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Abstract

This paper studies the econometric evaluation of industrial policies — policies targeted at par-

ticular industries — when industries are linked through production networks and firms in each

industry engage in strategic interactions. I develop a general equilibrium model with these

two features to define a causal policy effect as a ceteris paribus difference in outcome variables

across different policy regimes. The key mechanism of my model is that when firm-level pro-

duction functions exhibit constant returns to scale, policy effects are mediated by changes in

firms’ marginal profits not only through adjustments of their own actions but also via those

of competitors’ actions (i.e., strategic complementarities), and that both of these changes are

compounded by the production network. To identify such policy effects, I develop a new pro-

cedure that first characterizes them in terms of sector-level variables and firm-level variables —

firm-level sufficient statistics, and then recovers these building blocks with the aid of the control

function approach of the industrial organization literature. Using my framework, I examine the

causal impact of one part of the U.S. CHIPS and Science Act of 2022 on GDP. My estimation

predicts that accounting for firms’ strategic interactions even flips the sign of the policy effect

with the magnitude roughly the same, highlighting the policy relevance of strategic interactions

in the presence of a production network.
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1 Introduction

Over the past few decades, industrial policies — policies that are purposefully targeted at particular

industries — have been at the forefront of economic policy debates in a range of contexts.1 In recent

years, U.S. tariffs, primarily on imports from China, were raised by about 14 percentage points to

an average of almost 16.6%.2 In addition, the CHIPS and Science Act of 2022 aims to make nearly

$53 billion of investment in the semiconductor industry.3 Of great importance for policymakers are

questions as to how much financial support should be provided to which industries. How large will

the causal effects of subsidizing particular industries on an economy’s well-being be?

This paper develops a framework that can be used to answer this type of policy question

in macroeconomics, building on the econometric policy evaluation literature (e.g., Heckman and

Vytlacil 2005, 2007). The policy-invariant data generating process entertained in this paper is dis-

ciplined by an economic model that arises from two stands of the recent literature. The first one is

the literature exploring oligopolistic competition models to successfully analyze market concentra-

tion and firms’ markups in ranging categories of products.4,5 Moreover, oligopolistic competition

has also proved to be plausible in explaining a number of salient macroeconomic empirical regular-

ities — for instance, an incomplete pass-through of a price shock (Atkeson and Burstein 2008) and

market power (De Loecker et al. 2020, 2021). The other is the literature studying the role of pro-

duction networks in macroeconomic outcomes — for instance, business cycle (Horvath 1998, 2000),

aggregate fluctuations (Acemoglu et al. 2012), and misallocation (Baqaee and Farhi 2020). While

the existing policy analysis looks at these features separately,6 the policy implications of their joint

existence are left unexplored. Hence, this paper investigates the causal effects of industrial policies

in a macroeconomic model with these two features.

1For a recent review of industrial policies, see Rodrik (2008), Juhász et al. (2023), and Juhász and Steinwender
(2023).

2See Fajgelbaum et al. (2020).
3CHIPS stands for Creating Helpful Incentives to Produce Semiconductors (White House 2022). See also White

House (2023) for the details of this act.
4A short list of prominent examples includes, among many others, automobiles (Berry et al. 1995), ready-to-eat

cereal (Nevo 2001), aircraft (Benkard 2004), and cement (Ryan 2012).
5The primary focus of this paper is on understanding the “effects of the causes,” a distinct task from investigating

the “causes of the effects” (Holland 1986; Heckman 2005, 2008). For the latter, the modeling choice of this paper
is motivated by the voluminous literature documenting the empirical salience of a sectoral production network and
firms’ strategic interactions in each sector, as explained in this paragraph.

6See Liu (2019) and Lashkaripour and Lugovskyy (2023) for industrial policies in an economy with a production
network, and Gaubert et al. (2021) for the effects of tariffs in an oligopolistic environment.
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What are the points of using an economic model in causal policy analysis? There has been no

consensus on the definitions of causal effects and causality.7 While the empirical treatment-effect

approach has started prevailing in the macroeconomic literature, it cannot generally provide an

answer to macroeconomic policy questions for two reasons.8 First, these estimates are typically

defined under the premise that units being studied are randomly split into those that are exposed

to an intervention (the treatment group) and those that are not (the control group), and the

assumption that there are no interferences between these two groups (Rubin 1980). This setup,

however, precludes the firms’ strategic interactions, peer effects through a production network, and

general equilibrium feedback, all of which are at the heart of the macroeconomic policy analysis.9.

Moreover, this paradigm may not be compatible with macroeconomic policy questions because

policymakers may want to manipulate policy variables virtually for all units at once, in which

case everyone in the population is “treated” — a universal treatment.10 Second, the reduced-

form treatment-effect estimates cannot generally be transported to a different policy environment,

thereby being unable to inform policymakers of the policy effects before the actual implementation

— ex ante policy evaluations. With the aid of an economic model, the policy parameter put forth

in this paper circumvents these shortcomings while retaining a causal interpretation as a ceteris

paribus difference in outcomes across different policy regimes.11

In order to define a causal policy parameter, I first develop a general equilibrium model of a

multisector economy with a sectoral production network featuring firms’ oligopolistic competition

in each sector. The causal policy effect is then defined as the change in GDP due to an industrial

7See Granger (1969) and Sims (1972) for the case of time-series economic analysis. Hoover (2001) discusses
various other concepts of causality in macroeconomics. A parallel line of research is the graphical approach in
computer science (e.g., Pearl 2009). Also, Cartwright (2004) provides a review from the philosopher’s standpoints.

8There can be many other reasons for this. It is essential to emphasize that the notion of “randomization” is
not necessary for defining a causal policy effect; it is only useful for identifying it. See Heckman and Vytlacil (2007)
and Deaton (2010) for discussion. See also Lane (2020) and Juhász et al. (2023) for a review of empirical studies of
industrial policies.

9In Section 2.7, I make the case that in the presence of a production network and firms’ strategic interactions,
even if a policy is targeted at a particular industry, its effect propagates along the production network while being
amplified or weakened by the firms’ strategic interactions in each sector. Moreover, this insight opens a door for
the policymaker to leverage these interaction effects in designing optimal policies (see, e.g., Ballester et al. 2006;
Calvó-Armengol et al. 2009).

10To streamline the exposition, I focus on an extreme scenario of an industrial policy, wherein only a single sector
experiences a policy change, in the main text. Universal treatments — the other edge of the spectrum — can also
be considered in my framework, as discussed in Appendix D.4.

11Ceteris paribus causal effects are one of the most widely accepted notions of causal effects in economics. It
is worth stressing that treatment effects are a special case of this class of causal effects. My paper puts forth an
alternative to treatment effects, which is another special case of ceteris paribus causal effects.
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policy with other things being equal, i.e., a ceteris paribus causal effect (Marshall 1890). The key

mechanism of my model is that when firms’ production functions exhibit constant returns to scale,

the production network compounds not only the responses of firms’ marginal profits with respect

to their own choices but also those with respect to competitors’ (i.e., strategic complementarities),

with the latter being absent in monopolistic models. To further study the empirical relevance of this

mechanism, I take my model to real-world data. Identifying the policy effect, however, is challenging

because in strategic interaction models, individual firms have the potential to exert a nonnegligible

influence over sectoral outcomes; thus, the policy parameter cannot be characterized by aggregate

variables alone. This invalidates the aggregate sufficient statistics approach, a method increasingly

used in recent macroeconomics and international trade literature.12 This paper exploits widely used

firm-level data and proposes a new sequential procedure that identifies the policy effect in terms

of the individual firms’ responses, which I call firm-level sufficient statistics. This identification

approach is constructive, so that a nonparametric estimator for the policy effect can be obtained

by reading the procedure in reverse.13 I then consider one part of the U.S. CHIPS and Science

Act — corresponding to an additional subsidy on the semiconductor industry — and compare the

estimate based on oligopolistic competition to that based on monopolistic competition. I find that

accommodating firms’ strategic behaviors reverses the sign on the estimate for the policy effect

from positive to negative, with the magnitude roughly the same. This result echoes the policy

relevance of (not) accounting for strategic competition in the presence of a production network.

My model builds on Liu (2019) to study a general equilibrium multisector model of a production

network by assuming that each sector is populated by a finite number of heterogeneous oligopolistic

firms, thereby firm-level markups being endogenously variable. The government helps firms to pur-

chase sectoral intermediate goods through an ad-valorem subsidy specific to the purchaser sector.

The policy effect is defined as the ceteris paribus change in GDP due to a shift in the level of the

sector-specific subsidy (i.e., an industrial policy). I demonstrate that the policy effect is charac-

terized by sectoral comovements (or pass-through), which depend on sectoral measures of market

competitiveness compounding through the production network across sectors. The sectoral com-

12See, for example, Arkolakis et al. (2012), Adão et al. (2017), Arkolakis et al. (2019), and Adão et al. (2020)
for applications in the context of macroeconomics. See Chetty (2009) and Kleven (2021) for a general idea of the
sufficient statistics approach. This idea is also known as Marschak’s Maxim in the econometric policy evaluation
literature (Heckman 2005, 2008, 2010; Heckman and Vytlacil 2007).

13See Matzkin (2013) for constructive identification and nonparametric estimation.
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petitiveness measure comprises not only the responsiveness of firms’ marginal profits with respect

to their own choices but also those with respect to competitors’ (i.e., strategic complementarities).

The size and sign of this measure hinge on the specification of the market competition and have the

potential to significantly change or even revert the sectoral comovement, which may in turn alter

the policy effect. This observation points to the practical importance of jointly accommodating

a production network and firms’ strategic interactions, a feature that has attracted little to no

attention in the existing literature. This moreover motivates the identification of the policy effect

under a minimal set of assumptions, so that the policy analysis can remain agnostic about the

configuration of the market competition, which is generally unknown a priori to the policymaker.

The identification analysis of this paper first rewrites the causal policy effect in terms of sector-

and firm-level comparative statics. To recover the firm-level variables and responses, I then adopt

techniques from the literature on production function identification and estimation (e.g., Acker-

berg et al. 2015; Gandhi et al. 2019). This requires three sets of additional assumptions. The

first assumption restricts the firm-level production function to exhibit Hicks-neutral productivity.

The second set of assumptions is concerned with the sectoral aggregator: it takes the form of a

homothetic demand system with a single aggregator (HSA; Matsuyama and Ushchev 2017), and

the single aggregator is exchangeable in its argument. Under this specification of the sectoral ag-

gregator, I show that the firms’ equilibrium choices depend on competitors’ productivities only

through some aggregates. The last set of assumptions, combined with the first two sets, ensures

that this equilibrium quantity function is “invertible” in the firm’s own productivity. Nevertheless,

I further demonstrate that these assumptions are flexible enough to accommodate the specifications

commonly used in the macroeconomics literature. This identification analysis is constructive, so

that a nonparametric estimator for the policy effect can be obtained by reading these procedures

in reverse order.

My framework differs from the conventional structural approach for counterfactual predictions in

macroeconomics in four important ways. For instance, policy analysis in the computational general

equilibrium models proceeds in five steps: (i) specify models in detail, which often involves a large

number of parameters; (ii) preset some parameter values on the basis of prior or external knowledge

(e.g., parameter estimates from the preceding research); (iii) simulate (or calibrate) the model to

match the data in terms of some criteria of researcher’s choice, yielding values for the remaining
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parameters; (iv) conditioning on the obtained parameter values, simulate again the model under a

counterfactual state; and (v) compare outcomes generated by these two simulations. Note that this

procedure assumes away from any random variation in the data generating process. In contrast,

(i)’ my approach specifies the model primitives only up to classes of functions, and recovers only

a limited number of comparative statics, thereby the empirical analysis being more robust against

misspecification and less computationally burdensome. (ii)’ Estimation in my framework does not

require any external information, and thus can be performed in a self-contained fashion, freeing

the researcher from the arbitrariness inherent to the parameter preselection. The advantage of this

feature becomes particularly acute when the model under consideration has never previously been

studied in the literature, which is the case of this paper. (iii)’ Loss functions in my estimation

naturally arise from the identification argument, which eliminates the arbitrariness in the choice

of the estimation criteria. (iv)’ My approach is designed to directly recover the causal effect in a

single procedure with admitting sampling variation. This provides a ground for statistical testing

of hypothesis pertaining the causal effect.

Finally, in order to quantify the empirical relevance of firms’ strategic forces compounding

through the production network, I bring my model to the U.S. firm-level data and evaluate the

economic impacts of the CHIPS and Science Act, which selectively promotes the semiconductor

industry and was enacted in 2022. I consider a hypothetical policy experiment of shifting the ad-

valorem subsidy on the computer and electronic products industry from the 2021 level, which is

15.21%, to an alternative level of 16.21% — equivalent to $0.55 billion. The estimate accounting

for strategic interactions as well as the production network predicts that GDP falls by $4.29 billion,

while the estimate based on monopolistic competition under the production network suggests an

increase of $3.52 billion. Comparing these two estimates underlines the policy relevance of correctly

specifying market competition.

Although my model is developed without reference to any particular functional-form assump-

tions, and thus its implications apply fairly generally, the subsequent empirical analysis is con-

strained by the data limitation and additional identification assumptions. In light of this, my em-

pirical estimates may not necessarily be an accurate gauge of the “actual” policy effects. Rather,

the empirical illustration of this paper is tailored to examine the quantitative relevance of the wedge

in policy effects, created by jointly accommodating firms’ strategic interactions and a production

5



network.

To better understand the mechanism behind this, I further analyze the responsiveness of GDP

at the 2021 subsidy with an industry-level breakdown. First, I decompose the responsiveness of

sectoral GDP into four components, namely, i) the changes in output quantities (quantity effects),

ii) the associated changes in output prices (price effects), iii) the changes in input costs due to

changes in input quantities (switching effects), and iv) the changes in input costs due to changes

in input prices (wealth effects). An important insight here is that in the networked economy, the

output of one sector may be used as an input in all sectors, so that the output price change in one

sector both directly and indirectly affects the input price of all sectors. My estimation suggests

that for many sectors in oligopolistic competition, even if firms produce more of their products,

input prices do not decrease as much as output prices do, leaving them with a higher input cost.

Second, I also explore the tension between these four forces from the angle of pass-through

coefficients. I theoretically show that the sector-level cost-price pass-through can be written in terms

of a weighted sum of firms’ strategic complementarities in the sector, which in turn is compounded

along the production network to give the sector-level policy-cost pass-through coefficient. The

former is referred to as the micro complementarity, and the latter as the macro complementarity. My

empirical estimates for these complementarities under oligopolistic competition significantly differ

both quantitatively and qualitatively from those under monopolistic competition. The difference

manifests itself in 19 out of 32 industries through the difference in the sign of the marginal change

of the sectoral price index, which is associated with that of firms’ equilibrium responses. This result

again points to the empirical relevance of correctly accounting for firms’ strategic interactions in

credibly predicting firms’ responses and hence the policy effect.

1.1 Related literature

This paper contributes to four strands of the literature. First, the framework put forth in this

paper is directly related to the literature on ex ante counterfactual predictions of economic shocks

(e.g., trade costs, productivity), such as Arkolakis et al. (2012), Melitz and Redding (2015), Adão

et al. (2017), Feenstra (2018), and Adão et al. (2020). My framework, though, marks a distinction

in two ways. First, the preceding papers are based on perfectly competitive or monopolistic firms,

whereas my paper explicitly accounts for firms’ strategic interactions. Second, the existing literature
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is mostly concerned with directly expressing an aggregate outcome in terms of aggregate variables

— aggregate sufficient statistics. In contrast, my approach first decomposes the policy parameter

into firm-level variables — firm-level sufficient statistics, and identifies these variables from the

observables, which in turn recovers the policy parameter.

Second, this paper advances the literature on industrial policies on both theoretical and em-

pirical grounds. The theory of optimal industrial policy in a multisector environment is explored

in Itskhoki and Moll (2019) and Liu (2019) for exogenous market distortions; in Lashkaripour and

Lugovskyy (2023) for endogenous but constant markups; and in Bartelme et al. (2021) for endoge-

nously varying market distortions. In my model, the market distortions arise from oligopolistic

competition and thus can endogenously vary according to the strategic interactions. On the empir-

ical front, my paper intersects with the treatment effect literature. Among many others, Criscuolo

et al. (2019) discuss the “reduced-form” causal effects of an industrial policy.14 The causal in-

terpretation of their policy parameter, however, is limited to those units that have experienced

(exogenous) changes in the eligibility of receiving the policy. From the perspective of a policy-

maker who considers the well-being of a society as a whole, such a locally tailored notion of “causal

effect” might not be of central interest. In the spirit of the econometric policy evaluation literature

(e.g., Heckman and Vytlacil 2007), this paper studies an alternative policy parameter that is both

economically interesting (i.e., inclusive of strategic interactions, peer effects through production

networks and general equilibrium feedback) and causal in the sense of Marshall (1890).15 In a

similar vein, Rotemberg (2019) investigates the aggregate effects, taking into account the general

equilibrium effects, and Sraer and Thesmar (2019) derive formulas that are able to counterfactually

expand firm-level treatment effects to the aggregate level. Their methodologies are, however, es-

sentially ex post, whereas my framework can be used for ex ante policy evaluations. Furthermore,

the identification approach of this paper supplements the econometric policy evaluation literature

by exploiting variations in firms’ productivities, instead of those in policy variables.

Third, this paper contributes to the literature documenting the empirical relevance of endoge-

14A rapidly expanding body of literature has deployed natural or quasi-experiments to study the causal effects
of industrial policies. For example, Juhász (2018) and Lane (2021) exploit, respectively, the Napoleonic blockade
against Britain afforded to French cotton spinners and President Park’s assassination to define their causal effects.
For a more thorough review, see Lane (2020) and Juhász et al. (2023).

15The policy parameter proposed in this paper is inspired by the policy-relevant treatment effects (Heckman and
Vytlacil 2001, 2005, 2007). See Section 2.6.
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nous firms’ markups, such as oligopolistic competition and non-constant-elasticity-of-substitution

demand function (e.g., Atkeson and Burstein 2008; Amiti et al. 2014; Edmond et al. 2015; Arkolakis

et al. 2019; Gaubert and Itskhoki 2020; De Loecker et al. 2021; Azar and Vives 2021). I connect this

line of research to the literature on sectoral comovements of prices and quantities (e.g., Basu 1995;

Huang and Liu 2004; Huang et al. 2004; Huang 2006; Nakamura and Steinsson 2010; La’O and

Tahbaz-Salehi 2022; Rubbo 2023) by introducing production networks across sectors.16,17 Specifi-

cally, I show that the sectoral comovements are traced out by the combination of the within-sector

interactions summarizing firms’ strategic complementarities (what I refer to as micro complemen-

tarities) and the between-sector interactions compounding the micro complementarities along the

production network (what I call macro complementarities).18 It is worth stressing that micro com-

plementarities can, by construction, vary between monopolistic and oligopolistic competition, and

so can macro complementarities.

Lastly, outside the domain of the macroeconomics literature, my method is tightly linked to the

industrial organization literature on the identification of firms’ production functions. In particular,

the existing work (e.g., Olley and Pakes 1996; Levinsohn and Petrin 2003) has customarily assumed

perfect competition (e.g., Ackerberg et al. 2015; Gandhi et al. 2019) or monopolistic competition

(e.g., Kasahara and Sugita 2020). My paper applies these approaches to the case of strategic

interactions by adapting the notion of sufficient statistics for competitors’ decisions and productiv-

ities. There have been recent studies that adopt analogous approaches, such as Blum et al. (2023),

Ackerberg and De Loecker (2024), Doraszelski and Jaumandreu (2024).19 Their methodologies are

established under the premise that firm-level prices and/or quantities are observable, and recover

the entire shapes of the production function. In my framework, in contrast, revenue is the only

available firm-level outcome variable, while only the points on the production and demand functions

16The model investigated in this paper bears some resemblance to those studied in the literature on welfare loss
due to misallocation in the presence of production networks, such as Jones (2011, 2013), Baqaee and Farhi (2020,
2022), and Bigio and La’O (2020). These works are principally interested in characterizing welfare loss: they start
from an efficient economy (i.e., they assume away from an initial state of market distortions) and then focus on the
consequence of adding a policy as a source of distortion. My paper admits market distortions in the initial state of
the economy, including the policy itself, and then investigates a welfare-improving policy prescription.

17Grassi (2017) also studies the case of oligopoly, but his focus is on positive analysis under a parametric specifi-
cation of production and demand functions. My paper is concerned with evaluating the policy effects with a minimal
set of parametric assumptions.

18These terminologies draw from Klenow and Willis (2016) and Alvarez et al. (2023).
19Doraszelski and Jaumandreu (2019), Brand (2020), and Bond et al. (2021) draw attention to the risk of simply

applying the standard control function approach to the case of oligopolistic competition, but they do not provide a
methodology to deal with the strategic interactions in recovering the firm’s production function.
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corresponding to the underlying equilibrium are recovered.

2 Model

The goal of this section is to define a causal policy parameter that i) internalizes firms’ strategic

interactions, peer effects through a production network, and general equilibrium effects; ii) com-

pares aggregate variables between the baseline (e.g., status quo) environment and an alternative

policy regime; and iii) can be used for ex ante predictions.

To define such a parameter, this section spells out a general equilibrium closed-economy mul-

tisector model of oligopolistic competition among heterogeneous firms under a sectoral production

network. The model is akin to Liu (2019), who considers the optimal policy in the presence of

a production network when there are exogenous market distortions. I depart from his setup by

replacing the exogenous wedges with endogenously variable firms’ markups. In my model, the

markups can arise from oligopolistic competition among a finite number of heterogeneous firms

and the non-CES specification of the residual inverse demand functions faced by the firms.20

It is postulated that as a way to neutralize the market distortions induced by the endogenous

markups, the government manipulates sector-specific policy instruments τ := {τi}Ni=1, where τi is

understood as an ad-valorem subsidy on sector i’s purchase of sectoral intermediate goods if it is

positive, and a tax otherwise.21,22 I restrict my attention to the short-run policy effects, abstracting

away from the firms’ entry and exit decisions (extensive margins), as posited in Mayer et al. (2021)

and Wang and Werning (2022).23

The model is static and there is no uncertainty. The economy consists of a representative

household, a government, and N production sectors, indexed by i ∈ N := {1, . . . , N}. Each sector

i is populated by a finite number Ni of heterogeneous oligopolistic firms, indexed by k ∈ Ni :=

20Arkolakis et al. (2019) consider a model of variable markups under monopolistic competition with a flexible class
of non-CES demand functions. My paper adds an additional source of endogenous markups, strategic interactions.

21I abstract from other policy measures such as technology adoption, direct price regulation, and antitrust law.
22While I focus on subsidies for the purchase of sectoral intermediate goods that are specific to purchasing sectors,

the subsequent analysis naturally extends to the case of sector-input-specific subsidies (including labor-input-specific
subsidies), as considered in Liu (2019).

23The short-run scope can be rationalized by acknowledging that firms’ entry and exit decisions generally invoke a
considerable amount of cost and time. Technically, accommodating the endogenous choice of entry and exit requires
another layer of the fixed-point problem concerning the free-entry condition, which in general is very hard to solve
(Wang and Werning 2022). In particular, given that the number of firms in my setup is finite, it is not even possible
to consider differentiation of the free-entry condition. Extending the theory to a long-run analysis is left for future
work.
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{1, . . . , Ni}, each of which produces a single horizontally differentiated good. There is a sectoral

aggregator that aggregates the firms’ products in the same sector into a single intermediate good.

Sectoral goods are further combined to produce a final consumption good. Both the final and

sectoral aggregators operate in perfectly competitive markets.

Firm-level production uses labor and sectoral intermediate goods as inputs. The transaction

of sectoral goods by firms shapes the input-output linkages, denoted by Ω := [ωi,j ]i,j∈N with ωi,j

being the share of sector j’s intermediate good in sector i’s expenditure for inputs.24

2.1 Market Distortions and Industrial Policy

Let τ 0 denote the policy regime currently in place. Suppose that the policymaker wishes to learn

how much GDP would increase or decrease by moving to an alternative policy regime τ 1. That is,

the current policy τ 0 might not yet be optimized but rather can be a part of the market distortions,

and the policymaker is looking for a way to improve GDP.25 In particular, the policymaker is

interested in changing only the subsidy on sector n while keeping the subsidies on the other sectors

(i.e., an industrial policy on sector n).26 Thus, the policy parameter is defined as the change in

GDP due to a policy reform from τ0
n to τ1

n, which is denoted by ∆Y (τ0
n, τ

1
n).

To grant this policy parameter a causal interpretation, I impose the following assumptions.

Assumption 2.1 (Policy Invariance). Throughout the policy reform from τ 0 to τ 1, (i) the index

set for sectors N, (ii) the index set for firms in each sector Ni, (iii) each sectoral aggregator, (iv)

every firm-level production function in each sector, and (v) the shape of the input-output linkages

ωL and Ω do not change.

Assumption 2.1 (i) is consistent with the focus of this study on ad-valorem subsidies, excluding

other competition interventions. Invariance condition (ii) assumes away from endogenous entry

and exit in response to the policy change, which is implied by the short-run scope of this paper.

Conditions (iii) and (iv) jointly mean that the policy reform does not alter the firms’ operating

environments, which in turn rules out both direct and indirect impacts of the policy reform on

24Analogously, I write ωL := [ωi,L]Ni=1 with ωi,L indicating the labor share in sector i’s cost.
25A similar setup is considered in Bigio and La’O (2020).
26That is, τ0

n 6= τ1
n and τ0

n′ = τ1
n′ for all n′ 6= n. In the example of the CHIPS Act, sector n corresponds to the

semiconductor industry.
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firms’ productivities.27 Part (v) states that the input-output linkages ωL and Ω do not reshape in

reaction to the policy reform. This again accords with the scope of my analysis and also resonates

with the existing literature that assumes the production network to be stable over a period of time

(e.g., Baqaee and Farhi 2020).

2.2 Household

Consider a representative household that consumes a final consumption good, inelastically supplies

labor across sectors. The household owns all firms so that it receives firms’ profits as dividends.

The household derives utility only from consumption of the final good, with the utility function

being the standard.

Assumption 2.2 (Utility Function). The consumer’s utility function is strictly monotonic and

continuously differentiable in the final consumption good.

Assumption 2.2 means that there exists a one-to-one mapping between the utility level and con-

sumption of the final good. Based on this preference, the household chooses the utility-maximizing

quantity of the final consumption good subject to the binding budget constraint:

C = WL+ Π− T, (1)

where Π is firm’s total profit, and T indicates the tax payment to the government in the form of a

lump-sum transfer. I let the price index of the final consumption good be the numeraire.

2.3 Technologies

Economy-wide and sectoral aggregations. The economy-wide aggregator collects sectoral

intermediate goods to produce a final consumption good Y using the production function F :

R
N
+ → R+, that is,

Y = F({Xi}i∈N), (2)

27See Bartelsman and Doms (2000) and Syverson (2011).
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where Xi represents sector i’s intermediate good used for the production of the final consumption

good. In each sector i ∈ N, firm-level products are aggregated into a single sectoral good Qi

according to

Qi = Fi({qik}k∈Ni
), (3)

where Fi : RNi
+ → R+ represents the sector-specific aggregator that collects firms’ products in

sector i and qik denotes the quantity of firm k’s product.28

This aggregator satisfies the following standard assumptions.

Assumption 2.3 (Economy-Wide and Sectoral Aggregators). (i) The economy-wide aggregation

function F(·) is increasing and concave in each of its arguments. (ii) For each i ∈ N, the sectoral

aggregator Fi(·) is a) twice continuously differentiable and b) increasing and concave in each of its

arguments.

Notice Assumption 2.3 does not require the sectoral aggregator Fi(·) to exhibit constant returns

to scale, unlike in Liu (2019) and Bigio and La’O (2020). Under this assumption, both the economy-

wide and sectoral aggregators operate in perfectly competitive markets. The price index of sector

i’s good Pi is defined through the sectoral cost-minimization problem.29

A sectoral aggregator serves two purposes. First, it is a useful modeling device that allows me

to unite firms’ differentiated goods into a single homogeneous good (Bigio and La’O 2020; La’O and

Tahbaz-Salehi 2022). This helps isolate the firm’s input choices from the strategic considerations.

The economic content of this aggregation is that every buyer of goods from sector i purchases

the same bundle of goods produced by the firms in that sector (Liu 2019). Second, from the

perspective of an individual firm, the sectoral aggregator acts as a “demand function” through

which the strategic interactions between firms are mediated.

Firm-level production. The firm-level production process combines labor and material inputs,

where the latter is a composite of sectoral intermediate goods along the production network. It is

28To economize on notation, I use the same notation qik to mean the demand for firm k’s good and firm k’s output
quantity. By doing this, I implicitly apply the market clearing condition to individual firms’ products, as the sectoral
aggregator is the only purchaser of firms’ products.

29See the unit cost condition (38) in Appendix A.
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assumed that all inputs are variable (i.e., firms do not incur fixed costs). To focus on the short-run

behavior, I do not model the firms’ entry decisions; instead, I assume that each sector is populated

by an exogenously fixed number of firms that are heterogeneous in productivities.

In the output market of each sector, firms engage in a Cournot competition of complete infor-

mation, while they are perfectly competitive in the input markets. Thus, each firm first chooses

its output quantity so as to maximize its profits in the Cournot-quantity competition, followed by

input decisions based on cost-minimization problems under the constraint of output quantity.

The production technology for firm k in sector i is described by

qik = fi(`ik,mik; zik) with mik = Gi({mik,j}j∈N), (4)

where qik, `ik, and mik denote, respectively, the quantity of gross output, labor input, and material

input, zik is firm-specific productivity, mik,j represents the input demand for sector j’s intermediate

good, and fi : R2
+ → R+ and Gi : RN

+ → R+ indicate, respectively, the firm-level production

technology and material aggregator, both of which are specific to the sector.30 Note that Gi(·)

reflects the input-output linkages Ω.

Notice that both aggregators fi(·) and Gi(·) are only traced by sector index i, meaning that

firms in the same sector i have access to the same production technologies up to the idiosyncratic

heterogeneous productivity zik. This also implies that producer-side heterogeneity pertaining to

product differentiation (e.g., quality) is encoded in the productivity term zik.
31

Assumption 2.4 (Firm-Level Production Functions). For each sector i ∈ N, both aggregators

fi(·) and Gi(·) (i) display constant returns to scale, (ii) are twice continuously differentiable in all

arguments, (iii) are increasing and concave in each of its arguments, and (iv) satisfy fi(0, 0) = 0

and Gi(0) = 0. Moreover, (v) for each firm k ∈ Ni in sector i, it holds that
(∂fi(·)
∂`ik

)2 ∂2fi(·)
∂m2

ik
+(∂fi(·)

∂mik

)2 ∂2fi(·)
∂`2ik

− 2∂fi(·)∂`ik

∂fi(·)
∂mik

∂2fi(·)
∂`ik∂mik

< 0 for all (`ik,mik) ∈ R2
+.

Assumptions 2.4 (i) – (iv) jointly state that the aggregators fi(·) and Gi(·) are neoclassical, an

30I abstract away capital accumulation in order to stick to a static environment. When bringing my model to the
data, I interpret the firm’s productivity zik as its overall production capacity, including capital assets. See Appendix
B.3.4.

31In my setup, differentiated goods are produced by heterogeneous firms, so that the level at which product
differentiation is defined is the same as that at which firm heterogeneity is defined. Thus, the notion of firm coincides
with that of variety.
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assumption employed in Bigio and La’O (2020).32 Assumption (v) guarantees an interior solution

for the firm’s cost minimization problem.

Importantly, when a firm decides the quantity of output, it also takes into account its input

decisions in a forward-looking way. Thus, the firm’s decision problem proceeds backward in effect.

First, taking the quantities of output and material input and sectoral price indices as given, the

firm’s optimal demand for sectoral intermediate goods is given by

{m∗ik,j}j∈N ∈ arg min
{mik,j}j∈N

N∑
j=1

(1− τi)Pjmik,j s.t. Gi({mik,j}j∈N) ≥ m̄ik, (5)

where m∗ik,j denotes the optimal level of purchase of sector j’s good, and m̄ik indicates the level

of material input corresponding to a given quantity of output. Note that the associated unit cost

condition defines the cost index of material input PMi gross of the policy τ .

Second, taking the output quantity and input prices as given, the optimal input quantities for

firm k in sector i are given by

{`∗ik,m∗ik} ∈ arg min
`ik

{
min
mik|`ik

W`ik + PMi mik s.t. fi(`ik,mik; zik) ≥ q̄ik
}
, (6)

where W denotes the wage33 and q̄ik is a given level of output quantity.34 Implicit in this expression

is the timing assumption that every firm chooses its labor input prior to material input. An

economic intuition behind this is that labor is more important in the production process, or labor

is easier to obtain compared to material.35 This assumption is employed only for the purpose of

econometric analysis (see, e.g., Gandhi et al. 2019), and the quantitative implication remains the

same even if it is replaced by a simultaneous choice of labor and material inputs (Ackerberg et al.

2015), an assumption commonly imposed in the macroeconomics literature (e.g., Liu 2019; Bigio

32Although Assumption 2.4 (i) might appear to be restrictive at first glance, a number of applied studies have
found that the constant-returns-to-scale (CRS) production function serves as a good approximation (e.g., Basu and
Fernald 1997; Syverson 2004; Foster et al. 2008; Bloom et al. 2012). In fact, the CRS production functions are
customarily assumed by recent works on firm-level macroeconomic models — for example, Atkeson and Burstein
(2008) in an oligopolistic competition model of international trade and Baqaee and Farhi (2022) in a multi-country
model of international trade in the presence of production networks.

33Since the labor force is assumed to be frictionlessly mobile across sectors, the wage W is common for all sectors.
34Input decisions (5) and (6) are separated purely for expositional purposes. These two problems could be collapsed.
35Since my model is static, and assumes away from firm’s endogenous entry and exit, my model can be interpreted

as a long-run approximation, in which every firm behaves just like a “continuing” firm. For such firms, labor input
is as easy as maintaining the existing employment relationship.
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and La’O 2020).

