechanical effect—where increasing N raises the average observed
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level because players with K higher than N are indistinguishable from those with K=N when N is

low—and a broader effect beyond this mechanism. We argue that the latter is stronger, leading to

an overall decrease in observed levels despite the mechanical effect.

Informational Complexity

Informational complexity refers to the level of uncertainty and dispersion in the strategic

environment. While structural complexity alters the strategy space by expanding the number of

possible combinations, informational complexity affects how players perceive and navigate a fixed

strategy space. We manipulate informational complexity by introducing zero-payoff cells into the

payoff matrices. Since all players seek to maximize their payoffs, they will naturally avoid selecting

options that contain a zero payoff and will assume that others do the same. As a result, certain

choice combinations become effectively eliminated from the strategy space, reducing the uncertainty

of the game.

To control for informational complexity, we first define two Baseline Games (B1 and B2)—both

4-player, 4-choice games. Baseline Game 2 (B2) represents the highest informational complexity

within the 4-player, 4-choice games, as its payoff matrix contains no zero-payoff entries. Baseline

Game 1 (B1), by contrast, replaces as many payoffs as possible with zero, dramatically reducing

the 256 possible choice combinations to 36.

We further manipulate informational complexity by increasing the proportion of zero-payoff

cells to approximately 50%. To ensure the identification strategy remains valid, in some cases,

the exact zero-payoff rate deviates slightly from this threshold. Additionally, we introduce two

variations in the allocation of zero-payoff cells:

Half-Zero Game 1 (HZ1): Zero-payoff cells are distributed evenly across all four payoff matri-

ces.

Half-Zero Game 2 (HZ2): Zero-payoff cells are concentrated in the middle two matrices, com-

bining elements from both B1 and B2.

These variations allow us to assess how different distributions of informational complexity

influence strategic reasoning.

Hypothesis 3: Computational complexity decreases the revealed level of subjects,

and only the general computational complexity matters, different methods of allocating

the zero-payoff do not affect the subject’s higher-order rationality.
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Salience of Dominant Strategy and Iteration This treatment examines how the salience

of dominant strategies and the salience of iterative reasoning affect decision-making. In these games,

subjects play against opponents using one payoff matrix from B1 and three from B2.

The salience of Iteration Game (SI): Player 1’s payoff matrix is taken from B1, making iterative

reasoning the optimal response. Since Player 1’s best response is relatively clear, the key challenge

is to infer the opponent’s strategy, encouraging deeper iterative reasoning.

The salience of Dominant Strategy Game (SD): Player 4’s payoff matrix is taken from B1,

making Player 4’s dominant strategy more salient. This, in turn, reduces uncertainty regarding the

opponent’s behaviour, as subjects can more easily predict Player 4’s actions.

By contrasting these two conditions, we can evaluate how players adjust their reasoning when

the need for iteration is explicit versus when a dominant strategy is readily identifiable.

Hypothesis 4: Salience of Dominant Strategy or Iteration increase the revealed

level of subjects.

Revealing Game

Finally, we introduce a Revealing Game to further examine how subjects process and utilize

available information. In this treatment, payoffs are initially hidden, requiring subjects to click

on each cell to reveal the values of the payoff. This design allows us to track the decision-making

process in real-time, capturing how subjects explore the strategy space and weigh different options.

Figure 6 presents the detailed payoff matrices used in our experiment.

3.4 Complexity Measurements

In this study we employ both ex-ante and ex-post measurements of complexity to capture the

subjective and objective dimensions of game complexity. The three ex-ante measurements closely

correspond to the three treatments in the experiment. We also include ex-post measurements

including response time and click history to measure the perceived complexity of subjects.

Ex-ante measurements

We measure Structural Complexity using the highest identifiable level- k(Lk) in each game,

denoted as N, which captures both the number of available choices per player and the number of

players involved. Additionally, we introduce a dummy variable to indicate whether a particular

game design makes certain strategies salient.
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Figure 5: Summary of Treatment

The key distinction in our ex-ante complexity measures lies in our use of entropy as a measure

of informational complexity, replacing the zero-payoff rate. The zero-payoff rate is inherently

restrictive, as it can only be applied when zero-payoff outcomes exist within the payoff matrix. In

contrast, entropy provides a more generalizable approach, allowing for broader application across

different strategic environments. Originally introduced by Shannon (1948) in information theory,

entropy quantifies the uncertainty or unpredictability of a probability distribution. In the context

of the Ring Game, entropy serves as a natural measure of informational complexity, capturing the

extent of uncertainty players face when making strategic decisions. Formally, the formula for the
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entropy H(x) of a game is

H(x) = −
∑
i

P (xi) log2 P (xi) (1)

Where xi is the numbers in all the payoff matrices in one game, P (xi) represents the frequency of

each value in all matrices.

Higher entropy reflects greater informational complexity, as payoffs are more dispersed and

less predictable, increasing the difficulty of identifying optimal strategies. Conversely, lower en-

tropy indicates a more structured and predictable environment, facilitating decision-making. By

employing entropy to analyze informational complexity, we can systematically compare different

strategic environments and assess how uncertainty influences decision-making processes.

