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Abstract

Rural Ethiopia faces persistent challenges in accessing drinking water, exacerbated by the
escalating impacts of climate change. Yet, the effects of drinking water scarcity on migration
remain poorly understood. This paper explores how wells failure influence migration decisions.
Establishing a causal relationship is challenging due to the nonrandom nature of water insecurity.
To overcome this, I leverage a new data base, documenting well locations and a one-time
assessment of their functional status across Sub-Saharan Africa, to train an algorithm predicting
well failures. Based on climate, geological, and hydrogeological factors, I generate monthly
predictions of well status, allowing me to track functionality over time. I then link these
predictions with the Ethiopian Socio-Economic Surveys spanning 2012 to 2016, using them
as an exogenous proxy for drinking water access. Preliminary results show that migration
increases with prolonged periods without a functional well in places facing drought. To further
validate these findings, I incorporate two alternative measures of drinking water access: first,
time-invariant data on well functionality; and second, an instrumental variable approach at the
household level, using the median time to fetch water within an enumeration area. Both methods
yield results consistent with the primary analysis.
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1 Introduction

From 2012 to 2020, the World Economic Forum consistently ranked water crises among the
top 5 risks in terms of impacts (Global Risks Report, 2020). Today, 2.3 billion individuals live in
water-stressed countries (UN Water, 2021). Furthermore, the adverse effects of climate change are
disrupting established weather patterns and precipitation (IPCC, 2023), creating an environment
of increasing unpredictable water availability, and exacerbating water scarcity. Water is essential
for life, health, and human dignity. Without sufficient water to meet basic needs, migration might
emerge as an adaptation strategy. The literature on climate migration has mainly focused on the
agricultural channel: lack of rainfall (or higher temperatures) lowers yields, decreasing agricultural
income. This loss of income either traps the household in its origin (binding liquidity constraint)
or pushes it to migrate (increase in incentives); see Cattaneo et al. (2019) for a review. This paper
shifts the focus from the explored agricultural channel to a crucial yet understudied aspect: the
impact of drinking water scarcity on migration. Specifically, I answer the question: Does difficult
access to water for domestic use lead to migration?

To find a setting where migration might be affected by drinking water scarcity, I focus on
Ethiopia. Notably, Sub-Saharan Africa stands out as the sole region where the number of people
lacking access to water is increasing (JMP, 2021). Ethiopia and eight other countries 1 are home
to 80% of under-served people in the region (JMP, 2021). Despite being depicted as the water
tower of Africa, access to clean drinking water remains a challenge in Ethiopia. In 2016, 70% of
the Ethiopian rural population lacked basic access to drinking water (JMP, 2023), meaning that
they were either drinking from an unimproved source or walking more than 30 minutes to fetch
water. The country has a diverse climate and landscape, ranging from equatorial rainforest with high
rainfall and humidity in the south and southwest, to desert-like conditions in the northeast, east, and
southeast lowlands. However, natural variability in rainfall patterns and distribution, punctuated by
extreme climatic events, has thrust many Ethiopian regions into extreme water scarcity conditions.
In the past twenty years, droughts have led to ponds, wells, streams, and lakes drying up or becoming
extremely shallow. Many people outside the cities collect water from these shallow water sources
(JMP, 2023). In light of these challenges, Ethiopia presents a compelling context for investigating
the relationship between drinking water scarcity and migration.

This paper aims to understand the role drinking water scarcity plays in influencing migration.
However, a causal relationship is difficult to establish due to nonrandom access to drinking water.

1Angola, Democratic Republic of Congo, Kenya, Madagascar, Mozambique, Sudan, Tanzania, and Uganda
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To address this challenge, the main analysis relies on predicted well failures as an exogenous source
of variation. I have compiled the most comprehensive dataset available, to my knowledge, of known
water points across Sub-Saharan Africa, documenting the location and functional status of wells at
the time of monitoring. I use this information on the functional status to train an algorithm predicting
wells’ functionality and drying. By focusing on groundwater access, I am able to disentangle the
effects of water scarcity on migration through agricultural impacts versus drinking water shortages.
In Ethiopia, domestic water supply heavily relies on groundwater, while its use in irrigation remains
limited. I link these predictions with migration outcomes from the Ethiopian Socio-Economic
Surveys (ESS) spanning 2012 to 2016. The empirical strategy leverages both temporal and spatial
variations in drought and in access to drinking water. Specifically, I examine migration patterns
in Enumeration Areas (EAs) that experienced more predicted months without a functional well,
contingent on the EA being affected by drought.

The main results of the paper rely on a machine learning approach, specifically a random forest
algorithm, to predict well functionality using exogenous climate, geological, and hydrogeological
data. The idea is to use the predictions as an exogenous proxy for drinking water access. The model
is trained and optimized with a stratified split and cross-validation to predict monthly functionality
status. Its performance is assessed using the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC), yielding a high AUC score of 0.95, which indicates strong predictive power.
The model is then used to predict monthly well functionality for each EA, with the number of
months a well is non-functional as the main treatment variable. To further validate the model’s
performance in reflecting wells failure, I estimate the effects of the predicted number of months
without a functional well on groundwater being the main drinking water source and the time taken to
fetch water. The results suggest that while the predicted failure of wells does not significantly affect
the primary water source, it increases the time required to collect water for those using groundwater
as their main drinking water source. These findings provide further evidence that the algorithm
successfully captures the drying up of wells and the resulting challenges in accessing water.