Third, taking the competitors’ quantity choices and aggregate variables as given, firm k in

sector i chooses the quantity of output qik ∈ Si := R+ ∪ {+∞} to maximize its profit.36 Let

πik : Si×S Ni−1
i → R represent firm k’s profit function that maps its own quantity choice qik and

competitors’ choices qi,−k := {qik′}k′∈Ni\{k} to the profit under the information set Ii:

Ii := {Y, {Xj}j∈N, {Qj}j∈N\{i},W, P
M
i , {zik}k∈Ni

,ωL,Ω, τ }.

The construction of Ii reflects the fact that when firms in sector i make quantity decisions, they

take these aggregate variables as fixed while internalizing the possibility of the sectoral aggregate

quantity Qi and the associated price index Pi varying as a result of their own decisions.37 Note that

the sectoral cost index for material input PMi is taken as given. All sectoral price indices {Pj}j∈N

are determined to be consistent with all sectoral cost indices for material input {PMj }j∈N in the

aggregate equilibrium.38 The inclusion of the firms’ productivities {zik}k∈Ni
partly embodies the

complete information structure of the strategic interaction. For each i ∈ N, the Cournot-Nash

equilibrium quantities q∗i := {q∗ik}k∈Ni
must satisfy the following system of equations: for each

k ∈ Ni,

q∗ik ∈ arg max
q

πik(q,q
∗
i,−k; Ii). (7)

The existence of Cournot-Nash equilibria in each sector immediately follows from the Debreu-

Glicksberg-Fan theorem (Debreu 1952; Fan 1952; Glicksberg 1952). In what follows, the dependence

on the information set Ii is made implicit, and it is understood as being absorbed by the sector i

subscript.39

36The firm’s profit here is defined as revenue minus variable costs.
37Note that, as seen in (10), government spending G can be dropped under (1), (8), and (9).
38It might seem to be natural to consider a situation where firms recognize their impacts on input prices as well

as output prices. In such a case, firms’ strategic interactions prevail across sectors through input uses along the
production network. This entails two additional theoretical complications: i) all firms engage in a single very large
strategic competition across sectors, and ii) firms have oligopsony power in the input markets (e.g., Berger et al.
2022). The causal mechanism of this paper, on the other hand, is motivated by existing research that points to
the prevalence of i)’ within-sector strategic interactions and ii)’ oligopolistic competition in the output markets. To
keep the focus of the analysis consistent with the motivating literature, I maintain the sectoral aggregator (3), which
effectively safeguards the input markets against the firms’ strategic forces. Exploring the case of oligopsony across
sectors is left for future work.

39Strictly speaking, each step of the firm’s decision is based on different information sets. For instance, the
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2.4 Government

The government sets the level of subsidies τ under the balanced budget. Government expenditures

consist of two components. First, the government purchases the final consumption good, which can

be conceived as public spending G. The second element refers to the total policy expenditure Si in

sector i. The residual between these two expenditures is charged to the representative consumer in

the form of a lump-sum tax T . Hence, the government’s budget constraint is

G+

N∑
i=1

Si = T where Si :=

Ni∑
k=1

N∑
j=1

τiPjmik,j . (8)

2.5 Equilibria

2.5.1 Market Clearing

Since the final consumption good is either consumed by the household or purchased by the govern-

ment, the market clearing condition for the final consumption good reads

Y = C +G. (9)

Substituting (1) and (8) into (9), it follows that

Y = WL+ Π−
N∑
i=1

Si, (10)

which is nothing but the income accounting identity of GDP.

Sectoral intermediate goods are used either for producing the final consumption good or as

input in an individual firm’s production: for each j ∈ N,

Qj = Xj +

N∑
i=1

Ni∑
k=1

mik,j . (11)

Labor L is assumed to be inelastically supplied, fully employed, and frictionlessly mobile across

information set at the time of input decision should be I′i := Ii ∪ {q∗ik′}
Ni
k′=1. The i index should thus be understood

as conditioning on the appropriate information set.
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sectors and firms, thus satisfying

L =

N∑
i=1

Ni∑
k=1

`ik. (12)

2.5.2 Equilibria Defined

I assume that subsidies τ are exogenously determined (by the government).40 Under Assumption

2.1, the numbers of sectors and firms, firms’ productivities, and the network structures are invariant

to a policy shift, while other aggregate variables, together with firm-level variables, are endogenously

determined in equilibrium. Defining the equilibria in this model amounts to finding a fixed point

in these endogenous variables. I use the symbol ∗ to denote the equilibrium values.

Definition 2.1 (General Equilibria). Given the realization of firms’ productivities {{zik}k∈Ni
}i∈N,

sector-specific subsidies τ , and the input-output linkages ωL and Ω, the general equilibria of this

model are defined as fixed points that solve the following problems:

Sectoral equilibria: For each sector i, given the information set Ii, the solution to the quantity-

setting game (7) yields a vector of sectoral Cournot-Nash equilibrium quantities {q∗ik}k∈Ni
, fol-

lowed by the cost-minimization problems (5) and (6) to derive the optimal labor and material

inputs {`∗ik,m∗ik}k∈Ni
, and input demand for sectoral intermediate goods {{m∗ik,j}j∈N}k∈Ni

.

Aggregate equilibria: Given a collection of sectoral equilibrium quantities {q∗ik, `∗ik,m∗ik, {m∗ik,j}j∈N}i,k,

an aggregate equilibrium is referenced by the set of aggregate quantities {Y ∗, {X∗j , Q∗j}j∈N}

together with the set of aggregate prices {W ∗, {P ∗j }j∈N}, such that i) the household maximizes

its utility subject to (1), ii) the income accounting identity (10) holds, and iii) the market

clearing conditions for composite intermediate goods (11) and labor (12) are satisfied.41

2.6 The Object of Interest

Recall from Section 2.1 that the policymaker hopes to learn how much GDP would change due to

the policy reform from τ0
n to τ1

n. Let Y τ be the country’s GDP in equilibrium under policy regime

40I abstract from issues of endogenous policies, such as considered in Grossman and Helpman (1994).
41The market clearing condition for individual firms’ products is straightforward, as firm-level products are only

used by the sectoral aggregator. Thus, it is already implicitly applied in the exposition.
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τ . From (10) and (12), it follows that

Y τ =

N∑
i=1

Yi(τ ) where Yi(τ ) :=

Ni∑
k=1

(
W ∗`∗ik + π∗ik −

N∑
j=1

τiP
∗
jm
∗
ik,j

)
, (13)

where πik stands for firm k’s profit. In (13), Yi(τ ) can be viewed as sectoral i’s GDP, with each of

its summands corresponding to an individual firm’s contribution.42

Now the object of interest ∆Y (τ0
n, τ

1
n) is defined as

∆Y (τ0
n, τ

1
n) :=

N∑
i=1

Yi(τ
1)−

N∑
i=1

Yi(τ
0). (14)

While a variety of “causal effects” of an industrial policy have been proposed in the empirical

treatment-effect literature, they do not necessarily speak to policy-relevant questions such as those

considered in this paper.43 The policy parameter (14) directly compares the country’s GDP under

τ 0 to that under τ 1 and thus answers the important macroeconomic question. A virtue of this

parameter is that under Assumption 2.1,44 it represents an intensive-margin causal effect of the

policy reform in the sense of a ceteris paribus change in an outcome variable across different policy

regimes (Marshall 1890).45 In the same spirit as the policy-relevant treatment effect (Heckman and

Vytlacil 2001, 2005, 2007),46 the target parameter (14) pertains to ex ante evaluation of causal

effects of universal treatments with internalizing firms’ strategic interactions, network spillovers,

and the general equilibrium feedback effect, each of which is typically assumed away in the treatment

effect literature.47

Remark 2.1. While I confine attention to the causal effect of an industrial policy on GDP, my

model can be used to define various other (both aggregate and distributional) causal parameters

42Each summand can be rearranged as W ∗`∗ik+π∗ik−
∑N
j=1 τiP

∗
j m
∗
ik,j = p∗ikq

∗
ik−

∑N
j=1 P

∗
j m
∗
ik,j , which is the value

added gross of the firm’s markup.
43See Lane (2020) and Juhász et al. (2023).
44See also footnote 42.
45In the long-run analysis, wherein the firm’s endogenous entry and exit are allowed, the extensive-margin causal

effect can be defined analogously (Appendix D.2).
46Similar notions of “causal effects” are also defined under the premise of randomized control trials, e.g., overall

treatment effects (Halloran and Struchiner 1991; Hudgens and Halloran 2008) and global treatment effects (Munro
et al. 2023).

47There have been recent advancements in the treatment effect literature to accommodate these elements (see,
e.g., Rotemberg (2019) and Sraer and Thesmar (2019)). However, no existing work accounts for all of these elements
simultaneously.
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(Appendix D.3), to analyze changing subsidies to multiple sectors (Appendix D.4), and to formulate

an optimal policy problem (Appendix D.5).48

2.7 Properties of the Policy Parameter ∆Y (τ 0
n, τ

1
n)

Under Assumptions 2.1, the object of interest (14) is differentiable over the domain of definition of

the model49 and thus is equivalently rewritten as

∆Y (τ0
n, τ

1
n) =

N∑
i=1

∫ τ1
n

τ0
n

dYi(·)
dτn

dτn,
50 (15)

where

dYi(s)

ds

∣∣∣∣
s=τ

=

Ni∑
k=1

{
dp∗ik
dτn

q∗ik + p∗ik
dq∗ik
dτn
−

N∑
j=1

(
dP ∗j
dτn

m∗ik,j + P ∗j
dm∗ik,j
dτn

)}
.51 (16)

In the reminder of this section, I investigate the determination of the comparative statics in

(16) using a simplified version of the model, while a full description is delegated to Appendix A.

2.7.1 Macro and Micro Complementarities

To highlight how the firms’ strategic interactions over quantities interact with the production

network across sectors, I focus on the comparative statics of quantity and sectoral cost index for

material input, namely,
dq∗ik
dτn

and
dPMi

∗

dτn
. For the sake of simplicity, I assume away the general

equilibrium effects, i.e., wage is invariant to the policy change. Then, these two comparative statics

are characterized by the following two “reduced-form” equations:

Proposition 2.1 (Reduce-Form Equations (Partial Equilibrium)). Suppose that the economy is in

48See also Appendix D.2.
49The domain of definition is not necessarily the same as the empirical support of data. This is discussed in Section

4.
50Note that subsidies to other sectors {τj}j 6=n are fixed constant throughout the integral, so that Yi(·) can effectively

be treated as a univariate function of τn. In light of this, I write dYi(·)
dτn

= ∂Yi(·)
∂τn

.
51With a slight abuse of notation, for an equality V ∗ = V (s), I write dV (s)

ds

∣∣∣
s=τ

= dV ∗

dτn
.
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partial equilibrium, so that dW ∗

dτn
= 0. Then, it holds that

dq∗ik
dτn

= λ̄Mik
dPMi

∗

dτn

dPMi
∗

dτn
= hMi,n

∂PMi (·)
∂τn

1{i=n},

where PMi (·) is a function such that PMi
∗

= PMi ({P ∗j }Nj=1, τi). Both λ̄Mik and hMi,n are theoretically

well-defined pass-through coefficients defined in Appendix A.1.

Proof. See Appendix A.1.

Both equations of Proposition 2.1 are characterized by two reduced-form coefficients, namely λ̄Mik

and hMi,n. The coefficient λ̄Mik captures the pass-through of the change in the sectoral material cost

index to the change in firm-level output quantity. This coefficient can be obtained by averaging the

contributions of firms’ products to the responsiveness of marginal profit functions, with the weights

being material productivity.52 The coefficient hMi,n represents the pass-through of the direct impact

of the policy change to the change in the sectoral material cost index PMi
∗
,53 and is given by the (i, n)

entry of the matrix (I −Γ)−1 where Γ :=
[
∂PMi (·)
∂P ∗j

λ̄Mj·

]N
i,j=1

with λ̄Mj· being a weighted average of all

λ̄Mjk in the same sector j.54 Notice that PMi (·) involves the information about the production network

carried over from the aggregator Gi(·), and so are its partial derivatives
∂PMi (·)
∂P ∗j

. By construction,

λ̄Mj· can be conceived as a sector-level measure of firms’ strategic complementarities.

For instance, when i = n, the coefficient hMi,n is given by

1︸︷︷︸
baseline effect

+ λ̄Mn·
∂PMn (·)
∂P ∗n︸ ︷︷ ︸

dPMi →dPn→dPMn

+

N∑
j=1

λ̄Mn·
∂PMj (·)
∂P ∗n

λ̄Mj·
∂PMn (·)
∂P ∗j︸ ︷︷ ︸

dPMi →dPn→dPMj →dPj→dPMn

+

N∑
j=1

N∑
j′=1

λ̄Mn·
∂PMj (·)
∂P ∗n

λ̄Mj·
∂PMj′ (·)
∂P ∗j

λ̄Mj′·
∂PMn (·)
∂P ∗j′︸ ︷︷ ︸

dPMi →dPn→dPMj →dPj→dPMj′ →dPj′→dP
M
n

+ . . . .

(17)

The first term on the right-hand side of (17) designates the direct effect of a policy change, while the

rest captures the indirect effect due to changes in other sectors’ price indices accumulated through

52See Appendix A.1 for details.
53In the full-fledged general equilibrium version of the model, the endogenous adjustment of wage W ∗ is at play

and affects PMi
∗
. Because of this channel,

dPM
i
∗

dτn
does not vanish even if i = n.

54It is assumed that (I−Γ)−1 exists. The weight for λ̄Mik is proportional to the share of firm k’s product in sectoral
aggregate Qi.
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the production network. For instance, the second term represents a feedback effect coming through

the purchase of intermediate goods from the own sector. The third and fourth terms capture

the feedback effects coming through multiple rounds of input purchases by other sectors.55 Each

round of the indirect effects is augmented by the source sectors’ overall strategic complementarities

{λ̄Mj· }Nj=1. Intuitively, hMi,n compounds the degree of sector-level strategic complementarities along

the production network. I refer to {λ̄Mj· }Nj=1 as the micro complementarities and {hMj,n}Nj=1 as the

macro complementarities.56

Clearly, different specifications of market competition or a production network lead to different

values of the micro and macro complementarities.57 Put another way, different specifications may

result in different or even opposite policy conclusions. To fix ideas, I now explore these two pass-

through parameters using a special case of the model above, namely, duopoly in a familiar-looking

parametric environment.58

2.7.2 An Illustrative Example: Two Sectors and Two Firms

Suppose that the economy consists of two sectors, i.e., N = {1, 2}. Each sector is populated by

two firms, i.e., Ni = {1, 2} for all i ∈ N, and they are heterogeneous in productivity. Without loss

of generality, firm 1 is assumed to be more productive than firm 2. In each sector, firms engage

in strategic competition over quantity in the output market (i.e., Cournot duopoly) while being

perfectly competitive in the input markets. Consider an industrial policy targeted at sector 1, i.e.,

n = 1.

The economy-wide aggregator F(·) is given by a Cobb-Douglas production function. The sec-

toral aggregator Fi(·) takes the form of a constant elasticity of substitution (CES) production

function with an elasticity of substitution σi > 1 (i.e., firms’ products are substitutes). Each in-

dividual firm produces a differentiated good using a Cobb-Douglas production function fi(·) with

Hicks-neutral productivity zik. The material aggregator Gi(·) is once again given by a Cobb-Douglas

55The third term gauges the feedback effects in terms of triads, while the fourth term does so in terms of tetrads.
56Even in the absence of strategic competition, such as in monopolistic competition, micro complementarities

persist because {λ̄jk}Ni
k=1 involve the responsiveness of firms’ marginal profits with respect to their own quantity

adjustments, and thus they do not necessarily vanish.
57Especially in the absence of a production network, (17) simplifies to one, leaving only the direct effect.
58This is a version of setups widely studied in the context of a multisector model of macroeconomics (Long and

Plosser 1983; Acemoglu et al. 2012) and international trade (e.g., Atkeson and Burstein 2008; Caliendo and Parro
2015; Gaubert and Itskhoki 2020).
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production function, with the input share of sector j’s intermediate good γi,j reflecting the produc-

tion network Ω. It is assumed that γi,j > 0 for all i, j ∈ N, so that every firm purchases positive

quantities of intermediate goods from both sectors 1 and 2 (see Figure 1). The associated unit cost

condition determines the material cost index: PMi
∗

=
∏
j∈N

1

γ
γi,j
i,j

{
(1− τj)P ∗j

}γi,j , thereby yielding

∂PMi (·)
∂P ∗j

= γi,j
PMi

∗

P ∗j
and

∂PMi (·)
∂τn

= −PMi
∗

1−τi .

Figure 1: Duopoly in Two-Sector Economy

Notes: This figure illustrates the two-sector economy studied in Section 2.7.2. Black square borders stand for sec-

tors. Two gray circles entrenched in each of the square represent duopoly firms with dotted lines indicating strategic

interactions between them. Circular arrows designate input purchases along the production network. For exam-

ple, the circular arrow from sector 1 to 2 means the purchase of sector 1’s intermediate goods by firms in sector 2.

Micro complementarity. In equilibrium, firm 1’s quantity choice is a strategic complement to

firm 2’s choice, whereas firm 2’s choice is a strategic substitute for firm 1’s choice.59 To study

how λ̄Mi· summarizes firms’ strategic complementarities, it proves useful to consider a sufficient

condition wherein the micro complementarity λ̄Mi· takes a positive value. The following proposition

states that if firm 2 is a “modestly” strategic substitute, then the sectoral measure of strategic

complementarity is positive.

Proposition 2.2. Suppose

∂ ∂πi2(·)∗
∂qi2

∂qi1

/
∂ ∂πi1(·)∗

∂qi1

∂qi1
∈
(

0,
zi1
zi2

)
.

Then, λ̄Mi· > 0.

59This is shown in Corollary A.4.
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Proof. See Appendix A.4.

The hypothesis of this proposition requires that the proportion of the sensitivity of firm 2’s marginal

profit to firm 1’s quantity adjustment relative to that of firm 1’s marginal profit to its own quantity

change is at most as large as the productivity ratio between the two firms.60 This excludes situations

where firm 2 is a strongly strategic substitute in the relative sense defined above. Note that the

converse of Proposition 2.2 is not true.61 Nevertheless, a positive micro complementarity can

be viewed as an indication that firm 2 might possibly be only a modestly strategic substitute.

Moreover, the contrapositive suggests that a negative micro complementarity is evidence of firm

2’s being a “strongly” strategic substitute.

Macro complementarity. In this two-sector economy, (17) reduces to

hM1,1 = 1 + γ1,1
PM1

∗

P ∗1
λ̄M1· + γ2

1,1

(
PM1

∗

P ∗1

)2

(λ̄M1· )
2 + γ1,2γ2,1

PM1
∗

P ∗2

PM2
∗

P ∗1
λ̄M1· λ̄

M
2· + . . . . (18)

The first term corresponds to the direct impact of the policy change. The second and third terms

capture feedback effects resulting from purchases of the own sector’s goods (the circular arrow from

sector 1 to its own in Figure 1). The fourth term indicates an indirect effect via input purchases

by and from sector 2 (the circular arrow from sector 1 to 2 and the one from sector 2 to 1 in Figure

1).

Here, suppose for a moment that firm 2 in each sector is only a modestly strategic substitute

in the sense of Proposition 2.2, so that λ̄M1· > 0 and λ̄M2· > 0. In this case, it is immediate to see

hM1,1 > 0, i.e., a positive macro complementarity. By contrast, suppose instead that firm 2 in each

sector is a strongly strategic substitute, and thus λ̄M1· < 0 and λ̄M2· < 0. In this case, the sign of the

macro complementarity hM1,1 becomes ambiguous, as the second term of (18) takes a negative value

while the third and fourth terms are positive. Hence, the sign of hM1,1 is essentially an empirical

matter.

The observation drawn here is of direct policy relevance as it means that even if a policy

is targeted at a particular sector, the effects can propagate along the production network; and

60By setup, zi1
zi2

> 1.
61Although it is possible to characterize the necessary and sufficient condition in terms of firms’ strategic comple-

mentarities, its economic content is not clear. See Remark A.5.
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moreover, such propagations are mediated (amplified, weakened, or even reverted) by the firms’

strategic interactions in each sector. This insight brings about two implications for empirical

policy evaluation. First, to accurately evaluate the policy parameter ∆Y (τ0
n, τ

1
n) warrants the joint

consideration of the production network and firms’ strategic interactions. Second, the identification

of ∆Y (τ0
n, τ

1
n) should be accomplished under a minimal set of assumptions about the underlying

market environment, so that the analysis can remain agnostic about the configurations of the policy

effect spillovers.

3 Data

This section briefly describes the dataset used in my empirical analysis and the procedures by which

I construct the empirical counterparts to the variables in my model.62 My dataset spans between

2007 and 2021, but I do not exploit its time-series feature; rather, I regard it as a collection of snap-

shots of the same economy with varying levels of subsidies. In this way, I can construct “repeated

samples.” Consistent with the static nature of the model, the firm-level functions (e.g., technology,

demand) are posited to be, conditional on an array of sector-level and aggregate variables, the same

across these snapshots.63 I assume that the observations are generated from an equilibrium (see

Assumption 4.1).

3.1 Wage and Price Indices

Data on wage and labor hours worked are taken from the U.S. Bureau of Labor Statistics (BLS)

through the Federal Reserve Bank of St. Louis (FRED) at an annual frequency. Consistent with my

conceptual framework, I use the average hourly earnings of all employees as my data counterpart

for the wage W ∗.64 I obtain data on sectoral price index P ∗i from the GDP by industry data at

the Bureau of Economic Analysis (BEA), wherein the industries in the BEA data are used as the

empirical counterparts of sectors in my framework.

62The details are provided in Appendix B.
63This aligns with the approach adopted by Ackerberg and De Loecker (2024).
64Recall that labor is assumed to be frictionlessly mobile across sectors, which implies that the wage is the same

everywhere in the economy.
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3.2 Input-Output Tables

I adopt the annual U.S. input-output data from the BEA. The data contain industrial output

and input for 66 industries and cover the period from 1995 to 2021. Following Baqaee and Farhi

(2020), I omit the government, noncomparable imports, and second-hand scrap industries. I also

follow Bigio and La’O (2020) in dropping finance, insurance, real estate, rental and leasing (FIRE)

industries. I further follow Gutiérrez and Philippon (2017) in segmenting the industries into coarser

categories, leaving me with 32 industries.

Each input-output account comes with two distinct tables, namely, the use and supply tables.

The use table reports the amounts of commodities used by each industry as intermediate inputs

and by final user, and the value added by each industry. The value-added section of the use

table includes compensation of employees and taxes on products less subsidies for each purchaser

industry. Each cell in the supply table indicates the amount of each commodity produced by each

industry.

To transform the use table into an industry-by-industry format, I make the following assump-

tion: each product has its own specific sales structure, irrespective of the industry where it is

produced (Assumption B.1). Here, the sales structure refers to the shares of the respective inter-

mediate and final users in the sales of a commodity. Under this assumption, I can convert the

commodity-by-industry use table to the industry-by-industry table, thereby conforming to my con-

ceptual model of the production network Ω (see Appendix B.2.1 for details).65 The transformed

input-output table can further be used to back out data for τ as a value-added net subsidy, which

is understood as an amalgamate of sales and input subsidies.

3.3 Compustat Data

The dataset for firm-level variables is Compustat, which is assembled by S&P and provided by

Wharton Research Data Services (WRDS). The Compustat data record information about firm-

level financial statements, such as sales, input expenditure, capital stock information, and detailed

industry activity classifications, from 1950 to 2021. From this data, in conjunction with the data

on aggregate variables, I first construct measurements for firm-level labor and material inputs as

65Using the compensation of employees, I can also construct data for ωL. Throughout the transformation, the
value-added section of the use table remains intact.
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well as revenue. I follow De Loecker et al. (2020) in eliminating outliers. To highlight the role of

firms’ strategic forces, I focus on a situation where every firm has a modest degree of market power,

excluding the possibility that a large share of the market is gained by a limited number of firms,

such as “superstar firms” (Autor et al. 2020).66

Since the dataset does not offer a further breakdown of material input, I need to apportion

the expenditure on material input to generate separate information about the demand for sectoral

intermediate goods. This requires an explicit functional-form assumption on the material input

aggregator Gi(·) in (4). In this paper, I employ a Cobb-Douglas production function:

mik =
N∏
j=1

m
γi,j
ik,j , (19)

where mik,j is sector j’s intermediate good demanded by firm k in sector i and γi,j denotes the

input share of sector j’s intermediate good with
∑N

j=1 γi,j = 1. A virtue of this specification is

that the production network across sectoral intermediate goods {ωi,j}j∈N is directly reflected in

the output elasticity parameters {γi,j}j∈N, which are constant.67 This property is plausible in light

of the particular focus of this paper on the short-run effects of the policies (see Assumption 2.1).68

Under this specification, the input demand for sector j’s good m∗ik,j is given by

m∗ik,j = γi,j
PMi

∗

(1− τi)P ∗j
m∗ik, (20)

where PMi
∗
m∗ik indicates the expenditure on material input gross of subsidies, which can be obtained

in the data (see Fact B.5).

I admit the possibility that the data on firm-level revenues and costs are subject to measurement

66The focus of this paper complements that of Autor et al. (2020), who use a monopolistic competition model to
study the rise of “superstar firms.”

67The Cobb-Douglas production function has traditionally been used in a wide range of the macroeconomics
literature — for example, the real business cycle theory (Long and Plosser 1983; Horvath 1998, 2000) and international
trade (Caliendo and Parro 2015; Grassi 2017; Bigio and La’O 2020). The recent literature has emphasized the
importance of an endogenous input-output structure of the economy and employed a CES aggregator (e.g., Atalay
2017; Baqaee and Farhi 2019; Caliendo et al. 2022).

68In principle, the functional form assumption (19) is necessitated in order to compensate for the shortcoming of
the dataset at hand. In general, this assumption could be relaxed to the extent that the information about demand
for sectoral intermediate goods are recovered. Moreover, this assumption could even be completely dispensed if the
econometrician (or the policymaker) has access to detailed data on firm-to-firm trade, such as the Belgium data
(Dhyne et al. 2021), the Chilean data (Huneeus 2020) and the Japanese data (Bernard et al. 2019).
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errors.69 Importantly, the Compustat data do not provide information about output quantity and

price. To recover these variables from the observables that are possibly prone to measurement

errors, I leverage a methodology that has recently been developed in the industrial organization

literature (see Section 4.2).

4 Identification and Estimation

This section discusses identification of the object of interest (14) based on the model laid out in

Section 2 and the dataset described in Section 3. The identification results are constructive, which

naturally validates the use of nonparametric plug-in estimators.

To simplify the identification analysis, I make two sets of assumptions. First, in order to sidestep

the concern about the multiplicity of equilibria, I impose assumptions on the equilibrium selection

probability. Second, I focus on a situation where the policymaker is only interested in changing

the policy within the historically observed support. Let T := ×Ni=1Ti where Ti ⊆ R represents the

observed support of τi.

Assumption 4.1 (Equilibrium Selection). (i) The observations in the data are generated from a

single equilibrium. (ii) The equilibrium that is played does not change over the course of the policy

reform.

Assumption 4.2 (Support Condition). [τ0
n, τ

1
n] ⊆ Tn

Assumption 4.1 (i) states that the equilibrium selection probability is degenerated to a single

equilibrium, and the condition (ii) means that it is this single equilibrium that will be chosen in the

policy counterfactuals.70 Assumption 4.1 is widely used in the literature of discrete choice models

(Aguirregabiria and Mira 2010).71 Assumption 4.2 excludes the scenario that the new policy is

such a policy that has never been implemented before. Assumptions 4.1 and 4.2 could jointly be

relaxed at the expense of additional assumptions, as studied by Canen and Song (2022).72

To solve the evaluation problem, it is essential to distinguish the policymaker’s (or the observing

69I assume additive separability in terms of log variables.
70The latter is embodied in Assumptions A.1 and A.2.
71Notice that Assumption 4.1 only restricts the equilibrium selection probability and does not exclude the possi-

bility of multiple equilibria per se.
72See the discussions in Sections 5 and 6.
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econometrician’s) information set from the agent’s information set.73 In light of Sections 2 and 3,

the policymaker’s information set IG is defined as

IG := {Y ∗, {X∗j }j∈N, {Q∗j}j∈N,W ∗, {P ∗j }j∈N,ωL,Ω, τ 0, τ 1, {{rjk, `∗jk,m∗jk}k∈Nj
}j∈N}.

Several remarks on this information set are in order. First, the inclusion of τ 1 reflects the premise

that the policy variables can be manipulated by the policymaker. Second, the firm’s equilibrium

revenue r∗ik is not available in IG; and the observed firm’s revenue rik is contaminated by a mea-

surement error. Third, the firm’s productivity zik is not known to the policymaker by definition

(Section 2). Lastly, the firm’s equilibrium output price p∗ik and quantity q∗ik are not included in IG

due to the limitation of the data (Sections 3).

4.1 Identification Strategy

My identification argument builds on (15) and aims to identify the integrand dYi(s)
ds for all s ∈

[τ 0, τ 1]. The existing approach to recover (16) is to characterize its left-hand side in terms of

aggregate variables that are directly observed in the data (e.g., Arkolakis et al. 2012, 2019; Adão

et al. 2020). Their aggregation results crucially hinge on the modeling assumption of a mass

of continuum of firms. Under this assumption, individual firms are infinitesimally small and thus

inconsequential to the aggregate variables owing to the law of large numbers (Gaubert and Itskhoki

2020). By contrast, my framework embraces only a finite number of firms, in which case firm-level

idiosyncrasies are not washed away even in the aggregate. My approach is rather to recover each

of the firm-level responses on the right-hand side of (16). In doing so, I apply the control function

approach that has been developed in the industrial organization literature. As a by-product, the

characterization result of this paper does not rely on the approximation of (16) around the economy

with no pre-existing policies (i.e., τ 0 = 0), a simplification employed in Liu (2019) and Baqaee and

Farhi (2022).

Remark 4.1. (i) The idea behind my identification strategy resembles the exact hat algebra (Dekle

et al. 2007, 2008), a method that is routinely used to generate a counterfactual prediction in the

73It is tacitly assumed that as far as the information set is concerned, the government, which is an agent of the
model, is identical to the econometrician outside the model.
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literature (e.g., Caliendo and Parro 2015; Adão et al. 2017, 2020).74 My approach is distinct in

two ways, however. First, the exact hat algebra is not principally concerned with the identification

and estimation of the comparative statics; it only calculates the comparative statics taking model

parameters as known (Dingel and Tintelnot 2023). My paper provides a unified framework for the

identification and estimation of both “model parameters” and the comparative statics. Second, the

presumption of exact hat algebra is that all endogenous equilibrium variables are observable. This

requirement, however, is not fulfilled in my case as firm-level quantity q∗ik and price p∗ik are not

available in the data (see Section 3). In Section 4.2, I provide a path forward to move on in the

presence of these unobservable endogenous variables. (ii) The left-hand side of (16) alone may be

of limited practical relevance because it only measures the impact of an infinitesimally small policy

change around τ 0 (e.g., Caliendo and Parro 2015). My target parameter (14), in contrast, can

be used to analyze a large policy reform from τ 0 to τ 1.75 (iii) While useful as an approximation

around the equilibrium in response to a small shock, the common practice of setting τ 0 = 0 (e.g.,

Liu 2019; Baqaee and Farhi 2022) is rarely feasible in empirical research because in most cases it

is that 0 /∈ T .76

4.2 Identification

To recover (16) requires the identification of firm-level price and quantity, and comparative statics,

with the latter further calling for the identification of derivatives of firm-level inverse demand and

production. Notice, however, that a) firm-level quantity and price are not observed in my dataset

(see Section 3), and b) derivatives of the firm-level production and inverse demand functions are

not known by definition (see Section 2). To keep track of these variables from the policymaker’s

viewpoint, I leverage the techniques of the industrial organization literature by imposing three sets

of additional assumptions.

First, I assume that the firm-level production function exhibits Hicks-neutral productivity. Let

74See Costinot and Rodŕıguez-Clare (2014) for an outline of the method.
75In a related vein, Baqaee and Farhi (2022) investigate the consequences of discrete changes in distortions.

Assuming away from any distortions in the initial state of the economy, they provide a second-order approximation
for the responses of real GDP and welfare. Accordingly, the discrete changes in their characterization need to be
small enough to make the second-order approximation sufficiently good. By contrast, this paper derives an exact
formula that is valid for discrete changes of arbitrary size (as long as they are in the historically observed support)
from the current policy regime that may not necessarily be efficient. See also Kleven (2021) for a discussion.

76See the discussion that follows Assumption 4.2.
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Li and Mi, respectively, denote the observed supports of labor and material inputs.

Assumption 4.3 (Hicks-Neutral Productivity). In each sector i ∈ N and each firm k ∈ Ni,

qik = zikgi(`ik,mik),

where gi : Li ×Mi → Si is a sector-specific production technology.

This assumption is routinely employed in the macroeconomics literature (e.g., Baqaee and Farhi

2020; Bigio and La’O 2020).77

Example 4.1 (Nested Cobb-Douglas Production Function). Assumption 4.3, together with the

specification (19), includes the nested Cobb-Douglas production function (e.g., Bigio and La’O

2020):

qik = zik`
α
ikm

1−α
ik with mik =

N∏
j=1

m
γi,j
ik,j , (21)

where α stands for labor share specific to the sector, and γi,j is the share of sector j’s good in the

material input used by sector i with
∑N

j=1 γi,j = 1.

Second, in order to make the model amenable to empirical analysis while maintaining flexibility,

I restrict the sectoral aggregator to take the form of a homothetic demand system with a single

aggregator (HSA; Matsuyama and Ushchev 2017).

Assumption 4.4 (HSA Inverse Demand Function). In each sector i ∈ N, the sectoral aggregator

Fi exhibits an HSA inverse demand function; that is, the inverse demand function faced by firm

k ∈ Ni is given by

pik =
Φi

qik
Ψi

(
qik

Ai(qi)

)
with

Ni∑
k′=1

Ψi

(
qik′

Ai(qi)

)
= 1, (22)

where Φi is a constant indicating the expenditure by sector i’s aggregator, Ψi(·) represents the share

of firm k’s good in the expenditure of sector i’s aggregator, and Ai(qi) denotes the aggregate quantity

index capturing interactions between firms’ choices with qi := {qik′}k′∈Ni
.