Ex-post Measurement

Ex-post measurements primarily capture subjects’ perceived complexity of the game. While

these perceptions do not causally affect revealed higher-order rationality, they reflect the subjective

difficulty players experience. To examine this, we track the time subjects spend on each game and

record their click history for each cell.

Table 1 summarizes the different dimensions of complexity for each game in the experiment.

Notably, the zero-payoff rate is monotonic, entropy is not. As a result, we observe that although

the zero-payoff rate in the SI and SD treatments is not the lowest among all games, entropy

suggests that these games exhibit the highest level of informational complexity. This discrepancy

arises from the fundamental nature of entropy, which captures the dispersion of payoffs within the

matrices. Since we do not differentiate between numerical values in different tables, increasing

the number of zero-payoff entries—as in the transition from B2 to SI and SD—results in a more

uniform distribution of numbers in payoff matrices. As a consequence, the frequency of each payoff

value becomes more evenly spread, leading to greater entropy and, therefore, higher informational

complexity.

3.5 Implementation

The experiment was conducted in the Behavioural Laboratory at the University of Edinburgh

(BLUE) in April 2024. A total of 127 students, including both undergraduates and postgraduates

from various academic disciplines, participated in the study. The experiment was implemented
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Game Entropy
Zero-Payoff

Rate
N

Salience of
Iteration

Salience of
Dominant
Strategy

Average
Time
(s)

Average
Click

(per table)

B1 1.07 78.13% 4 0 0 54.96 2.17
B2 3.10 0.00% 4 0 0 72.81 2.26
3×3 1.40 66.67% 3 0 0 45.69 1.88
5×5 3.08 0.00% 5 0 0 86.65 2.22
HZ1 2.23 48.44% 4 0 0 73.57 2.39
HZ2 2.82 40.63% 4 0 0 84.72 2.40
SI 3.22 18.75% 4 1 0 86.89 2.61
SD 3.22 18.75% 4 0 1 63.46 2.13

Revealing
Game

3.10 0.00% 4 0 0 82.01 12.89

Table 2: Summary of Complexity of Game

using oTree (Chen et al., 2016).

Before beginning the experiment, subjects received detailed instructions about the games and

payment structure, including a comprehensive explanation of the decision rules governing the robot

players. They were provided with printed instructions throughout the session and were required to

pass a comprehension test on robot behaviour and understanding of the game before proceeding.

Out of the 127 participants, 124 successfully passed the test and completed all tasks.

During the experiment, subjects could highlight a cell with a single click and remove highlights

by clicking again. Each participant played all 18 Ring Games, with the order of the main games

randomly predetermined as follows: SI – HZ1 – B1 – 3×3 – 5×5 – SD – B2 – HZ2. To account for

potential order effects, 65 participants played the games in this sequence, while 59 played them in

reverse order. After completing the main games, subjects proceeded to the Revealing Game.

Following the experimental tasks, participants completed a Cognitive Reflection Test (CRT)

consisting of four questions, as well as a demographic questionnaire collecting information on age,

gender, and academic background. Additionally, subjects self-reported their previous experience

with game theory using a five-point scale: from one to five, the degree of understanding is ’Never

Heard of It’, ’Heard of It’, ”Know It but Don’t Know How to Use It”, ’Know It and Can Use It’,

’Good at Using It’.

Subject’s monetary payment consists of three parts, first is a £4 show-up fee, second is a

performance-based payment tied to their choices in the experiment, and the third is a CRT-based
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payment, where subjects earned £0.50 for each correctly answered question. Specifically, four out

of the 18 Ring Games were randomly selected for payment, and the actual values in the payoff

tables were converted into monetary rewards at a rate of £0.25 per point. On average, participants

earned £11.49, and the experiment lasted approximately 45 minutes per session.

4 Results

4.1 Overall Result

The average identified level across all games in our study is 2.49, closely aligning with the 2.31

average level reported in Kneeland’s experiment. Figure 7 presents the distribution of individual-

level average reasoning levels and their standard deviations, where each dot represents an individual

participant. The distribution of average reasoning levels is fairly uniform across the range from 1

to 4, indicating substantial heterogeneity in strategic sophistication. Additionally, most individuals

exhibit a standard deviation above 1, suggesting that the observed sophistication is highly sensitive

to game complexity.

Figure 6: Individual Level and Standard Deviation
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These findings strongly support our central argument that players’ reasoning levels are in-

herently unstable and that game complexity primarily influences those with intermediate levels of

strategic sophistication. The observed variation highlights the importance of considering individ-

ual differences when analyzing strategic behavior, as the response to increasing complexity is not

uniform across participants.

Result 1: Subject levels vary with game complexity. Participants’ reasoning levels

are influenced by the complexity of the games, with notable variations observed across

different conditions.

We show this result further from the game-level data. First, let’s look at the game-level

statistics. Table 2 summarizes the identified levels in each game. We observe considerable variation

in the average reasoning levels across different games. The lowest average level, 2.12, is observed

in Half Zero Game 1 (HZ1), where half of the payoff values in the matrices are zero. In contrast,

the highest average level, 3.18, is found in Baseline Game 1 (B1), where most payoffs are zero.