Using the predictions as an exogenous proxy for drinking water access, initial findings suggest
that EAs with more months without a functional well experience higher levels of migration in the
context of drought. The results show a significant negative coefficient for drought, which aligns
with the literature on climate change and migration, suggesting that the migration observed in these
areas is partially hindered by binding liquidity constraints (Cattaneo and Peri, 2016). However,
the interaction between drought and the predicted number of months without a functional well
significantly increases migration. In a comparison of two EAs affected by drought, the one with a
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greater number of months without a functional well will experience higher migration. This suggests
that in drought-affected areas even though the agricultural channel does trap people in place, where
drinking water is scarce, households are compelled to migrate. These findings emphasize the
importance of considering water access as a crucial driver of migration, alongside more commonly
studied factors like agricultural productivity.

To further validate the main results, I propose two alternative methods for measuring access to
drinking water, both of which yield consistent findings with the primary analysis. First, I use the
functionality status at the time of the report to classify wells as either functional or not functional.
Since most wells are observed for functionality at a single point in time, this method classifies a well
as non-functional if it was reported as such at any given time. I then estimate the impact of access
to drinking water on migration by comparing EAs without access to a functional water point within
an 8 km radius of the EA center to those with access. This alternative measure of water access
aligns with the results of the main analysis, providing additional confidence in the robustness of the
findings.

Finally, I adopt a more granular approach by transitioning from treatment at the EA level to the
household level. In this method, I gauge access to water based on the time it takes to fetch water
on the day preceding the interview. The variable is endogenous as it is likely to be correlated with
unobserved characteristics of the household, also correlated with migration. Therefore, I rely on
an instrumental variable approach: I use the median time taken to fetch water by the rest of the EA
to instrument for a a household’s time to fetch water. While not ruling out EA-level cofounders, it
still removes household-level biases and allows for a household-level treatment and heterogeneity
analysis. Importantly, the results from this household-level analysis are consistent with the main
findings, reinforcing the robustness of the relationship between drinking water access and migration.

The main contribution of my paper is to shed new light on the climate migration nexus by
exploring a different channel and investigating the impact of access to water for domestic use. The
literature on climate-induced migration shows that, in developing countries, slow-onset events, such
as rising temperatures, tend to lead to either voluntary and predominantly economically motivated
migration (Bohra-Mishra et al., 2014) or immobility (Cattaneo and Peri, 2016). While there is no
consensus on the impact of weather variability and climate shocks on migration, a constant theme
is emphasized by several papers: the role played by the agricultural sector as a mediating channel.
Cattaneo and Peri (2016) assume that poor and middle-income countries are more affected by
weather variability because they are largely dependent on the agricultural sector. Cai et al. (2016)
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find that temperature has a positive and statistically significant effect on international migration
outflows only for agriculture-dependent countries. Using data on 108 countries from 1960 to 2010
and a two-stage least square estimation, Falco et al. (2019) claim this relationship is causal. They
estimate that, on average, a climate-driven reduction in agricultural productivity of 1% from its
decennial trend induces an increase in the emigration rate from about 2.5% to about 4.5% in the
overall and poor country sample. However, other forces could be at play. In this paper, I am shifting
the focus from the agricultural channel to a crucial yet understudied aspect: the impact of drinking
water scarcity on migration. In addition, the literature has focused on marginal effects by linking
weather variability and migration (Cattaneo et al., 2019), whereas most concerns about climate
change and migration stem from water scarcity, desertification, etc. For those, thresholds are of
particular importance. To my knowledge, this study is the first to analyze the lack of drinking water
as a specific threshold.

The paper also contributes to the literature on access to groundwater and socio-economic
outcomes; this literature began by studying the externality arising from groundwater use for irrigation
in the United States (Brill and Burness, 1994; Gisser and Sanchez, 1980). As it developed,
the literature focused on the institutions surrounding groundwater allocation and inter-sectoral
effects of groundwater use in India (Aggarwal and Narayan, 2004; Banerji et al., 2012; Foster and
Rosenzweig, 2008; Jacoby et al., 2004; Sekhri, 2013; Ryan and Sudarshan, 2020). The positive
impact of groundwater irrigation on yields and its potential for adaptation to climate stress was
shown focusing on the United States (Keskin and Hornbeck, 2014). Moving away from impacts
on agriculture, (Sekhri, 2014) shows that increases in the cost of access to groundwater correlate
with higher poverty and conflict; she also shows that groundwater scarcity results in an increase
in sexual violence against women (Sekhri and Hossain, 2023). The closest papers to my study
are Blakeslee et al. (2020) and Fishman et al. (2017). Blakeslee et al. (2020) studies the impact
of drying wells directly on migration while Fishman et al. (2017) looks at labor reallocation to
industry. Both papers show that some households turn to migration to offset the income effects of
losing groundwater. However, in both their settings, groundwater is used for agricultural purposes.
Therefore, their question differs from the channel I want to investigate (i.e., effects on basic needs).

My article also adds to the debate on “climate refugees”. Migration is a continuum, with forced
migration at one end and economic migration at the other. When looking at climate-induced forced
migration, existing analyses have mainly focused on migration due to sea level rise. Indeed, with
such movements, there is little doubt about the involuntary aspect of the migration as the initial land
disappears, see Burzynski et al. (2019) or Hauer et al. (2020). Migration because of lack of drinking
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water also has a major involuntary aspect. Therefore, my article contributes to the literature by
providing evidence of climate-induced forced migration (not linked to sea level rise) and the selection
into it. While there is a continuum, and no strict definition of forced or economic migration, whether
the migration falls closer to one or the other has important implications. The type of migration may
influence both the selection into migration (who migrates?) as well as the migratory response (to
where? how?). Focusing on Dust Bowl migrants, Hornbeck (2020) provides evidence that climate-
induced migration does not always follow typical patterns of economically driven migration. He
shows that migrants from more affected counties were more negatively selected: migrants from
more eroded counties had significantly lower levels of education than those from less affected
areas or other contemporary migrants. And this difference persisted after migration, as those
from the worst affected regions earned less than other migrants from the same period. Kleemans
(2015) further illustrates how migration responses vary depending on the underlying motivation
for migration. She shows with a dynamic migration choice model how “ex-post-risk-coping”
migration (migration to cope with negative income shocks) and “investment” migration (migration
to increase and diversify future expected income) may give way to opposite migratory responses to
shocks. Despite growing interest in climate-induced migration, there remains limited understanding
of who migrates in response to permanent environmental shifts. My paper seeks to address this
gap. Identifying the key mechanisms and selection processes driving climate-induced migration is
essential for developing evidence-based policy recommendations (Mbaye, 2017).