77Demirer (2022) and Pan (2022) consider the identification of non-Hicks-neutral production functions.
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From an individual firm’s perspective, the quantity index Ai(qi) in (22) summarizes the firm’s

interactions in sector i, and this is the only channel through which other firms’ choices matter to

the firm’s own decision.78 Put differently, Assumption 4.4 rules out the possibility that any other

firm’s quantity enters the firm’s inverse demand independently of Ai(qi). In this sense, Ai(qi) acts

as a “sufficient statistic” for other firms’ choices, as in Amiti et al. (2014) and Arkolakis et al.

(2019).

Remark 4.2. (i) Assumption 4.4 is slightly stronger than the original definition by Matsuyama

and Ushchev (2017), and abstracts from unobservable demand-side heterogeneity in the sectoral

aggregator Fi(·). This assumption is adopted only to simplify identification and estimation, and

can be relaxed at the cost of an additional technicality. See Kasahara and Sugita (2023). (ii) In the

production function context, Blum et al. (2023), Ackerberg and De Loecker (2024) and Doraszelski

and Jaumandreu (2024) consider demand functions similar in spirit to (22). The identification

results of Ackerberg and De Loecker (2024) and Doraszelski and Jaumandreu (2024) require that

their terms corresponding to Ai(qi) be observable, while this paper, as well as Blum et al. (2023),

do not.

The HSA specification (22) is broad enough to accommodate a wide variety of aggregators,

including those that are commonly used in the international trade literature — for example, the

constant elasticity of substitution (CES), the symmetric translog (Feenstra and Weinstein 2017),

the constant response demand (Mrázová and Neary 2017, 2019), and the flexible class of non-CES

homothetic aggregators explored in Kimball (1995), Burstein and Gopinath (2014), and Arkolakis

et al. (2019).79

Example 4.2 (CES aggregator). The CES aggregator is routinely assumed in the bulk of the

macroeconomics literature on international pricing (Atkeson and Burstein 2008; Amiti et al. 2014;

Gaubert and Itskhoki 2020). Consider the CES aggregator in sector i:

Fi({qik}k∈Ni
) :=

( Ni∑
k=1

δσikq
σ−1
σ

ik

) σ
σ−1

,

78Intuitively, instead of keeping track of every single one of other firms’ choices, the firm only needs to look at this
aggregate quantity.

79See also Matsuyama and Ushchev (2017), Kasahara and Sugita (2020), and Matsuyama (2023) for other exam-
ples.
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where σ represents the elasticity of substitution specific to the sector, and δik is a demand shifter

specific to firm k’s product. Associated with this is the residual inverse demand curve faced by firm

k:

pik =
Φi

qik

δikq
σ−1
σ

ik∑Ni
k′=1 δik′q

σ−1
σ

ik′

. (23)

Suppose δi = δik = δik′ for all k, k′ ∈ Ni. Assumption 4.4 is then satisfied by setting Ψi(x; Ii) :=

δix
σ−1
σ with Ai(qi) =

∑Ni
k′=1 δiq

σ−1
σ

ik′ .

Moreover, to recover firm-level price and quantity from the revenue and cost data, I exploit the

firm’s optimization conditions for the input choices and apply the method developed in Kasahara

and Sugita (2020).80 Applying their method in my context, however, requires an additional assump-

tion because when firms decide their output quantities in the strategic interactions, they foresee

the competitors’ output and input choices as well as their own input choice, letting the strategic

interactions effectively carry over input decisions, a feature absent in Kasahara and Sugita (2020).81

To insulate the input decisions from the strategic interactions, I push forward the insight that

under the specification of the HSA demand system (22), competitors’ choices matter only through

a single aggregator.82 This requires an additional structure on the quantity index Ai(·) in (22).

Assumption 4.5. For each i ∈ N, the quantity index Ai(·) in Assumption 4.4 is exchangeable in

(qi1, · · · , qiNi).83

This assumption states that the quantity index is symmetric in its input arguments in the sense

80It has long been recognized that the use of the quantity measure of revenue data — revenue data deflated by
price index — as a proxy for quantity data induces an omitted price bias (Klette and Griliches 1996) and masks the
demand-side heterogeneity encoded in firm-specific price variables. See, for example, Klette and Griliches (1996),
Doraszelski and Jaumandreu (2019), Flynn et al. (2019), Bond et al. (2021), Kirov et al. (2022), and Kasahara and
Sugita (2020) for the details.

81The host of the literature on the identification of production functions assumes away from strategic interactions.
For example, in the context of the control function approach, Ackerberg et al. (2015) and Gandhi et al. (2019) assume
perfectly competitive markets, and Kasahara and Sugita (2020) focus on monopolistic competition. Doraszelski and
Jaumandreu (2019) and Brand (2020) point out that the canonical scalar unobservability assumption eliminates the
possibility of strategic interactions and examine the extent to which the estimates are biased if the standard approach is
mistakenly used. Matzkin (2008) considers the identification of a system of equations permitting strategic interactions,
but requires linear separability in excluded regressors, which may not be supported on theoretical grounds in my
context.

82In general, this idea extends beyond the HSA demand system insofar as the competitors’ decisions are encapsu-
lated in a single aggregator.

83A function h(x1, . . . , xn) is said to be exchangeable (or permutation invariant) in (x1, . . . , xn) if h(x1, . . . , xn) =
h(xς(1), . . . , xς(n)) for all ς, where ς := (ς(1), . . . , ς(n)) is a permutation of (1, . . . , n). See Kallenberg (2005) and
de Finetti (2017) for the concept of exchangeability.
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that its value is invariant to the order in which the inputs enter, i.e., the quantity index does not

depend on the firms’ indices (i.e., productivity), but only on the prices of the firms’ products.84

This exchangeability assumption is plausible as the sectoral aggregator is meant to be simply a

bundle of firms’ products purchased by every buyer.

With the sectoral aggregator specified above, the following proposition holds.

Proposition 4.1. Suppose that Assumptions 4.4 and 4.5 hold. Then, for each i ∈ N, there exists

a constant Mi ∈ N such that there exist some continuous functions Hi,1, . . . ,Hi,Mi : Z Ni
i → R and

χi : Zi ×RMi → R+ such that

q∗ik = χi(zik;Hi,1(zi), . . . ,Hi,Mi(zi)), (24)

where Hi,m(zi) is exchangeable in (zi1, . . . , ziNi) for all m ∈ {1, . . . ,Mi}.

Proof. See Appendix C.1.

This proposition suggests that the firm’s equilibrium quantity depends on other firms’ produc-

tivities only through some aggregates, each of which is common to all firms. The equation (24)

admits an interpretation analogous to the quantity index Ai(·) in Assumption 4.4; that is, the aggre-

gate productivities {Hi,m(zi)}Mi
m=1 are “sufficient statistics” for the competitors’ productivities.85

An intuition is that instead of interacting one another, each firm only needs to interact with these

aggregate productivities, as they act as a “translator” of the strategic interaction in the market.

These aggregates can most naturally be understood as measures of the overall competitiveness of

the market, and can be viewed as versions of the conventional measure of competitiveness, such

as the Herfindahl-Hirschman Index (HHI). They are, though, distinct in that the latter is usually

observed in data, while the former is by definition not known to the econometrician. Yet, note that

owing to the completeness of the information structure, the values of these aggregate productivities

are known to all firms in the same sector at the time of decision making.

Remark 4.3. Assumption 4.5 can be slightly relaxed to allow for firm-specific demand-side het-

erogeneity as far as i) the heterogeneity is captured by a finite number of parameters, and ii) it

84Analogous assumptions are employed in the context of demand estimation (e.g., Berry et al. 1995; Compiani
2022)

85The aggregate productivities do not need to be observed by the econometrician. The only thing that she needs
to know is that the competitor’s productivity is summarized by some sector-specific aggregates.
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can be factorized in a way that is exchangeable in some firms’ augmented quantities. For instance,

the quantity index of a weighted CES demand considered in Example 4.2 can be parametrized by

A(qi) =
∑

k′∈Ni
q̌
σ−1
σ

ik′ where q̌ik′ = δ
σ
σ−1

ik′ qik′. In this case, Assumption 4.5 holds for {q̌ik′}Nik′=1,

and then (24) remains valid with q∗ik replaced by q̌∗ik. See Kasahara and Sugita (2023) for the

identification of the demand-side heterogeneity.

The last set of assumptions, together with Assumption 4.3, guarantees that the equilibrium

quantity function χi(·) is “invertible” in the firm’s productivity zik.

Assumption 4.6. For each i ∈ N, the function χi(·) in Proposition 4.1 satisfies the following

properties. (i) χi(zik;·)
zik

6= χi(zik′ ;·)
zik′

for all k, k′ ∈ Ni. (ii) χi(·) is strictly monotone in its first

argument.

Part (i), coupled with Assumption 4.3, ensures that variation in the firms’ productivities is re-

flected in the difference in their input choices. Part (ii) pertains to the partial derivative of χi(·)

with respect to the firm’s own productivity, keeping the aggregate productivities fixed. Note that

Assumption 4.6 directly refers to the equilibrium configuration. Formally examining this requires

the detailed knowledge about the sectoral aggregator and firm-level production function, which

goes against the goal of this paper — an analysis with minimal assumptions. Nevertheless, there

is reason to believe that part (i) is plausible because χi(·) is given as a solution to a system of

(possibly) highly nonlinear equations, and that part (ii) is the case with a strictly increasing χi(·)

because with the market competitiveness being constant, productive firms are more likely to have

higher market shares, producing more goods.

Taken together with (6), it follows from Assumptions 4.3 – 4.6 that there exists a continuous

function Mi : Li ×Mi ×RMi → Zi such that

zik =Mi(`
∗
ik,m

∗
ik;Hi,1(zi), . . . ,Hi,Mi(zi)) (25)

for all k ∈ Ni. In light of this, Assumptions 4.5 and 4.6, along with Proposition 4.1, correspond

jointly to the scalar unobservability assumption and the strict monotonicity assumption of the

proxy variable approach (e.g., Olley and Pakes 1996; Levinsohn and Petrin 2003; Ackerberg et al.

2015). The expression (25) allows the econometrician to control for unobservable productivity in
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terms of observable labor and material inputs.

Remark 4.4. (i) To recover the firm’s production function over the entire empirical support, the

literature typically goes to further assume that the firm’s productivity follows a Markov process

(e.g., Ackerberg et al. 2015; Gandhi et al. 2019). In contrast, my analysis is only concerned with

identifying the equilibrium values of the relevant functions and variables (see Section 4.1), thereby

abstracting from the stochastic process of the firm’s productivity. This is plausible in view of the

fact that the economic model of my framework is static in nature, and thus my empirical analysis

does not exploit the time-series feature of the data (see Section 3). (ii) Plugging (25) into (4), the

firm’s production function can be written in a way that does not depend on competitors’ variables.86

This observation can be combined with the repeated sample paradigm (see Section 3) to restore

identification of firm-level variables under the “large n” asymptotics.

Assumptions 4.3 – 4.6 permit a variety of specifications for both sector- and firm-level production

functions. Continuing Examples 4.1 and 4.2, I demonstrate that these assumptions are satisfied in

a model widely used in the macroeconomics and international trade literature.

Example 4.3 (CES Sectoral Aggregator and Cobb-Douglas Production Function). Consider the

setup outlined in Examples 4.1 and 4.2. To make my claim as transparent as possible, I focus on

the case of three firms (Ni = 3) and σ = 1
2 . In this case, the Cournot-Nash equilibrium quantity

is given by q∗ik =
(

ΦiA
∗
i

2mcikA
∗
i

2+Φi

)2
, where the equilibrium value of the quantity index A∗i takes the

form of a function of Hi,1({zik}3k=1) := z−1
i1 + z−1

i2 + z−1
i3 and Hi,2({zik}3k=1) := zi1zi2zi3. Here,

mcik := z−1
ik mci stands for the firm k’s marginal cost.87 This conforms to Proposition 4.1, and

satisfies Assumption 4.6.

Taking this expression as given, the input decision is constrained by the production possibility

frontier at output level q∗ik: zik`ik
αmik

1−α =
(

ΦiA
∗
i

2mcikA
∗
i

2+Φi

)2
(see the inner optimization of (6)).

Upon solving this for zik, it is immediate to see that in equilibrium there exists a functionMi(·) such

that zik = Mi(`
∗
ik,m

∗
ik,Hi,1({zik}3k=1),Hi,2({zik}3k=1), yielding the expression (25). See Appendix

C.1.1 for the detail.

86The competitors’ productivity matters only through aggregate productivities, which are effectively absorbed by
the sectoral index.

87In Example 4.3, mci represents part of the marginal cost common across firms in the same sector, and is given
by mci = α−α(1− α)1−αWα(PMi )1−α .
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Under Assumptions 4.3 – 4.6, I follow Kasahara and Sugita (2020) to identify the equilibrium

values of the firm-level quantities and prices, and those of the derivatives of the residual inverse

demand functions. Moreover, with the CRS property (Assumption 2.4) and the Hicks-neutral

productivity (Assumption 4.3) in hand, I can apply the method developed in Gandhi et al. (2019) to

recover the equilibrium values of the first- and second-order derivatives of the production functions.

With additional regularity conditions,88 I therefore obtain the following theorem.

Theorem 4.1 (Identification of the Object of Interest). Suppose that Assumptions 4.1 – 4.6, C.2

and C.3 hold. Then, the object of interest (14) is identified from the observables.

Proof. See Appendix C.7.

Remark 4.5. Under the same set of assumptions as Theorem 4.1, various other (both aggregate and

distributional) causal parameters (Appendix D.3) and the effects of changing subsidies to multiple

sectors (Appendix D.4) can also be identified.

A version of Theorem 4.1 remains valid for the case of monopolistic competition with the

solution concept appropriately modified.

Corollary 4.1. Suppose that firms operate within a structure of monopolistic competition in the

output market. Then, the object of interest (14) is identified from the observables.

4.3 Estimation

Since the identification results demonstrated above are constructive, I build on the analogy principle

to obtain a nonparametric estimator for the policy effect (14).89 I first nonparametrically estimate

the values of the firm-level quantity and price, and the first- and second-order derivatives of the

firm’s production function. Guided by the theory, I then combine these to derive the nonparametric

estimator for (14). Given that the object of interest is continuous with respect to the exogenous

variables, the resulting estimator is consistent. The accuracy of my estimator is verified through a

numerical simulation in Appendix F.

88These regularity conditions consist of three parts, namely, a) the strict exogeneity of the measurement error on
firm-level revenues, b) continuous differentiability of the revenue function in terms of labor and material inputs, and
c) normalization of both the firm’s production function and sectoral aggregator.

89My approach takes a stance on econometric estimation rather than calibration. See Hansen and Heckman (1996)
and Dawkins et al. (2001) for an extensive discussion about the methodological difference between calibration and
econometric estimation. See also Matzkin (2013) for nonparametric estimation.
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As stated in Section 3, I acknowledge the possibility that the data on firm-level revenues and

costs are contaminated by measurement errors. To purge the measurement errors, my estimation

of the firm-level quantity and price follows the convention of the industrial organization literature

in applying a polynomial regression of degree two. In estimating the firm’s production elasticities,

I follow the specification suggested in Gandhi et al. (2019). See Appendix E for the details.

Compared to the calibration-type approach, my estimation procedure has two practical ad-

vantages. First, it does not require any external information (e.g., parameter estimates from the

preceding research) and thus can be performed in a self-contained fashion. This feature obviates the

need for conducting a “robustness check” with respect to the pre-specified values of some parame-

ters (see Section 5.1.1).90 Second, while the canonical calibration method is merely a benchmarking

exercise, my approach prepares the ground for statistical hypothesis testing of model predictions,

thereby allowing for the accumulation of knowledge in the hypothetico-deductive way.91

5 Empirical Application: CHIPS and Science Act of 2022

In this section, I study the empirical relevance of the joint existence of a production network and

firms’ strategic interactions by taking my model to the real-world data described in Section 3.

As a policy narrative, I investigate the recent episode of the CHIPS and Science Act (CHIPS),

which was passed into law in 2022 and aims to invest nearly $53 billion in the U.S. semiconductor

manufacturing, research and development, and workforce (White House 2023). This policy also

includes a 25% tax credit for manufacturing investment, which is projected to provide up to $24.25

billion for the next 10 years (Congressional Budget Office 2022). In my model, this tax credit can be

analyzed as an additional subsidy targeted at the computer and electronic product manufacturing

industry (Appendix B.2.2), which is indexed by n. Simply dividing the estimated $24.25 billion

by 10 years implies $2.43 billion per year. This corresponds to raising the subsidy to 19.23%.92 In

90The benefit of this property becomes acute when there are no existing works that align closely to the setup being
studied by the researcher, as there is no hope of “borrowing” estimates from other research. This is actually the case
with the present paper. Further discussion on this and others can be found in Dawkins et al. (2001).

91See Dawkins et al. (2001) for a further discussion about these two methodologies. Cartwright (2007) and Deaton
and Cartwright (2018) compare the econometric policy analysis and statistical causal inference methods (such as
randomized control trials) from a philosophical viewpoint. Moreover, Heckman and Vytlacil (2007) emphasize the
merits of using economic models to accumulate knowledge across studies.

92The total amount of value-added tax in 2021 is $8.44 billion, and the total value of material input (before tax
and subsidy are applied) is $55.53 billion. Hence, (8.44 + 2.43)/55.53× 100 = 19.58%. See Appendix B.2.2.
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my dataset, the historically observed support for a subsidy on this industry is between 3.58% and

16.52%.93

However, analyzing the whole part of this policy requires the researcher to send the value of the

subsidy to outside the observed support, while my identification result hinges on the “within the

observed support” assumption (Assumption 4.2). Extending my analysis to outside the support is

possible at the cost of additional assumptions, as explored in Canen and Song (2022). But this

goes beyond the scope of this paper and is left for future work. Instead, the exercise of this section

focuses on a part of the CHIPS subsidy. Specifically, I consider a hypothetical policy scenario of

increasing the subsidy on the semiconductor industry from the 2021 level of 15.21% to an alternative

ratio of 16.21% — equivalent to $0.55 billion.94 This accounts for approximately one-fourth of the

per-year tax credit.95 Note that this policy scenario satisfies Assumption 4.2. It is assumed that

the semiconductor industry is the only industry that is directly targeted during this policy reform.

The goal of this section is to discuss the empirical relevance of the joint existence of a produc-

tion network and firms’ strategic interactions by first estimating the change in GDP due to this

counterfactual industrial policy and then analyzing the mechanism behind the estimated policy

effect. In Section 5.1, I first calculate the estimate of the policy effect (14). To shed light on the

policy relevance of accounting for strategic interactions, I carry out the estimation for both monop-

olistic and oligopolistic cases.96 In Section 5.2, I take advantage of the structural construction of

my framework to provide a breakdown of the gains and losses of the policy reform into sector-level

price and quantity effects. To understand the determination of these effects, I further delve into

the comovement of sectoral price and material cost indices.

Remark 5.1. In theory, I could concatenate data from multiple years (or snapshots) to construct

a bigger dataset, which might be useful to enhance accuracy of the estimates. However, putting this

into practice requires to increase the number of arguments of the non-parametric function, thereby

typically causing the curse of dimensionality. I leave this issue for future research, while focusing

93In the dataset, the semiconductor subsidy was 3.58% in 2007 and 16.52% in 2019. In terms of the notation in
Section 2, it is represented as Tn = [0.0358, 0.1652].

94To make the analysis as close to reality as possible, I set the current policy regime to the latest year available,
which is 2021. In terms of the model, this policy reform can be expressed by letting τ0

n = 0.1521 and τ1
n = 0.1621.

95Observe that 16.21−15.21
19.53−15.21

= 0.2315. One way to interpret this policy scenario is that it takes time to put the
whole part of the CHIPS Act into effect, and what can be realized in the short run is only a part of it. This view is
consistent with the short-run perspective of this paper.

96In view of Corollary 4.1, these two cases can be analyzed in a unified framework.
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on the data from a single year, namely, data from 2021.

5.1 The Policy Effect: Change in GDP

Based on (15), I estimate the change in GDP due to the policy reform from τ0
n = 0.1521 to

τ0
n = 0.1621. An advantage of my approach is that the responsiveness of GDP can be traced out

as a (possibly nonlinear) function of the subsidy over [τ0
n, τ

1
n]. For computation purposes, I divide

this interval evenly into a fixed number of segments and calculate the estimate according to

∆̂Y (τ0
n, τ

1
n) ≈

v̄−1∑
v=0

N∑
i=1

̂dYi(s)

ds

∣∣∣∣
s=τ0

n+v∆τn

×∆τn, (26a)

where the symbol ̂ is used to denote an estimator or estimate, and ∆τn := τ1
n−τ0

n
v̄ with v̄ being the

number of bins equally segmenting the interval [τ0
n, τ

1
n].97 To highlight the consequence of ignoring

the nonlinearity, I also estimate the policy effect using the following approximation:

∆̂Y (τ0
n, τ

1
n) ≈

N∑
i=1

̂dYi(s)

ds

∣∣∣∣
s=τ0

n

× (τ1
n − τ0

n). (26b)

That is, the estimate is computed by assuming that the responsiveness of GDP is constant through-

out the course of the policy change at the level of the current policy regime.

Table 1 compares the estimates for the policy effect based on (26a) and (26b) in both cases

of monopolistic and oligopolistic competition. Two things stand out about this table. First, the

estimate (26a) under oligopolistic competition is markedly different from that under monopolistic

competition; the former is about 221 percent lower relative to the latter, flipping the sign from

positive to negative. This reflects the impact of the policy reform coming through the strategic

interactions as studied in Section 2.7. The substantial discrepancy between these two estimates

highlights the empirical relevance of strategic interactions. Second, regardless of the type of market

competition, the estimates based on (26b) are noticeably different from those based on (26a).98

This underlines the substantial degree of nonlinearity in the responsiveness of GDP as a function

of the subsidy, which is visualized in Figure 2. The nonlinearity essentially arises from the fact

97In this analysis, I set v̄ = 20.
98The difference in estimates for oligopolistic competition might appear to be rather nuanced. Notice, however,

that this happens by chance due to the choice of a counterfactual policy regime (i.e., one percent point change). A
different choice of an alternative policy could lead to more pronounced difference in the estimate. See Figure 2.
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that the firms’ reactions depend on their quantity and price, as well as their production elasticities,

each of which in turn depends on the value of the underlying subsidy. See also Remark 4.1 (ii).

Three caveats in interpreting the implications of Table 1 should be clarified before proceeding.

First, the primary focus of this section is not on accurately gauging the size of the policy effect,

but on empirically assessing the significance of the presumed economic mechanism in policy effects.

Second, the dataset used in this paper is by no means representative of the universe of U.S. firms.99

Third, the estimates are obtained by ignoring part of the demand-side heterogeneity (Assumption

4.4). With these caveats firmly in mind, it is important not to misconstrue Table 1 as a generic

endorsement of the (in)effectiveness of industrial policy; rather, it should be understood as empirical

evidence in support of the policy relevance of the firms’ strategic forces accruing through the

production network, a property illuminated in Section 2.7.

Lastly, one may wonder if there is a chance that further increasing the subsidy by, say, 2%

eventually reverts the policy effect to being positive. However, my identification result builds on

Assumption 4.2, which restricts an alternative policy to stay within the observed support of the

policy variable. Establishing the identification for a policy that sends the policy variable to outside

the observed support in general requires additional invariance conditions, as studied by Canen and

Song (2022).

Table 1: The estimated policy effect under different market structures

(billion U.S. dollars) Monopolistic competition Oligopolistic competition

Estimates based on (26a) 3.52 -4.29
Estimates based on (26b) 5.02 -4.09

Note: This table compares the estimates for the object of interest (14) based on the benchmark

and my method. The estimates are measured in billions of U.S. dollars.

5.1.1 Robustness

In general, there are three types of “robustnesses” that require some care, namely, i) robustness with

respect to the choices of pre-specified parameter values, ii) robustness with respect to the criteria

for data construction and cleaning, and iii) robustness with respect to the choices of truncation and

99In fact, the Compustat data are not representative of the universe of U.S. firms, and moreover the dataset goes
through multiple steps of outlier and missing data elimination (see Appendix B).
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Figure 2: The total derivative of Y with respect to τn

(a) Monopolistic Competition (b) Oligopolistic Competition

Note: This figure illustrates the estimates of the total derivative of (economy-wide) GDP with respect to the semicon-

ductor subsidy between τn = 15.21% and 16.21%. Panel (a) shows the result for the case of monopolistic competition

and panel (b) for the case of oligopolistic competition. The red line represents the estimates based on the nonlinear

approximation (26a). The blue line indicates the estimates based on the linear approximation (26b). The broken line

stands for zero. Hence, the part surrounded by the broken line and those (solid and dotted) red lines above it measures

the total increment of GDP over the course of the policy change, while the other part gives the total decrement in GDP.

The difference between these two areas delivers the estimated value of the policy effect according to (26a). Similarly,

the area surrounded by the broken line and blue line gives the estimated value of the policy effect according to (26b).

turning parameters in the estimators. For the first case, as discussed in Section 4.3, my approach

does not presuppose any external information, thereby being free from any concern of this type.

Second, the dataset used in my analysis goes through several steps of outliers and missing data

elimination. These manipulations are rationalized by the assumptions imposed on the model (see

Appendix B). Relaxing the criteria for these steps runs the risk of misspecification, which is of

great interest in its own right and exceeds the scope of this paper. The third type, in my case,

pertains to iii-a) the choice of degree of polynomials in estimating the firm-level revenue function

and share regressions, and iii-b) the choice of the number of bins (v̄ in (26a)). In my estimation

algorithm, the former is chosen adaptively, leaving the latter as the only computation parameter

that needs to be given before the implementation.100 In calculating the main results, it is set equal

to 20. Robustness checks with respect to this choice are conducted and illustrated in Appendix

G.2. Overall, the results are both quantitatively and qualitatively unaffected.

100Investigating the criteria of these adaptive selections per se is of independent interest, and is left to be explored.
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5.2 Mechanism

To study the mechanism behind the results obtained in Section 5.1, I investigate the determination

of the integrand of (15) (the responsiveness of sectoral GDP).

5.2.1 Responsiveness of sectoral GDP

Design. I anchor my interpretation of the responsiveness of sectoral GDP around (16):

dYi(s)

ds

∣∣∣∣
s=τn

=

Ni∑
k=1

dp∗ik
dτn

q∗ik︸ ︷︷ ︸
price effect

+

Ni∑
k=1

p∗ik
dq∗ik
dτn︸ ︷︷ ︸

quantity effect

−
( Ni∑
k=1

N∑
j=1

dP ∗j
dτn

m∗ik,j︸ ︷︷ ︸
wealth effect

+

Ni∑
k=1

N∑
j=1

P ∗j
dm∗ik,j
dτn︸ ︷︷ ︸

switching effect

)
, (27)

which states that the marginal effect of a policy change consists of changes in revenue and expendi-

ture on material input net of subsidies. The former is broken down into price and quantity effects.

When a firm produces more of its output, the price effect dictates the loss due to the increased

supply in light of the law of demand. Under oligopolistic competition, this downward pressure

depends not only on the increase in a firm’s own quantity but also on a change in every other firm’s

output quantity through the cross-price elasticities of demand. The quantity effects are propor-

tional to the given level of the firm’s output price. The other component of (27) can similarly be

decomposed into two parts: the wealth and switching effects. The wealth effects are changes in a

firm’s “budget” as a result of changes in sectoral price indices. The switching effects are changes

in the sectoral composition of the firm’s input purchase, holding the price level constant.

Result. Table 2 reports the rankings of the top and bottom four industries in terms of gains and

losses on sectoral GDP for monopolistic and oligopolistic competition. From this table, it can be

seen that the sectoral distributional consequence — which sector wins and which sectors lose —

depends on the tension between the two types of price and quantity effects defined in (27). To

build intuition about this, suppose that all firms in a sector increase their production of output

(positive quantity effects). By the law of demand, this lowers the output prices (negative price

effects). These two effects induce another set of price and quantity effects. On the one hand, to

produce more of their goods, the firms increase the purchase of input goods (negative switching
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effects).101 On the other hand, since their products are now sold at lower prices and used as input

by other sectors according to the production network, they expect to see a reduction in the prices

of other sectoral goods, which in turn lowers their input costs (positive wealth effect). The total

effect depends on which of these price and quantity effects are dominant.

Take the computer and electronic products industry as an example. Under monopolistic compe-

tition, the positive components (the quantity and wealth effects) jointly dominate the negative parts

(the price and switching effects). When the markets are oligopolistic, the positive quantity effects

are almost exactly offset by the negative price effects, while the positive wealth effects are surpassed

by the negative switching effects, leaving the firms with a higher input cost. Loosely speaking, the

input costs do not fall as much as the semiconductor firms have expected. This echoes the in-

sight gleaned in Section 2.7 that the network compounds the firms’ strategic complementarities,

amplifying or buffering the policy effects across industries.

Next, I explore the determination of this tension with a particular focus on the comovements

between firm- and sector-level variables.

5.2.2 Macro and Micro Complementarities

Here, I derive three “reduced-form” equations of comparative statics that span the second stage of

my identification procedure. These three equations jointly envision the process by which the within-

sector overall strategic complementarities (micro complementarities) are compounded through the

production network into between-sector complementarities (macro complementarities).102 It is

these two complementarities that dictate the comovement of sectoral price and material cost in-

dices. The bottom line is that, relative to the monopolistic benchmark, both micro and macro

complementarities in the case of oligopolistic competition can be amplified or weakened due to

firms’ strategic complementarities.103

101Since the switching and wealth effects are multiplied by minus, as shown in (27), when they are summed into
the total effect, I refer to its sign (positive or negative) by the gross of this minus sign.

102These terminologies are borrowed from Klenow and Willis (2016) and Alvarez et al. (2023).
103The results demonstrated here are a general equilibrium version of Proposition 2.1 with additional assumptions.

A fuller account can be found in Appendix C.5.
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Table 2: Responsiveness of Sectoral GDP (in Billions of U.S. Dollars)

(a) Monopolistic Competition (with the Production Network)

Industry Total Effects Effects on Revenue Effects on Material Cost

p.effect q.effect w.effect s.effect

Air transportation 833.27 -348.58 3178.59 -304.10 2300.85
Ground and other transportation 389.67 -335.04 1228.33 -246.67 750.30
Retail trade 116.81 -401.51 1070.13 -456.05 1007.85
Computer and electronic products 103.20 -391.62 748.17 -142.26 395.61

...
Chemical products -124.65 245.56 -448.59 104.82 -183.21
Wholesale trade -127.57 -362.95 1642.93 -430.07 1837.63
Accommodation and food services -138.15 78.84 -240.97 7.82 -31.79
Hospitals and nursing -201.25 76.57 -408.20 42.64 -173.02

Total 502.11

(b) Oligopolistic Competition (with the Production Network)

Industry Total Effects Effects on Revenue Effects on Material Cost

p.effect q.effect w.effect s.effect

Plastics, rubber and mineral products 2.77 -8.40 8.40 -9.22 6.45
Food and beverage and tobacco products 2.35 -123.69 123.69 -75.38 73.03
Information and data processing services -0.01 -22.48 22.48 -6.88 6.89
Educational services -0.01 -4.38 4.38 -2.35 2.36

...
Retail trade -16.85 -126.67 126.67 -114.41 131.26
Primary metals -32.13 -224.39 224.39 -140.45 172.58
Computer and electronic products -106.45 -348.74 348.74 -87.94 194.39
Petroleum and coal products -178.32 -843.74 843.74 -526.34 704.66

Total -410.14

Note: This table reports the estimates for the top and bottom four firms in terms of the total effects (i.e.,

the change in sectoral GDP in the order of a million dollars). Panel (a) shows the results for monopolistic

competition, while panel (b) illustrates the estimates for oligopolistic competition. Since the network spillover

effects are by construction absent in monopolistic competition, results for other industries are omitted in panel

(a). In each of the panels, the total effects are broken down into the effects on revenue and material input

costs. They are further decomposed into four effects according to (27): namely, p.effect stands for the price

effects, q.effect the quantity effects, w.effect the wealth effects, and s.effect the switching effects. Notice that

the total effects are given by the effects on revenue minus the effects on material costs (see (27)). The ellipsis

points (vertical three dots) stand for other 24 industries omitted. Hence summing up the total effects of the

displayed eight industries do not equal to the entire total effects. Note that the first column in each panel

indicates names of industries based on the segmentation given in Table B.2. A full description of the result is

provided in Appendix G.1.
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Key equations. First, the total differentiation of the firm’s profit-maximization problem yields

dq∗ik
dτn

= λ̄Mik
dPMi

∗

dτn
+ λ̄Lik

dW ∗

dτn
, (28)

where λ̄Mik and λ̄Lik are indices measuring the extent to which the market competition is affected by

the change in firm k’s quantity.

Second, totally differentiating the firm’s profit-maximization and cost-minimization problems

delivers

dP ∗i
dτn

= λ̄Mi·
dPMi

∗

dτn
+ λ̄Li·

dW ∗

dτn
, (29)

where λ̄Mi· and λ̄Li· are weighted sums of λ̄Mik ’s and λ̄Lik’s in sector i, respectively. Since each of these

coefficients involves the derivatives of marginal profit functions not only with respect to firms own

choices but also with respect to competitors’ choices (i.e., strategic complementarities), it can be

conceived as a measure of the sector’s overall strategic complementarity. I call λ̄Mi· and λ̄Li· sector

i’s micro complementarities with respect to material and labor input, respectively.104

Third, from the cost-minimization problem for the material input aggregator, I have

dPMi
∗

dτn
= −hMi,n

PMn
∗

1− τn
+ hLi

dW ∗

dτn
, (30)

where hMi,n indicates the (i, n) entry of (I − Γ)−1, with Γ :=
[
γi,j

PMi
∗

P ∗j
λ̄Mj·
]N
i,j=1

. Note that the array

of the output elasticities [γi,j ]
N
i,j=1 reflects the input-output structure Ω (Fact B.5). Hence, the

matrix (I − Γ)−1 can be considered a version of the Leontief inverse matrix that compounds the

sectors’ micro complementarities along the network. In (30), hMi,n captures the comovement pattern

of the sectoral cost index
dPMi

∗

dτn
and the direct effect of the subsidy −PMn

∗

1−τn . I call hMi,n sector i’s

macro complementarity to the policy shock on sector n. Similarly, hLi is referred to as sector i’s

macro complementarity to the change in the wage rate.