Given that the highest identifiable level in all games is Level 5, and most games have a maximum

of Level 4, the difference of more than one level between the lowest and highest average suggests a

significant impact of complexity on subjects’ higher-order rationality. In general, average reasoning

levels are higher in Baseline Game 1 and the 5×5 Game, whereas Baseline Game 2, Half Zero 1,

and Salience of Iteration 1 exhibit lower levels.

The varying complexities of the games affect not only the overall reasoning levels achieved

by players but also the distribution of levels across games. Table 2 illustrates the distribution of

subjects’ reasoning levels in different games.

We observe two distinct patterns of strategic sophistication across different games. The first

group consists of games in which equilibrium players are the largest subgroup, including Baseline

Game 1, the 3×3 game, the 5×5 game, SD, and the Revealing Game. Among these, Baseline Game

1 has the highest proportion of Level 4 players, with 67.7% of subjects displaying Level 4 reasoning.

While the 5×5 game has the smallest proportion of Level 4 players (about 20%), it still contains

the second-largest proportion of players at Level 4 or above among all the games (54.9%). The 3×3

game, on the other hand, has the largest proportion of Level 3 players, displaying a distribution

pattern similar to that of Baseline Game 1.

The second group comprises games in which the Level 1 player is the largest subgroup, in-
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Game L0 L1 L2 L3 L4 L5 Average Level

B1 1.6% 18.5% 8.1% 4.0% 67.7% N/A 3.18
B2 4.8% 45.2% 11.3% 8.9% 29.8% N/A 2.14
3×3 0.0% 24.2% 4.8% 71.0% N/A N/A 2.47
5×5 6.5% 29.0% 4.8% 4.8% 20.2% 34.7% 3.07
HZ1 2.4% 51.6% 7.3% 8.9% 29.8% N/A 2.12
HZ2 11.3% 35.5% 8.9% 10.5% 33.9% N/A 2.20
SI 9.7% 34.7% 11.3% 20.2% 24.2% N/A 2.15
SD 3.2% 38.7% 8.9% 4.8% 44.4% N/A 2.48

Revealing Game 4.0% 28.2% 12.1% 14.5% 41.1% N/A 2.60

Table 3: Frequency of levels and the average level in each game

cluding Baseline Game 2, Half-Zero 1 & 2, and SI. These games exhibit similar distributions in the

proportion of players at levels other than L1, where L4 players constitute the second-largest group.

Across these games, reasoning levels reveal a clear bimodal pattern, with most players clustering

at either Level 1 or Level 4. This highlights two distinct approaches among participants: some rely

solely on their own payoff matrices without considering others’ strategies, while others fully recog-

nize the necessity of higher-order reasoning and demonstrate the capability for Level 4 reasoning

or above.

The impact of game complexity is also evident at the individual level. Only 5 participants

maintained the same reasoning level across all 18 rounds, each consistently demonstrating Level 1,

and 7 Nash equilibrium players. In contrast, the remaining 112 participants displayed variability

in their reasoning levels, raising the question of whether these variations resulted from acciden-

tal errors. One concern is that a player might consistently hold a constant reasoning level but

occasionally select an incorrect answer by mistake, leading to a lower revealed level.

To examine this possibility, we assume that a participant’s true reasoning level corresponds to

the mode of their behavior across all games. As the mode is the most frequently observed level, this

assumption minimizes the estimated mistake rate. Mistake rates were then calculated based on how

often a participant’s choices deviated from their most-played level. Among the 124 participants, 5

showed no deviations, and another 5 deviated in only one game2. However, 76.6% of participants

deviated in at least three games, and the average mistake rate was 34.6% (considering only the

2No deviation: 5 players (all L1 players); One deviation: 5 players (all players’ mode level are L1); Two deviation:
19 players (7 of them are Nash equilibrium player)
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seven 4-player games). A mistake rate of over one-third is far too high to be purely accidental.

Further evidence against the error hypothesis comes from logistic regression analysis conducted

at the individual level. At the 95% confidence level, we can reject the null hypothesis that partic-

ipants’ choices come from the same distribution—meaning that their choices do not consistently

align with their mode. Together, these findings indicate that the observed variability in reason-

ing levels cannot be attributed solely to errors; rather, it reflects genuine shifts in participants’

reasoning in response to the complexities of different games.

4.2 Informational Complexity

Result 2: Higher-order rationality decreases as informational complexity increases,

while different methods of reducing informational complexity unchanged the effect on

strategic sophistication.

We begin by examining the primary factor influencing reasoning levels—informational com-

plexity. This effect is most evident when comparing revealed levels in Baseline Game 1 (B1) and

Baseline Game 2 (B2). The key difference between these two games lies solely in their informa-

tional complexity: regardless of whether we measure it using the zero-payoff rate or the entropy

of the payoff matrix, B2 consistently exhibits higher complexity than B1. In contrast, other as-

pects of complexity remain identical across the two games. B1 and B2 thus represent two extreme

conditions—one where the zero-payoff rate is minimized and another where it is maximized.