The paper is structured as follows: Section 2 describes the data. Section 3 introduces the
empirical approach and identification strategy. Section 4 shows the main results relating to the
impact of drinking water scarcity on migration. Section 5 contains a conclusion and discussion of
policy implications.

2 Data

The paper combines data from the Ethiopia Socio-Economic Survey and predictions on the
functionality status of wells. The predictions are obtained by combining data on water points with
several climate and geological data.

2.1 Household Survey Data

I use the three waves of The Ethiopia Socio-Economic Survey (ESS) to get information on
migration patterns, water access, and individual and household characteristics. The ESS is a part of
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the Living Standards Measurement Study-Integrated Surveys on Agriculture program (LSMS-ISA)
of the World Bank.

There are three waves of the ESS, with data collected at multiple levels. The first wave
(2011-2012) includes 290 rural and 43 small town enumeration areas (EAs). The following waves
(2013-2014 and 2015-2016) expand the sample to include all urban areas. Together, the three waves
create a panel data set of households from rural and small-town areas. Households interviewed
in the first wave were tracked and re-interviewed in the second and the third wave. Out of the
original sample (3776 households), around 98% of households were successfully re-interviewed in
ESS3, indicating low levels of attrition (National Bureau of Statistics, 2014). The ESS employed a
stratified two-stage sampling strategy. Ethiopia’s regions served as strata. The sample is designed
to be representative of rural and small town areas of Ethiopia. I construct a balanced panel of
households over time, consisting of all 2494 households observed in all three waves, and that have
complete information.

The main outcome variable is a count of the number of individuals that left the household
permanently. In between waves ESS tracks individuals, so it asks whether each member of a
household is still considered as part of it. If not, people who stayed behind report when, why
and where (urban or rural area) the individual left. Using the reason why a member has left the
household allows me to rule out death and divorce. Hence, I consider individuals who are no longer
a member of their original household as permanent migrants.

Socio-economic determinants included in the analysis are at the individual level, household
level, and EA level. Individual determinants include indicators for the individual being a female,
age, education level, and the time taken to fetch water yesterday. Determinants at the household
level include indicators for access to irrigation, main source of water in the rainy and dry season,
time taken to fetch water in the rainy and dry season. EA level determinants include population
size, presence of and price of connection to the water service.

2.2 Water Point Data

The data on water points originates from two key sources: Water Point Data Exchange (WPdx)
and mWater, both of which play a crucial role in aggregating and monitoring rural water infrastruc-
ture. To my knowledge, this study is the first to leverage their information.

WPDx is a global, open-source database that compiles water point data from multiple countries,
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primarily in Sub-Saharan Africa. By standardizing information from governments, NGOs, and other
stakeholders in a standardized framework, it supports the monitoring of rural water infrastructure.
A key feature of WPDx is its geospatial component, as it records the precise location (latitude and
longitude) of individual water points, facilitating spatial analysis of water access. Additionally,
it documents each water point’s functional status at the time of assessment – whether functional,
nonfunctional, or partially functional. The dataset also includes details on water source type
(e.g., borehole, protected spring), extraction technology (e.g., hand pump, mechanized pump),
management structures (e.g., community-based, privately managed), and construction date.

mWater is a global, open-source platform designed to collect, manage, and analyze water point
data. It was founded in 2012 in Tanzania with the mission to leverage mobile phone technology for
monitoring water quality. Over time, it expanded to offer broader data collection, analysis, and vi-
sualization capabilities. With over 100,000 users in 180 countries, it is one of the leading platforms
in the WASH (Water, Sanitation, and Hygiene) sector. mWater enables governments, NGOs, and
researchers to monitor water infrastructure through a standardized and user-friendly system. The
platform provides geospatial data, recording the precise location (latitude and longitude) of individ-
ual water points, facilitating spatial analysis of water access and infrastructure coverage. mWater
also tracks key attributes such as functional status (e.g., functional, nonfunctional, or partially
functional), water source type, extraction technology, and management structures. Additionally, the
platform supports dynamic data collection through mobile applications, allowing for continuous
updates and long-term monitoring of water point functionality and service reliability.

By merging these datasets, I construct a non-exhaustive yet uniquely comprehensive panel of
water wells in Ethiopia. To my knowledge, this represents the largest and most detailed dataset on
water points in the country. The final dataset comprises 30,142 water points, incorporating both
spatial and functional status information at the time of reporting.

2.3 Other Data

Basin level data – I use water basins as the spatial unit to predict well functionality. A water basin
is an area where all surface water converges toward a common outlet point. For this study, I employ
the HydroBASINS geographic data from the HydroSHEDS database, which provides globally
consistent delineation of water basins. HydroBASINS further subdivides these into hierarchical
sub-basins, based on the Pfafstetter coding system. This system organizes basins by topological
relationships, enabling analysis at multiple spatial scales.
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To capture localized patterns, I utilize the finest Pfafstetter level (level 12 of 12), which partitions
sub-basins into average areas of approximately 100 km2. HydroSHEDS data is also used to enrich
the analysis with geologic and climatic attributes at the basin level, including variables such as
natural water discharge, groundwater table depth, and soil clay fraction.