Note that dW ∗

dτn
can be written in terms of firm-level elasticities of production and inverse demand

functions of all firms across sectors. Provided the identifications of these elasticities, the three

104Since these measures involve the derivatives of marginal profit functions with respect to firms own choices, they
do not vanish even when the market is monopolistically competitive.
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equations, (28), (29), and (30) can thus be viewed as “reduced-form” equations. Reading these

in reverse order, I can proceed as if the material cost indices responded first, followed by the

adjustments of the sectoral price indices and firm-level output quantities. Moreover, combining

equations (29) and (30), the coefficient of pass-through from material cost to price index can be

expressed in terms of the macro and micro complementarities. Notice, though, that the reduced-

form coefficients in the above three equations are already composites of firm-level production and

inverse demand functions and thus do not allow for behavioral interpretations; rather, they only

represent comovement patterns of the comparative statics.

Result. Table 3 reports the responses of sectoral price indices and material cost indices, along with

the coefficients indicating macro and micro complementarities for the top and bottom four industries

listed in Table 2. In this empirical analysis, I obtain −PMn
∗

1−τn = −762.37. Also, dW ∗

dτn
= 26.04 for the

case of monopolistic competition, and dW ∗

dτn
= −0.06 for the case of oligopolistic competition.

The material cost of the semiconductor industry decreases in both monopolistic and oligopolis-

tic competition. But the magnitudes are different because the sector’s macro complementarities

(hLi and hMi,n) vary substantially across these two types of markets. This reflects the fact that

macro complementarity compounds all sectors’ micro complementarities, which involve the sector’s

strategic complementarities. This appears more starkly in the retail trade industry, whose macro

complementarities in oligopolistic competition take signs opposite to those in the monopolistic case.

Disciplined by (29), Table 3 also displays how much the sectoral price indices change. For

the computer and electronic products industry, the magnitudes of the micro complementarities

are more nuanced in oligopolistic competition relative to in monopolistic competition, the pass-

throughs from material input cost and wage being less transient. This is in concordance with the

price effects in Table 2. Moreover, since the most important source industry for this industry is

itself, this price change is directly translated into the positive wealth effects shown in Table 2.105

Associated with changes in the sectoral price indices is the firm’s adjustment of output and

input quantities. Take the retail trade industry as an example. Figure 3 illustrates the changes

in firm-level output quantities and prices in this industry for both monopolistic and oligopolistic

competition. While most of the monopolistic firms respond by dramatically raising their output

105This observation is true for many other industries too. See Figure 5.
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Table 3: The Changes in Sectoral Price Indices and Material Cost Indices

(a) Monopolistic Competition (with the Production Network)

Industry (i) hLi hMi,n
dPMi

∗

dτn
λ̄Li· λ̄Mi·

dPi
∗

dτn

Air transportation -92.59 -1.22 -1478.12 -1.22 7.38 -1402.80
Ground and other transportation -162.84 -1.66 -2971.03 -1.66 2.20 -1091.63
Retail trade -65.16 -0.39 -1402.42 -0.39 2.71 -281.64
Computer and electronic products 31.30 3.41 -1784.66 3.41 1.18 -340.75

...
Chemical products 33.83 0.19 736.32 0.19 1.08 271.41
Wholesale trade -57.25 -0.08 -1428.47 -0.08 1.32 -746.62
Accommodation and food services -50.54 -2.17 338.28 -2.17 7.22 218.35
Hospitals and nursing 69.26 0.56 1376.89 0.56 9.26 545.97

(b) Oligopolistic Competition (with the Production Network)

Industry (i) hLi hMi,n
dPMi

∗

dτn
λ̄Li· λ̄Mi·

dPi
∗

dτn

Plastics, rubber and mineral products 56.60 0.43 -333.47 0.43 0.58 -20.22
Food and beverage and tobacco products 39.02 0.27 -209.78 0.27 0.57 -27.38
Information and data processing services 58.49 0.48 -372.82 0.48 0.73 -28.99
Educational services 99.90 0.76 -590.24 0.76 1.39 -28.30

...
Retail trade 62.37 0.46 -351.84 0.46 1.02 -33.34
Primary metals 45.12 0.33 -251.99 0.33 0.45 -65.93
Computer and electronic products 39.62 1.82 -1394.74 1.82 0.66 -160.72
Petroleum and coal products 18.48 0.12 -95.66 0.12 0.06 -44.17

Note: This table displays the estimates for the elements of (29) and (30) for those industries listed in Table

2. Panel (a) shows the results for monopolistic competition and panel (b) for oligopolistic competition.

The subscript n on the variables denotes the targeted industry, i.e., the computer and electronic product

industry. A full description of the result is provided in Appendix G.1.
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quantities, the responses of the oligopolistic firms are much more nuanced (Figure 3 (a)).106 This

is accompanied by firm-level prices moving in the opposite direction (Figure 3 (b)). Note that

these are consistent with the price and quantity effects of this industry shown in Table 2. It

should also be noted that the correlation coefficient between firm-level markups and the changes in

firms’ output quantities is −0.13 for the monopolistic market and −0.20 for the oligopolistic case,

which implies that the policy under consideration has pro-competitive effects for retailers in both

cases. In line with the quantity adjustment, most of the oligopolistic firms increase their purchases

of intermediate goods only modestly, whereas many of the monopolistic firms actively engage in

switching behavior between source industries to substantially increase their overall input purchases

(Figure 4).107 This corresponds to the switching effects in Table 2.

All in all, I find that the sectors’ macro and micro complementarities under oligopolistic com-

petition differ substantially from those under monopolistic competition. In 19 out of 32 industries,

these differences jointly manifest themselves through the difference in the sign of the marginal

change in the sectoral price index, which is associated with that of firms’ equilibrium responses.

This result again points to the empirical relevance of accounting for firms’ strategic interactions in

credibly predicting firms’ responses and hence the policy effect.

6 Conclusions

Industrial policies have been and will continue to be an important policy tool for policymakers to

achieve a range of policy goals. This paper studies the causal impact of an industrial policy on

an aggregate outcome in the presence of firm-level strategic interactions and sectoral production

networks. Following the econometric policy evaluation literature, the causal effect in this paper

is defined as a ceteris paribus difference in outcome variables across different policy regimes. To

formulate this policy parameter, I develop a general equilibrium multisector model of heterogeneous

oligopolistic firms with a production network. For the identification, I develop a new, multi-stage

identification procedure that first decomposes the policy parameter into sectoral aggregate variables

as well as firm-level variables — firm-level sufficient statistics — and then recovers the latter by

106When the market is monopolistic, no firm decreases its output quantities; when the market is oligopolistic, only
one firm out of 85 increases its output quantities.

107To make this mechanism transparent, I keep track of five firms with substantial adjustments (i.e., k ∈ {5, 43, 45})
throughout Figures 3 and 4.
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Figure 3: The Changes in Firm’s Output Quantities and Prices (Retail trade)

(a) Quantity (b) Price

Note: This figure shows horizontal bar plots representing the changes in firms’ output quantities in wholesale trade

and compares the case of monopoly (blue) to that of oligopoly (orange). To facilitate the discussion, indices for five

firms are explicitly marked (e.g., k ∈ {5, 43, 45}). Note that firms’ output quantities and prices are identified (and thus

estimated) only up to scale.

Figure 4: The Changes in Demand for Sectoral Intermediate Goods (Retail trade)

(a) Monopolistic Competition (b) Oligopolistic Competition

Note: This figure shows heatmaps indicating changes in demand for sectoral intermediate goods from firms in whole-

sale trade. Panel (a) shows the results for monopolistic competition, while the estimates for oligopolistic competition

are depicted in panel (b). In both panels, the horizontal axis denotes industry, and the vertical axis represents indi-

vidual firms. To facilitate the discussion, a firm’s index is explicitly marked for five firms (e.g., k ∈ {5, 43, 45}). White

cells represent decreases in demand for sectoral goods. Gray and black cells stand for mild (0 ∼ 1.0 × 107) and large

(1.0 × 107 ∼) increases in demand for sectoral goods, respectively. These are measured in the same unit as the final

consumption good.
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using the control function approach of the industrial organization literature, which in turn identifies

the desired policy parameter. To accommodate the firm’s strategic interactions, I restrict the

classes of the firm’s inverse demand and production function and the path through which the other

firm’s productivities enter the firm’s production decision. I show that these assumptions are general

enough to encompass many specifications that are commonly used in the macroeconomics literature.

Moreover, my approach is constructive, so that a nonparametric estimator for the policy effect can

be obtained by reading this procedure in reverse without adapting any external information (e.g.,

parameter estimates from the preceding research). Given that all firm-level responses — the finest

ingredient of the model — are identified, my method can be used to further study a variety of policy

parameters such as GDP, consumption, intersectoral trade flow, and both sectoral and firm-level

distributional outcomes.

A key mechanism of my model is that when firm-level production functions exhibit constant

returns to scale, policy effects are mediated by the production network that compounds changes

in firms’ marginal profits not only through adjustments of their own actions but also via those

of competitors’ actions (i.e., strategic complementarities), with the latter absent in monopolistic

competition. This additional wedge in network spillovers manifests itself as the differences in the

comovements of sectoral price indices and material cost indices, or pass-through coefficients. In

line with this observation, my empirical estimates, based on U.S. firm-level data, suggest that

comovement patterns in response to an additional subsidy on the semiconductor industry dif-

fer substantially between monopolistic and oligopolistic competition. The resulting policy effect

in oligopolistic competition is approximately 220% lower than that in monopolistic competition,

meaning that the presence of firm’s strategic interactions has potential to even revert the policy

implications. This observation echoes the policy relevance of jointly accounting for firm’s strategic

interactions and a production network.

Interpreting the results displayed in this paper requires some care because they are susceptible

to errors to the extent that the Compustat data are incomplete and non-representative and incur

substantial imputation.108 Besides the data limitation, there are three directions for future work.

First, since my framework is fairly general, it can straightforwardly be extended to embrace other

types of policies such as fiscal and monetary policies and trade policies. Second, this paper abstracts

108See Baqaee and Farhi (2020) and Covarrubias et al. (2020).
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away from the firm’s entry and exit problem over the course of policy reform, restricting the

scope of analysis to short-run policy effects. Accommodating a long-run perspective inserts an

additional layer into my framework, namely, the free-entry condition. Deriving the comparative

statics, however, is nontrivial in my setup as the number of firms is finite, and thus the standard

notion of derivatives cannot be well-defined. Third, the identification analysis of this paper assumes

that the economy features a single equilibrium, the same equilibrium is played over the course of

a policy reform, and the policy reform is restricted to be within the historically observed support.

These limitations can be simultaneously addressed at the cost of additional assumptions concerning

the equilibrium selection probability, as studied in Canen and Song (2022). Lastly, my model is

static and thus silent about the policy implications of capital accumulation, which is usually at the

center of policy debate. An extension to a dynamic environment requires an explicit consideration

of not only the firm’s own future choices but also competitors’ future choices. This convoluted

forward-looking nature opens up another source of multiplicity of equilibria.
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competitive effects of trade. The Review of Economic Studies 86 (1), 46–80.
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A Comparative Statics

In this section, theoretical results displayed in Section 2 are derived. The goal of this section is

to solve for comparative statics — the responsiveness of firm-level and sector-level variables with

respect to the change in the policy variable (i.e., sector-specific subsidy). By ‘solve for comparative

statics,’ it is meant that the comparative statics are expressed in terms of the endogenous variables

in the current equilibrium, the exogenous variables and the policy-invariant functions, each of which

are delineated in Section 2. The exposition is streamlined along the firm’s decision process.

Remark A.1. For the sake of econometric analysis, the main text assumes that the quantity of

labor input is determined prior to material input, as described in (6). As far as its quantitative

implications are concerned, however, this “sequential decision” problem can equally be rewritten as

a standard simultaneous decision problem (Ackerberg et al. 2015). For ease of exposition, I thus

consider the simultaneous decision formulation throughout this section.

A.1 Profit Maximization

In each sector i ∈ N, for the equilibrium wage W ∗, the material price index PMi
∗

and for each firm’s

optimal quantity q∗ik, there exists a pair of labor and material inputs that satisfies the following

one-step profit maximization problem:

(¯̀∗
ik, m̄

∗
ik) ∈ arg max

`ik,mik

{
p∗ikq

∗
ik − (W ∗`ik + PMi

∗
mik)

}
s.t. q∗ik = fi(`ik,mik; zik).

The first order conditions with respect to labor and material inputs are given, respectively, by:

[`ik] : mrik(·)∗
∂fi(·)∗

∂`ik
= W ∗ (31)

[mik] : mrik(·)∗
∂fi(·)∗

∂mik
= PMi

∗
, (32)

where mrik(qi) is the firm k’s marginal revenue function, and I denote mrik(·)∗ := mrik(q
∗
i ),

∂fi(·)∗
∂`ik

:= ∂fi(·)
∂`ik

∣∣∣
(`ik,mik)=(¯̀∗

ik,m̄
∗
ik)

, and ∂fi(·)∗
∂mik

:= ∂fi(·)
∂mik

∣∣∣
(`ik,mik)=(¯̀∗

ik,m̄
∗
ik)

. Taking total derivatives of

the both hand sides of (31) and (32) in terms of τn yields, respectively,

( Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn

)
∂fi(·)∗

∂`ik
+mr∗ik(·)

(
∂2fi(·)∗

∂`2ik

d¯̀∗
ik

dτn
+

∂2fi(·)∗

∂`ik∂mik

dm̄∗ik
dτn

)
=
dW ∗

dτn
(33)

( Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn

)
∂fi(·)∗

∂mik
+mrik(·)∗

(
∂2fi(·)∗

∂`ikmik

d¯̀∗
ik

dτn
+
∂2fi(·)∗

∂m2
ik

dm̄∗ik
dτn

)
=
dPMi

∗

dτn
, (34)

where

dq∗ik
dτn

=
∂fi(·)∗

∂`ik

d¯̀∗
ik

dτn
+
∂fi(·)∗

∂mik

dm̄∗ik
dτn

.
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Here, remember that firms only choose their output quantities through profit maximization, while

input decisions are made in a way that minimizes total costs. Thus the “optimal” labor ¯̀∗
ik and

material inputs m̄∗ik chosen above are not necessarily the same as the ones that are actually chosen

by the firm. Rather, ¯̀∗
ik and m̄∗ik should be understood as a combination of inputs that only pins

down the change in the firm’s output quantity, whose corresponding production possibility frontier

is in turn used to determine the optimal input choices in the subsequent cost minimization problem

(see Section A.2).

From (33) and (34), it follows that, in equilibrium,

( Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn

)(
∂fi(·)∗

∂`ik
¯̀∗
ik +

∂fi(·)∗

∂mik
m̄∗ik

)
+mrik(·)∗

(
∂2fi(·)∗

∂`2ik

¯̀∗
ik +

∂2fi(·)∗

∂`ik∂mik
m̄∗ik

)
d¯̀∗
ik

dτn
+mrik(·)∗

(
∂2fi(·)∗

∂`ik∂mik

¯̀∗
ik +

∂2fi(·)∗

∂m2
ik

m̄∗ik

)
dm̄∗ik
dτn

=
dW ∗

dτn
¯̀∗
ik +

dPMi
∗

dτn
m̄∗ik

∴
Ni∑
k′=1

∂mrik(·)∗

∂qik′

dq∗ik′

dτn
=

1

q∗ik

(
dW ∗

dτn
¯̀∗
ik +

dPMi
∗

dτn
m̄∗ik

)
, (35)

where the implication is a consequence of Assumption 2.4 (i). The expression (35) holds for each

firm k ∈ Ni in the same sector i, thereby constituting a system of Ni equations:


∂mri1(·)∗
∂qi1

∂mri1(·)∗
∂qi2

. . . ∂mri1(·)∗
∂qiNi

∂mri2(·)∗
∂qi1

∂mri2(·)∗
∂qi2

. . . ∂mri2(·)∗
∂qiNi

...
...

. . .
...

∂mriNi (·)
∗

∂qi1

∂mriNi (·)
∗

∂qi2
. . .

∂mriNi (·)
∗

∂qiNi


︸ ︷︷ ︸

=:Λi,1


dq∗i1
dτn
dq∗i2
dτn
...

dq∗iNi
dτn

 =



¯̀∗
i1
q∗i1

m̄∗i1
q∗i1

¯̀∗
i2
q∗i2

m̄∗i2
q∗i2

...
...

¯̀∗
iNi
q∗iNi

m̄∗iNi
q∗iNi


︸ ︷︷ ︸

=:Λi,2

[
dW ∗

dτn
dPMi

∗

dτn

]
. (36)

In order to ensure that this system generates a unique set of firms’ quantity changes in response

to the change in subsidy, I impose the following regularity condition.

Assumption A.1 (Regularity Condition 1). For each sector i ∈ N, the matrix

Λi,1 :=


∂mri1(·)∗
∂qi1

∂mri1(·)∗
∂qi2

. . . ∂mri1(·)∗
∂qiNi

∂mri2(·)∗
∂qi1

∂mri2(·)∗
∂qi2

. . . ∂mri2(·)∗
∂qiNi

...
...

. . .
...

∂mriNi (·)
∗

∂qi1

∂mriNi (·)
∗

∂qi2
. . .

∂mriNi (·)
∗

∂qiNi


is nonsingular.

Assumption A.1 requires that the column vectors of Λi,1 are linearly independent, and guarantees

the premultiplying term of the left-hand side of (36) is invertible. This assumption trivially holds
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in monopolistic competition as Λi,1 simplifies to a diagonal matrix.

Note here that under the setup in Section 2, firms’ marginal costs are constant, and thus it holds

∂mrik(·)
∂qik′

=
∂
∂πik(·)
∂qik
∂qik′

. In light of this, the economic content of Assumption A.1 can be envisioned in

terms of firms’ strategic complementarities.

Example A.1 (Duopoly). For simplicity, consider a case of duopoly, wherein firm 1 and 2 are

engaged in quantity competition. It generally holds that |∂mri1(·)∗
∂qi1

| ≥ |∂mri1(·)∗
∂qi2

|. But, it is also

true that |∂mri2(·)∗
∂qi1

| ≤ |∂mri2(·)∗
∂qi2

|. Hence, there is no such a constant that makes the column vectors

Λi,1 linearly dependent. In this sense, Assumption A.1 excludes a situation where the firm’s own

strategic complementarity is exactly the same as the competitor’s.See als Appendix A.4.2.

Under Assumption A.1, the system of equations (36) can be solved for {dq
∗
ik

dτn
}Nik=1:

dq∗i1
dτn
dq∗i2
dτn
...

dq∗iNi
dτn

 = Λ−1
i,1 Λi,2

[
dW ∗

dτn
dPMi

∗

dτn

]
.

In this expression, Λ−1
i,1 captures the strategic interactions between firms through changes in marginal

revenues. Moreover, it can also be seen, from this expression, that {dq
∗
ik

dτn
}Nik=1 depends on the levels

of firm’s current inputs and output through Λi,2 as well as the responsiveness of the wage and

material cost index.

Letting λ−1
ik,k′ be the (k, k′) entry of the matrix Λ−1

i,1 , I obtain

dq∗ik
dτn

=

( Ni∑
k′=1

λ−1
ik,k′

¯̀∗
ik′

q∗ik′

)
dW ∗

dτn
+

( Ni∑
k′=1

λ−1
ik,k′

m̄∗ik′

q∗ik′

)
dPMi

∗

dτn

= λ̄Lik
dW ∗

dτn
+ λ̄Mik

dPMi
∗

dτn
, (37)

where λ̄Lik :=
∑Ni

k′=1 λ
−1
ik,k′

¯̀∗
ik′
q∗
ik′

and λ̄Mik :=
∑Ni

k′=1 λ
−1
ik,k′

m̄∗
ik′

q∗
ik′

correspond to the kth element of the first

and second column of the matrix Λ−1
i,1 Λi,2, respectively. In (37), the weighted sums λ̄Lik and λ̄Mik ,

respectively, dictate the comovements between changes in firm-level quantity and changes in wage,

and between changes in firm-level quantity and changes in sectoral material cost index.109

Notice that while the denominator of λ̄Lik includes all of {∂mrik(·)
∂qik′

}k,k′∈Ni
, the numerator does not

contain the terms {∂mrik′ (·)∂qik
}k∈Ni

, thereby the ratio λ̄Lik backing out the contribution of changes in

qik to a sectoral measure of strategic complementaritiy given by the denominator.110 This measure

109The weights
¯̀∗
ik′
q∗
ik′

and
m̄∗

ik′
q∗
ik′

represent labor productivity and material productivity, respectively. Note that the

weights are not normalized to equal one.
110To see this, observe that for a square matrix O, the inverse matrix O−1 is given by O−1 = adj(O)

|O| , where adj(O)
is the adjoint matrix of O, i.e., the transpose of the cofactor matrix. The cofactor matrix C of O is defined as
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summarizes the extent of influence that firms exert in strategic interactions. The same is true for

λ̄Mik .

I call these measures the indices of a firm’s contribution to sectoral strategic complementarity.

These indices tell me the extent to which the market competition is affected by the change in

firm k’s quantity, and are similar in spirit to the index of competitor price changes of Amiti et al.

(2019).111 This observation can clearly be seen in the example of duopoly, and becomes acute in

the case of monopolistic competitions.

Example A.2 (Duopoly). Continuing the same setup as Example A.1, the inverse matrix Λ−1
i,1 is

given by:

Λ−1
i,1 =

1

det(Λi,1)

[
∂mri2(·)∗
∂qi2

−∂mri1(·)∗
∂qi2

−∂mri2(·)∗
∂qi1

∂mri1(·)∗
∂qi1

]

where det(Λi,1) = ∂mri1(·)∗
∂qi1

∂mri2(·)∗
∂qi2

− ∂mri1(·)∗
∂qi2

∂mri2(·)∗
∂qi1

. Note first that the denominator of the right-

hand side, i.e., det(Λi,1), involves every element of Λi,1, and thus can be viewed as a measure

indicating sector’s overall strategic complementarity.112 Next, take a look at the first row of the

numerators, i.e., ∂mri2(·)∗
∂qi2

and −∂mri1(·)∗
∂qi2

, each of which represents the strategic complementarity

with respect to the firm 2’s quantity adjustment. Divided by det(Λi,1) and summed over columns

with the weights, λ̄Li1 and λ̄Mi1 back out the contribution of the firm 1’s quantity change to the sector’s

overall strategic complementarity. See also Appendix A.4.2.

Example A.3 (Monopolistic Competition). I consider the same setup as Example A.1, but depart

by assuming that both firms are monopolistic. In this case,

Λ−1
i,1 =

[
(∂mri1(·)∗

∂qi1
)−1 0

0 (∂mri2(·)∗
∂qi2

)−1

]
.

Then two measures of the firm 1’s contribution to the overall sectoral strategic complementarity are

given by λ̄Li1 = (∂mri1(·)∗
∂qi1

)−1
¯̀∗
i1
q∗i1

and λ̄Mi1 = (∂mri1(·)∗
∂qi1

)−1 m̄
∗
i1

q∗i1
, both of which are typically negative.113

Provided that both λ̄Li1 and λ̄Mi1 are negative, (37) implies that when the wage and material cost index

C := [ca,b]a,b, where ca,b := (−1)a+b|Ma,b|, with Ma,b representing the minor matrix of O that can be created by
eliminating the a-th row and b-th column from the matrix O. In my context, the k′-th column of the cofactor matrix
of Λi,1 excludes { ∂mrik(·)∗

∂qik′
}Ni
k=1, all of which are in turn ruled out from the k′-th row of the adjoint matrix. Since the

determinant involves the effect of all firms’ quantity changes, the weighted sum along each row of Λ−1
i,1 reflects the

contribution of the changes in firm k′’s output quantity.
111While their index compares the firm’s contribution to the rest of the market, my indices λ̄Lik and λ̄Mik compares

the rest of the market to the entire market, backing out the firm’s share.
112In general, the determinant of a 2× 2 matrix gives the (signed) area of a parallelogram spanned by its column

vectors. In the case of Λi,1, the column vectors consist in the partial derivatives of firm’s marginal revenues with
respect to each firm. Thus det(Λi,1) is a natural measure that summarizes firms’ contributions to the overall strategic
complementarity. Without loss of generality, the sign of the determinant can be assumed to be positive, as it
can be reversed through swapping some of the column vectors. Rather, it is a mapping of the overall strategic
substitutability/complementarity from (−∞,∞) to [0,∞), acting as a normalization constant.

113Precisely, the sign depends on the demand side parameters. For instance, when the sectoral aggregator takes
the form of a CES production function as in Example 4.2, these indices are negative as long as σi > 2.
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become higher in reaction to a policy change, firm 1 decreases its output quantity. An analogous

argument applies to firm 2. When the firms are oligopolistic as in Example A.2, the signs of λ̄Li1
and λ̄Mi1 are ambiguous because they involve strategic complementarities.

In equilibrium, the sectoral price index associated with the sectoral aggregator (3) satisfies the

following unit cost condition: for each i = 1, . . . , N ,

P ∗i = min
{eik}Ni=1

Ni∑
k=1

p∗ikeik s.t. Fi({eik}Nik=1) ≥ 1, (38)

where p∗ik is the price of a product set by firm k in sector i. By solving this, it follows that there

exists a mapping Pi : S Ni
i → R+ such that

P ∗i = Pi(q∗i ). (39)

Totally differentiating (39) yields

dP ∗i
dτn

=

Ni∑
k′=1

∂Pi(·)∗

∂qik′

dq∗ik′

dτn
, (40)

where ∂Pi(·)∗
∂qik′

:= ∂Pi(·)
∂qik′

∣∣∣
qi=q∗i

Remark A.2. Associated with (38) is the (residual) inverse demand function ψik(·), i.e., pik =

ψik(q
∗
i ). By the chain rule, it holds that

dp∗ik
dτn

=

Ni∑
k′=1

∂ψik(·)∗

∂qik′

dq∗ik′

dτn
, (41)

where ∂ψik(·)∗
∂qik′

:= ∂ψik(·)
∂qik′

∣∣∣
qi=q∗i

.

Upon substituting (37) into (40), it holds that

dP ∗i
dτn

=

Ni∑
k′=1

∂Pi(·)∗

∂qik′

(
λ̄Lik′

dW ∗

dτn
+ λ̄Mik′

dPMi
∗

dτn

)

= λ̄Li·
dW ∗

dτn
+ λ̄Mi·

dPMi
∗

dτn
, (42)

where I define λ̄Li· :=
∑Ni

k′=1
∂Pi(·)∗
∂qik′

λ̄Lik′ and λ̄Mi· :=
∑Ni

k′=1
∂Pi(·)∗
∂qik′

λ̄Mik′ . These are a weighted sum of

the elasticities of sectoral price index with respect to firms’ quantities, with the weight assigned to

a firm’s index of strategic complementarity in that sector. From the expression (42), λ̄Li· and λ̄Mi·
can be interpreted as representing a pass-through of a change in the wage and material input cost

to the sectoral price index, respectively.
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Example A.4 (Monopolistic Competition). Continuing Example A.3 and assuming that λ̄Li1, λ̄Li2,

λ̄Mi1 and λ̄Mi2 have all turned out to be negative, I can proceed to calculate λ̄Li· and λ̄Mi· . Due to the

law of demand (i.e., ∂Pi(·)∗
∂qik′

< 0 for all k′ ∈ Ni), these are both positive. In light of (42), this in

turn implies a higher sectoral price index in response to higher wage and material cost index, which

accords with a lower output quantity seen in Example A.3.

Meanwhile, the equilibrium material cost index PMi
∗

satisfies the following unit cost condition:

PMi
∗

= min
{mik,j}j∈N

N∑
j=1

(1− τi)P ∗jmik,j s.t. Gi({mik,j}Nj=1) ≥ 1,

from which I can write PMi
∗

as a function of the sectoral price indices and the sector-specific subsidy,

i.e.,

PMi
∗

= PMi ({P ∗j }Nj=1, τi). (43)

Note that the function PMi (·) encodes the information about the production network, carrying over

from the aggregator Gi(·); specifically, it embodies shares of sectoral goods in material good used

in sector i.

Taking total derivatives of (43), it holds that

dPMi
∗

dτn
=

N∑
j=1

∂PMi (·)
∂P ∗j

dP ∗j
dτn

+
∂PMi (·)
∂τn

1{i=n}, (44)

where 1{i=n} takes one if i = n, and zero otherwise. Substituting (42) for
{dP ∗j
dτn

}N
j=1

into (44), I

arrive at

dPMi
∗

dτn
=

( N∑
j=1

∂PMi (·)
∂P ∗j

λ̄Lj·

)
dW ∗

dτn
+

N∑
j=1

∂PMi (·)
∂P ∗j

λ̄Mj·
dPMj

∗

dτn
+
∂PMi (·)
∂τn

1{i=n}. (45)

Denoting Γ1 :=
[∂PMi (·)

∂P ∗j
λ̄Lj·
]N
i,j=1

and Γ2 :=
[∂PMi (·)

∂P ∗j
λ̄Mj·
]N
i,j=1

, and letting ι := [1, 1, . . . , 1]′ be a

N × 1 vector of ones, I stack (45) over sectors to obtain the following system of equations:
dPM1

∗

dτn
...

dPMN
∗

dτn

 = Γ1ι
dW ∗

dτn
+ Γ2


dPM1

∗

dτn
...

dPMN
∗

dτn

+


∂PM1 (·)
∂τi

1{n=1}
...

∂PMN (·)
∂τi

1{n=N}



∴ (I − Γ2)


dPM1

∗

dτn
...

dPMN
∗

dτn

 = Γ1ι
dW ∗

dτn
+


∂PM1 (·)
∂τi

1{n=1}
...

∂PMN (·)
∂τi

1{n=N}

 (46)

where I represents an N ×N identity matrix.
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To make sure a unique solution, I impose the following regularity condition.

Assumption A.2 (Regularity Condition 2). The matrix (I − Γ2) is nonsingular.

This assumption guarantees that (I − Γ2) is invertible. Under Assumption A.2, it follows from

(46) that 
dPM1

∗

dτn
...

dPMN
∗

dτn

 = (I − Γ2)−1Γ1ι
dW ∗

dτn
+ (I − Γ2)−1


∂PM1 (·)
∂τn

1{n=1}
...

∂PMN (·)
∂τn

1{n=N}

 . (47)

Observe here that Γ2 is a version of the adjacency matrix capturing the input-output linkages

among sectors. Hence, (I − Γ2)−1 can be conceived as a type of the Leontief inverse matrix,

augmented by measures of strategic competition in the source sectors λ̄Mj· (i.e., market distortion).

The (i, n) entry of this strategic-complementarity-adjusted Leontief inverse, denoted by hMi,n, can

be written as a geometric sum:114 if i 6= n,

∂PMi (·)
∂P ∗n

λ̄Mn· +
N∑
j=1

∂PMi (·)
∂P ∗j

∂PMj (·)
∂P ∗n

λ̄Mj· λ̄
M
n· +

N∑
j=1

N∑
j′=1

∂PMi (·)
∂P ∗j

∂PMj (·)
∂P ∗j′

∂PMj′ (·)
∂P ∗n

λ̄Mj· λ̄
M
j′·λ̄

M
n· + . . . , (48)

and if i = n,

1 +
∂PMn (·)
∂P ∗n

λ̄Mn· +
N∑
j=1

∂PMn (·)
∂P ∗j

∂PMj (·)
∂P ∗n

λ̄Mj· λ̄
M
n· +

N∑
j=1

N∑
j′=1

∂PMn (·)
∂P ∗j

∂PMj (·)
∂P ∗j′

∂PMj′ (·)
∂P ∗n

λ̄Mj· λ̄
M
j′·λ̄

M
n· + . . . .

(49)

To gain some intuition for this infinite sum expression, suppose that sector i uses sector n’s

(n 6= i) intermediate good directly and indirectly along the production network. For the sake of

brevity, assume in addition that λ̄j·, > 0 for all j ∈ N. When sector n is subsidized, the reduced

input cost stimulates the production in that sector, leading to a lower sectoral output price index

of sector n according to (42). The pass-through ratio is given by λ̄Mn· . This change in sector n’s

output price index affects the cost index of sector i through multiple channels. The first term of

(48) stands for the first-order spillover effect: the lower price index of sector n directly reduces

sector i’s input cost. The second term captures the second-order spillover effect coming via a third

sector j. The output price index of sector j decreases as firms in sector j can produce more of their

goods by taking advantage of cheaper input costs. This effect is encapsulated in λ̄j·. This chain of

reductions in input cost takes place along the network. I refer to this comovement of sectoral cost

indices as the macro complementarities. In general, however, the sign and magnitude of the macro

complementarities are ambiguous, because they are mediated by the source sector firm’s strategic

complementarities, encoded in λ̄j,·, which I call the micro complementarities.

114For any square matrix A, the corresponding Leontief inverse matrix, if exists, can be written as (I − A)−1 =∑∞
m=0 A

m where I define A0 = I.
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Proof of Proposition 2.1. The proposition immediately follows by setting dW ∗

dτn
= 0 in (37)

and (47). �

A.2 Cost Minimization 1: Input Decision

In equilibrium, firm k’s cost minimization problem in sector i satisfies the following constrained

cost minimization problem:115

(`∗ik,m
∗
ik) ∈ arg min

`ik,mik

W ∗`ik + PMi
∗
mik s.t. fi(`ik,mik; zik) ≥ q∗ik.

The associated Lagrange function is

Li(`ik,mik, ξik) := W ∗`ik + PMi
∗
mik − ξik

(
fi(`ik,mik; zik)− q∗ik

)
.