A striking pattern emerges from this comparison: nearly half of the participants (49.2%)

fall below the 45-degree line, indicating that the majority exhibited lower reasoning levels in the

more complex B2 compared to the simpler B1. This significant drop further reinforces Result

1, demonstrating that individuals’ revealed strategic sophistication is not stable across different

games. Turning to specific changes in reasoning levels, the most common pattern was maintaining

Level 4 reasoning in both games, observed in 35 out of 124 subjects. However, the second-largest

group (32 subjects) experienced a drastic decline, dropping from Level 4 in B1 to Level 1 in B2.

One possible explanation is that informational complexity influences strategic sophistication by

altering the minimum level of reasoning required to solve a game. Lower informational complexity

reduces the number of decision paths a player must consider before making a choice, making the

elimination of strictly dominated strategies more apparent. For a simple decision-making heuristic
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Figure 7: Inidivdual observed Lk in Game B1 and B2

that evaluates all potential choice paths and selects the one yielding the highest payoff, B1 presents

only four viable paths, as each option has only one nonzero payoff to evaluate. In contrast, in B2,

where payoffs are more evenly distributed, the number of possible paths expands exponentially to

44, significantly increasing cognitive demands.

While the B1–B2 comparison captures the impact of informational complexity under extreme

conditions, additional insights can be drawn from the Half Zero Treatment, which introduces in-

termediate levels of informational complexity between B1 and B2. The following graphs illustrate

how individual reasoning levels change with varying proportions of zero payoffs. The vertical axis

represents the game with lower informational complexity. A clear trend emerges: as informational

complexity increases, participants’ reasoning levels tend to decline. This further supports the ar-

gument that game complexity systematically constrains higher-order rationality.
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Figure 8: Individual Observed Lk in B1, B2, HZ1 and HZ2

In the upper pair of graphs, 47.58% of the data points fall below the 45-degree line, indicating

that participants’ reasoning levels generally declined when transitioning from the game with the

highest proportion of zero payoffs (B1) to the Half-Zero games (HZ1 and HZ2). This drop is

substantial—on average, 55.35% of Level 4 players in B1 exhibited lower reasoning levels in HZ1

and HZ2. Compared to the 58.3% drop in Level 4 players when moving from B1 to B2, the decline

is of similar magnitude. However, as the proportion of zero payoffs continues to decrease, the effect

on reasoning levels weakens. Specifically, the decline from the Half-Zero games back to B1 is much

smaller, indicating a diminishing effect of informational complexity on revealed reasoning levels.

The lower pair of graphs further illustrate that as zero payoffs are eliminated, the distribution

of reasoning levels becomes more variable. The decline in Level 4 players is less severe in the

transition from B1 to the Half-Zero games compared to the transition from B1 to B2. For instance,

when comparing HZ1 and B2, 27 participants experienced a decrease in reasoning level, while 29
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participants saw an increase, suggesting a nearly balanced effect. A similar pattern is observed

when comparing HZ2 and B2, though slightly more participants displayed a decrease (33) than

an increase (29). These results suggest that reducing zero payoffs has a stronger impact when the

initial proportion of zero payoffs is already low. However, once the proportion reaches a high level,

the effect diminishes, reflecting diminishing returns on reasoning level adjustments.

Another key finding from this treatment is that the way in which zero payoffs are distributed

does not affect strategic sophistication. In other words, how we lower informational complexity

has no significant impact on the observed reasoning levels. This is evident from the figure above,

where the distributions in the left-hand graphs closely resemble those on the right. Additionally,

regression results confirm that the difference between HZ1 and HZ2 is not statistically significant (p

= 0.872), reinforcing the conclusion that the allocation of zero payoffs does not influence strategic

sophistication.

4.3 Structural Complexity

Result 3: Increasing structural complexity fosters strategic sophistication, and

this effect intensifies as informational complexity rises.

This result is evident from the comparison of revealed reasoning levels in B2 with a 5×5

structure and B1 with a 3×3 structure. The following two figures summarize player behavior

across the four games, both indicating that higher structural complexity leads to increased revealed

reasoning levels. This finding is particularly interesting because it contradicts our initial hypothesis

that greater structural complexity would reduce participants’ reasoning levels.

We identify two main factors driving this result. First is the Embedded Restriction of the

Ring Game. For higher-level participants, it is natural to reveal a higher level of reasoning in

more structurally complex games due to the inherent properties of the Ring Game. However, this

is a limitation of the framework rather than an actual change in reasoning ability. In the Ring

Game, any player whose reasoning level exceeds the equilibrium level is indistinguishable from an

equilibrium-level player based on their choices. For example, in the 3×3 game, the equilibrium

strategy can be reached by a Level 3 player. Therefore, any participant with a reasoning level

higher than Level 3 will make the same decision as a Level 3 player, making it impossible to

differentiate between them. As a result, in games with lower structural complexity, the highest
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Figure 9: Individual Observed Lk in B1 and 3×3 Game

observed reasoning level is a mixture of equilibrium-level players and those with even higher actual

reasoning levels.

This pattern is particularly pronounced in the comparison between B2 (Baseline Game 2) and

the 3×3 game, where computational complexity is low. We find that 80 subjects were classified as

Level 4 in B2 but could only be classified as Level 3 in the 3×3 game due to this limitation. A similar

pattern emerges when comparing B2 with the 5×5 game, where computational complexity is high.