Weather data – The weather data come from the European Center for Medium-Range Weather
Forecasts (ECMWF) European Re-analysis fifth generation (ERA-5) dataset. Re-analysis data
combine weather station data with forecast models. Therefore, it is considered more reliable than
data that rely only on weather stations, specifically in regions where observations are sparse and
of low quality (Auffhammer et al., 2013). Glexner et al. (2020) show ERA5 performs well in East
Africa. For example, they show that the spatial distribution of precipitation during extreme years is
better represented in ERA5. Recent articles such as Kalkuhl and Wenz (2020), Kotz et al. (2022)
also use ERA-5. I use monthly precipitation and evapotranspiration data (with fine resolution:
0.25◦ x 0.25◦) to construct the Standardized Precipitation-Evapotranspiration Index (SPEI) at the
EA level. The reference period I use in 1970-2018. And the main time scale is 12 months: SPEI
12 represents a standardized measure of surface water balance over 12 months in relation to the
expected surface water balance for the same period.

The SPEI is a water balance measure normalized according to a log-logistic distribution (Vicente-
Serrano et al., 2010; Begueria et al., 2014)2. Water balance consists of the difference between
precipitation and evapotranspiration. A one-unit deviation in the SPEI corresponds to one standard
deviation from the long-run mean. The SPEI can measure drought severity in terms of intensity
and duration. It can also identify the onset and end of drought episodes.

Hydro-Geological Data – I use the Africa Groundwater Atlas for the hydro-geological data.
The Africa Groundwater Atlas is an online resource providing information on the hydrogeology
and groundwater resources of 51 African countries. It is part of the Unlocking the Potential of
Groundwater for the Poor (UPGro) Research Programme. UPGro aims to improve the evidence base
around groundwater availability and management in sub-Saharan Africa and to enable the sustain-
able use of groundwater to benefit populations. The Atlas provides information on the geology (both
bedrock and superficial/unconsolidated geology), with geological categories that reflect significant
hydro-geological units. It also provides information on hydrogeology as a combined classification
of aquifer type and productivity. The definition of aquifer type is in terms of the geological charac-
teristics. The key feature of the aquifer type classification is the dominant way groundwater flows

2I use the R package SCI to calculate the SPEI.
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through and is stored in aquifers. Aquifer productivity is estimated using borehole yield data as
a proxy. The aquifer productivity categories used in the Atlas consists of a qualitative assessment
because of the scale of these maps, the heterogeneity of most aquifers, and the limited availability
of aquifer characteristics. The map produced is at a nominal scale of 1:5,000,000, which means
that 1 cm on the map is equivalent to 50 km on the ground.

Since the Africa Groundwater Atlas provides coarse-resolution data, I supplement it with in-
formation from MacDonald et al. (2012), who produce higher-resolution (5 km grid) quantitative
maps of groundwater productivity, storage, and depth to groundwater. The groundwater produc-
tivity map estimates expected borehole yields across different hydrogeological units. Groundwater
storage is derived by combining the saturated aquifer thickness with literature-based estimates of
effective porosity for various aquifer types. Finally, depth to groundwater is modeled using an
empirical, rules-based approach that accounts for rainfall, aquifer type, and proximity to rivers.

Lastly, I incorporate data from Pelletier et al. (2016) to assess groundwater potential, leveraging
a high-resolution (30-arcsecond) global gridded dataset that maps soil thickness, intact regolith, and
sedimentary deposits. This dataset estimates the depth of surface layers above unweathered bedrock,
offering valuable insights into subsurface characteristics that influence groundwater availability.
Areas with shallow bedrock are less likely to sustain productive aquifers due to their limited water
storage capacity, whereas regions with deeper regolith and sedimentary deposits tend to have higher
groundwater potential. By integrating this dataset, I refine the characterization of groundwater
resources, improving the understanding of spatial variations in water availability.

3 Empirical Approach

3.1 Measure of drinking water access

Predicting well functionality - Measuring access to drinking water exogenously presents a key
challenge in this paper. In Ethiopia, groundwater is the principal water source for domestic use
(drinking, cooking, and cleaning). Consequently, data on wells offers critical insights into drinking
water access. The dataset includes information on the location of water points and their functionality
status at the time of the enumerator’s visit, allowing me to determine whether a given well was
functional during the reporting period. However, several limitations exist. First, the data does
not comprehensively cover all wells, creating potential gaps. For example, individuals in the ESS
data report using a well, but no corresponding water point is be identified in the WPdx or mWater
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datasets. Second, the timing of the water points survey often does not align with the ESS data
collection periods. This temporal mismatch means that while I may have information on a well’s
functionality, it often falls outside the relevant socio-economic timeframe. Finally, the current
functionality status of wells may be influenced by endogenous factors, such as local governance or
community engagement, complicating causal interpretations.

To address these challenges and establish a time-varying, exogenous measure of well failure, I
employ a machine learning approach, specifically a random forest algorithm. This model integrates
diverse climate, geological and hydrogeological input data sources to predict wells’ functionality
status over time. Since only exogenous inputs are used to train the model, one could consider the
predictions as an exogenous proxy of drinking water access. The model is trained using a stratified
training and testing split, where I train on 70% of the data and then use the model to predict
functionality status for 30% of the remaining data. It was trained with a 10-fold cross-validation
approach to ensure robust performance evaluation. Optimization was guided by the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC), chosen as the primary metric to balance
sensitivity and specificity. The number of variables randomly sampled at each split (mtry) was set
to 16, based on preliminary optimization. To address class imbalance in the dataset (see 1, weights
were assigned to observations, giving the minority class (functional wells) a weight of 8 and the
majority class a weight of 1.