In equilibrium, the first order conditions are satisfied at (`ik,mik) = (`∗ik,m
∗
ik):

[`ik] : W ∗ = ξ∗ik
∂fi(·)∗

∂`ik

[mik] : PMi
∗

= ξ∗ik
∂fi(·)∗

∂mik

[ξik] : fi(`
∗
ik,m

∗
ik; zik) = q∗ik,

where ξ∗ik is the marginal cost of production at the given quantity q∗ik. Note that under Assumption

2.4 (i), ξ∗ik equals the average cost: i.e., ξ∗ik =
TC∗ik
q∗ik

where TC∗ik := TCik(W,P
M
i , qik)

∣∣
(W,PMi ,qik)=(W ∗,PMi

∗
,q∗ik)

with TCik(·) denoting, with a slight abuse of notation, the firm’s total cost function (see Fact C.1).

Remark A.3. Two sets of “optimal” labor and material inputs (¯̀∗
ik, m̄

∗
ik) and (`∗ik,m

∗
ik) need to

be distinguished. They reside on the same production possibility frontier, but do not necessarily

coincide. It is the latter that minimizes the total cost of producing q∗ik.

Totally differentiating the first order conditions yields

dW ∗

dτn
=
dξ∗ik
dτn

∂fi(·)∗

∂`ik
+ ξ∗ik

(
∂2fi(·)∗

∂`2ik

d`∗ik
dτn

+
∂2fi(·)∗

∂`ik∂mik

dm∗ik
dτn

)
(50)

dPMi
∗

dτn
=

dξ∗ik
dτn,,n′

∂fi(·)∗

∂mik
+ ξ∗ik

(
∂2fi(·)∗

∂`ikmik

d`∗ik
dτn

+
∂2fi(·)∗

∂m2
ik

dm∗ik
dτn

)
(51)

∂fi(·)∗

∂`ik

d`∗ik
dτn

+
∂fi(·)∗

∂mik

dm∗ik
dτn

=
dq∗ik
dτn

. (52)

Notice that (52) dictates the changes of labor and material input along the new production possi-

bility frontier induced by the change in output quantity.

115See Remark A.1.
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Observe here that

dξ∗ik
dτn

=
1

q∗ik

(
∂TCik(·)∗

∂W

dW ∗

dτn
+
∂TCik(·)∗

∂PMi

dPMi
∗

dτn
+
∂TCik(·)∗

∂qik

dq∗ik
dτn

)
− 1

q∗ik

TC∗ik
q∗ik

dq∗ik
dτn

=
1

q∗ik

(
`∗ik
dW ∗

dτn
+m∗ik

dPMi
∗

dτn
+ ξ∗ik

dq∗ik
dτn

)
− 1

q∗ik
ξ∗ik
dq∗ik
dτn

=
`∗ik
q∗ik

dW ∗

dτn
+
m∗ik
q∗ik

dPMi
∗

dτn
. (53)

where the second equality is a consequence of the Shephard lemma, and the fact that the marginal

cost equals average cost under Assumption 2.4 (i).

From (50) and (53),

dW ∗

dτn
ξ∗ik
∂2fi(·)∗

∂`2ik

d`∗ik
dτn

+ ξ∗ik
∂2fi(·)∗

∂`ik∂mik

dm∗ik
dτn

=

(
1−

`∗ik
q∗ik

∂fi(·)∗

∂`ik

)
dW ∗

dτn
−
m∗ik
q∗ik

∂fi(·)∗

∂`ik

dPMi
∗

dτn
. (54)

From (51) and (53),

ξ∗ik
∂2fi(·)∗

∂`ik∂mik

d`∗ik
dτn

+ ξ∗ik
∂2fi(·)∗

∂m2
ik

dm∗ik
dτn

= −
`∗ik
q∗ik

∂fi(·)∗

∂mik

dW ∗

dτn
+

(
1−

m∗ik
q∗ik

∂fi(·)∗

∂mik

)
dPMi

∗

dτn
. (55)

Notice that under Assumption 2.4 (i), (54) and (55) are essentially identical. Hence, the first

order conditions (50) – (52) can be summarized by (52) and (54) (or equivalently (52) and (55))[
ξ∗ik

∂2fi(·)∗
∂`2ik

ξ∗ik
∂2fi(·)∗
∂`ik∂mik

∂fi(·)∗
∂`ik

∂fi(·)∗
∂mik

][
d`∗ik
dτn
dm∗ik
dτn

]
=

[
1− `∗ik

q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

λ̄Lik λ̄Mik

][
dW ∗

dτn
dPMi

∗

dτn

]
. (56)

It is immediate to show that (56) can be inverted for
d`∗ik
dτn

and
dm∗ik
dτn

as soon as acknowledging

the following fact.

Fact A.1. Suppose that Assumption 2.4 holds. Then, the matrix[
ξ∗ik

∂2fi(·)∗
∂`2ik

ξ∗ik
∂2fi(·)∗
∂`ik∂mik

∂fi(·)∗
∂`ik

∂fi(·)∗
∂mik

]

is nonsingular, i.e., invertible.

Proof. By Assumption 2.4 (i), it holds that for each firm k,

∂fi(·)∗

∂`ik
`∗ik +

∂fi(·)∗

∂mik
m∗ik = q∗ik

and

∂2fi(·)∗

∂`2ik
`∗ik +

∂2fi(·)∗

∂`ik∂mik
m∗ik = 0. (57)
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Then the determinant of the matrix in question is given by∣∣∣∣∣∣ξ
∗
ik
∂2fi(·)∗
∂`2ik

−ξ∗ik
∂f2
i (·)∗

∂`ik∂mik
∂fi(·)∗
∂`ik

∂fi(·)∗
∂mik

∣∣∣∣∣∣ =

∣∣∣∣∣∣−ξ
∗
ik
m∗ik
`∗ik

∂2fi(·)∗
∂`ik∂`ik

ξ∗ik
∂f2
i (·)∗

∂`ik∂mik
q∗ik
`∗ik
− m∗ik

`∗ik

∂fi(·)∗
∂mik

∂fi(·)∗
∂mik

∣∣∣∣∣∣
= −ξ∗ik

q∗ik
`∗ik

∂f2
i (·)∗

∂`ik∂mik

< 0,

where the last strict inequality is due to Assumptions 2.4. This means that the matrix is nonsin-

gular, as claimed.

In light of Fact A.1, the system of equations (56) can be uniquely solved for
d`∗ik
dτn

and
dm∗ik
dτn

:

[
d`∗ik
dτn
dm∗ik
dτn

]
= −

(
ξ∗ik
q∗ik
`∗ik

∂2fi(·)∗

∂`ik∂mik

)−1
 ∂fi(·)∗

∂mik
−ξ∗ik

∂2fi(·)∗
∂`ik∂mik

−∂fi(·)∗
∂`ik

ξ∗ik
∂2fi(·)∗
∂`2ik

[1− `∗ik
q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

λ̄Lik λ̄Mik

]
︸ ︷︷ ︸

firm k’s input elasticities

[
dW ∗

dτn
dPMi

∗

dτn

]
︸ ︷︷ ︸

policy shocks

.

(58)

The leading three terms jointly account for the responsiveness of the firm’s labor and material

input decisions to the changes in wage and the cost index due to a policy shift, which are given by

the last term. The former can be identified and thus estimated independently of the latter. That

is, once the former is obtained, (58) can be viewed as a “reduced-form” relationship between the

changes of labor and material inputs and those of wage and material cost index.

Now, notice from (37), (41), (42) and (58) that
dq∗ik
dτn

,
dp∗ik
dτn

,
d`∗ik
dτn

,
dm∗ik
dτn

and
dP ∗i
dτn

are expressed in

terms of dW ∗

dτn
and

dPMi
∗

dτn
. But I also know from (47) that

dPMi
∗

dτn
can be written by dW ∗

dτn
. Hence,

it remains to “solve” for dW ∗

dτn
. This is accomplished by making use of the labor market clearing

condition (12).

First, let

Dik =

[
dik,11 dik,12

dik,21 dik,22

]

be the 2× 2 matrix expressing the firm’s input elasticities’ part of (58): i.e.,

Dik := −
(
ξ∗ik
q∗ik
`∗ik

∂2fi(·)∗

∂`ik∂mik

)−1
 ∂fi(·)∗

∂mik
−ξ∗ik

∂2fi(·)∗
∂`ik∂mik

−∂fi(·)∗
∂`ik

ξ∗ik
∂2fi(·)∗
∂`2ik

[1− `∗ik
q∗ik

∂fi(·)∗
∂`ik

−m∗ik
q∗ik

∂fi(·)∗
∂`ik

λ̄Lik λ̄Mik .

]
(59)
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Then, (58) can be written as

d`∗ik
dτn

= dik,11
dW ∗

dτn
+ dik,12

dPMi
∗

dτn
, (60)

dm∗ik
dτn

= dik,21
dW ∗

dτn
+ dik,22

dPMi
∗

dτn
. (61)

Next, observe that from (47), I can write

dPMi
∗

dτn
= ϑ1,i

dW ∗

dτn
+ ϑ2,i, (62)

where ϑ1,i and ϑ2,i are the i-th elements of (I−Γ2)−1Γ1ι and (I−Γ2)−1
[
∂PM1 (·)
∂τn

1{n=1}, . . . ,
∂PMN (·)
∂τn

1{n=N}

]′
,

respectively.

Therefore, upon substituting (62) into (60), I arrive at

d`∗ik
dτn

= dik,12

(
ϑ1,i

dW ∗

dτn
+ ϑ2,i

)
+ dik,11

dW ∗

dτn

= (dik,11 + ϑ1,idik,12)
dW ∗

dτn
+ ϑ2,idik,12. (63)

To ensure the unique solution, I maintain the following regularity condition.

Assumption A.3 (Regularity Condition 3).
∑N

i=1

∑Ni
k=1(dik,11 + ϑ1,idik,12) 6= 0.

Totally differentiating the labor market clearing condition (12) delivers

dL

dτn
=

N∑
i=1

Ni∑
k=1

d`∗ik
dτn

.

Since here labor supply is inelastic, it then must be dL
dτn

= 0, so that

0 =

N∑
i=1

Ni∑
k=1

d`∗ik
dτn

. (64)

Substituting (63) for
d`∗ik
dτn

into (64) leads to

0 =
N∑
i=1

Ni∑
k=1

{
(dik,11 + ϑ1,idik,12)

dW ∗

dτn
+ ϑ2,idik,12

}
, (65)

which, under Assumption A.3, can be rearranged to

dW ∗

dτn
= −

∑N
i=1

∑Ni
k=1 ϑ2,idik,12∑N

i=1

∑Ni
k=1(dik,11 + ϑ1,idik,12)

. (66)
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Combining (66) with (37), (41), (42), (47) and (58), I can “solve” for
dq∗ik
dτn

,
dp∗ik
dτn

,
d`∗ik
dτn

,
dm∗ik
dτn

,
dP ∗i
dτn

,
dPMi

∗

dτn
and dW ∗

dτn
in terms of the endogenous variables in the current equilibrium, exogenous variables

and the policy-invariant functions.

Then, it remains to study the marginal changes of the derived demand for sectoral goods
dmik,j
dτn

.

A.3 Cost Minimization 2: Derived Demand for Sectoral Goods

In equilibrium, firm k in sector i is determined according to the following cost minimization problem:

{m∗ik,j}Nj=1 ∈ arg min
{mik,j}j∈N

N∑
j=1

(1− τi)P ∗jmik,j s.t. Gi({mik,j}Nj=1) ≥ m∗ik.

leading to the derived demand for sectoral goods:

m∗ik,j = mik,j({P ∗j }Nj=1, τi,m
∗
ik), (67)

where mik,j(·) is a mapping from a combination ({P ∗j }Nj=1, τi, m
∗
ik) to a real value that corresponds

to the demand for sector j’s intermediate good.

Totally differentiating (67) delivers

dm∗ik,j
dτn

=

N∑
j′=1

∂mik,j(·)
∂P ∗j′

dP ∗j′

dτn
+
∂mik,j(·)
∂τn

1{i=n} +
∂mik,j(·)
∂m∗ik

dm∗ik
dτn

, (68)

where 1{i=n} is an indicator function that takes one if i = n, and zero otherwise. Since both
dP ∗
j′

dτn

and
dm∗ik
dτn

are already solved above, (68) in turn solves for
dm∗ik,j
dτn

.

A.4 An Illustrative Example

To gain a clear view of how macro and micro complementarities work, this subsection considers

a special case of the general model of Section 2. The model of this subsection posits a constant

elasticity of substitution (CES) production function for sectoral aggregators, and a Cobb-Douglas

production function for individual firms and the economy-wide aggregator. A version of this para-

metric setup is widely used in the macroeconomics and international trade literature (e.g., Atkeson

and Burstein 2008; Gaubert and Itskhoki 2020; Gaubert et al. 2021; Bigio and La’O 2020; La’O

and Tahbaz-Salehi 2022).

A.4.1 Setup

The economy-wide aggregator F(·) in (2) is given by a Cobb-Douglas production function:

F({Xj}Nj=1) :=

N∏
j=1

X
βj
j ,
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where βj is the elasticity parameter with respect to the sector j’s good. The sectoral aggregator

Fi(·) in (3) takes the form of a constant elasticity of substitution (CES) production function:

Fi({qik}Nik=1) :=

( Ni∑
k=1

δikq

σi−1

σσi
ik

) σi
σi−1

,

where δik is a firm-specific demand shifter and σi > 0 represents elasticity of substitution. The

associated sectoral price index is

Pi =

( Ni∑
k=1

δσiikp
1−σi
ik

) 1
1−σi

. (69)

The firm-level production function fi(·) in (4) is a Cobb-Douglas aggregator with productivity

being Hicks-neutral:

fi(`ik,mik; zik) := zik`
αi
ikm

1−αi
ik ,

where αi is a parameter indicating output-labor ratio. The material aggregator Gi(·) in (5) is again

given by a Cobb-Douglas production:

G({mik,j}Nj=1) :=

N∏
j=1

m
γi,j
ik,j ,

where γi,j corresponds to the input share of sector j’s intermediate good, reflecting the production

network Ω. The associated unit cost condition yields the material cost index:

PMi =

N∏
j=1

1

γ
γi,j
i,j

{
(1− τi)Pj

}γi,j
. (70)

The firm’s profit maximization problem (7) can be formulated as

q∗ik ∈ arg max
qik

{
δikq

σi−1

σi
ik∑Ni

k′=1 δik′q
σi−1

σi
ik′

Ri −mcikqik

}
,

where Ri is the total income of the sectoral aggregator. The equilibrium prices and quantities are

given by the following system of firms’ pricing equations:

p∗ik =
σi

(1− σi)(1− sik)
mcik

s∗ik = δσiik

(
pik
P ∗i

)1−σi
,

where sik is firm k’s market share. Note that the firm k’s marginal revenue function mrik(·) is
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given by

mrik({qik′}Nk′=) =
σi − 1

σi
pik(1− sik).

Moreover, it is immediate to verify that

∂pik(·)
∂qik

=


pik
qik

{
σi−1
σi

(1− sik)− 1
}

if k′ = k

−σi−1
σi

pik
qik′

sik′ if k′ 6= k,

and

∂(1− sik(·))
∂qik

=

−
σi−1
σi

1
qik
sik(1− sik) if k′ = k

−σi−1
σi

1
qik′

siksik′ if k′ 6= k.

In equilibrium, it follows from (69) that

∂Pi(·)
∂q∗ik

= −
s∗ik
q∗ik
P ∗i ,

and from (70) that

∂PMi (·)
∂P ∗j

= γi,j
PMi

∗

P ∗j

∂PMi (·)
∂τn

= − PMi
∗

1− τi
.

Proposition A.1. Consider the economy defined in Appendix A.4.1. For each sector i ∈ N, the

following statements hold:

(i) If σi > 1, then (a) for each k ∈ Ni,
∂mrik(·)∗
∂qik

< 0; and (b) for each k ∈ Ni and k′ ∈ Ni\{k},
∂mrik(·)∗
∂qik′

< 0 if sik <
1
2 , ∂mrik(·)∗

∂qik′
= 0 if sik = 1

2 and ∂mrik(·)∗
∂qik′

> 0 otherwise.

(ii) If σi < 1, then (a) for each k ∈ Ni,
∂mrik(·)∗
∂qik

< 0 if sik > − 1
2(σ1−1) , ∂mrik(·)∗

∂qik
= 0 if

sik = − 1
2(σ1−1) and ∂mrik(·)∗

∂qik
< 0 otherwise; and (b) for each k ∈ Ni and k′ ∈ Ni\{k},

∂mrik(·)∗
∂qik′

< 0 if sik <
1
2 , ∂mrik(·)∗

∂qik′
= 0 if sik = 1

2 and ∂mrik(·)∗
∂qik′

> 0 otherwise.

Proof. (i) Suppose σi > 1.

(a) Observe that

∂mrik(·)
∂qik

R 0⇐⇒ − 1

2(σi − 1)
R sik. (71)

Given the hypothesis (i.e., σi > 1), the left hand side of (71) is negative, while sik is by definition

positive. Hence, it is always true that holds that ∂mrik(·)
∂qik

< sik, from which it follows that ∂mrik(·)
∂qik

<

0.
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(b) Observe that

∂mrik(·)
∂qik′

R 0⇐⇒ 1

2
Q sik.

This proves the statement.

(ii) Suppose σi < 1.

(a) Observe that

∂mrik(·)
∂qik

R 0⇐⇒ − 1

2(σi − 1)
R sik. (72)

According to the hypothesis (i.e., σi < 1), the left hand side of (72) is positive. Then there can be

three configurations depending on the value of sik. This observation directly leads to the statement.

(b) Observe that

∂mrik(·)
∂qik′

R 0⇐⇒ 1

2
Q sik.

This proves the statement.

Notice that in Proposition A.1, the part (b) of (i) is identical to that of (ii), i.e., they do not

depend on the value of σi. This observation immediately leads to the following corollaries.

Corollary A.1. Consider the economy defined in Appendix A.4.1.

(i) If there exists a firm k̄ ∈ Ni such that sik̄ >
1
2 , then

∂mrik̄(·)∗
∂qik′

> 0 for all k′ ∈ Ni\{k̄}; and
∂mrik(·)∗
∂qik′

< 0 for all k, k′ ∈ Ni\{k̄} such that k 6= k′, regardless of the value of σi.

(ii) If sik <
1
2 for all k ∈ Ni, then for each k ∈ Ni,

∂mrik(·)∗
∂qik′

< 0 for all k′ ∈ Ni\{k}, regardless

of the value of σi.

These corollaries can yield further implications in the case of duopoly.

A.4.2 Duopoly

Consider the same setup as above. But suppose that each sector is populated by two firms, i.e.,

Ni = {1, 2} for all i ∈ N. Here, observe that in this case, one firm accounts for more than half of

the market share, while the other explains less than a half.116 Thus, with out loss of generality, I

let si1 >
1
2 , which in turn means that si2 <

1
2 , i.e., firm 1 has a larger market share.

Corollary A.2. In duopoly, wherein si1 >
1
2 , it holds that ∂mri1(·)∗

∂qi2
> 0 and ∂mri2(·)∗

∂qi1
< 0.

Corollary A.3. In duopoly, wherein si1 >
1
2 and σi > 1, it holds that (i) ∂mrik(·)∗

∂qik
< 0 for all

k ∈ {1, 2}; (ii) ∂mri1(·)∗
∂qi2

> 0; and (iii) ∂mri2(·)∗
∂qi1

< 0, so that det(Λi,1) > 0.

116That is, there always exists such firms k̄ ∈ Ni and k̄′ ∈ Ni\{k̄} that sik̄ >
1
2

and sik̄′ <
1
2
.
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Noticing that the firm’s marginal costs are constant in the firm’s profit maximization problem,

the following corollary is almost trivial.

Corollary A.4. (i) Firm 1’s quantity decision is a strategic complement to firm 2’s quantity

decision. (ii) Firm 2’s quantity decision is a strategic substitute to firm 1’s quantity decision.

Proof. It is immediate to see that

0 <
∂mri1(·)
∂qi2

=
∂(mri1(·)−mci1)

∂qi2
=
∂ ∂πi1(·)

∂qi1

∂qi2
.

An analogous argument applies to firm 2, completing the proof.

Turning to micro complementarities, I focus on λ̄Mi· in the subsequent analysis. A parallel

argument holds for λ̄Li· as well. In what follows, I assume that σi > 1. First,

λ̄Mi1 =
1

det(Λi,1)

(
m∗i1
q∗i1

∂mri2(·)∗

∂qi2
− m∗i2

q∗i2

∂mri1(·)∗

∂qi2

)
λ̄Mi2 =

1

det(Λi,1)

(
− m∗i1

q∗i1

∂mri2(·)∗

∂qi1
+
m∗i2
q∗i2

∂mri1(·)∗

∂qi1

)
,

where det(Λi,1) = ∂mri1(·)∗
∂qi1

∂mri1(·)∗
∂qi1

− ∂mri1(·)∗
∂qi2

∂mri2(·)∗
∂qi1

. From Corollary A.3, it follows that λ̄Mi1 < 0

as well as det(Λi,1) > 0.

The following lemma characterize the sign of λ̄Mi2 in terms of partial derivatives of marginal

revenue functions and firms’ productivities.

Lemma A.1. λ̄Mi2 Q 0⇐⇒ zi1
zi2

∂mri1(·)∗
∂qi1

Q ∂mri2(·)∗
∂qi1

.

Proof. First, observe that

λ̄Mi2 Q 0⇐⇒
mi2
qi2
mi1
qi1

∂mri1(·)∗

∂qi1
Q
∂mri2(·)∗

∂qi2
.

Here, under the Cobb-Douglas production function, the material productivity is proportional to

the inverse of the firm’s productivity:

m∗ik
q∗ik

= z−1
ik

(
αi

1− αi

)−αi(PMi ∗
W ∗

)αi
.

Substituting this into the above equivalence proves the claim.

Remark A.4. Due to the presumption (i.e., si1 > si2), it holds that zi1
z2
> 1.

The following proposition gives a sufficient condition for λ̄Mi· to be positive.

Proposition A.2. If zi1
zi2

∂mri1(·)∗
∂qi1

< ∂mri2(·)∗
∂qi1

, then λ̄Mi· > 0.
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Proof. First, by construction, PiQi = Ri. Differentiation with respect to qik leads to

∂Pi(·)
∂qik

= −sik
qik
Pi.

Second, by definition,

λ̄Mi· =
∂Pi(·)
∂q∗i1

λ̄Mi1 +
∂Pi(·)
∂q∗i2

λ̄Mi2 = −
(
s∗i1
q∗i1
λ̄Mi1 +

s∗i2
q∗i2
λ̄Mi2

)
P ∗i .

Acknowledging that λ̄Mi1 < 0 due to Corollary A.3, and λ̄Mi2 < 0 because of Lemma A.1, it follows

that λ̄Mi· > 0.

Remark A.5. The converse is not true. A necessary and sufficient condition for the sign of λ̄Mi·
reads

λ̄Mi· R 0⇐⇒ λ̄Mi2 Q −
p∗i1
p∗i2

λ̄Mi1 .

While it is possible to further rewrite this in terms of partial derivatives of marginal revenue func-

tions, its economic content is not easy to interpret.
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B Detail of Data

This section provides a detailed account of the data source used in my paper, and how I construct

the empirical counterparts of the variables.

B.1 Aggregate Data

Data on wage-related concepts are obtained from the U.S. Bureau of Labor Statistics (BLS) through

the Federal Reserve Bank of St. Louis (FRED) at annual frequency. In my model, labor is assumed

to be frictionlessly mobile across sectors so that the wage W is common for all sectors. Thus I

use “average hourly earnings of all employees, total private” as the empirical counterpart of my

wage. In addition, I also obtain the measure of total number of employees (All Employees, Total

Private) and that of total hours worked per year (Hours of Wage and Salary Workers on Nonfarm

Payrolls), from which I compute the average hours worked per employee per year (see Appendix

B.3).117

Sectoral price index data is available at the Bureau of Economic Analysis (BEA). I use U.Chain-

Type Price Indexes for Gross Output by Industry — Detail Level (A) as the data.

These are summarized in the following fact.

Fact B.1 (Wage & Sectional Price Index). The wage W ∗ and sectoral price indices {P ∗i }Ni=1 are

directly observed in the data.

B.2 Sector-Level Data: Industry Economic Accounts (IEA)

Our analysis involves two types of sector-level data: namely, the input-output table and sector-

input-specific tax/subsidy, both of which come from the input-output accounts data of the Bureau

of Economic Analysis (BEA). In line with the global economic accounting standards, such as the

System of National Accounts 2008 (UN 2008), the BEA input-output table consists of two tables:

the use and supply table.

The use table shows the uses of commodities (goods and services) by industries as intermediate

inputs and by final users, with the columns indicating the industries and final users and the rows

representing commodities. This table reports three pieces of information: intermediate inputs,

final demand and value added. Each cell in the intermediate input section records the amount

of a commodity purchased by each industry as an intermediate input, valued at producer’ or

purchasers’ prices.118 The final demand section accounts for expenditure-side components of GDP.

117Note that both the total number of employees and total hours worked exclude farms mainly due to the pe-
culiarities of the structure of the agricultural industry and characteristics of its workers: e.g., various definitions
of agriculture, farms, famers and farmworkers; considerable seasonal fluctuation in the employment (Daberkow and
Whitener 1986). Because of this, I omit the farming industry, and forestry, fishing, and related activities from my
analysis (see Table B.2).

118Typically, the IEA is valued at either of the producers’, basic, or purchasers’ prices. The producers’ prices are the
total amount of monetary units received from the purchasers for a unit of a good and service that is sold. The basic
prices mean the total amount retained by the producer for a unit of a good and service. This price plays a pivotal role
in the producer’s decision making about production and sales. The purchasers’ prices refer to the total amount payed
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The value-added part bridges the difference between an industry’s total output and its total cost

for intermediate inputs. This part will further be expanded in the upcoming section (Appendix

B.2.2).

The supply table shows total supply of commodities by industries, with the columns indicating

the industries and the rows representing commodities. This table comprises domestic output and

imports. Each cell of the domestic output section presents the total amount of each commodity

supplied domestically by each industry, valued at the basic prices. The import section records the

total amount of each commodity imported from foreign countries, valued at the importers’ customs

frontier price (i.e., the c.i.f. valuation).119

Segmentation. My analysis is based on the BEA’s industry classification at the summary level,

which is roughly equivalent to the three-digit NAICS (North American Industry Classification

System). I make two modifications in conjunction with the availability of Compustat data . First,

I omit several industries and products from my analysis. Following Bigio and La’O (2020), I exclude

finance, insurance, real estate, rental and leasing (FIRE) sectors from my analysis.In the BEA’s

input-output table, these sectors are indexed by 521CI, 523, 524, 525, HS, ORE, and 532RL. I

also follow Baqaee and Farhi (2020) in dropping two product categories: namely, Scrap, used

and secondhand goods and Noncomparable imports and rest-of-the-world adjustment. These are

indexed by “Used” and “Others,” respectively. I again follow Baqaee and Farhi (2020) in removing

the government sectors, which are reported with the indices 81, GFGD, GFGN, GFE, GSLG, and

GSLE. Second, drawing on Gutiérrez and Philippon (2017), I merge some of the BEA’s industries.

This manipulation ensures that each industry has a good coverage of Compustat firms (Gutiérrez

and Philippon 2017).120 In my context, this also helps focus on “modestly” imperfectly competitive

markets. After all, I am left with 32 industries (Table B.2).

Table 4: Mapping of BEA Industry Codes to Segments

BEA code Industry Mapped segment

111CA Farms Omitted

113FF Forestry, fishing, and related activities Omitted

211 Oil and gas extraction Oil and gas extraction

212 Mining, except oil and gas Mining, except oil and gas

213 Support activities for mining Support activities for mining

22 Utilities Omitted

23 Construction Construction

311FT Food and beverage and tobacco products Food and beverage and tobacco products

by the purchasers for a unit of a good and service that they purchase. This is the key for the purchasers to make
their purchasing decisions. By definition, the basic prices are equal to the producers’ prices minus taxes payable for
a unit of a good and service plus any subsidy receivable for a unit of a good and service; and the purchasers’ prices
are equivalent to the sum of the producers’ prices and any wholesale, retail or transportation markups charged by
intermediaries between producers and purchasers. See BEA (2009) and Young et al. (2015) for the detail.

119The importers’ customs frontier price is calculated as the cost of the product at foreign port value plus insurance
and freight charges to move the product to the domestic port. See Young et al. (2015) for the detail.

120For example, nonparametric estimation of the share regression requires at least 12 observations in the same
sector. See Appendix E.2.
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BEA code Industry Mapped segment

313TT Textile mills and textile product mills Textile and apparel products

315AL Apparel and leather and allied products Textile and apparel products

321 Wood products Wood products

322 Paper products Paper products, printing, and related activities

323 Printing and related support activities Paper products, printing, and related activities

324 Petroleum and coal products Petroleum and coal products

325 Chemical products Chemical products

326 Plastics and rubber products Plastics, rubber and mineral products

327 Nonmetallic mineral products Plastics, rubber and mineral products

331 Primary metals Primary metals

332 Fabricated metal products Fabricated metal products

333 Machinery Machinery

334 Computer and electronic products Computer and electronic products

335 Electrical equipment, appliances, and components Electrical equipment, appliances, and components

3361MV Motor vehicles, bodies and trailers, and parts Motor vehicles, bodies and trailers, and parts

33640T Other transportation equipment Motor vehicles, bodies and trailers, and parts

337 Furniture and related products Furniture and manufacturings

339 Miscellaneous manufacturing Furniture and manufacturings

42 Wholesale trade Wholesale trade

441 Motor vehicle and parts dealers Retail trade

445 Food and beverage stores Retail trade

452 General merchandise stores Retail trade

4A0 Other retail Retail trade

481 Air transportation Air transportation

482 Rail transportation Ground and other transportation

483 Water transportation Ground and other transportation

484 Truck transportation Ground and other transportation

485 Transit and ground passenger transportation Ground and other transportation

486 Pipeline transportation Ground and other transportation

4870S Other transportation and support activities Ground and other transportation

493 Warehousing and storage Ground and other transportation

511 Publishing industries, except internet (includes software) Publishing industries

512 Motion picture and sound recording industries Media technologies and telecommunications

513 Broadcasting and telecommunications Media technologies and telecommunications

514 Data processing, internet publishing, and other information services Information and data processing services

521CI Federal Reserve banks, credit intermediation, and related activities Omitted

523 Securities, commodity contracts, and investments Omitted

524 Insurance carriers and related activities Omitted

525 Funds, trusts, and other financial vehicles Omitted

HS Housing Omitted

ORE Other real estate Omitted

532RL Rental and leasing services and lessors of intangible assets Omitted

5411 Legal services Professional services

54120P Miscellaneous professional, scientific, and technical services Professional services

5415 Computer systems design and related services Professional services

55 Management of companies and enterprises Omitted

561 Administrative and support services Administrative and waste management

562 Waste management and remediation services Administrative and waste management

61 Educational services Educational services

621 Ambulatory health care services Health care services

622 Hospitals Hospitals and nursing

623 Nursing and residential care facilities Hospitals and nursing

624 Social assistance Health care services

711AS Performing arts, spectator sports, museums, and related activities Arts

78



BEA code Industry Mapped segment

713 Amusements, gambling, and recreation industries Arts

721 Accommodation Accommodation and food services

722 Food services and drinking places Accommodation and food services

81 Other services, except government Omitted

GFGD Federal general government (defense) Omitted

GFGN Federal general government (nondefense) Omitted

GFE Federal government enterprises Omitted

GSLG State and local general government Omitted

GSLE State and local government enterprises Omitted

Used Scrap, used and secondhand goods Omitted

Other Noncomparable imports and rest-of-the-world adjustment Omitted

Note: This table shows the correspondence between the BEA’s industry classification (at summary level) and my seg-

mentation, which draws heavily on Gutiérrez and Philippon (2017). The first two columns (“BEA code” and “Indus-

try”) list the BEA codes and the corresponding industries as used in the BEA’s input-output table. The third column

(“Mapped segment”) indicates the names of the segments I define.

B.2.1 Transformation to Symmetric Input-Output Tables

Although the use table comes very close to an empirical counterpart of the production network of

my model, it cannot be directly used in my empirical analysis as it only shows the uses of each

commodity by each industry, not the uses of each industrial product by each industry. This is

because the BEA’s accounting system allows for each industry to produce multiple commodities

(e.g., secondary production), contradicting my conceptualization. Hence, I first need to convert

the use table to a symmetric industry-by-industry input-output table by transferring inputs and

outputs over the rows in the use and supply tables, respectively.121 This reattribution of the

commodities supplied will leave the researcher with the industry-by-industry use table, which is

my input-output table. This is accompanied by the transformed supply table, whose off-diagonal

elements are all zero.122 To do this, I impose an assumption about how each commodity is used.

Assumption B.1 (Fixed Product Sales Structures, (Eurostat 2008)). Each product has its own

specific sales structure, irrespective of the industry where it is produced.

The term ‘sales structure’ here refers to the shares of the respective intermediate and final users

in the sales of a commodity. Under Assumption B.1, each commodity is used at constant rates

regardless of in which industry it is produced. For example, a unit of a manufacturing product

121For example, if there is a non-zero entry in the cell of the supply table whose column is agriculture and whose
row is manufacturing products, it is recorded in the use table as the supply of manufacturing products, the largest
component of which should be accounted for by the supply from manufacturing industry. Now my goal is to modify
this attribution in a way that the supply of manufacturing products by agriculture industry is treated as agricultural
products. To this end, I need to subtract the contributions of agriculture industry from the use of manufacturing
products, and transfer them to the agricultural commodities, thereby changing the classification of the row from
commodity to industry.

122There is another approach to transform the use table to a symmetric commodity-by-commodity table. In such
a case, sectors of my conceptual model corresponds to commodities in the data. See Eurostat (2008) for the detail.
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supplied by the agriculture industry will be transferred from the use of manufacturing products

to that of agricultural products in the use table in the same proportion to the use of manufac-

turing products.123 Note that the value-added part remains intact throughout this manipulation.