In this case, 25% of participants were constrained by the game’s structure—31 subjects were actually

Level 5 or above but could only be identified as Level 4 in the other game. Thus, informational

complexity amplifies the effect of structural complexity: when informational complexity is higher,

the impact of increasing structural complexity becomes more pronounced.

Beyond the limitations of the Ring Game, we identify a second driving force behind the increase
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Figure 10: Individual Observed Lk in B2 and 5×5 Game

in revealed reasoning levels when structural complexity increases. While we cannot separately

identify players who were genuinely displaying Level 4 behavior in B2 but moved to Level 5 in

the 5×5 game, we can analyze players who had not yet reached the ability limit in the 4×4 game.

Among these 87 players, more than half (51.7%) displayed an increase in their revealed reasoning

level.

This suggests that beyond the structural limitations of the Ring Game, the true effect of

increasing structural complexity is still significant. There are two possible explanations for this:

Increased structural complexity makes additional information more salient, prompting participants

to consider higher-order reasoning that they may not have engaged with in simpler games. Players

often rely on heuristics when making decisions. The introduction of a more complex structure may

cause these heuristics to fail, forcing participants to engage in deeper iterative reasoning.
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4.4 Salience

The results indicate that the Salience of Dominant Strategy treatment exhibits a higher aver-

age reasoning level, suggesting that these two treatments have distinct effects on subjects’ strategic

sophistication. This finding is surprising, as it contradicts our initial hypothesis. We initially pre-

dicted that both interventions—Salience of Iteration and Salience of Dominant Strategy—would

similarly enhance higher-order rationality. In the Salience of Iteration treatment, the intervention

operates by restricting the information available in a player’s own payoff matrix, thereby encour-

aging subjects to consider their opponents’ payoff structures more carefully and engage in deeper

iterative reasoning. However, the results suggest the opposite: rather than increasing attention to

their opponents’ payoffs, subjects in this treatment appear to focus less on them.

In contrast, the findings from the Salience of Dominant Strategy treatment align with our

expectations. When the game’s only dominant strategy is made salient, a greater proportion of

subjects exhibit higher-level reasoning consistent with level-k behavior. This suggests that making

the optimal choice more explicitly recognizable facilitates higher-order strategic thinking, while

limiting available information may not necessarily induce deeper reasoning.

The impact of the Salience of Iteration (SI) varies between higher-level and lower-level players.

For lower-level players, such as L1 players in B2, the SI treatment significantly increases their

revealed reasoning level (44.6%). This suggests that for lower-level players, who perceive their own

payoff structure as relatively certain—where any uncertainty stems solely from their opponent’s

choices—best responding becomes more straightforward, provided the opponent’s choice is known.

In such cases, these players may realize that they cannot rely exclusively on their own payoff matrix

to make decisions, prompting them to engage in additional iterations of reasoning and, consequently,

exhibit higher levels of strategic sophistication.

In contrast, for higher-level players, such as L4 players in B2, 51.35% (19/37) experience a

decrease in their revealed reasoning level. A possible explanation is that when confronted with sim-

pler payoff matrices, these players may perceive further iterative reasoning as unnecessary. Instead,

they may determine their optimal choice directly from their own payoff matrix, without engaging

in additional rounds of strategic reasoning. Since these opposing effects occur simultaneously—an

increase in level for lower-level players and a decrease for higher-level players—the overall average
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Figure 11: Individual Observed Lk in B2 and SI

reasoning level remains relatively stable. This highlights the nuanced ways in which players adopt

different reasoning approaches, making the effects of iteration salience particularly intriguing.

In the Salience of Dominant Strategy treatment, we observe that making the dominant strat-

egy more salient indeed enhances players’ revealed reasoning levels. This effect is particularly

pronounced among lower-level players, especially those classified as L0 and L1. These findings sug-

gest that identifying the dominant strategy is genuinely challenging for some participants; however,

once they recognize it, they become capable of engaging in additional rounds of iterative reasoning,

leading to an increase in their strategic sophistication.
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4.5 Statistical Analysis

To analyze the determinants of higher-order rationality, we estimate a panel data ordered

probit regression where the dependent variable, observed Level (K) represents a player’s level of

strategic sophistication. A higher K corresponds to a greater depth of iterative reasoning. The key

independent variables include Entropy, which captures the informational complexity of the game,

and Structural Complexity, defined as N in an N-player, N-choice game, representing the maxi-

mum identifiable reasoning level within each game. Additionally, we include two treatment dum-

mies—Salience of Dominant Strategy (SD) and Salience of Iteration (SI)—which indicate whether

the subject participated in these respective treatments. CRT measures the number of correctly an-

swered questions in the Cognitive Reflection Test, serving as a proxy for cognitive ability. Finally,

G 2 to G 4p are dummy variables capturing prior experience in game theory, with the baseline

category being participants with the least exposure to game theory.
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(1) (2) (3)

Entropy -0.389∗∗∗ -0.389∗∗∗ -0.389∗∗∗

(-7.15) (-7.15) (-7.15)

N 0.828∗∗∗ 0.827∗∗∗ 0.827∗∗∗

(8.09) (8.08) (8.08)