Figure 1: Functionality status of wells in Ethiopia

A common metric in machine learning for evaluating the performance of a predictive model
across different thresholds is the ROC-AUC score. The Receiver Operating Characteristic (ROC)
curve is a graphical representation that plots the true positive rate (sensitivity) on the y-axis against
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the false positive rate (1 - specificity) on the x-axis for various classification thresholds (see Figure 2).
The Area Under the Curve (AUC) quantifies the overall ability of the classifier to distinguish between
positive and negative classes. Intuitively, the AUC represents the likelihood that a randomly chosen
positive instance will be ranked higher by the model than a randomly chosen negative instance.
An AUC score of 1.0 indicates a perfect classifier, capable of completely separating the classes,
while an AUC of 0.5 implies no discriminative power, equivalent to random guessing. The model
performs well overall, with a high AUC (0.9486), indicating strong discriminatory power. Specificity
(0.9771) is substantially higher than sensitivity (0.7071), indicating that the model is more effective
at correctly identifying the control group (functional wells) while encountering greater difficulty
with the treatment group, suggesting the presence of more noise or variability in the data associated
with non-functional wells.

Figure 2

I then use this model to predict monthly status of wells for each EA. I, then create my main
treatment which is the number of months a well in an EA (𝑣) was not functional in the last two years
(𝑁𝑜𝑊𝑎𝑡𝑒𝑟𝑣,𝑡). To further validate that the model predicts correctly well failure, I check whether
the predictions are associated with a decrease in the use of groundwater (𝐺𝑊ℎ,𝑣,𝑡) and an increased
time to fetch water (𝑇𝑖𝑚𝑒𝑊𝑎𝑡𝑒𝑟ℎ,𝑣,𝑡) 3. Specifically, for the use of groundwater, I estimate:

𝐺𝑊ℎ,𝑣,𝑡 = 𝛼 + 𝛽𝑁𝑜𝑊𝑎𝑡𝑒𝑟𝑣,𝑡 + 𝛿𝑤×𝑡 + 𝛿ℎ + 𝜖ℎ,𝑣,𝑡 (1)

And for the time to fetch water:
3I include household fixed effects (𝛿ℎ) which account for any time-invariant properties of households. I also include

woreda-year fixed effects (𝛿𝑤×𝑡 ) which account for district time trends. Standard errors are clustered at the EA level.
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𝑇𝑖𝑚𝑒𝑊𝑎𝑡𝑒𝑟ℎ,𝑣,𝑡 = 𝛼 + 𝛽1𝑁𝑜𝑊𝑎𝑡𝑒𝑟𝑣,𝑡 + 𝛽2𝐺𝑊ℎ,𝑣,𝑡 + 𝛽3𝑁𝑜𝑊𝑎𝑡𝑒𝑟𝑣,𝑡 × 𝐺𝑊ℎ,𝑣,𝑡 + 𝛿𝑤×𝑡 + 𝛿ℎ + 𝜖ℎ,𝑣,𝑡

(2)
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Figure 4: Marginal effect of an additional month
without a functional well on time taken to
fetch water

Figure 3 illustrates the relationship between the predicted functionality status of wells and the
use of groundwater as the primary source of drinking water. Figure 4 depicts the effect of well
functionality on the time spent fetching water. While an additional month without a functional well
appears to have little impact on the declared primary water source, it significantly increases the time
spent fetching water for households relying on groundwater as their main drinking source.

Water Point Treatment – My second measure of access to drinking water is also based on the
data on water points. Both mWater and Water.Point.Data.Exchange provide information on the
functionality status of water points at the time of the report. The ESS only provides scrambled
coordinates of the EAs for anonymity reasons. I chose an 8km radius to allow for displacement of
up to 5km of the true location of the cluster. I classify a village as having difficult access to drinking
water (𝑁𝑜𝑊𝑎𝑡𝑒𝑟𝑣 = 1) if there are no functional water points within 8km. Descriptive statistics
can be found in the Appendix.

Time to water – My fourth measure of access to drinking water is based on the time to water
reported by households. The variable is endogenous as it is likely to be correlated with unobserved
characteristics of the household, also correlated with migration. I use the median time taken to fetch
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water by the rest of the EA to instrument for a household’s time to fetch water. While not ruling
out EA-level cofounders, it still removes household-level biases and allows for a household-level
treatment and heterogeneity analysis.

3.2 Migration measure

I use different migration measures to assess migration resulting from drinking water scarcity.

My first measure of migration is based on reports of household members that stayed behind;
it no longer means that the entire household has migrated. ESS asks individuals whether other
members are still members of the household. Using another question on the reason why a member
has left the household allows me to rule out death and divorce. Hence, I consider individuals who
are no longer a member of their original household as permanent migrants. Despite not measuring
entire household’s migration, this measure is interesting because it speaks to the selection of the
individual who left. Furthermore, it limits attrition concerns.

Then, I estimate migration as the number of cumulative months an individual has been away
from her household during the last 12 months. It is a measure of seasonal migration. Again, it no
longer means that the entire household has migrated. However, this measure allows me to explore
if access to drinking water changes the patterns of migration.

For the purpose of the study, I also aggregate household measures of migration at the EA level.
Descriptive statistics can be found in the Appendix.