Recorded in each cell of the intermediate inputs section of the resulting industry-by-industry table

is the empirical counterpart of my
∑Ni

k=1(1− τi,j)Pimik,j , and each cell of the compensation of em-

ployee corresponds to
∑Ni

k=1W`ik. These are the data that is used for constructing the production

network in my empirical analysis, as shown in the following fact.

Fact B.2. Under Assumption B.1, the input-output linkages ωL and Ω are recovered from the

observables.

Proof. By Shephard lemma,124 it holds that for each i, j ∈ N, the cost-based intermediate expen-

diture shares ωi,j satisfies

ωi,j =

∑Ni
k=1(1− τi,j)Pjmik,j∑N

j′=1

∑Ni
k=1(1− τi,j′)Pj′mik,j′ +

∑Ni
k=1W`ik

. (73)

Also, for each i ∈ N, cost-based equilibrium factor expenditure shares ωi,L satisfies:

ωi,L =

∑Ni
k=1W`ik∑N

j′=1

∑Ni
k=1(1− τi,j′)Pj′mik,j′ +

∑Ni
k=1W`ik

.

Since
{∑Ni

k=1(1 − τi,j)Pjmik,j

}N
i,j=1

and {
∑Ni

k=1W`ik}Ni=1 are directly observed in the transformed

industry-by-industry input-output table, I can immediately recover ωL and Ω, as desired.

Figure 5 compares the input-output table based on the use table and transformed industry-by-

industry input-output table.

B.2.2 Sectoral Tax/Subsidy

Given that the use table has been transformed into a symmetric industry-by-industry input-output

table, I can proceed to back out the tax/subsidy from the transformed table. In this step, I exploit

the feature of the use table that reports value added at basic and purchasers’ prices. The value added

measured at basic prices is composed of (i) compensation of employees (V001), (ii) gross operating

surplus (V003), and (iii) other taxes on production (T00OTOP) less subsidies (T00OSUB). The

value added at producers’ prices further entails iv) taxes on products (T00TOP) and imports less

subsidies (T00SUB).125 According to BEA (2009), the tax-related components of (iii) and (iv)

jointly include, among many others, sales and excise taxes, customs duties, property taxes, motor

vehicle licenses, severance taxes, other taxes and special assessments as well as commodity taxes,

123Related to this assumption is the fixed industry sales structure assumption, in which . However, it is Assumption
B.1 that is widely used by statistical offices for various reasons. See Eurostat (2008) for the detail.

124See Liu (2019), Baqaee and Farhi (2020) and Bigio and La’O (2020) for application and reference.
125By construction, the sum of the latter across all industries has to coincide with GDP for the economy.

80



Figure 5: Comparison of Input-Output Tables

(a) Use table

(b) Transformed industry-by-industry table

Note: This figure illustrates the input-output table in terms of cost share of sectoral goods. Panel

(a) shows the use table that is provided by BEA, while panel (b) reports the transformed industry-

by-industry table. White cells indicate zero, while light, medium and dark grey cells repre-

sent the low (0 ∼ 0.2), medium (0.2 ∼ 0.5) and high (0.5 ∼ 1.0) cost shares, respectively.
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while the subsidy-related components refer to monetary grants paid by government agencies to

private businesses and to government enterprises at another level of government. I consider the

sum of (iii) and (iv) to be the empirical counterpart of the policy expenditure in my model. This

choice is motivated by the mapping between the BEA’s data construction and my conceptualization.

First, the construction of data states:

Profitsi = (Revenuei + TaxSubsidy1i)− (LaborCosti +MaterialCosti + TaxSubsidy2i)

∴ Revenue−MaterialCosti︸ ︷︷ ︸
Value-added

= Profitsi︸ ︷︷ ︸
Gross operating profits

+ LaborCosti︸ ︷︷ ︸
Compensation of employees

− (TaxSubsidy1i − TaxSubsidy2i)︸ ︷︷ ︸
Value-added taxes less subsidies

, (74)

where TaxSubsidy1i is taxes less subsidies on revenues, and TaxSubsidy2i those on input costs.

Notice that the value-added taxes less subsidies (TaxSubsidy1i − TaxSubsidy2i) are available in

the data.

To back out tax/subsidy data from this table, I need to restrict the scope of analysis to sector-

specific tax/subsidy.

Assumption B.2. Taxes and subsidies are specific to sectors: i.e., τ := {τi}Ni=1.

Under this assumption, the theoretical counterpart of the data construction (74) is

Ni∑
k=1

π∗ik =

Ni∑
k=1

p∗ikq
∗
ik −

{
W ∗`∗ik + (1− τi)

N∑
j=1

PMi
∗
m∗ik,j

}

∴
Ni∑
k=1

p∗ikq
∗
ik −

N∑
j=1

PMi
∗
m∗ik,j︸ ︷︷ ︸

Value-added

=

Ni∑
k=1

π∗ik︸ ︷︷ ︸
Gross operating profits

+ W ∗`∗ik︸ ︷︷ ︸
Compensation of employees

− τi

N∑
j=1

PMi
∗
m∗ik,j︸ ︷︷ ︸

Value-added taxes less subsidies

. (75)

On the basis of this formulation, data on ad-valorem taxes/subsidy can be obtained from the

constructed input-output table, as summarized in the following fact.

Fact B.3. Under Assumptions B.1 and B.2, sector-specific subsidies τ := {τi}Ni=1 are recovered

from the observables.

Proof. For each sector (industry) i ∈ N, I have

(1− τi)
N∑
j=1

Ni∑
k=1

P ∗jm
∗
ik,j =

N∑
j=1

IntermExpendi,j , (76)
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where IntermExpendi,j means the sector i’s total expenditure on sector j, which is observed

in the (i, j) entry of the industry-by-industry input-output table constructed in Appendix B.2.1.

Meanwhile, comparing (74) to (75), I obtain

τi

N∑
j=1

Ni∑
k=1

P ∗jm
∗
ik,j = V ATi, (77)

where V ATi stands for the sector i’s value-added taxes less subsidies, reported in the BEA use

table.

Rearranging (76) and (77), I can recover the data for sector-specific taxes/subsidies, i.e.,

τi =
V ATi

V ATi +
∑N

j=1 IntermExpendi,j
.

Remark B.1. Operationalizing the ad-valorem taxes/subsidies in this way, its conceptual definition

should be interpreted as an overall extent of wedges that promotes or demotes the purchase of input

goods.

B.3 Firm-Level Data: Compustat Data

The data source for firm-level data is the Compustat data provided by the Wharton Research Data

Services (WRDS). This database provides detailed information about a firm’s fundamentals, based

on financial accounts. For the analysis of this paper, I use the following items: Sales (SALES),

Costs of Goods Sold (COGS), Selling, General & Administrative Expense (SGA), and Number of

Employees (EMP). Though the coverage is limited to publicly traded firms, they tend to be much

larger than private firms and thus account for the dominant part of the industry dynamics (Grullon

et al. 2019).

I basically follow De Loecker et al. (2020, 2021) in constructing the empirical counterparts of

the variables of my model. That is, SALES corresponds to the firm’s revenue, COGS to the firm’s

variable costs, and SGA to the firm’s fixed costs. Although my model abstracts away from fixed

entry costs, I need to apportion labor and material inputs between the variable and fixed costs

to recover labor and material inputs. To this end, De Loecker et al. (2020) rely on a parametric

assumption, while my framework does not impose any particular functional form restriction on

the firm-level production. Thus, I instead use the direct measurement of the number of employees

(EMP) and assume that the cost shares of labor and material are constant for both fixed and

variable costs.

Assumption B.3 (Constant Cost Share). For each sector i ∈ N and each firm k ∈ Ni, V ariableLaborCostik :

V ariableMaterialCostik = FixedLaborCostik : FixedMaterialCostik = δik : 1 − δik, where

δik ∈ [0, 1] is a constant specific to firm k.
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This assumption states that my empirical measurement of the variable costs COGSik and fixed

costs SGAik are made up of the same proportion of labor and material inputs.

B.3.1 Labor & Material Inputs

As in De Loecker et al. (2021), my construction starts from combining COGSik and SGAik to

compute the total costs. The firm k’s total costs are given by

TotalCostsik = TotalLaborCostik + TotalMaterialCostik

= V ariableLaborCostik + V ariableMaterialCostik︸ ︷︷ ︸
COGSik

(78)

+ FixedLaborCostik + FixedMaterialCostik︸ ︷︷ ︸
SGAik

= COGSik + SGAik. (79)

Since both Cogsik and SGAik are observed in the data, I can compute the firm k’s total expense

(TotalCostik).

Next, the total expenditure on labor input is

TotalLaborCostsik = V ariableLaborCostsik + FixedLaborCostsik

= W ×AverageHoursWorked× Employeesik︸ ︷︷ ︸
EMPik

= W × TotalHours

TotalEmployees
× EMPik. (80)

From Fact B.1, the wage W is directly observed in the data. I can also observe both TotalHours

and TotalEmployees in the BEA data. Moreover, the Compustat data provide information

about the number of employees (EMPik). Hence I can calculate the firm k’s total labor expense

(TotalLaborCostsik). Then, the total expenditure on material input is obtained by

TotalMaterialCostsik = TotalCostsik − TotalLaborCostsik. (81)

Now, I invoke Assumption B.3 to derive,

δik =
TotalMaterialCostik

TotalLaborCostik + TotalMaterialCostik
, (82)

and

V ariableLaborCostik = δikCOGSik

V ariableMaterialCostik = (1− δik)COGSik,

where both TotalLaborCostik and TotalMaterialCostik can be calculated according to (80) and
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(81), respectively. Since δik is given by (82), I can recover V ariableLaborCostik (the empirical

counterpart of W ∗`∗ik) and V ariableMaterialCostik (the empirical counterpart of PMi
∗
m∗ik) from

data. In view of Fact B.1, I can divide the former, once outlier eliminations are done (explained

below), by the wage W ∗, and the latter by the sectoral cost index PMi
∗

to obtain the firm’s labor

`∗ik and material input m∗ik. These are summarized in the following fact.

Fact B.4 (Labor & Material Inputs). Under Assumption B.3, the firm-level labor input `∗ik and

material input m∗ik are recovered from the data.

B.3.2 Data Construction

Before deriving firm-level labor an material inputs, I remove outliers through the following steps.

Step 1: I follow the existing literature (e.g., Baqaee and Farhi 2020; De Loecker et al. 2021) in

dropping entries with missing data or zeros in the categories ‘sales,’ ‘cogs,’ ‘sga’ and ‘emp.’

Step 2: For each sector, I eliminate outliers based on the following criteria, which vary depending

on the number of firms.

(i) If the number of firms is less than 100, I calculate leverage and influence for each data

point (i.e., firm). Then I omit those firms with either influence or leverage higher than

certain thresholds (defined below). For each firm, the influence and leverage are com-

puted in two ways.

- Sales are regressed onto the pair of variable labor costs and material costs. This

is because my model posits that the production technology is the same for every

firm in the same sector, which is constant returns to scale (Assumption 2.4). This

confines the scope of analysis to the firms whose sales-cost structures are similar

except for heterogenous demand-side variation.

- Variable labor costs are regressed onto variable material costs. This is because in

my model the cost structure is the same for every firm in the same sector (see the

firm’s input decision problem (6)).

(ii) If the number of firms is no less than 100, I proceed in multiple steps.

(a) I compute the sales-to-cogs ratio and sales-to-sga ratio. Following Baqaee and Farhi

(2020) and De Loecker et al. (2021), I drop the top and bottom 5% firms.

(b) I apply the same analysis as Step 2 (a). That is, I calculate influence and leverage

based on two “linear regression” specifications:

- Sales are regressed onto the pair of variable labor costs and material costs.

- Variable labor costs are regressed onto variable material costs.

Those firms with either influence or leverage higher than certain criteria (defined

below) are omitted.
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(c) To further reduce the number of firms that exhibit extraordinarily “high” or “poor”

performance, I calculate Mahalanobis distance of each data point to the centroid in

the two spaces considered in previous phase. That is, the Mahalanobis distances are

measured both in

- The space spanned by sales, variables labor costs and variable material costs.

- The space spanned by variables labor costs and variable material costs.

Firms whose Mahalanobis distances are larger than certain thresholds (explained

below) in either space are removed as outliers.

Table 5 compares the number of firms and the Herfindahl–Hirschman Index (HHI) before the

removal of outliers with those after eliminating outliers. Two features of this table deserve spe-

cial comment. First, through the data cleaning procedure described above, 15 out of 32 sectors

reduced their market concentration, while the remaining experienced an increase in their HHI.

Notably, the table shows that the outlier elimination turns four highly concentrated markets into

modestly concentrated ones, namely, the oil and gas extraction, the textile and apparel products,

the publishing industries, and the health care services.126 There are no industries that shift from

modestly concentrated to highly concentrated. Second, the HHI after the removal of outliers indi-

cates modest concentration for all sectors, except three, namely, the plastics and rubber products,

the nonmetallic mineral products, and the hospitals and nursing. Overall, it can safely be said that

the processed data serves as a plausible empirical counterpart of my framework in the sense that

it conforms to the model assumptions and the focus of the analysis.

Leverage points. Consider running a (simple, linear) regression of vector y onto a matrix of

regressor variables X. Let n be the number of observations and K the number of predictors

excluding a constant term. A leverage point is an observation that is apart from the bulk of the

observations. The leverage of observation i is given as the ith diagonal matrix of the projection

matrix (or hat matrix) H := X(X ′X)−1X ′, i.e.,

Leveragei := x′i(X
′X)−1xi,

where xi is the vector of regressor variables for observation i. Note that the average value of the

leverages is given by K+1
n .

Following the tradition of statistical analysis, I remove observations with influence higher than

2K+1
n as outliers.

Influence points. Consider the same regression as above. An influence point is defined as an

observation whose removal substantially changes the regression coefficients. Following Cook (1977,

126I follow Federal Trade Commission (2023) in viewing industries with a HHI less than 0.18 as modestly concen-
trated and the ones above this level as highly concentrated. Note that the concentration measure in Federal Trade
Commission (2023) is calculated in percentage points, while Table 5 reports an index. Hence, the latter needs to be
multiplied by 10,000 before being compared to the former.
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1979), the influence of observation i is computed as

Influencei :=
‖ŷ(i) − ŷ‖2

K ×MSE
=

(β̂i − β̂)′X ′X(β̂i − β̂)

K ×MSE
,

where β̂ and ŷ are, respectively, the least-square estimates of regression coefficients based on all

observations and the corresponding fitted values; ˆβ(i) and ŷ(i) are, respectively, the least-square

estimates of regression coefficients with the ith observation being removed and the corresponding

fitted values; and MSE represents the mean squared errors.

In defining outliers, I employ an adaptive criterion, namely, observations whose influence is

higher than 2
√

K
n is treated as outliers.

Mahalanobis distance. Data points with the Mahalanobis distance larger than 1.8 in either

spaces are removed as outliers.

B.3.3 Recovering Derived Demand for Sectoral Intermediate Goods

Since I lack separate data on the firm-level input demand for sectoral intermediate goods, I have

to divid the firm’s expenditure on material input in a way that is consistent with the configuration

of the input-output linkage. To this end, I make additional assumptions on the form of aggre-

gator function Gi in (4). Specifically, I assume that the material input mik aggregates sectoral

intermediate goods according to the Cobb-Douglas production function.127

Assumption B.4. The material input mik comprises sectoral intermediate goods according to the

Cobb-Douglas production function:

mik =

N∏
j=1

m
γi,j
ik,j ,

where mik,j is sector j’s intermediate good demanded by firm k in sector i and γi,j denotes the input

share of sector j’s intermediate good with
∑N

j=1 γi,j = 1.

Here it is implicitly assumed that the input share is the same within sector i. The producer

price index for material input PMi is defined through the cost minimization problem, formulated as

PMi := min
{m◦ik,j}

N
j=1

N∑
j=1

(1− τi)Pjm◦ik,j s.t.
N∏
j=1

(m◦ik,j)
γi,j ≥ 1. (83)

Under Assumption B.4, together with (83), I can recover both the cost index of material input

and the input demand for sectoral intermediate goods from the observables.

127In principle, this assumption is necessitated in order to compensate the shortcoming of the dataset at hand.
This assumption could be relaxed to the extent which allows the researcher to recover the material input and demand
for sectoral intermediate goods. Also this assumption could even be omitted if detailed data on firm-to-firm trade
are available, such as the Belgium data (Dhyne et al. 2021), the Chilean data (Huneeus 2020) and the Japanese data
(Bernard et al. 2019).

87



Table 5: Herfindahl-Hirschman Index (HHI)

Mapped Segment Before Outlier Elimination After Outlier Elimination

Number of firms HHI Number of firms HHI

Oil and gas extraction 35 0.26 28 0.12
Mining, except oil and gas 79 0.10 68 0.06
Support activities for mining 37 0.15 34 0.15
Construction 52 0.06 49 0.06
Food and beverage and tobacco products 95 0.04 82 0.05
Textile and apparel products 20 0.35 16 0.14
Wood, paper, printing, and related products 18 0.12 16 0.12
Petroleum and coal products 23 0.12 21 0.11
Chemical products 305 0.03 170 0.04
Plastics and rubber products 18 0.22 15 0.22
Nonmetallic mineral products 14 0.27 12 0.27
Primary metals 41 0.09 37 0.09
Fabricated metal products 53 0.06 48 0.06
Machinery 115 0.04 67 0.05
Computer and electronic products 321 0.07 166 0.03
Electrical equipment, appliances, and components 52 0.12 47 0.10
Motor vehicles, bodies and trailers, and parts 93 0.07 48 0.08
Furniture and manufacturing 101 0.04 57 0.05
Wholesale trade 88 0.14 52 0.05
Retail trade 154 0.09 85 0.03
Air transportation 22 0.10 21 0.10
Ground and other transportation 69 0.13 57 0.07
Publishing industries 100 0.24 51 0.06
Media technologies and telecommunications 87 0.08 50 0.04
Information and data processing services 274 0.12 146 0.01
Professional services 98 0.08 50 0.05
Administrative and waste management 65 0.06 59 0.05
Educational services 28 0.10 25 0.10
Health care services 53 0.27 46 0.12
Hospitals and nursing 16 0.42 14 0.44
Arts 19 0.15 16 0.16
Accommodation and food services 45 0.09 39 0.09

Note: This table reports the number of firms and Herfindahl-Hirschman Index (HHI) for the segmented sectors (see

Table B.2), comparing the values before and after the outlier elimination. The HHI in this table is calculated in terms

of index. According to Federal Trade Commission (2023), markets with a HHI greater than 0.18 are regarded as highly

concentrated.
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Fact B.5 (Identification of γi,j , P
M
i & mik,j). Suppose that Assumptions B.2 and B.4 holds. Then,

i) for each sector i = {1, . . . , N}, the input shares {γi,j}Nj=1, and the cost index for material input

PMi are identified from the observables; and ii) for each sector i = {1, . . . , N} and for each firm

k ∈ Ni, the input demand for composite intermediate goods {mik,j}Nj=1 are identified from the

observables.

Proof. (i) From the first order conditions for the cost minimization, I have

(1− τi)Pj′mik,j′ =
γi,j′

γi,j
(1− τi)Pjmik,j ,

Substituting this into (73) leads to

ωi,j =

∑Ni
k=1(1− τi)Pjmik,j

1
γi,j

∑Ni
k=1(1− τi)Pjmik,j +

∑Ni
k=1W`ik

,

where I note
∑N

j′=1 γi,j′ = 1 by assumption. Rearranging this, I arrive at

γi,j =

∑Ni
k=1(1− τi)Pjmik,j

1
ωi,j

∑Ni
k=1(1− τi)Pjmik,j −

∑Ni
k=1W`ik

=
ωi,j∑N
j′=1 ωi,j′

.

Since terms in the right-hand side {ωi,j′}Nj′=1 are observed in the data (see Appendix B.2.1), the

parameter γi,j can thus be identified for all i ∈ N.

From (83), the cost index for material input PMi is given by:

PMi =

N∏
j=1

1

γ
γi,j
i,j

{(1− τi)Pj}γi,j . (84)

Given that {γi,j}Nj=1 are identified above, PMi is also identified.

(ii) Now, using again the first order condition for the cost minimization problem, I have

(1− τi)Pj = νikγi,j
mik

mik,j
,

where νik is the marginal cost of constructing additional unit of material input (De Loecker and

Warzynski 2012; De Loecker et al. 2016, 2020), which is PMi . Hence,

mik,j = γi,j
PMi

(1− τi)Pj
mik, (85)

from which mik,j , the input demand for sector j’s composite intermediate good from sector i, is

identified. This completes the poof.
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B.3.4 Treatment of Capital

My model is static and abstracts away from capital accumulation over periods of time. In reality,

however, capital plays a great important role in a firm’s production and input decisions. As a matter

of fact, various information about capital is reported in my data source. To make my conceptual

framework consistent with the empirical measurement, I impose the following assumption.

Assumption B.5 (Capital Endowment). For each sector i ∈ N, (i) each firm k ∈ Ni is en-

dowed with capital stock before input decisions are made; and (ii) capital stock enters the firm-level

production function in a Hicks-neutral fashion.

Assumption B.5 (i) states that firms do not choose but are given capital, and this capital

endowment is independent of labor and material inputs. Note that the capital endowment can

still be a function of the firm’s productivity. Assumption B.5 (ii) means that the capital enters

the production function in a multiplicative way. Under these two requirements, the firm’s capital

and productivity are not discernible. This implies that the productivity in my model should be

understood as a composite of these two components, or overall capability of production. For

example, a “productive” firm in my model is so either because it has an efficient technology of

production or because it is endowed with massive capital assets, such as a large factory. Whichever

the case is, capital endowment is treated as part of the unobservable firm-level productivity.
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C Identification

The goal of this section is to prove Theorem 4.1. The proof requires recovering firm-level quantities

and prices, and comparative statics of both firm-level and sector-level variables. Moreover, these in

turn require the identification of derivatives of firm-level inverse demand and production functions.

To this end, I exploit the identification assumptions detailed in Section 4 in conjunction with the

model defined in Section 2 and the data described in Section 3.

To begin with, I show Proposition 4.1.

C.1 Proof of Proposition 4.1

The proof of Proposition 4.1 builds on the characterization result concerning exchangeable functions

that has recently been developed in the literature on computer science, which is summarized as a

lemma below.

Lemma C.1 (Subdecomposition (Zaheer et al. 2018; Wagstaff et al. 2019)). Let J ∈ N, and let

h : [0, 1]J → R be a continuous function. Then, h(x1, . . . , xJ) is exchangeable in (x1, . . . , xJ) if and

only if it can be expressed as h(x1, . . . , xJ) = υ(
∑J

j=1 ρ(xj)) for some outer function υ : RJ+1 → R

and some inner function ρ : R→ R
J+1.

Proof. See Zaheer et al. (2018) and Wagstaff et al. (2019).

Now, Proposition 4.1 can be proved with the multiple application of this lemma.

Proof of Proposition 4.1. First of all, it follows from Assumption 4.5 and Lemma C.1 that

there exist continuous functions υ0 : RNi+1 → R and ρ0 : R→ R
Ni+1 such that

Ai({qik′}Nik′=1) = υ0(

Ni∑
k′=1

ρ0(qik′)).

In consequence, the partial derivative of Ai(·) with respect to qik is given by

∂Ai(·)
∂qik

= (υ′0(

Ni∑
k′=1

ρ0(xk′)))
Tρ′0(qik),

where υ′0(·) and ρ′0(·) are both (Ni + 1)× 1 vectors indicating the corresponding derivatives of υi(·)
and ρ0(·), respectively, with T denoting the transpose of a vector.

Next, let mcik = mci(zik) be the firm k’s marginal cost. Note here that due to Assumption 2.4

(i), mcik is independent of the firm’s output quantity qik. Under Assumption 4.4, the Cournot-Nash

equilibrium quantities satisfy the following system of first-order conditions

ΦiΨ
′
i

(
qik

Ai({qik′}Nik′=1)

)
Ai({qik′}Nik′=1)− ∂Ai(·)

∂qik

Ai({qik′}Nik′=1)2
= mcik,
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for all k ∈ Ni. Note here that firm’s identity can be traced via the marginal costs mcik as well

as the index k. Thus, it holds by symmetry that there exists a constant Mi ∈ N such that

Hi,1, . . . ,Hi,Mi : RNi
+ → R and χai : Z ×RMi → R such that

q∗ik = χai
(
mcik;Hi,1({mcik′}k′ 6=k), . . . ,Hi,Mi({mcik′}k′ 6=k)

)
,

where each ofHi,1(·), . . . ,Hi,Mi(·) is exchangeable in (mci1, . . . ,mci(k−1),mci(k+1), . . . ,mciNi). Again

by Lemma C.1, this can further be rewritten as

q∗ik = χai

(
mcik; υ

a
1

(∑
k′ 6=k

ρ1(mcik′)
)
, . . . , υaMi

(∑
k′ 6=k

ρMi(mcik′)
))

= χbi

(
mcik;

∑
k′ 6=k

ρ1(mcik′), . . . ,
∑
k′ 6=k

ρMi(mcik′)

)

= χbi

(
mcik;

Ni∑
k′=1

ρ1(mcik′)− ρ1(mcik), . . . ,

Ni∑
k′=1

ρMi(mcik′)− ρMi(mcik)

)

= χci

(
mcik;

Ni∑
k′=1

ρ1(mcik′), . . . ,

Ni∑
k′=1

ρMi(mcik′)

)

= χdi

(
mcik; υ

b
1

( Ni∑
k′=1

ρ1(mcik′)
)
, . . . , υbMi

( Ni∑
k′=1

ρMi(mcik′)
))

,

for some functions {ρm(·)}Mi
m=1, {υam(·)}Mi

m=1, {υbm(·)}Mi
m=1, χbi(·), χci (·) and χdi (·), each of which is

appropriately defined. Applying once again Lemma C.1, it follows that for each m = 1, . . . ,Mi,

Ȟi,m({mcik′}Nik′=1) := υbm

( Ni∑
k′=1

ρm(mcik′)
)

is exchangeable in (mci1, . . . ,mciNi). Hence, the equilibrium quantity can be written as

q∗ik = χdi
(
mcik; Ȟi,1({mcik′}Nik′=1), . . . , Ȟi,Mi({mcik′}

Ni
k′=1)

)
.

Sincemcik = mci(zik), this can in turn be rearranged so that there exist some functionsHi,1, . . . ,Hi,Mi :

Z Ni → R and χi : Z ×RMi → R such that

q∗ik = χi
(
zik;Hi,1({zik′}Nik′=1), . . . ,Hi,Mi({zik′}

Ni
k′=1)

)
,

where each of Hi,1(·), . . . ,Hi,Mi(·) is, by construction, exchangeable in (zi1, . . . , ziNi). This proves

the proposition. �

92



C.1.1 Detail of Example 4.3

As in Examples 4.1 and 4.2, suppose that firm’s production technology is given by a Cobb-Douglas

function: qik = zik`
α
ikm

1−α
ik (the material aggregator Gi(·) can be arbitrary). Suppose also that

the sectoral aggregator takes the form of a CES function: Fi({qik}k∈Ni
) :=

(∑Ni
k=1 δiq

σ−1
σ

ik

) σ
σ−1 . As

shown in Example 4.2, the associated inverse demand function is given by pik = Φi
qik

δiq
σ−1
σ

ik∑Ni
k′=1

δiq
σ−1
σ

ik′

,

and the quantity index can be expressed as Ai(qi) =
∑Ni

k′=1 δiq
σ−1
σ

ik′ . For the interest of analytical

brevity, assume that there are only three firms in each sector, i.e., Ni = {1, 2, 3}, and consider the

case of σ = 1
2 and δi = 1.

Under this setup, the Cournot-Nash equilibrium quantities {q∗ik}3k=1 satisfy the following system

of equations:

σ−1
σ q∗i1

− 1
σ (q∗i2

σ−1
σ + q∗i3

σ−1
σ )

(q∗i1
σ−1
σ + q∗i2

σ−1
σ + q∗i3

σ−1
σ )2

= mci1

σ−1
σ q∗i2

− 1
σ (q∗i1

σ−1
σ + q∗i3

σ−1
σ )

(q∗i1
σ−1
σ + q∗i2

σ−1
σ + q∗i3

σ−1
σ )2

= mci2

σ−1
σ q∗i3

− 1
σ (q∗i1

σ−1
σ + q∗i2

σ−1
σ )

(q∗i1
σ−1
σ + q∗i2

σ−1
σ + q∗i3

σ−1
σ )2

= mci3,

where mcik := z−1
ik mci is the firm k’s marginal cost.128 This system can be written as

σ−1
σ q∗i1

− 1
σ (A∗i − q∗i1

σ−1
σ )

A∗i
2 = mci1

σ−1
σ q∗i2

− 1
σ (A∗i − q∗i2

σ−1
σ )

A∗i
2 = mci2

σ−1
σ q∗i3

− 1
σ (A∗i − q∗i3

σ−1
σ )

A∗i
2 = mci3,

where A∗i is the equilibrium value of the quantity index. In particular, when σ = 1
2 , this system

can be solved for the equilibrium quantities, yielding

q∗ik =
( ΦiA

∗
i

2mcikA
∗
i

2 + Φi

)2
(86)

128Precisely, mci represents the component of the marginal cost common across all firms, and it is given by
mci = α−α(1− α)1−αWα(PMi )1−α .
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for each k = 1, 2, 3. By the construction, the equilibrium quantity index A∗i satisfies

A∗i = q∗i1
1
2 + q∗i2

1
2 + q∗i3

1
2

=
ΦiA

∗
i

2mci1A∗i
2 + Φi

+
ΦiA

∗
i

2mci2A∗i
2 + Φi

+
ΦiA

∗
i

2mci3A∗i
2 + Φi

.

Rearranging this yields

8mci1mci2mci3A
∗
i

6 − 2(mci1 +mci2 +mci3)Φ2
iA
∗
i

2 − 2Φ3
i = 0.

Noticing that A∗i has to be a real number, it follows from the general cubic formula (or the Cardano

formula) that

A∗i
2 = − 3

√
B − 3

√
C, (87)

where B = 3
√

3t+
√

27t2+s3

6
√

3
and C = 3

√
3t−
√

27t2+s3

6
√

3
with s = −mci1+mci2+mci3

4mci1mci2mci3
Φi = − z−1

i1 +z−1
i2 +z−1

i3

4(zi1zi2zi3)−1mc2i

and t = − Φ3
i

4mci1mci2mci3
= − Φ3

i

4(zi1zi2zi3)−1mc3i
.

Combining (86) and (87), one obtains

q∗ik =
Φ2
iA
∗
i

2

(2mcikA
∗
i

2 + Φi)2

= χi(zik;Hi,1({zik′}3k′=1),Hi,2({zik′}3k′=1)),

for some continuous function χi(·), where Hi,1({zik′}3k′=1) := z−1
i1 +z−1

i2 +z−1
i3 and Hi,2({zik′}3k′=1) :=

zi1zi2zi3. Note here that both Hi,1(·) and Hi,2(·) are clearly exchangeable in (zi1, zi2, zi3).

Next, the subsequent input choice — specifically, the inner optimization of (6) — is constrained

by the production possibility frontier

χi(zik;Hi,1({zik′}3k′=1),Hi,2({zik′}3k′=1)) = q∗ik = zik`
α
ikm

1−α
ik .

Since χi(·) obviously satisfies Assumption 4.6, this equation can be solved for zik. By the quadratic

formula, it holds in equilibrium that

zik =
−(4mci`

∗
ik
αm∗ik

1−αA∗i
2Φi −A∗i

2Φ2
i )±

√
(4mci`∗ik

αm∗ik
1−αA∗i

2Φi −A∗i
2Φ2

i )
2 − 16mc2

i (`
∗
ik
αm∗ik

1−α)2A∗i
2Φi

2`∗ik
αm∗ik

1−αΦi

=:Mi(`
∗
ik,m

∗
ik;Hi,1({zik′}3k′=1),Hi,2({zik′}3k′=1)).

This shows the existence of a function Mi(·) by giving it an analytical expression. �

Remark C.1.
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C.2 Recovering the Values of Firm-Level Quantity and Price

In this subsection, I first derive the identification of firm-level markups, and then turn to the

identification of firm-level prices and quantities, followed by the firm-level demand responses.

C.2.1 Identification of the Values of Markup

It can be shown that the firm-level markups are recovered from the observables under the assump-

tions imposed in the main text (these assumptions are presented in Section 2.3 and summarized

below for ease of reference).129

Assumption C.1 (Input Markets). (i) The input markets are perfectly competitive. (ii) All inputs

are variable.

Fact C.1. Suppose that Assumptions 2.4 and C.1 hold. For each sector i ∈ N and each firm

k ∈ Ni, the value of the firm-level markup µ∗ik can be recovered from the data.

Proof. Observe that under Assumption C.1, the firm’s markup µik can be expressed as:

µ∗ik :=
p∗ik
MC∗ik

=
Revenue∗ik
TC∗ik

AC∗ik
MC∗ik

,

where MC∗ik, AC
∗
ik, and TC∗ik represent the equilibrium values of the marginal, average, and total

costs, respectively. Note here that
AC∗ik
MC∗ik

is the elasticity of cost with respect to quantity (Syverson

2019), which equals one due to Assumption 2.4 (i). Hence, I have

µ∗ik =
Revenue∗ik
TC∗ik

,

i.e., the value of the firm’s markup equals the ratio of revenue to total costs, both of which are

observed in the data. Thus, the value of the firm-level markup µ∗ik is identified from the observables,

as desired.

C.2.2 Identification of the Values of Quantity and Price

Let Ri, Li and Mi be the observed supports of revenue rik, labor input `ik and material input mik,

respectively. To facilitate exposition, I introduce a tilde notation to denote the logarithm of each

variable. For instance, I write the logarithms of the firm’s revenue, labor and material inputs, and

productivity as r̃ik, ˜̀
ik, m̃ik and z̃ik, respectively. Correspondingly, the observed supports for rik,

`ik and mik are denoted by R̃i, L̃i and M̃i, respectively. Also, the logarithms of a firm’s output

quantity and price are expressed as

q̃ik := ln qik = f̃i(˜̀
ik, m̃ik; z̃ik), (88)

129See Syverson (2019), De Loecker et al. (2020) and Kasahara and Sugita (2020) for discussion.
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and

p̃ik := ln pik = ψ̃i(q̃ik, Ãi(q̃i); Ii), (89)

where f̃i(·) := (ln ◦fi ◦ exp)(·), ψ̃ik(·) := (ln ◦ψik ◦ exp)(·), and Ãi(·) := (ln ◦Ai ◦ exp)(·). In what

follows, I let the quantity index Ãi(·) and the information set Ii be absorbed in the sector index i

for the sake of brevity.