SD 0.268∗∗∗ 0.267∗∗∗ 0.267∗∗∗

(2.76) (2.75) (2.75)

SI -0.111 -0.111 -0.112

(-0.87) (-0.88) (-0.88)

CRT 0.157∗∗ 0.132∗∗ 0.127∗∗

(2.47) (2.13) (2.07)

G 2 0.157 0.166

(0.85) (0.90)

G 3 0.412∗∗ 0.410∗∗

(2.28) (2.27)

G 4p 0.859∗∗∗ 0.830∗∗∗

(3.76) (3.57)

age 0.0134

(0.70)

gender num 0.136

(0.82)

reverse -0.0546

(-0.38)

Observations 1116 1116 1116

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Observed Level in all games.
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The regression results reveal a strong negative relationship between Entropy and higher-order

reasoning. The estimated coefficient for Entropy is −0.390 with a p-value below 0.001, indicating

that as the informational complexity of a game increases, subjects become significantly less likely

to engage in higher levels of reasoning. This finding aligns with the earlier descriptive results in

the Informational Complexity section and is consistent with theories of bounded rationality, which

suggest that increased cognitive demands constrain individuals’ ability to process and respond

optimally in strategic environments. The magnitude of this effect suggests that greater complexity

shifts the distribution of reasoning levels downward, reinforcing the notion that cognitive constraints

are a key determinant of strategic sophistication.

Similarly, CRT is positively and significantly associated with higher-order reasoning, with an

estimated coefficient of 0.125 (p = 0.039). This result supports the bounded rationality framework,

where cognitive ability acts as a constraint on reasoning depth. While informational complexity

alters the upper bound of the cognitive demands required to engage in strategic reasoning, per-

formance on the CRT serves as an indicator of an individual’s inherent cognitive capacity. Given

that the CRT is widely regarded as a measure of cognitive reflection and deliberative thinking, it is

unsurprising that individuals who score higher on this test exhibit greater strategic sophistication.

By contrast, the coefficient on Structural Complexity is positive and highly significant (0.828,

p<0.001), indicating that when a game enables the identification of higher reasoning levels, sub-

jects are more likely to engage in deeper strategic thought. This result underscores the role of

game structure in shaping behaviour; rather than being an inherent trait, higher-order rationality

is influenced by environmental features. The magnitude of this effect suggests that explicitly sup-

porting and making higher-order reasoning discernible within the game significantly increases the

likelihood of level-k reasoning. The treatment effects related to salience manipulations yield mixed

results. The coefficient on the Salience of Dominant Strategy is positive and statistically signifi-

cant at the 1% level (0.268, p<0.01), suggesting that making the dominant strategy more salient

increases the likelihood of higher-order reasoning. This finding aligns with existing experimental

evidence on the role of focal points in strategic decision-making. However, the effect size is smaller

than that of Structural Complexity, indicating that while salience influences behaviour, structural

game features exert a stronger impact.

In contrast, the coefficient on Salience of Iteration is negative but not statistically significant
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(−0.110, p=0.39), suggesting that emphasizing iterative reasoning alone does not systematically

affect the depth of strategic reasoning. The lack of statistical significance implies that without addi-

tional structural cues, subjects may not consistently adopt more sophisticated reasoning strategies.

The coefficients on the G * variables capture the estimated effects of increasing levels of

game theory experience on higher-order rationality (K). Since G 1 serves as the baseline group, all

other coefficients are interpreted relative to this reference category. The results indicate a positive

relationship between game theory experience and higher-order reasoning, with both the magnitude

and statistical significance of the coefficients increasing as the experience level rises.

The coefficient on G 2 is positive (0.157) but not statistically significant at the 5% level, sug-

gesting that individuals in this category do not exhibit significantly higher levels of reasoning rela-

tive to the baseline group. The lack of significance may indicate that at lower levels of experience,

additional exposure to game theory does not necessarily translate into measurable improvements

in strategic sophistication.

For G 3, the coefficient increases to 0.412 and is statistically significant at the 5% level (

p<0.05), suggesting that individuals with moderate experience in game theory are more likely to

engage in higher levels of reasoning than those in the baseline group. The significance of this result

implies that formal exposure to game-theoretic concepts is associated with measurable improve-

ments in strategic sophistication, though the effect remains relatively modest.

The most pronounced effect is observed for G 4p, which captures individuals with substantial

game-theoretic experience 3 and yields a highly significant coefficient of 0.859. This finding suggests

that extensive exposure to formal game-theoretic principles leads to substantial improvements in

strategic sophistication. It reinforces the hypothesis that higher-order reasoning is not purely an

innate cognitive ability but rather a skill that can be systematically developed through structured

training in strategic reasoning. Moreover, the monotonic increase in the estimated effects across

experience levels supports a learning-based explanation of strategic sophistication, wherein individ-

uals progressively enhance their ability to engage in deeper levels of reasoning as they accumulate

experience in game-theoretic settings.

These results provide strong evidence that both the complexity of strategic environments

3Self-reporting experience in game theory: G 4: know game theory and can use it, G 5: good at using it, we pool
these two group as there are only 2 subjects reporting as G 5.
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and the availability of identifiable reasoning structures influence human decision-making in games.