3.3 Drought treatment

Based on the meta-analysis of different measures of weather variability in West Africa by
Bertoli et al. (2022), I measure the occurrence and intensity of drought using the Standardized
Evapotranspiration Index (SPEI). The baseline estimations use SPEI-12, which assesses hydro-
geological drought. First, I use a cutoff for severe drought before the last interview. The 𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝑣,𝑡

variable is a binary variable taking the value one if the EA has experienced a SPEI-12 below -2
at one point during the six months before the interview. As shown in Figure 5, there is only one
occurrence when EAs experienced such a drought. It was just at the end of 2015. This drought
lasted until the third wave of interviews: no EAs lived through one harsh month and then returned
to better conditions. The only EAs that would have experienced only one month of drought would
be those where the drought began just one month before the interview.
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I also use continuous measures of drought. It allows me to have a measure of the longer-term
impact of drought. Indeed, one shock might be less likely to drive people to migrate. The drought
indicator is specified as the number of months with a drought in between waves or as the duration
of the longest drought in between waves. In robustness tests, I also use the cumulative intensity of
drought measured as the sum of the absolute value of the SPEI-12 in between two waves.

Figure 5: Mean SPEI12 and interview timing

3.4 Identification Strategy

My empirical analysis relies on a triple difference strategy at different levels depending on the
specification. It can either be at the Enumeration Area (EA) level (v ) or at the household level (h).
Below, I will define every variable depending on j with 𝑗 = {𝑣, ℎ}.

The independent variable is a drought variable, 𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑣,𝑡 , measured at the EA v level. The
drought variable is interacted with a count of months where wells are predicted to not be functional,
𝑁𝑜𝑊𝑎𝑡𝑒𝑟𝑣,𝑡 , of EA v or household h.

Functionally, the empirical approach consists of a quadruple difference with temporal and
spatial variation in drought (i.e., is it a drought period? And is the EA affected by the drought?),
and temporal and spatial variation in access to drinking water (i.e., for how many months were the
EAs wells not functional?). Both the drought and access to drinking water measures collapse the
spatial and temporal variations into one.

𝑀𝑖𝑔 𝑗 ,𝑡 = 𝛼 + 𝛽1𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝑣,𝑡 + 𝛽2𝑁𝑜𝑊𝑎𝑡𝑒𝑟𝑣,𝑡 + 𝛽3𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝑣,𝑡 × 𝑁𝑜𝑊𝑎𝑡𝑒𝑟 𝑗 ,𝑡 + 𝛿 𝑗 + 𝛿𝑤×𝑡 + 𝜖 𝑗 ,𝑡 (3)

The dependent variable 𝑀𝑖𝑔 𝑗 ,𝑡 indicates migration. I include household or EA fixed effects (𝛿 𝑗 ),
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which account for any time-invariant properties of households or EA that could affect migration. I
also include woreda-year fixed effects 4 (𝛿𝑤×𝑡), which account for district time trends. Therefore, the
coefficient 𝛽2 measures the marginal increase in migration due to a supplementary month when the
groundwater source was failing. The coefficient of interest is 𝛽3, which estimates when experiencing
drought, the change in migration for households/enumeration areas having difficult access to water
compared to households/enumeration areas having an easier access to water. Standard errors are
clustered at the EA level.

4 Results

4.1 Main results

The main results use the number of months a well in a community would have been non functional
in the last 24 months based on the predictions of the algorithm to measure access to water. My
preferred measure of migration is Permanent migration which counts the number of individuals who
are reported to have left the EA. Looking at Table 1, we can see that the number of months a well
is predicted to be non functional has a positive yet not significant impact on the number of people
leaving the EA. Controlling for climate (sum of the absolute value of the SPEI in the last 24 months)
does not change the direction of this effect. When interacting the experience of a drought with
the number of months a well is predicted to be non functional, the coefficient becomes significant.
The coefficient for drought is negative and statistically significant. It implies that EAs experiencing
drought tend to have lower migration rates. Potentially, this could be explained by liquidity
constraints: the literature on climate migration has showed that drought by reducing yields, reduces
households’income preventing them to migrate. The interaction 𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝑣,𝑡 × 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑤𝑎𝑡𝑒𝑟𝑣 is
positive and significant, with a coefficient of 0.238. It suggests that EAs with more months without
a functional well experience more migration when facing drought. The overall effect is still negative
but the difference in migration between EAs with and without access to drinking water is significant.

4Districts in Ethiopia are called woredas. They correspond to the third level of the administrative divisions of
Ethiopia
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Baseline Interaction

(1) (2) (3)

count nowater 0.076 0.077 0.055
(0.061) (0.063) (0.063)

Drought-intensity (lag 24) −0.002
(0.048)

drought=1 −5.372∗∗∗

(1.867)

drought=1 × count nowater 0.238∗∗

(0.093)

Observations 279 279 279
𝑅2 0.605 0.605 0.608
EA Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

KebelexYear Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

Table 1: Results – Predicted functionality & Permanent Migration

Notes: Permanent migration is a count of the number of individuals who have left the EA. Drought is a binary measure
of drought, reflecting if the EA has experienced a SPEI12 below −2. Drought-intensity is continuous measures of
drought, reflecting the sum of the absolute value of the 12 months SPEI in the last 24 months. Robust standard errors
are clustered on the enumeration area level and reported in parentheses. Significance at or below 1% (***), 5% (**)
and 10% (*).

Turning to seasonal migration (see Table 2), the pattern is the same when interacting drought
and the number of wells the EA spent without a functional well: EAs with more months without a
functional well experience more migration when facing drought. The overall effect is still negative
but the difference in migration between EAs with and without access to drinking water is significant.
However when looking without the interaction, the coefficients are negative and non significant.
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Baseline Interaction

(1) (2) (3)

count nowater −0.070 −0.066 −0.095
(0.105) (0.106) (0.109)

Drought-intensity (lag 24) −0.017
(0.040)

drought=1 −5.513∗∗

(2.629)

drought=1 × count nowater 0.230∗∗

(0.111)

Observations 279 279 279
𝑅2 0.792 0.792 0.793
EA Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

KebelexYear Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

Table 2: Results – Predicted functionality & Seasonal Migration

Notes: Seasonal migration is the mean number of months individuals report being away from their households. Drought
reflects a binary measure of drought, reflecting if the EA has experienced a SPEI12 below −2. Drought-intensity is
continuous measures of drought, reflecting the sum of the absolute value of the 12 months SPEI in the last 24 months.
Robust standard errors are clustered on the enumeration area level and reported in parentheses. Significance at or below
1% (***), 5% (**) and 10% (*).