Let ∂f̃i(·)∗
∂ ˜̀
ik

and ∂f̃i(·)∗
∂m̃ik

, respectively, denote the equilibrium values of the first-order derivatives

of the log-production function with respect to log-labor and log-material, i.e.,

∂f̃i(·)∗

∂ ˜̀
ik

:=
∂f̃i(·)
∂ ˜̀
ik

∣∣∣∣∣
(˜̀
ik,m̃ik)=(˜̀∗

ik,m̃
∗
ik)

,

and ∂f̃i(·)∗
∂m̃ik

is analogously defined.

It can easily be shown that ∂f̃i(·)∗
∂ ˜̀
ik

and ∂f̃i(·)∗
∂m̃ik

are identified from the data.

Proposition C.1. Suppose that Assumptions 2.4 and C.1 hold. Then, the equilibrium values of

the derivative of the production function with respect to labor and material can be recovered from

the observables.

Proof. Under Assumptions 2.4 and C.1, the firm’s input cost minimization problem is well-defined

and has interior solutions only. For a given level of output q̃∗ik, the Lagrange function associated to

the firm’s cost-minimizing problem130 in terms of the logarithm variables reads

L̃(˜̀
ik, m̃ik, ξik) := exp{W̃ + ˜̀

ik}+ exp{P̃Mi + m̃ik} − ξik
(

exp{f̃i(˜̀
ik, m̃ik; z̃ik)} − exp{q̃∗ik}

)
,

where ξik represents the Lagrange multiplier indicating the marginal cost of producing an additional

unit of output at the given level q̃∗ik (De Loecker and Warzynski 2012; De Loecker et al. 2016, 2020).

The first order conditions at q̃∗ik are given by

[˜̀ik] : exp{W̃ + ˜̀∗
ik} − ξik

∂f̃i(·)∗

∂ ˜̀
ik

exp{f̃i(˜̀∗
ik, m̃

∗
ik; z̃ik)} = 0 (90)

[m̃ik] : exp{P̃Mi + m̃∗ik} − ξik
∂f̃i(·)∗

∂m̃ik
exp{f̃i(˜̀∗

ik, m̃
∗
ik; z̃ik)} = 0, (91)

where ˜̀∗
ik and m̃∗ik, respectively, are labor and material inputs corresponding to the given output

level q∗ik. Taking the ratio between (90) and (91), I have

∂f̃i(·)∗
∂ ˜̀
ik

∂f̃i(·)∗
∂m̃ik

=
exp{W̃ + ˜̀∗

ik}
exp{P̃Mi + m̃∗ik}

. (92)

130To simplify the exposition, I leverage the equivalence explained in Remark A.1, and consider the simultaneous
decision of labor and material inputs, instead of the sequential one.
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Here, due to Assumption 2.4 (i),

∂f̃i(·)∗

∂ ˜̀
ik

+
∂f̃i(·)∗

∂m̃ik
= 1,

so that (92) gives

∂f̃i(·)∗

∂ ˜̀
ik

=
exp{W̃ + ˜̀∗

ik}
exp{W̃ + ˜̀∗

ik}+ exp{P̃Mi + m̃∗ik}
∂f̃i(·)∗

∂m̃ik
=

exp{P̃Mi + m̃∗ik}
exp{W̃ + ˜̀∗

ik}+ exp{P̃Mi + m̃∗ik}
.

Since both exp{W̃ + ˜̀∗
ik} and exp{P̃Mi + m̃∗ik} are available in the data, I thus can identify ∂f̃i(·)∗

∂ ˜̀
ik

and ∂f̃i(·)∗
∂m̃ik

from the observables, as claimed.

Next, I closely follow Kasahara and Sugita (2020) in identifying the equilibrium values of firm-

level output quantity and price. Because of this, the notations are intentionally set closed to theirs.

To begin with, I admit a measurement error in the observed log-revenue:131

r̃ik = ψ̃i(q̃ik) + q̃ik + η̃ik

= ϕ̃i(q̃ik) + η̃ik

= ϕ̃i(f̃i(˜̀
ik, m̃ik,M̃i(˜̀

ik, m̃ik)) + η̃ik

= φ̃i(˜̀
ik, m̃ik) + η̃ik,

where ϕ̃i(q̃ik) := ψ̃i(q̃ik) + q̃ik, and φ̃i(·) is the nonparametric component of the revenue function

in terms of labor and material inputs satisfying φ̃i(˜̀
ik, m̃ik) = ϕ̃i(f̃i(˜̀

ik, m̃ik,M̃i(˜̀
ik, m̃ik)). The

additive separability of the log measurement error η̃ik is chosen to conform to the bulk of the

literature on identification and estimation of production functions.132

Towards identification, it is posited that the econometrician has knowledge about the following

regularity conditions.

Assumption C.2 (Regularity Conditions). (i) (Strict Exogeneity) E[η̃ik|˜̀ik, m̃ik] = 0. (ii) (Con-

tinuous Differentiability) φi(·) is at least first differentiable in each of its argument. (iii) (Nor-

malization) For each i ∈ N and each k ∈ Ni, there exists a pair of labor and material inputs

(˜̀◦
ik, m̃

◦
ik) ∈ L̃i × M̃i such that f̃i(˜̀◦

ik, m̃
◦
ik; z̃ik) = 0.

131The measurement error is supposed to capture the variation in revenue that cannot be explained by firm-
level input variables nor aggregate variables. This can be conceived as i) a shock to the firm’s production that is
unanticipated to the firm and hits after the firm’s decision has been made, ii) the coding error in the measurement
used by the econometrician to observe the revenue.

132This specification is equivalent to assume that the error terms enter in a multiplicative way the system of
structural equations in terms of the original variables. The additive separability of the measurement errors in terms
of the logarithm variables are canonically employed in the literature (Olley and Pakes 1996; Levinsohn and Petrin
2003; Ackerberg et al. 2015; Gandhi et al. 2019).

97



Lemma C.2. Suppose that Assumptions 2.4, C.1, and C.2 hold. Then, the logarithms of the

firm-level output quantity q̃∗ik and price p̃∗ik can be identified up to scale from the observables.

Proof. The proof proceeds in three steps.

Step 1:

The first step identifies the firm’s revenue free of the measurement errors ¯̃rik in terms of

(˜̀
ik, m̃ik), eliminating the measurement error η̃ik. From Assumption C.2, I can identify φ̃i(·),

¯̃rik and ε̃ik according to

φ̃i(˜̀
ik, m̃ik) = E[r̃ik|x̃ik];

¯̃rik = φ̃i(˜̀
ik, m̃ik); and

η̃ik = r̃ik − ¯̃rik.

Step 2:

Next, I aim to identify the derivative of the inverse of the revenue function ϕ̃i. By definition, it

is true that

f̃i(˜̀
ik, m̃ik,M̃i(˜̀

ik, m̃ik)) = ϕ̃−1
i (¯̃rik), (93)

where it is known from the identification result above that ¯̃rik = φ̃i(˜̀
ik, m̃ik). Taking derivatives of

(93) with respect to ˜̀
ik and m̃ik derivers

∂f̃i(·)
∂ ˜̀
ik

+
∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂ ˜̀
ik

=
∂ϕ̃−1

i (·)
∂ ¯̃rik

∂φ̃i(·)
∂ ˜̀
ik

(94)

∂f̃i(·)
∂m̃ik

+
∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂m̃ik

=
∂ϕ̃−1

i (·)
∂ ¯̃rik

∂φ̃i(·)
∂m̃ik

(95)

for all (˜̀
ik, m̃ik) ∈ L̃i × M̃i. Here notice that

dϕ̃−1
i (·)
d¯̃rik

=
(dϕ̃i(·)
dq̃ik

)−1
, with the right-hand side being

the firm’s markup (Kasahara and Sugita 2020). Owing to Fact C.1, the equilibrium firm’s markup

(in log) µ̃ik is obtained by µ̃ik = ¯̃rik − ˜TCik(˜̀∗
ik, m̃

∗
ik), where ˜TCik(˜̀

ik, m̃ik) := ln[exp{W̃ + ˜̀
ik} +

exp{P̃Mi + m̃ik}]. Thus,
dϕ̃−1

i (·)
d¯̃rik

is identified as

∂ϕ̃−1
i (·)
∂ ¯̃rik

= φ̃i(˜̀
ik, m̃ik)− ln[exp{W̃ + ˜̀

ik}+ exp{P̃Mi + m̃ik}].

Since the values of ∂f̃i(·)
∂ ˜̀
ik

and ∂f̃i(·)
∂m̃ik

are identified in Proposition C.1, (94) and (95) can be

rearranged to identify, respectively, ∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂ ˜̀
ik

and ∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂m̃ik

, i.e.,

∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂ ˜̀
ik

=
∂ϕ̃−1

i (·)
∂ ¯̃rik

∂φ̃i(·)
∂ ˜̀
ik

− ∂f̃i(·)
∂ ˜̀
ik

, (96)
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and

∂f̃i(·)
∂z̃ik

∂M̃i(·)
∂m̃ik

=
∂ϕ̃−1

i (·)
∂ ¯̃rik

∂φ̃i(·)
∂m̃ik

− ∂f̃i(·)
∂m̃ik

. (97)

Step 3:

The final step recovers the realized value of firm-level output quantity by means of integration:

q̃∗ik = f̃i(˜̀
ik, m̃ik, z̃ik)

=

∫ ˜̀
ik

˜̀◦
ik

(
∂f̃i

∂ ˜̀
ik

+
∂f̃i
∂z̃ik

∂M̃i

∂ ˜̀
ik

)
(s, m̃ik)ds+

∫ m̃ik

m̃◦ik

(
∂f̃i
∂m̃ik

+
∂f̃i
∂z̃ik

∂M̃i

∂m̃ik

)
(˜̀◦
ik, s)ds,

where the value of f̃i(˜̀◦
ik, m̃

◦
ik, z̃ik) is assumed to be known to the econometrician (Assumption C.2

(iii) ).

Lastly, I can also recover the realized value of the firm-level output price p̃∗ik through

p̃∗ik = ¯̃rik − q̃∗ik.

This completes the proof.

Remark C.2. (i) Lemma C.2 rests on the identifiability of the value of the firm-level markup

µik (Fact C.1). Kasahara and Sugita (2020) instead exploit the panel structure of their dataset to

first identify the firm’s productivity from the observables. My framework, by contrast, is static in

nature, which prohibits the use of panel data. In light of this, the use of Fact C.1 can be considered

a compromise between the data availability and the model assumptions. (ii) The proof of Lemma

C.2 does not require the identification of the firm’s productivity per se, and thus it does not invoke

the feature of the Hicks-neutral productivity in the firm-level production function (Assumption 4.3).

Thus, this lemma also applies to the case of non-Hicks-neutral productivity as studied in Demirer

(2022) and Pan (2022). Under Hicks-neutrality, it holds ∂f̃i(·)
∂z̃ik

= 1. (iii) As discussed in Kasahara

and Sugita (2020) and Kasahara and Sugita (2023), Lemma C.2 identifies the firm-level quantity

and price only up to a scale constant. Nevertheless, it is straightforward to verify that this is

innocuous for the purpose of this paper, as the scale constants end up canceling out with each other.

Hence, the presence of the scale constant is made implicit throughout the exposition.

Having Lemma C.2 established, the firm-level quantity and price can immediately be recovered

by reverting (88) and (89).

Proposition C.2. Suppose that the assumptions required in Lemma C.2 hold. Then the equilibrium

values of the firm-level quantity q∗ik and price p∗ik are identified up to scale from the observables.

C.3 Recovering Demand Function (Sectoral Aggregator)
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C.3.1 HSA Demand System

With the notation defined so far, the HSA demand system in Assumption 4.4 can be expressed as

follows: First, by definition

Φi :=

Ni∑
k=1

p∗ikq
∗
ik,

where p∗ik and q∗ik are the equilibrium (realized) values of firm-level price and quantity. Then I can

take

Φi =

Ni∑
k=1

ϕi(q
∗
ik), (98)

where rik = ϕi(qik) with ϕi(·) := (exp ◦ϕ̃i ◦ ln)(·).
Next, the residual inverse demand function faced by firm k in sector i takes the form of

pik =
Φi

qik
Ψi

(
qik

Ai
(
qi
)), (99)

where

Ψi(qik) =
ϕi(qik)

Φi
, (100)

with

Ni∑
k=1

Ψi

(
qik

Ai
(
qi
)) = 1. (101)

C.3.2 Proof

I first identify the quantity index Ai(·) over the entire support S Ni
i . This is shown in Kasahara

and Sugita (2020).

Lemma C.3 (Identification of Ai; Kasahara and Sugita (2020)). Suppose that the same assump-

tions in Lemma C.2 are satisfied. Assume moreover that Assumption 4.4 holds with (98) – (101).

Then, the quantity index Ai(qi) is identified.

Under Lemma C.3, the quantity index Ai(·) is nonparametrically identified as a function of qi,

so that its derivatives can also be nonparametrically identified.

Corollary C.1 (Identification of ∂Ai(·)
∂qik

and ∂2Ai(·)
∂qikqik′

). Suppose that the same assumptions required

in Lemma C.3 hold. Then, for each i ∈ N, i) ∂Ai(·)
∂qik′

and ii) ∂2Ai(·)
∂qikqik′

are identified for all k, k′ ∈ Ni.

The identified quantity index Ai(·) can be combined once again with (98) – (101) to recover the

residual inverse demand functions faced by firms under Assumption 4.4.
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Proposition C.3. Suppose that the same assumptions required in Lemma C.3 hold. Then, the

residual inverse demand functions ψi(·) can be identified from the observables.

For each sector i ∈ N and for each firm k ∈ Ni, let mrik : Si ×S Ni−1
i → R be the marginal

revenue function; that is, mrik(qik,qi,−k; Ii) := ∂ψi(·)
∂qik

qik+pik. Given Lemma C.3, it is immediate to

show that for each k ∈ Ni, mrik(·) and its partial derivatives ∂mrik(·)
∂qik′

for each k′ ∈ Ni are identified.

Lemma C.4 (Identification of Marginal Revenue Function). Suppose that the assumptions required

in Lemma C.3 are satisfied. Then, i) the firm-level marginal revenue function mrik(·) and ii) its

partial derivatives ∂mrik(·)
∂qik′

for each k′ ∈ Ni are identified.

I can further recover the sectoral aggregator Fi(·) and its partial derivatives with respect to qik

(denoted by ∂Fi(·)
∂qik

) as well as the partial derivatives of Pi(·) with respect to qik (denoted by ∂Pi(·)
∂qik

)

for all k ∈ Ni under an additional normalization condition.

Assumption C.3 (Normalization of HSA Demand System). There exists a collection of constants

{cik}Nik=1 such that Fi({cik}Nik=1) = 1.

Lemma C.5 (Identification of Sectoral Aggregators). Suppose that the assumptions required in

Lemma C.3 are satisfied. Assume moreover that Assumption C.3 holds. Then, i) the sectoral

aggregator Fi(·), and ii) the derivatives ∂Fi(·)
∂qik

and ∂Pi(·)
∂qik

for each k′ ∈ Ni, are identified as a

function of qi. iii) In particular, evaluated at the realized values, it holds that ∂Fi(·)∗
∂qik

=
p∗ik
P ∗i

and

∂Pi(·)∗
∂qik

= −p∗ik
Q∗i

.

Proof. i) By Proposition 1 (i) and Remark 3 (self-duality) of Matsuyama and Ushchev (2017), there

exists a unique monotone, convex, continuous and homothetic rational preference over the support

of q associated to the HSA inverse demand system (99) – (101). Clearly, this preference corresponds

to the sectoral aggregator Fi. Moreover, a variant of Proposition 1 (ii) of Matsuyama and Ushchev

(2017) implies that Qi can be expressed as133

lnFi(qi) = lnAi(qi) +

Ni∑
k=1

∫ qik/Ai(qi)

cik

Ψi(ζ)

ζ
dζ, (102)

where {cik}Nik=1 satisfy Assumption C.3.

Since, by Lemma C.3, Ai(·) is identified, it remains to prove that for each k ∈ N, Ψi(ζ)
ζ is

identified for all ζ ∈ [cik,
qik

Ai(qi)
].

Observe that ϕi in (100) is obtained by taking the continuous transformation and inverse of

ϕ̃−1
i , which is identified in the proof of Lemma C.2. Notice moreover that for the realized values

{q∗ik}
Ni
k=1, I can recover Φi using (98), i.e.,

Φi =

Ni∑
k=1

ϕi(q
∗
ik),

133See also Kasahara and Sugita (2020).
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where Φi is a constant that firms take as given. Then, the identification of Ψi(ζ)
ζ , for ζ ∈ [cik,

qik
Ai(qi)

],

comes directly from its construction (100).

Hence, I can identify Fi(·) as a function of qi.

ii) Taking partial derivatives of (102) with respect to qik: for all qi ∈ S Ni
i ,

∂Fi(·)
∂qik

Fi(qi)
=

∂Ai(·)
∂qik

Ai(qi)
+

1

qik
Ψi

(qik
Ai

)
−
( Ni∑
k′=1

Ψi

(qik′
Ai

)) 1

Ai(qi)

∂Ai(·)
∂qik

,

so that by construction

∂Fi(·)
∂qik

=
Fi(qi)

Φi

1

qik
ϕ
( qik
Ai(qi)

)
.

Moreover, it hods by (98) that Pi(qi)Fi(qi) = Φi. Then, taking the partial derivatives of the

both hand sides with respect to qik, I obtain

∂Pi(·)
∂qik

Fi(qi) + Pi(qi)
∂Fi(·)
∂qik

= 0.

Rearranging this identifies ∂Pi(·)
∂qik

as a function of qi.

iii) For the realized values q∗i , if follows from (i) and (ii) of this lemma that

∂Fi(·)∗

∂qik
=
Fi(q

∗
i )

Φi

1

q∗ik
ϕ
( q∗ik
Ai(q∗i )

)
=
p∗ik
P ∗i

,

and, thus

∂Pi(·)∗

∂qik
= −P

∗
i

Q∗i

p∗ik
P ∗i

= −
p∗ik
Q∗i

.

This completes the proof.

Remark C.3. As discussed in Kasahara and Sugita (2020) and Kasahara and Sugita (2023), the

HSA demand is identified only up to a scale constant. Nevertheless, it is straightforward to verify

that this is innocuous for the purpose of this paper, as the scale constants end up canceling out with

each other. Hence, the presence of the scale constant is made implicit throughout the exposition.

C.4 Recovering Λ and Γ

C.4.1 Identification of Λ

Fact C.2. Suppose that Proposition C.2 and Lemma C.4 hold. Then, for each sector i ∈ N, both

matrices Λi,1 and Λi,2 in (37) are identified.

Proof. First, it immediately follows from Lemma C.4 that Λi,1 :=
[∂mrik(·)∗

∂qik′

]
k,k′∈Ni

are identified.

Next, {q∗ik}
Ni
k=1 are identified by Proposition C.2. Since moreover labor and material inputs are
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directly recovered from data (Fact ), the matrix Λi,2 in (37) is identified, as desired.

Remark C.4. In view of Fact C.2, each entry of the matrix Λ−1
i,1 Λi,2, i.e., λ−1

ik,k′, is also identified.

Fact C.3 (Identification of λ̄Lik and λ̄Mik ). Suppose that the assumptions required in Fact C.2 are

satisfied. Then, for each sector i ∈ N and each k ∈ Ni, λ̄
L
ik and λ̄Mik are identified from the

observables.

Proof. For each sector i ∈ N, q∗ik is identified for all k ∈ Ni (Proposition C.2). Since λ−1
ik,k′ is

identified for all k, k′ ∈ Ni (Fact C.2), then λ̄Lik and λ̄Mik are identified by tracing their construction,

i.e., λ̄Lik =
∑Ni

k′=1 λ
−1
ik,k′

`∗
ik′
q∗
ik′

and λ̄Mik =
∑Ni

k′=1 λ
−1
ik,k′

m∗
ik′

q∗
ik′

, where `∗ik and m∗ik are observed (Fact

B.4).

Fact C.4 (Identification of λ̄Li· and λ̄Mi· ). Suppose that the assumptions required in Fact C.2 are

satisfied. Assume moreover that Lemma C.5 holds. Then, for each sector i ∈ N, λ̄Li· and λ̄Mi· are

identified.

Proof. First, q∗i and p∗i identified by Proposition C.2. Second, λ̄Lik and λ̄Mik are identified by Fact

C.3. Moreover, in view of Lemma C.5, ∂Pi(·)∗
∂qik

can be expressed in terms of p∗i and Q∗i . Hence, λ̄Li·
and λ̄Mi· in (42) are identified.

C.4.2 Identification of Γ

Notice that if material input is composed according to a Cobb-Douglas aggregator (19), the equi-

librium material cost index corresponding to (43) is given by

PMi
∗

=

N∏
j=1

1

γ
γi,j
i,j

{
(1− τi)P ∗j

}
.

Fact C.5. Under the specification (19),
∂PMi (·)
∂P ∗j

and
∂PMi (·)
∂τn

in (44) are identified from the observ-

ables.

Proof. Under the specification (19), it holds that
∂PMi (·)
∂P ∗j

= γi,j
PMi

∗

P ∗j
and

∂PMi (·)
∂τn

= − P ∗i
1−τi . The right

hand sides of these two expressions are directly observed in the data (Appendix B). Hence,
∂PMi (·)
∂P ∗j

and
∂PMi (·)
∂τn

are identified.

Fact C.6. Suppose that the assumptions required in Fact C.4 are satisfied. Then, the matrices Γ1

and Γ2 in (46) are identified.

Proof. In view of Fact C.5, {∂P
M
i (·)
∂P ∗j

}i,j∈N are identified. Moreover, {λ̄Lj·}Nj=1 and {λ̄Mj· }Nj=1 are

identified due to Fact C.4. Thus, both Γ1 and Γ2 in (46) can be recovered by following their

definitions.
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C.5 Recovering Comparative Statics

With the results obtained above (Appendices C.2, C.3 and C.4), I now turn to the identification

of comparative statics of firm-level and sector-level variables. As a preliminary, this requires the

identification of the first- and second-order derivatives of firm-level production functions. This is

accomplished by following the share regression approach of Gandhi et al. (2019), and is deferred to

Appendix C.6.

The identification of the comparative statics is constructive, so that I can follow the theoretical

results established in Appendix A.

Fact C.7 (Identification of Dik). Suppose that the assumptions required in Fact C.4 are satisfied.

Then, for each sector i ∈ N and each k ∈ Ni, the matrix Dik is identified.

Proof. First, it holds by Assumption 2.4 (i) that marginal costs equal the average costs, so that

ξ∗ik =
TC∗ik
q∗ik

. This expression recovers ξ∗ik as the total costs are directly observed in the data

(Appendix B) and the firm-level quantity is recovered by Proposition C.2. Next, both λ̄Lik and λ̄Mik
are identified by Fact C.3, and moreover the first- and second-order derivatives of the firm-level

production functions are identified (Appendix C.6). Then, I can identify the matrix Dik by tracing

its definition (59).

Proposition C.4 (Identification of dW ∗

dτn
). Suppose that the assumptions required in Fact C.4 are

satisfied. Then, dW ∗

dτn
is identified.

Proof. From Fact C.5, it is known that
∂PMi (·)
∂τn

= − P ∗i
1−τi . In addition, it holds from Fact C.6 that

Γ1 and Γ2 are identified. Thus, ϑ1,i and ϑ2,i in (62) are identified. Since moreover each entry of

the matrix Dik is identified (Fact C.7), the identification of dW ∗

dτn
obtains through (66).

Proposition C.5 (Identification of
dPMi

∗

dτn
). Suppose that the assumptions required in Fact C.4 are

satisfied. Then, for each i ∈ N,
dPMi

∗

dτn
is identified.

Proof. In light of Fact C.5,
∂PMi (·)
∂τn

is identified. Both Γ1 and Γ2 are recovered in Fact C.6. Given

the identification of dW ∗

dτn
(Proposition C.4), I can thus identify

dPMi
∗

dτn
according to (47).

Proposition C.6 (Identification of
dP ∗i
dτn

). Suppose that the assumptions required in Fact C.4 are

satisfied. Then, for each i ∈ N,
dP ∗i
dτn

is identified.

Proof. Due to Fact C.4, both λ̄Li· and λ̄Mi· are identified. Given the identifications of dW ∗

dτn
(Propo-

sition C.4) and
dPMi

∗

dτn
(Proposition C.5), I can identify

dP ∗i
dτn

according to (42).

Proposition C.7 (Identification of
dq∗ik
dτn

and
dp∗ik
dτn

). Suppose that the assumptions required in Fact

C.4 are satisfied. Then, for each i ∈ N and each k ∈ Ni,
dq∗ik
dτn

and
dp∗ik
dτn

are identified.
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Proof. First, observe that λ̄Lik and λ̄Mik are identified for each i ∈ N and each k ∈ Ni (Fact C.3).

Given the identifications of dW ∗

dτn
(Proposition C.4) and

dPMi
∗

dτn
(Proposition C.5), I can thus identify

dq∗ik
dτn

according to (37).

Next,
dp∗ik
dτn

is identified as
dp∗ik
dτn

=
∑Ni

k′=1
∂ψik(·)∗
∂qik′

dq∗
ik′

dτn
.

Proposition C.8 (Identification of
d`∗ik
dτn

and
dm∗ik
dτn

). Suppose that the assumptions required in Fact

C.4 are satisfied. Then, for each i ∈ N and each k ∈ Ni,
d`∗ik
dτn

and
dm∗ik
dτn

are identified.

Proof. It follows from Fact C.7 that the matrix Dik is identified for each i ∈ N and each k ∈ Ni.

Given the identifications of dW ∗

dτn
(Proposition C.4) and

dPMi
∗

dτn
(Proposition C.5), I can thus identify

d`∗ik
dτn

and
dm∗ik
dτn

according to (58).

Notice that if material input is composed according to a Cobb-Douglas aggregator (19), the

equilibrium derived demand for sectoral intermediate good corresponding to (67) is given by (20):

m∗ik,j = γi,j
PMi

∗

(1− τi)P ∗j
m∗ik.

Proposition C.9 (Identification of
dm∗ik,j
dτn

). Suppose that the assumptions required in Fact C.4 are

satisfied. Then, for each i, j ∈ N and each k ∈ Ni,
dm∗ik,j
dτn

is identified.

Proof. Under the specification (19), it holds that
∂mik,j(·)
∂P ∗

j′
= − 1

Pj′
mik,j1{j′=j}+

γi,j′
P ∗
j′
m∗ik,j ,

∂mik,j(·)
∂τn

=

0 and
∂mik,j(·)
∂m∗ik

=
m∗ik,j
m∗ik

. Note that these three terms can be directly recovered from the data

(Appendix B).

Hence, given the identifications of
{dP ∗

j′
dτn

}N
j′=1

(Proposition C.6) and
dm∗ik
dτn

(Proposition C.8), I

can identify
dm∗ik,j
dτn

according to (68), which proves the claim.

Remark C.5. Alternatively, one may directly work on the total differentiation of (20), which is

given by

dm∗ik,j
dτn

=

{
1

1− τi
1{i=n} +

1

PMi
∗
dPMi

∗

dτn
− 1

P ∗j

dP ∗j
dτn

+
1

m∗ik

dm∗ik
dτn

}
m∗ik,j .

In this case, the identification of
dm∗ik,j
dτn

follows from Propositions C.5, C.6 and C.8 as well as

Appendix B.

C.6 Recovering the First- and Second-Order Partial Derivatives of the Firm-

Level Production Functions

The goal of this section is to identify the equilibrium values of the second-order derivatives of fi(·)
with respect to `ik and mik.

134 To begin with, observe that under Assumption 4.3, there exits a

134Note that the equilibrium values of the first-order derivatives are already identified in Proposition C.1.
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function gi : Li ×Mi → R such that

fi(`ik,mik; zik) = zikgi(`ik,mik), (103)

for all (`ik,mik, zik) ∈ Li ×Mi ×Zi. I define g̃i : L̃i × M̃i → R such that

f̃i(˜̀
ik, m̃ik; z̃ik) = z̃ik + g̃i(˜̀

ik, m̃ik). (104)

My identification strategy is based on the following relationships between the partial derivatives

of g̃i and those of fi.

Fact C.8. Under Assumption 4.3, it holds that for all (`ik,mik, zik) ∈ Li ×Mi ×Zi,

(i) ∂f̃i(·)
∂ ˜̀
ik

= ∂g̃i(·)
∂ ˜̀
ik

and ∂f̃i(·)
∂m̃ik

= ∂g̃i(·)
∂m̃ik

;

(ii) ∂fi(·)
∂`ik

= ∂g̃i(·)
∂ ˜̀
ik

fi(·)
`ik

and ∂fi(·)
∂mik

= ∂g̃i(·)
∂m̃ik

fi(·)
mik

;

(iii) ∂2fi(·)
∂`2ik

= fi(·)
`2ik

{
∂2g̃i(·)
∂ ˜̀2
ik

+
(
∂g̃i(·)
∂ ˜̀
ik

)2
+ ∂g̃i(·)

∂ ˜̀
ik

}
, ∂2fi(·)

∂m2
ik

= fi(·)
m2
ik

{
∂2g̃i(·)
∂m̃2

ik
+
(
∂g̃i(·)
∂m̃ik

)2
+ ∂g̃i(·)

∂m̃ik

}
and

∂2fi(·)
∂`ik∂mik

= fi(·)
`ikmik

(
∂2g̃i(·)
∂ ˜̀
ik∂m̃ik

+ ∂g̃i(·)
∂ ˜̀
ik

∂g̃i(·)
∂m̃ik

)
,

where fi(·) := fi(`ik,mik; zik) and g̃i(·) := g̃i(˜̀
ik, m̃ik).

The identification results of Gandhi et al. (2019) rest on Fact C.8 (i) as well as the timing

assumption encoded in (6). I further leverage the insights from Fact C.8 (ii) and (iii). In particular,

invoking (iii) in equilibrium, I have

∂2fi(·)∗

∂`2ik
=

q∗ik
(`∗ik)

2

{
∂2g̃i(·)∗

∂ ˜̀2
ik

+

(
∂g̃i(·)∗

∂ ˜̀
ik

)2

+
∂g̃i(·)∗

∂ ˜̀
ik

}
, (105)

and also

∂2fi(·)∗

∂`ik∂mik
=

q∗ik
`∗ikm

∗
ik

{
∂2g̃i(·)∗

∂ ˜̀
ik∂m̃ik

+

(
∂g̃i(·)∗

∂ ˜̀
ik

)(
∂g̃i(·)∗

∂m̃ik

)}
. (106)

Since q∗ik can be identified from Proposition C.2, it remains to identify the equilibrium values of

the first- and second-order derivatives of g̃i(·) with respect to ˜̀
ik and m̃ik. To this end, I follow

Gandhi et al. (2019) in nonparametrically identifying the first-oder partial derivatives of g̃(·) as a

function of ˜̀
ik and m̃ik.

The identification equation builds on the one-step profit maximization set out in Appendix A.1.

Under Assumption 4.3, multiplying (33) by mik and dividing by pikqik leads to

∴
1

µik

∂g̃i(·)
∂m̃ik

= smik,
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where smik :=
PMi mik
pikqik

is the material cost relative to the revenue. Taking the logarithm of this

expression, I obtain

ln smik = ln
∂g̃i(·)
∂m̃ik

− lnµik. (107)

However, in general this relationship cannot be directly fed into data when the output market is

imperfectly competitive, because firm-level markup has to be identified, and thus be estimated

simultaneously (Kasahara and Sugita 2020). Nevertheless, I emphasize that under Assumption 2.4

(i), µik is recovered in advance of solving (107) for the first-order derivative of g̃i with respect to

m̃ik (Fact C.1). Taking stock of this, I adopt the same empirical specification as Gandhi et al.

(2019):

s̃m,µ̃ik = ln Emi + ln
∂g̃i
∂m̃ik

(˜̀
ik, m̃ik)− ε̃mik, (108)

where s̃m,µ̃ik := ln smik+lnµik can readily be calculated from the data, and ε̃mik is a measurement error

with E[ε̃mik | ˜̀
ik, m̃ik] = 0. The measurement error ε̃mik captures any unmodeled, non-systematic

noise both in smik and µik, and is associated with the constant Emi through Emi = E[exp{ε̃mik}].
Inclusion of the mean Emi is based on the suggestion made in Gandhi et al. (2019).

My identification result heavily draws from Gandhi et al. (2019), and is summarized in the

following lemma for the sake of completion.

Lemma C.6 (Theorem 2 of Gandhi et al. (2019)). Suppose that Assumptions 2.4 and 4.3 hold.

Then, the share regression (108) identifies both the labor elasticity and material elasticity of the

log-production function for all (˜̀
ik, m̃ik) ∈ L̃i × M̃i.

Proof. First, I start by writing (108) as

s̃m,µ̃ik = lnDm
ik(˜̀

ik, m̃ik)− ε̃mik, (109)

where lnDm
ik(˜̀

ik, m̃ik) := ln Emi +ln ∂g̃i
∂m̃ik

(˜̀
ik, m̃ik). I can nonparametrically identify lnDm

ik(˜̀
ik, m̃ik)

according to

lnDm
ik(˜̀

ik, m̃ik) = E
[
s̃m,µ̃ik |˜̀ik, m̃ik

]
for all (˜̀

ik, m̃ik) ∈ L̃i × M̃i. The error term ε̃mik is identified through the specification (109):

ε̃mik = lnDm
ik(˜̀

ik, m̃ik)− s̃m,µ̃ik (110)

which in turn identifies the mean Emi :

Emi = E
[

exp{ε̃mik}
]

(111)
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Next, plugging these back into the the definition of lnDm
ik , I identify the log-labor input elasticity

of the log-production function:

ln
∂g̃i
∂m̃ik

(˜̀
ik, m̃ik) = lnDm

ik(˜̀
ik, m̃ik)− ln Emi = ln

Dm
ik(˜̀

ik, m̃ik)

Emi
,

yielding

∂g̃i(˜̀
ik, m̃ik)

∂m̃ik
=
Dm
ik(˜̀

ik, m̃ik)

Emi
(112)

for all (˜̀
ik, m̃ik) ∈ L̃i × M̃i.