The negative impact of entropy highlights the cognitive constraints individuals face in complex

strategic settings, aligning with bounded rationality models that emphasize the limitations of human

information processing in strategic interactions. Meanwhile, the positive effect of N suggests that

higher-order reasoning is not solely an individual cognitive trait but is also shaped by the structure

of the decision-making environment. The differing effects of salience treatments indicate that while

highlighting dominant strategies can facilitate deeper reasoning, making iterative structures more

salient does not necessarily induce higher levels of strategic thought.

4.6 Response Time

The revealed Lk level reflects the actual effect of game complexity on strategic reasoning.

However, it is also essential to examine whether a similar effect applies to perceived complexity as

experienced by subjects. As discussed in Section 3, response time and click history serve as proxies

for perceived complexity.

Figure 12: Average Level and Spent in each game

Figure 12 presents the average observed level alongside the average time spent per game. A

negative correlation emerges between time spent and Lk level, suggesting that the impact of game

complexity on perceived complexity mirrors its effect on actual complexity. In simpler games,
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subjects spend less time while attaining higher reasoning levels, whereas in more complex games,

they spend more time but exhibit lower strategic sophistication.

The linear regression results provide further insights into the determinants of decision time in

strategic reasoning tasks. As reported in Table.2, the coefficient on entropy is 12.34, indicating that

as informational complexity increases, participants spend significantly more time making decisions.

This result is consistent with prior research showing that more complex strategic environments im-

pose greater cognitive demands, leading to longer deliberation times. Similarly, N, which represents

the highest distinguishable level of reasoning within a game, has a positive and highly significant

effect on decision time (10.10***), suggesting that games requiring deeper strategic reasoning ne-

cessitate greater cognitive effort, thereby extending response times.

By contrast, the treatment condition SD, which enhances the salience of the dominant strategy,

significantly reduces decision time (−18.20***). This suggests that when a dominant strategy is

made more salient, participants identify and apply it more efficiently, reducing cognitive load and

expediting decision-making. In contrast, SI, which emphasizes the salience of iterative reasoning,

has no significant effect (5.235), implying that making iterative reasoning more prominent does not

systematically alter response times. Additionally, CRT, which measures cognitive reflection ability,

is not significantly associated with decision time (1.231), indicating that individuals with higher

cognitive reflection scores do not necessarily spend more or less time on the task.

These findings present an important contrast to the results from the ordered probit regression

on strategic sophistication. While the ordered probit estimates indicated that entropy negatively

affected level-k reasoning, the linear regression results reveal that higher entropy significantly in-

creases decision time. This suggests that more complex games not only hinder the ability to engage

in higher-order reasoning but also prolong decision-making due to elevated cognitive demands.

Meanwhile, the significant effect of SD in reducing response time reinforces the idea that emphasiz-

ing a dominant strategy improves decision-making efficiency, even if it does not necessarily induce

higher levels of reasoning.
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(1) (2) (3)

Entropy 12.34∗∗∗ 12.34∗∗∗ 12.34∗∗∗

(7.09) (7.08) (7.07)

N 10.10∗∗∗ 10.10∗∗∗ 10.10∗∗∗

(5.18) (5.17) (5.17)

SD -18.20∗∗∗ -18.20∗∗∗ -18.20∗∗∗

(-6.62) (-6.61) (-6.60)

SI 5.235 5.235 5.235

(1.18) (1.18) (1.17)

CRT 1.231 1.545 1.161

(0.70) (0.90) (0.74)

G 2 -4.505 -2.872

(-0.87) (-0.55)

G 3 -9.441∗∗ -9.093∗∗

(-2.16) (-2.10)

G 4p -7.563 -4.758

(-1.20) (-0.84)

age 0.745

(1.26)

gender -6.108

(-1.43)

Reverse Order -9.519∗∗

(-2.51)

Observations 1116 1116 1116

t statistics in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Time Spent (seconds) in all games.
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When we look at the effect of Game Theory experience on time spent, the estimated coeffi-

cients for G 2, G 3, and G 4p are all negative, suggesting that individuals with more exposure to

game theory tend to spend less time making their decisions compared to the baseline group where

subject has no game theory experience(G 1). However, the effect is only statistically significant

for G 3, where the coefficient of -9.441 indicates a significant reduction in decision time for par-

ticipants with moderate game theory experience. In contrast, the estimates for G 2 (−4.505) and

G 4p (−7.563) are not statistically significant, suggesting that for individuals with either limited or

extensive experience, decision time does not differ systematically from the baseline. The absence

of a significant reduction in decision time for the most experienced group suggests that greater

sophistication does not necessarily equate to faster decision-making. These findings contrast with

the earlier results on Lk, where greater game theory experience was associated with higher strategic

sophistication. While the G 4p group (pooling the most experienced participants) exhibited the

highest reasoning levels in the probit model, their decision times in the linear regression are not

significantly different from the baseline. This suggests that while highly experienced participants

reach higher reasoning levels, they do not necessarily do so more quickly. Instead, the most pro-

nounced reduction in decision time occurs for those in the G 3 category, implying that individuals

with moderate experience may have reached an optimal balance between efficiency and strategic

depth, allowing them to process complex games faster without sacrificing reasoning quality.