4.2 Other measures of water access

Next, to validate the main results, I turn to other measures of water access.

Water Point Treatment – To check whether it is the algorithm that is driving the results, I provide
results without relying on its predictions. Here 𝑁𝑜𝑊𝑎𝑡𝑒𝑟𝑣 reflects whether the EA has access to at
least one functional water point. Therefore, the measure does not vary in time. One potential threat
to the identification stems from the variable 𝑁𝑜𝑊𝑎𝑡𝑒𝑟 𝑗 capturing not the effect of difficult access
to drinking water but other characteristics of the community. I provide a balance table (Table 3)
across communities without and with access to drinking water based on the measure of access to
water by the functionality status of water points. It shows that there are few statistically significant
differences between the two except for access to water related measures. Importantly, there is no
significant difference in the likelihood of having an irrigation system or conflict in between the
treatment and the control group.

Focusing on permanent migration measured at the household level (Table 4), the same patterns
as the main results are observable: the coefficient for drought is negative and the interaction
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𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝑣,𝑡 × 𝑛𝑜𝑤𝑎𝑡𝑒𝑟𝑣 is positive. However, the effect is only statistically significant when drought
is measured as a count of drought months. Then, when the dependent variable is seasonal migration
(Table 5), we observe again a negative coefficient for drought and a positive coefficient for the
interaction with the measure of water access. Overall, when using access to a functional well within
8km rather that the algorithm’s predictions, the results are similar. Moreover, those results are stable
across different measures of drought : not only binary but also a count of the number of months a
community experienced drought and the duration of the longest dry spell.

Time to water – Lastly, since I only have the geolocation of EAs, every treatment is at the EA
level. To go down to household level, I rely on reports on the time taken to fetch water. Since this
measure is likely to be endogeneous, I instrument it with the median time taken to fetch water in the
community. The first stage regression (Column 1 in Table 6) confirms the relevance of median time
to water as an instrument, with a highly significant coefficient, indicating its strong predictive power
for time spent collecting water. However, the drought measure variable is not significant in the first
stage, suggesting its effect on migration operates indirectly through water collection times. The
results for permanent migration (Column 2 in Table 6) show no statistically significant effects when
using the OLS model. In the second stage, only the interaction is significant, implying that there is a
significant difference in migration patterns in between people that take more time to fetch water, in
line with what was described earlier. For seasonal migration (Columns 5 – 7 in Table 6), the results
are more nuanced. Indeed, they are reversed compared to main results but with the interaction being
not significant. These results underscore the complexity of the relationship between water stress
and migration, with nuanced gendered responses that merit further exploration.

[GENDER EFFECTS TO BE ADDED]

5 Conclusion

In conclusion, this paper delves into a critical yet understudied aspect of climate-induced
migration: the impact of drinking water scarcity on migration patterns. Against the backdrop of
increasing water crises globally and the particular challenges faced by Ethiopia, where access to
clean drinking water remains a significant issue, this article investigates the nexus between water
scarcity and migration. By shifting the focus from the commonly explored agricultural channel to
the scarcity of drinking water, this research broadens our understanding of the drivers of migration
in the face of climate change.

The paper contributes to the literature by shedding new light on the climate migration nexus and
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highlighting the importance of access to water for domestic use as a driver of migration decisions.
By elucidating the role of drinking water scarcity in shaping migration patterns, my analysis
underscores the complex interplay between environmental factors and human mobility. Moreover,
it adds to the ongoing debate on climate refugees by providing evidence of climate-induced forced
migration not directly linked to sea-level rise.

Understanding the mechanisms driving climate-induced migration is crucial for informing policy
responses aimed at mitigating its adverse effects and supporting vulnerable populations. Ultimately,
addressing the root causes of migration, including access to essential resources like clean drinking
water, is essential for building resilience and promoting sustainable development in a changing
climate landscape.
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A Tables
Control Treated

n mean sd n mean sd Diff

Time to water (hours) 45 0.30 0.53 438 0.20 0.29 -0.061
Source rainy season 45 5.86 1.67 438 4.64 1.49 -0.815**
Source dry season 45 5.57 1.52 438 4.57 1.44 -0.675*

Population 45 5547.93 2584.00 438 5918.20 3699.75 796.631
Age 45 25.51 2.64 438 25.23 3.35 -0.529

Age household head 45 49.19 5.79 438 46.41 5.94 -2.045
Religion 45 2.36 1.47 438 2.25 1.22 0.382***

Marital Status 45 1.91 0.21 438 1.89 0.25 -0.013

Distance to main road (km) 43 34.98 44.91 437 35.59 58.70 46.356*
Distance to nearest bus (km) 43 18.12 33.05 436 15.45 26.40 17.998*

Distance to Woreda town (km) 39 14.46 9.21 377 24.06 25.61 17.040***
Distance to main urban center (km) 44 61.07 37.42 432 78.34 94.72 67.337**

Distance to weekly market (km) 29 24.66 43.63 232 15.25 24.83 9.256
Distance to primary school (km) 44 0.67 2.03 437 1.42 15.16 -0.480

ACLED event 45 0.04 0.21 438 0.18 1.87 -0.021
ACLED event with fatalities 45 0.04 0.21 438 0.05 0.70 -0.021

Amount rain during growing season 44 2.45 0.66 424 2.21 0.75 -0.112
Start rain 44 2.55 0.55 424 2.38 0.72 -0.063
End rain 44 1.41 0.69 424 1.84 0.84 0.296**

Main crop 40 8.03 11.22 386 12.92 22.22 -2.330
Main planting month 42 9.45 1.15 420 8.72 2.23 -1.391***

Share of Agriculture within 1km 45 24.47 26.89 438 30.80 17.80 3.659
Presence irrigation scheme 44 1.34 0.48 424 1.33 0.47 0.015

Population using irrigation scheme 29 532.90 604.05 284 294.45 340.71 -368.231**
Evolution yields (last 2 years) 44 2.73 1.80 424 3.16 1.29 0.532**

Evolution crop revenue (last 2 years) 44 3.34 1.99 424 3.29 1.32 0.127
Evolution credit access (last 2 years) 44 4.02 2.25 423 4.00 2.00 1.032**

Evolution ability to repay loans (last 2 years) 44 4.41 2.64 421 3.82 2.10 0.115
Evolution livestock revenue (last 2 years) 44 3.34 1.46 422 3.50 1.27 0.122

Evolution pasture availability (last 2 years) 44 3.59 1.96 424 3.50 1.76 0.217
Evolution soil quality (last 2 years) 44 3.75 1.40 421 3.68 1.40 -0.085

Evolution non agricultural opportunities (last 2 years) 44 4.16 1.89 421 3.96 1.79 0.119

Table 3: Balance table

Note: Column 1 and 4 show the number of non-missing observations out of a total of 483 observations; 45
observations for the control group (with access to a functional well within 8km) and 438 observations for
the treatment groups (without access to any functional well within 8km). Columns 2 and 3 (5 and 6) show
the summary statistics respectively for the control (treated) group. Column 7 shows the coefficient from

regressing the baseline variable on an indicator for treatment. Coefficients are estimated including region
fixed effects. Standard errors are clustered at the enumeration area level.25



Binary Count Longest

(1) (2) (3) (4) (5) (6)

Drought −3.862 −14.750
(3.802) (10.276)

Drought=1 × Non functional=1 14.321
(10.659)

Drought-count (lag 24) −0.089 −2.989∗

(0.665) (1.685)

Non functional=1 × Drought-count (lag 24) 3.213∗

(1.921)

Drought-maximal duration (lag 24) −0.316 −2.930∗

(0.566) (1.680)

Non functional=1 × Drought-maximal duration (lag 24) 2.808
(1.829)

Observations 483 483 483 483 483 483
𝑅2 0.544 0.545 0.544 0.545 0.544 0.545
Village Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

RegionxYear Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

Table 4: Results – Water Point & Permanent Migration

Notes: Permanent migration counts the number of permanent migrants reported by household members
that stayed behind. Binary is a binary measure of drought. Count and longest are continuous measures of
drought. Count measures the number of months a community experienced a SPEI-12 below −2 in the last
24 months. Longest measures the longest dry spell a community experienced in the last 24 months. Robust
standard errors are clustered on the enumeration area level and reported in parentheses. Significance at or
below 1% (***), 5% (**) and 10% (*).
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Binary Count Longest

(1) (2) (3) (4) (5) (6)

Drought −1.517 −3.357
(5.760) (5.250)

Drought=1 × Non functional=1 2.420
(9.065)

Drought-count (lag 24) −0.876 −1.966
(0.846) (1.555)

Non functional=1 × Drought-count (lag 24) 1.207
(1.833)

Drought-maximal duration (lag 24) −0.752 −1.996
(0.698) (1.552)

Non functional=1 × Drought-maximal duration (lag 24) 1.336
(1.712)

Observations 483 483 483 483 483 483
𝑅2 0.483 0.483 0.484 0.484 0.484 0.484
Village Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

RegionxYear Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

Table 5: Results – Water Point & Seasonal Migration

Notes: Seasonal migration counts the number of seasonal migrants reported by household members that
stayed behind. Binary is a binary measure of drought. Count and longest are continuous measures of drought.
Count measures the number of month a community experienced a SPEI-12 below −2 in the last 24 months.
Longest measures the longest dry spell a community experienced in the last 24 months. Robust standard
errors are clustered on the enumeration area level and reported in parentheses. Significance at or below 1%
(***), 5% (**) and 10% (*).

27



First Stage Permanent Migration Seasonal Migration

(1) (2) (3) (4) (5) (6) (7)
OLS 2SLS 2SLS (women) OLS 2SLS 2SLS (women)

Drought-count (lag 24) −0.014 0.002 −0.015 0.003 −0.005 0.001 −0.000
(0.009) (0.008) (0.010) (0.006) (0.012) (0.016) (0.006)

median time yesterday hours 0.905∗∗∗

(0.163)

time yesterday hours 0.007 −0.005
(0.010) (0.009)

Drought-count (lag 24) × time yesterday hours 0.003 0.006
(0.008) (0.008)

time yesterday hours (Linear prediction) −0.232 −0.046 0.298∗ 0.099∗

(0.147) (0.062) (0.158) (0.059)

Drought-count (lag 24) × time yesterday hours (Linear prediction) 0.291∗∗∗ 0.084∗∗ −0.030 −0.030
(0.083) (0.041) (0.162) (0.060)

Observations 10421 10421 10581 10581 10421 10581 10581
𝑅2 0.410 0.476 0.469 0.420 0.418 0.417 0.385
Household Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

RegionxYear Fixed effects 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

Table 6: Results – IV median time to water

Notes: Permanent migration counts the number of permanent migrants reported by household members
that stayed behind. Seasonal migration counts the number of seasonal migrants reported by household
members that stayed behind. Count is continuous measures of drought, it measures the number of month
a community experienced a SPEI-12 below −2 in the last 24 months. Robust standard errors are clustered
on the enumeration area level and reported in parentheses. Significance at or below 1% (***), 5% (**) and
10% (*).
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