These results underscore a key distinction between strategic sophistication and cognitive effi-

ciency. While greater experience in game theory facilitates higher levels of reasoning, its effect on

decision speed follows a non-linear pattern. Moderate experience enhances efficiency, but extensive

experience does not necessarily reduce deliberation time, potentially due to increased sensitivity

to game complexity or a more deliberate approach to decision-making. More broadly, the findings

highlight the need to differentiate between cognitive effort (as captured by decision time) and actual

strategic reasoning (as reflected in Level-k sophistication) when analysing behaviours in strategic

environments.

4.7 Revealing Game

Figure 13 presents the heatmap of net highlight history in the Revealing Game, calculated as

the number of times each cell was highlighted minus the number of times it was un-highlighted.
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Figure 13: Heatmap of Net Highlight history 4

This measure allows us to track the payoff tables each player referenced when making decisions,

providing insight into the information used in the decision-making process.

The heatmap reveals that Table 1 and Table 4 are the most frequently clicked payoff matrices,

corresponding to the decision environments of Player 1 and Player 4, respectively. Nearly all cells in

these two tables exhibit high click frequencies, with Table 4 registering the highest overall number

of interactions. In contrast, in Table 2 and Table 3, equilibrium choices receive substantially more

clicks than non-equilibrium cells, which are rarely selected. This pattern is consistent with the

observed distribution of reasoning types in the Revealing Game, where L4 and L1 players are

predominant, while L2 and L3 players are relatively scarce. Since L4 players engage in backward

induction, they also tend to highlight equilibrium choices in Table 2 and Table 3.

A particularly notable finding is that nearly every participant interacted with all cells in Table

4The four tables correspond to the payoff matrices for Player 1 to Player 4 in the Revealing game, from left to
right, the top two graphs correspond to the payoff matrices for Player 1 and 2, and the bottom two are for Player 3
and 4.
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4, suggesting that even L1 players systematically considered this table when making decisions. This

result challenges standard theoretical predictions, which posit that ability-bounded players should

focus only on their own payoff table and disregard those of higher-order players. For instance,

L1 players are theoretically expected to attend only Table 1 without incorporating information

from Table 2. However, the highlighted data contradicts this assumption, indicating that nearly

all players, regardless of their reasoning level, engaged with Table 4.

One potential explanation for this pattern is that in prior rounds, Player 4 consistently had a

dominant strategy, prompting participants to examine Table 4 in its entirety. However, engaging

in higher-order iterative reasoning may still exceed the cognitive limits of L1 players. Even after

highlighting Table 4, they may be unable to successfully perform backward induction to infer

the equilibrium strategy. This suggests that while lower-level players recognize the importance of

Player 4’s decisions, their ability to integrate this information into a fully strategic response remains

limited.

5 Conclusion

This paper examines how strategic sophistication in human subjects is influenced by game

complexity, a dimension not fully captured by traditional bounded rationality theories. By fo-

cusing on ability-bounded players and employing computer-controlled opponents to manipulate

beliefs, we establish that three key dimensions of game complexity—entropy, the upper bound of

iterative reasoning, and the salience of a dominant strategy—play a crucial role in shaping strategic

behavior. Our findings provide new empirical evidence on the determinants of observed strategic

sophistication, offering a potential explanation for cross-game variation in revealed reasoning levels

and opening new avenues for unifying results across different classes of games in the literature.

Beyond revealed strategic sophistication, our analysis of perceived complexity provides novel

insights into the cognitive processes underlying strategic decision-making. We show that decision

time and revealed reasoning levels are not linearly correlated: higher-level players tend to reach

decisions more quickly, suggesting that they rely on different heuristics or mental models rather than

merely possessing superior cognitive ability. This challenges the conventional view that higher-order

reasoning is solely a function of cognitive capacity and highlights the role of strategic efficiency in
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decision-making. Specifically, we show that game complexity serves as a constraint on individuals’

ability to engage in higher-order reasoning: if a game’s required level of iterative reasoning exceeds a

subject’s cognitive capacity, their revealed sophistication is bounded. Conversely, when the required

level is below their capacity, their full reasoning ability is more likely to be expressed.

From a methodological perspective, our framework for identifying higher-order rationality

proves to be both robust and parsimonious, simplifying the inference process while maintaining

identification power. Moreover, our belief-controlled experimental design yields systematically

higher reasoning levels compared to standard human-interaction settings, reinforcing the notion

that belief formation is a critical determinant of strategic sophistication. This aligns with existing

literature while providing direct experimental evidence on the role of belief manipulation in shaping

behavior.

Our findings also raise important questions for future research. In our experimental setting,

players’ observed reasoning levels evolve dynamically with game complexity, suggesting that belief

formation is a more intricate and fragile process than previously assumed. If individuals struggle

to form accurate beliefs, their ability to best respond optimally may be systematically constrained.

Future studies should further investigate the interplay between complexity, belief formation, and

strategic adaptation, particularly in environments where beliefs must be updated over repeated

interactions. Understanding these mechanisms is essential for refining models of strategic behavior

and enhancing the predictive power of behavioral game theory.
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