Lastly, given the identification of ∂g̃i(˜̀
ik,m̃ik)
∂m̃ik

, one can invoke Assumption 2.4 (i) and Fact C.8

(i) to recover ∂g̃i(˜̀
ik,m̃ik)

∂ ˜̀
ik

for all (˜̀
ik, m̃ik) ∈ L̃i × M̃i, which completes the proof.

As soon as I obtain the identification of ∂g̃i(˜̀
ik,m̃ik)

∂ ˜̀
ik

and ∂g̃i(˜̀
ik,m̃ik)
∂m̃ik

as functions of ˜̀
ik and m̃ik,

I can also recover the second-order derivatives of g̃i(·).

Corollary C.2. The second-order derivatives of log-production function with respect to log-labor

and log-material inputs, i.e., ∂2g̃i(·)
∂ ˜̀2
ik

, ∂2g̃i(·)
∂m̃2

ik
, and ∂2g̃i(·)

∂ ˜̀
ikm̃ik

, are nonparametrically identified for all

(˜̀
ik, m̃ik) ∈ L̃i × M̃i.

Now, I prove that it is possible to identify the values of the second-order derivative of the

production function corresponding to the equilibrium labor and material inputs.

Lemma C.7. Suppose that the assumptions required in Proposition C.2 and Lemma C.6 are sat-

isfied. The values of the second-order derivatives of the production function at equilibrium are

identified from the observables.

Proof. By Proposition C.2, q∗ik can be recovered. Moreover, Lemma C.6 identifies the value of ∂g̃i(·)
∂ ˜̀
ik

and ∂g̃i(·)
∂m̃ik

at the equilibrium values of inputs (˜̀∗
ik, m̃

∗
ik), while Corollary C.2 informs policymakers

of the equilibrium values of ∂2g̃i(·)
∂ ˜̀2
ik

and ∂2g̃i(·)
∂ ˜̀
ik∂m̃ik

. An analogous argument applies to the equilibrium

value of ∂2g̃i(·)
∂m̃2

ik
. Hence, by tracing (105) and (106), I can recover the values of the second-order

derivatives of the production function at equilibrium, as claimed.

Remark C.6. Lemma C.7 only identifies the values of the second-order derivatives of the firm-level

production function at the equilibrium level of labor and material inputs, while being silent about the

values at different values of these inputs. This is because I lack the identification of the production

function fi(·) over the entire support; my approach instead rests on the knowledge about the value

of equilibrium quantity, given by Proposition C.2. The punchline is that as far as the identification

of (16) is concerned, the knowledge about the entire production function is not needed, obviating

additional assumptions.
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C.7 Identification of the Object of Interest

Theorem C.1 (Identification of dYi(s)
ds ). Suppose that Assumptions 4.1, 4.3, 4.4 and ?? hold.

Assume moreover that the regularity conditions (Assumption ...) are satisfied. Then, the value of
dYi(s)
ds evaluated at any point on T is identified from the observables.

Proof. Observe that dYi(s)
ds evaluated at a point on s = τ can be decomposed as

dYi(s)

ds

∣∣∣∣
s=τn

=

Ni∑
k=1

dp∗ik
dτn

q∗ik +

Ni∑
k=1

p∗ik
dq∗ik
dτn
−
( Ni∑
k=1

N∑
j=1

dP ∗j
dτn

m∗ik,j +

Ni∑
k=1

N∑
j=1

P ∗j
dm∗ik,j
dτn

)
,

For all i, j ∈ N and k ∈ Ni, I can recover p∗ik and q∗ik (Proposition C.2),
dp∗ik
dτn

and
dq∗ik
dτn

(Proposition

C.7),
dP ∗j
dτn

(Proposition C.6), and
dm∗ik,j
dτn

(Proposition C.9) over the empirical support. Hence, I can

recover the value of dYi(s)
ds at any point on T .

Proof of Theorem 4.1. Under Assumption 4.2, Theorem C.1 holds for all values on [τ 0, τ 1].

Then, the object of interest ∆Y (τ0
n, τ

1
n) can be recovered according to (15):

∆Y (τ0
n, τ

1
n) =

N∑
i=1

∫ τ1
n

τ0
n

dYi(s)

ds
ds,

which proves the theorem. �

Proof of Corollary 4.1. It is immediate to show the corollary by setting ∂mrik(·)
∂qik′

= 0 and
∂ψik(·)
∂qik′

= 0 for all k, k′ ∈ Ni such that k′ 6= k, provided that the equilibrium concept is appropriately

modified. �
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D Extensions

D.1 Dynamic Environment

The CHIPS and Science Act consists of two parts: i) Investment in construction, expansion, or

modernization of facilities producing semiconductors, and ii) tax credit for capital investments

in semiconductors. In the main text, I focus on the second part only; as far as the tax credits

and the static analysis are concerned, the empirical analysis of this paper is consistent with the

model. In the empirical analysis of this paper, capital assets are considered to be capital endowment

and incorporated into the firms’ production capacities (see Appendix B.3.4). To account for the

investment part, the model of this paper needs to be extended to include the firms’ dynamic capital

accumulation, which is left for future work.

D.2 Long-Run Perspective

This paper focuses on the short-run effects of policies, excluding the firms entry and exit in reaction

to a change in policy. At first glance, this might appear to be restrictive because the present paper

studies merely a “special case” of the “full-fledged model.” In practice, however, the short-run

analysis deserves separate attention in its own right mainly for two reasons. First, the short-run

analysis per se is useful as a tool for “validation” of the policy under consideration.135 In the short

run, the model prediction can be compared to what has actually happened in the data. If the

data turn out to be substantially different from the model prediction, the policymaker can/should

revise and update the model. In contrast, when the observed outcomes are largely in line with the

model prediction, it is a strong indication that the model is plausible, granting the policymaker xxx.

Second, the short-run analysis is a necessary step to separately identify the intensive and extensive

margin causal effects.136 While the short-run analysis identifies the intensive margin causal effect

as explored in the main text, the long-run analysis directly identifies the total causal effect. Thus,

the extensive margin causal effect is only identified as a residual between the intensive margin and

total causal effects.

To illustrate the idea, I briefly discuss the definition and identification of the extensive margin

causal effects.

D.2.1 Illustrative Example

Definition. Consider policy reform from τ 0 to τ 1. Let N 0
i and N 1

i be the index sets for firms in

sector i under τ 0 and τ 1, respectively. Let u signify the competitiveness of the market under N u
i ,

thereby yuik(τ ) representing the firm-level value-added of firm k in sector i under u and τ . The

135This insight is employed in empirical microeconomic literature. See ? and references therein.
136For example, the international trade literature studies the “trade elasticities” for the both intensive and extensive

margins (e.g., Chaney 2008; Adão et al. 2020; Boehm et al. 2023). Other works decompose the total growth/difference
in the value of trade into the intensive and extensive margins (e.g., Feenstra 1994; Hummels and Klenow 2005; Kehoe
and Ruhl 2013). My framework separately defines the intensive and extensive margin causal policy effects.
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total causal effect of the policy reform is defined as

∆Y (τ 0, τ 1) :=
N∑
i=1

∑
k∈N 1

i

y1
ik(τ

1)−
N∑
i=1

∑
k∈N 0

i

y0
ik(τ

0).

By the technique of add and subtract, it can be decomposed into the intensive and extensive

margin causal effects:

∆Y (τ 0, τ 1)︸ ︷︷ ︸
the total causal effect

=

N∑
i=1

∑
k∈N 1

i

y1
ik(τ

1)−
N∑
i=1

∑
k∈N 0

i

y0
ik(τ

1)

︸ ︷︷ ︸
the extensive margin causal effect

+

N∑
i=1

∑
k∈N 0

i

y0
ik(τ

1)−
N∑
i=1

∑
k∈N 0

i

y0
ik(τ

0)

︸ ︷︷ ︸
the intensive margin causal effect

.

The first term of the right-hand side of this expression is a ceteris paribus difference in GDP due

to a change in the number of firms, thus presenting the extensive margin causal effects. The second

term fixes the number of firms at the status quo level while only changing the level of subsidy; thus,

this term is the intensive margin causal effects, as discussed in the main text.

Identification. Notice here that the second half (the intensive margin causal effect) is identified

by the short-run analysis of this paper. As shown below, the long-run analysis directly identifies

the total causal effect. Hence, the extensive margin causal effect is identified as a residual.

To simplify the exposition, suppose that the market competitiveness is summarized in a single

variable: let au ∈ R be the index of the market competitiveness corresponding to u. Under the

assumption of the HSA demand system, I can write as

yik(τ ,a
u) = yuik(τ ),

for τ ∈ {τ 0, τ 1}. Assume that the “within-the-support condition” holds for [a0,a1] as well. The

total causal effect can be expressed as

∆Y (τ 0, τ 1) =
N∑
i=1

∑
k∈N 1

i

yik(τ
1,a1)−

N∑
i=1

∑
k∈N 0

i

yik(τ
0,a0).

From this expression, the identification analysis can further be broken down into four components

as

∆Y (τ 0, τ 1) =

N∑
i=1

{ ∑
k∈N 0

i ∩N 1
i

(
yik(τ

1,a1)− yik(τ 0,a0)
)

︸ ︷︷ ︸
continuing firms
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+
∑

k∈N 1
i \N 0

i

(
yik(τ

1,a1)− yik(τ 0,a0)
)

︸ ︷︷ ︸
new entrants

+
∑

k∈N 0
i \N 1

i

(
yik(τ

1,a1)− yik(τ 0,a0)
)

︸ ︷︷ ︸
exiting firms

+
∑

k∈N 1
i \N 0

i

yik(τ
0,a0)−

∑
k∈N 0

i \N 1
i

yik(τ
1,a1)

︸ ︷︷ ︸
a normalization constant

}

The first term is the causal effect that stems from the continuing firms’ (firms that operate

both before and after the policy reform) moving from the current state of the economy (τ 0,a0)

to an alternative state of the economy (τ 1,a1). The second and third terms represent the causal

effect arising from new entrants (i.e., firms that do not operate before the policy reform but become

active after the policy reform) and from exiting firms (i.e., firms that are active before the policy

reform but cease to operate after the policy reform), respectively. Note that these terms involve

counterfactual outcomes because {yik(τ 0,a0) : k ∈ N 1
i \N 0

i } and {yik(τ 1,a1) : k ∈ N 0
i \N 1

i } are

not observable in data. This fact points to the importance of a structural model in defining and

identifying the causal policy effects. The last term is the difference between the sum of firm-level

value-added that would have created by the entering firms if they were to be operative before the

policy reform, and the sum of firm-level value-added that would have been yielded by the exiting

firms if they were to continue to operate under the post-policy environment. This term reflects the

free entry condition and other model specifications and also acts as a normalization constant.

For the first three terms (i.e., for continuing firms, new entrants and exiting firms), the summand

can be rearranged as

yik(τ
1,a1)− yik(τ 0,a0) = yik(τ

1,a1)− yik(τ 0,a1) + yik(τ
0,a1)− yik(τ 0,a0)

=

∫ τ1

τ0

∂yik(s,a
1)

∂s
ds+

∫ a1

a0

∂yik(τ
0, s)

∂s
ds.

The left hand side of this equation is identified as soon as both ∂yik(s,a1)
∂s and ∂yik(τ0,s)

∂s are iden-

tified. It depends on the specification of the market competitiveness a and is beyond the scope

of this paper. The identification of the fourth term (i.e., the normalization constant) hinges on

the formulation of the free entry condition, which determines the number of firms N 1
i . Further

investigation is left for future work.

D.3 Other Causal Parameters of Interest

In this subsection, I explore the versatility of my policy parameter (14) by showing how my frame-

work can be used to define other economically interesting causal policy parameters studied in the

literature. All the parameters in this subsection are identified under the same set of assumptions

as in Theorem 4.1.
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D.3.1 Various Formulations

First, the researcher may want to restrict attention to a subset Nsub ⊂ N of sectors (e.g., broadly

defined sectors). In such a case, the object of interest takes the form of∑
i∈Nsub

Yi(τ
1)−

∑
i∈Nsub

Yi(τ
0).

Second, under Assumption 2.1, the policy parameter (14) is essentially equivalent to writing as

1

N

N∑
i=1

Yi(τ
1)− 1

N

N∑
i=1

Yi(τ
0).

This expression allows for the interpretation as the average treatment effect (ATE) of the policy

change on sectoral GDP.

Another economically interesting policy parameter would be the growth rate %∆Y (τ0
n, τ

1
n) of

the kind studied in Arkolakis et al. (2012) and Adão et al. (2017). This can be defined as

%∆Y (τ0
n, τ

1
n) :=

1

Y τ0 ∆Y (τ0
n, τ

1
n).

Furthermore, the elasticity-type policy parameter d lnY
dτn

around τ 0 (e.g., Caliendo and Parro (2015),

Liu (2019), Baqaee and Farhi (2022)) can be viewed as a version of (14) at the limit of τ 1 → τ 0,

i.e.,

d lnY τ

dτn

∣∣∣∣
τ=τ0

= lim
τ1→τ0

%∆Y (τ0
n, τ

1
n).

D.3.2 Aggregate Variables

Consumption. The causal policy effect on final consumption is given by

∆C(τ0
n, τ

1
n) := C(τ 1)− C(τ 0) =

∫ τ1
n

τ0
n

dC

dτn
dτn,

where C(τ ) represents the equilibrium consumption under policy regime τ . Assuming that gov-

ernment spending G is fixed, it can be rewritten as

dC

dτn
=
dY

dτn
=

N∑
i=1

dYi
dτn

,

where the identification of dYi
dτn

is studied in the main text.
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Labor, material and output quantity. In equilibrium, labor employed in sector i is defined

as

L∗i :=

Ni∑
k=1

`∗ik.

The policy effect on labor employed in sector i, ∆Li(τ
0
n, τ

1
n), is given by

∆Li(τ
0
n, τ

1
n) := Li(τ

1)− Li(τ 0) =

Ni∑
k=1

∫ τ1
n

τ0
n

d`∗ik
dτn

dτn,

where L(τ ) denotes the total labor employed in sector i under policy τ . From this equality,

∆Li(τ
0
n, τ

1
n) is identified as soon as

d`∗ik
dτn

is identified for all k ∈ Ni and τn ∈ [τ0
n, τ

1
n].137

Analogous arguments hold for quantities of output and material input.

Unilateral and bilateral trade flows. The equilibrium volume of unilateral trade flow from

sector j to i is defined as

U∗i,j :=

Ni∑
k=1

m∗ik,j .

The policy effect on the unilateral trade flow is given by

∆Ui,j(τ
0
n, τ

1
n) := Ui,j(τ

0)− Ui,j(τ 1) =

Ni∑
k=1

∫ τ1
n

τ0
n

dm∗ik,j
dτn

dτn,

where Ui,j(τ ) represents the unilateral trade flow from sector j to i under policy τ . It follows from

this expression that the ∆Ui,j(τ
0
n, τ

1
n) is recovered through the identification of

dm∗ik,j
dτn

.138

The policy effect on the bilateral trade flow between sector i and j, denoted by Bi,j , is imme-

diately identified by noticing Bi,j = Ui,j + Uj,i.

D.3.3 Various Treatment Effects

As stated in the main text, the construction of the policy parameter (14) shares the common vein

with the treatment effects. In fact, multitudes of “treatment effects” can be analyzed within my

framework. As an example, consider the net profit of individual firm k, defined by

π∗ik := p∗ikq
∗
ik − (W ∗`∗ik + PMi

∗
m∗ik).

This represents the firm’s profit after all taxes and subsidies are applied.

137This is established in Proposition C.8.
138This is established in Proposition C.9.
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Individual-level treatment effects. Individual-level treatment effect is given by

∆πik(τ
0
n, τ

1
n) := πik(τ

1)− πik(τ 0) =

∫ τ1
n

τ0
n

dπ∗ik
dτn

dτn,

where πik(τ ) denotes the firm k’s equilibrium profit π∗ik under policy regime τ . Here, it is straight-

forward to verify that
dπ∗ik
dτn

is identified under the same set of assumptions as Theorem 4.1, and

thus so is the individual treatment effect ∆πik(τ
0
n, τ

1
n).

Average treatment effects. For each sector i ∈ N, the sector-level average treatment effect is

given by

∆Πi(τ
0
n, τ

1
n) :=

1

Ni

Ni∑
k=1

πik(τ
1)− 1

Ni

Ni∑
k=1

πik(τ
0) =

1

Ni

Ni∑
k=1

∆πik(τ
0
n, τ

1
n).

Moreover, the economy-wide average treatment effect (i.e., producer surplus) is given by

∆Π(τ0
n, τ

1
n) :=

1

N

N∑
i=1

1

Ni

Ni∑
k=1

πik(τ
1)− 1

N

N∑
i=1

1

Ni

Ni∑
k=1

πik(τ
0) =

1

N

N∑
i=1

∆Πi(τ
0
n, τ

1
n).

As individual-level treatment effects ∆πik(τ
0
n, τ

1
n) are identified, sector-level average treatment ef-

fects ∆Πi(τ
0
n, τ

1
n) are also identified, which in turn recovers the economy-wide average treatment

effect ∆Π(τ0
n, τ

1
n).

Remark D.1. The recent international trade literature has applied the statistical treatment effect

approach to study the average treatment effects of a trade policy change on the bilateral international

trade flows (e.g., Baier and Bergstrand 2007, 2009; Egger et al. 2008, 2011). Such an estimand

can be mirrored in my framework by incorporating the observations in Appendices D.3.1 and D.3.2.

Distributional treatment effects. Given that individual-level treatment effects ∆πik(τ
0
n, τ

1
n)

are identified and the firm-level profits under the current policy regime πik(τ
0) are directly observed

in the data, it is possible to recover the firms’ profits under an alternative policy τ 1:

πik(τ
1) = πik(τ

0) + ∆πik(τ
0
n, τ

1
n).

This means that one can recover the joint distribution of πik(τ
0) and πik(τ

1), a basis on which a

variety of distributional criteria for policy evaluation are defined and identified. For example, the

policymaker may be interested in the proportion of firms that benefit from policy τ 1 compared to

τ 0.139 In such a case, the object of interest is given by

Propi(τ
0, τ 1) := Pr(πik(τ

1) ≥ πik(τ 0)).

139This is called the voting criteria (Heckman et al. 1999; Heckman and Vytlacil 2007).
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Another distributional policy parameter that is often of practical interest is the (unconditional)

quantile treatment effect for quantile u ∈ (0, 1), which is defined as

QTW u
i (τ 0, τ 1) := F−1

Π(τ1)
(u)− F−1

Π(τ0)
(u),

where F−1
Π(τ )(·) stands for the inverse of the probability distribution of π∗ik under policy regime τ .

See Heckman et al. (1999) for an extensive catalog of distributional treatment effects. It is

immediate to show that these distributional criteria are identified when Theorem 4.1 holds.

D.4 Changing Subsidies to Multiple Sectors

In the main text, I restrict attention to the case where only subsidy to a single sector is manipulated.

In practice, however, subsidies to other sectors are also more or less subject to changes, regardless

whether they are purposefully targeted. Thus, it is practically very important to accommodate

changes in multiple subsidies at once. For ease of exposition, suppose that there are only two

sectors. Consider a policy reform from τ 0 := (τ0
1 , τ

0
2 ) to τ 1 := (τ1

1 , τ
1
2 ), where τ 0, τ 1 ∈ T with T

representing the observed support (i.e., both τ1 and τ2 satisfy the “within-support condition” of

the form of Assumption 4.2).

The object of interest can be written as

∆Y (τ 0, τ 1) :=
N∑
i=1

Yi((τ
1
1 , τ

1
2 ))−

N∑
i=1

Yi((τ
0
1 , τ

0
2 ))

=

N∑
i=1

Yi((τ
1
1 , τ

1
2 ))−

N∑
i=1

Yi((τ
1
1 , τ

0
2 ))︸ ︷︷ ︸

one-sector problem (the effect of τ0
2 → τ1

2 )

+

N∑
i=1

Yi((τ
1
1 , τ

0
2 ))−

N∑
i=1

Yi((τ
0
1 , τ

0
2 ))︸ ︷︷ ︸

one-sector problem (the effect of τ0
1 → τ1

1 )

.

The first term indicates the causal effect of moving from a counterfactual policy regime (τ1
1 , τ

0
2 )

to another counterfactual policy regime (τ1
1 , τ

1
2 ). This is nothing but the causal effect of changing

only τ2 from τ0
2 to τ1

2 while keeping τ1 fixed at τ1
1 , which is identified by the analysis of this paper.

The second term represents the causal effect of moving from the current policy regime (τ0
1 , τ

0
2 ) to a

counterfactual policy regime (τ1
1 , τ

0
2 ), which is identified by the analysis of this paper. Again, this

is the causal effect of changing only τ1 from τ0
1 to τ1

1 with τ2 fixed at τ0
2 . That is, a multiple-subsidy

problem can be broken down to multiple one-subsidy problems, each of which is independently

identified by the method of this paper.

This observation marks a remarkable distinction between the empirical treatment effects litera-

ture and my framework. In my framework, policy interventions that affect all units (i.e., universal

treatments) can be well defined and identified, while such treatments are not identifiable in the

treatment effects paradigm.
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D.5 Optimal Policy Design

Definition. My model can be used to formulate an optimal policy design problem:

τ1
n
∗ ∈ arg max

τ1
n

∆Y (τ0
n, τ

1
n) s.t. C(τ 0, τ 1) ≥ 0, (113)

where C(τ 0, τ 1) ≥ 0 represents a set (vector) of constraints faced by the policymaker. This em-

bodies, for example, political economy considerations about equality and fairness among sectors

and/or firms.

It should be noted that (113) is distinct from the canonical formulation of optimal-policy prob-

lems or normative analysis (e.g., Liu 2019; Gaubert et al. 2021; Lashkaripour and Lugovskyy 2023).

The canonical formulation only gives the values of the policy variables that maximize outcome vari-

ables of interest; it does not necessarily yield the policy values that lead to maximum causal impacts

on outcome variables. By contrast, τ1
n
∗

in (113) maximizes the causal policy effect ∆Y (τ0
n, τ

1
n).
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E Estimation Strategies

Given that firm-level revenue functions and share regressions are nonparametrically identified (Ap-

pendix C), I employ polynomial regressions to nonparametrically estimate these functions. Degrees

of polynomials are chosen adaptively on the basis of the mean squared errors.

E.1 Firm-Level Quantities & Prices

To estimate φ̃i(·) in Step 1 of Lemma C.2, I consider polynomial regression specifications. For

instance, approximation by a second-order polynomial takes the form of

r̃ik = bi,0 + bi,1 ˜̀
ik + bi,2m̃ik + bi,3 ˜̀2

ik + bi,4m̃
2
ik + bi,5 ˜̀

ikm̃ik + η̃ik = x̃ikbi + η̃ik, (114)

where x̃ik := [˜̀ik, m̃ik, ˜̀2
ik, m̃

2
ik,

˜̀
ikm̃ik]

′ and bi := [bi,0, bi,1, bi,2, bi,3, bi,4, bi,5]′. Stacking in matrix

form, I obtain r̃i = x̃ibi+ η̃i, where r̃i := [r̃i1, . . . , r̃iNi ]
′. The ordinary least square (OLS) estimator

is thus given by b̂i = (x̃′ix̃i)
−1x̃′ir̃i. Hence, the fitted value of the log-revenue r̃ik is

ˆ̃
φi(x̃ik) := x̃ikb̂i.

Moreover, given the estimator b̂i, the specification (114) naturally gives rise to the estimator for

the first-order partial derivatives of φ̃i(·) with respect to ˜̀
ik and m̃ik:

∂̂φ̃i

∂ ˜̀
ik

(˜̀
ik, m̃ik) := b̂i,1 + 2b̂i,3 ˜̀

ik + b̂i,5m̃ik

∂̂φ̃i
∂m̃ik

(˜̀
ik, m̃ik) := b̂i,2 + 2b̂i,4m̃ik + b̂i,5 ˜̀

ik.

E.2 Second-Order Derivatives of the Firm-Level Production Function

To construct a nonparametric estimator for the derivatives of firm-level production functions, I

consider approximating (108) by polynomials and solve the following minimization problem as

proposed in Gandhi et al. (2019): for instance, the case of second order polynomial approximation

solves

ζ̂ ∈ arg min
ζ◦

Ni∑
k=1

{
s̃`,µ̃ik − ln

{
ζ◦i,0 + ζ◦i,1

˜̀
ik + ζ◦i,2m̃ik + ζ◦i,3

˜̀2
ik + ζ◦i,4m̃

2
ik + ζ◦i,5

˜̀
ikm̃ik

}}2

.

E.3 Adaptive Choice of Degrees of Polynomials

In estimating these functions, I fit polynomial regressions of degree two, three and four.140 For

each of these four degrees, the mean squared error (MSE) is calculated. I choose the one with the

lowest MSE as the optimal polynomial degree.

140Recall that the identification argument exploits the first-order derivatives of the function φ̃i(·) and second order
derivatives of the share regressions. Thus, to allow for firm-level heterogeneity in the estimates of the second-order
derivatives, the specification has to be an order of no less than one.
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F Monte Carlo Simulations

In this section, I examine the finite-sample properties of my nonparametric estimation approach

described in Section 4 through Monte Carlo simulations. For the ease of exposition, I focus on

estimating dYi(s)
ds

∣∣∣
s=τ

given in (16).

F.1 Simulation Design

I assume that there are only two sectors in the economy (i.e., N = {1, 2}), each of which is populated

by an identical set of firms with the number of firms being Ni for all i ∈ N. I consider two scenarios

for the current policy regimes (Scenarios A and B). In Scenario A, the values for the policies in

place are all set equal to zero; that is, τi = 0 for all i ∈ N. Scenario B assumes that there are

nonzero pre-existing policies. I set τi = 0.1 for all i ∈ N.

For each scenario, I consider four specifications, referred to as Specifications I, II, III and IV.

In Specifications I and II firms are monopolistically competitive in the output market in each

sector. By contrast, firms in Specifications III and IV are oligopolistic and engaged in a Cournot

competition. While Specification I and III assume away from production networks, Specification

II and IV admit a production network across sectors. For Specification I and III, the adjacency

matrix is equivalent to an identity matrix; that is, Ω = I. In Specification II and IV, I assume that

sectors 1 and 2 are symmetric in terms of the input-output linkages with the adjacency matrix:

Ω =

[
0.8 0.2

0.2 0.8

]
.

Using a parametric model described below, I first generate simulation data for firm-level rev-

enues, labor and material inputs, productivity, prices, quantity, and other aggregate variables (these

are used as a status quo environment). Next, to obtain outcomes under an alternative policy regime,

I repeat the same simulation with an increased value of the policy variable, and then calculate the

change in GDP to measure the policy effects with respect to the policy change (the estimates based

on this method are referred to as simulated policy effects). Then, I also compute the policy effects

based on my estimation method (the estimates obtained by this approach are called estimated

policy effects). To make the estimation problem as close to reality as possible, the estimated policy

effects are calculated without directly using the realization of productivity, prices and quantity, as

these are not observed in the real data either (see Section 3). In this experiment, I focus on the

impacts of increasing only the subsidy to sector 1 (i.e., n = 1). For example, the simulated policy

effects for Specification I are calculated by first generating outcome variables under τ 0 = 0, followed

by the same simulation with the subsidy level changed to τ1
1 = τ0

1 +dτ1,141 where I set dτ1 = 0.001.

These results can be used to compute the total derivatives of the endogenous variables.142

141The subsidy to sector 2 is fixed constant, i.e., τ1
2 = τ0

2 .
142Let x0 and x1 be endogenous variables obtained in the first and second simulations, respectively. Then, the total

derivative of x is approximated as dx
dτ1

= x1−x0
dτ1

.
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The number of Monte Carlo simulations is set to R = 500. For each Monte Carlo sample, I

generate S = 99 bootstrap samples. The performance of the proposed estimator is evaluated in

terms of mean, bias, root mean square errors and empirical coverage probability.

F.1.1 Model

Following Grassi (2017), I posit that the sectoral aggregator takes the form of The parametric

functional-form assumptions used in this section is akin to . This setup is also an extension of

The sectoral aggregator is assumed to be a constant elasticity of substitution (CES) production

function:

Qi =

( Ni∑
k=1

δq
σ−1
σ

i

) σ
σ−1

,

where σ is elasticity of substitution and δi stands for a demand shifter. The corresponding price

index is given by Pi =
(∑Ni

k=1 δ
σpik

1−σ) σ
1−σ .

In each sector i, individual firm k transforms labor `ik and material mik into output qik using

a Cobb-Douglas production function:

qik = zik`
α
ikm

1−α
ik ,

where the output elasticity represents α and zik is productivity. Material input is composed of

sectoral intermediate goods {mik,j}j∈N according to the Cobb-Douglas production:

mik =

N∏
j=1

m
γi,j
ik,j ,

where γi,j corresponds to the input share of sector j’s intermediate good, reflecting the production

network Ω.

To put the insight of Corollary 4.1 into perspective, I consider monopolistic competition for a

benchmark case along with oligopolistic competition.

Monopolistic competition. For each sector i ∈ N, the optimal pricing for a monopolistic firm

k is given by

p∗ik =
σ

σ − 1
mc∗ik,
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where mc∗ik = z−1
ik α

−α(1− α)1−αW ∗αPMi
∗1−α

. The associated optimal input choices are

`∗ik = z−1
ik

(
α

1− α

)1−α(PMi ∗
W ∗

)1−α
q∗ik

m∗ik = z−1
ik

(
α

1− α

)−α(PMi ∗
W ∗

)−α
q∗ik,

with the optimal quantity q∗ik =
(p∗ik
P ∗i

)
Q∗i . See Grassi (2017) for the detail.

Oligopolistic competition. When firms engage in Cournot competition in the output market,

the Cournot-Nash equilibrium prices satisfy the following system of equations: for each sector

i ∈ N,

p∗ik =
σ

(1− σ)(1− s∗ik)
mc∗ik

s∗ik = δσ
(
p∗ik
P ∗i

)
,

where s∗ik is a firm’s equilibrium market share. See Atkeson and Burstein (2008), Grassi (2017),

Gaubert and Itskhoki (2020) for the detail. The input problem is identical to the monopolistic

case.

F.1.2 Parameter Values

Parameter values are chosen in such a way that a Cournot-Nash equilibrium is well-defined. First,

firms’ heterogeneous productivities are drawn from a log normal distribution: zik ∼ log(N (0, 0.1)).

I set α = 0.6, σ = 1.1 (i.e., firms’ products are substitutes), and δi = (1/Ni)
1/σi = 0.0285 for all

i ∈ {1, 2}.
The researcher has access to firm-level revenue, labor and material inputs, as well as aggregate

variables; no access to firm-level productivities, prices and quantities. Consistent with my frame-

work, the observed revenue is contaminated with a measurement error ηik ∼ log(N (0, 0.001)).143

Lastly, I fix the wage rage at W ∗ = 1 throughout the simulation study, meaning that I focus on a

partial equilibrium exercise.144

To facilitate comparison, truncations of the polynomials are fixed throughout the simulations;

I use degree the two polynomial specifications for both estimating the revenue functions and share

regressions — as described in Appendices E.1 and E.2, respectively.

143The measurement error is assumed to enter in a linear, additive fashion in logs, i.e., log rik = log r̄ik + log ηik,
where rik and r̄ik are the observed and true (simulated) revenue, respectively. It is also assumed that E[log ηik |
˜̀
ik, m̃ik] = 0. See Section C.2.2.

144For the first simulation that generates the status quo outcomes, I solve the aggregate equilibrium problem (with
W exogenous fixed). Taking the aggregate variables and marginal costs as given, the second simulations, which
computes the outcome under a counterfactual policy environment, only solves the sectoral equilibrium problem.
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F.2 Asymptotic Theory

The goal of this subsection is to derive asymptotic theories relating to my nonparametric estima-

tor. The theories in this subsection are mostly focused on sector-level outcomes accounting for

dependence between random variables arising from firms’ strategic interactions.145

Let yNi,k :=
dy◦ik
dτn

, where y◦ik := p∗ikq
∗
ik −

∑N
j=1 P

∗
jm
∗
ik,j . Notice that the yNi,k’s form a trian-

gular array of dependent, identically distributed random variables, as emphasized in their double

indices.146 Here, dYi(s)
ds in (15) can be written as a sum of {yNi,k}

Ni
k=1:

dYi
dτn

=

Ni∑
k=1

yNi,k.

Observe that yNi,k can be viewed as a responsiveness of firm-level value-added by definition; hence∑Ni
k=1 yik can be thought of as the responsiveness of sector-level value-added. To study asymptotic

properties, I also consider the average of firm-level value-added, i.e., 1
Ni

∑Ni
k=1 yik.

The following assumption requires the finite existence of the second moments.

Assumption F.1. For every Ni > 0 and every k ∈ Ni, (i) E[yNi,k] exists and is finite; and (ii)

V ar(yNi,k) and Cov(yNi,k′ , yNi,k′′) exist and are finite.

Remark F.1. Assumption F.1 (ii) implies the finite existence of V ar(
∑Ni

k=1 yNi,k).

F.2.1 Consistency

To obtain a consistency result, I impose the following assumption.

Assumption F.2. max{k′,k′′}∈Ni
|Cov(yNi,k′ , yNi,k′′)| → 0 as Ni →∞.

This assumption, in the context of this paper, states that as the number of firms increases, correla-

tions between firms’ responsiveness stemming from firms’ strategic interactions vanish. This means

that strategic forces become less relevant as there are more firms. In other words, this assumption

excludes the presence of “superstar” firms that remain dominant for good.

The following theorem shows a law of large number for the sectoral average of firm-level respon-

sivenesses of value-added.

Theorem F.1 (Consistency). Suppose that Assumption F.2 holds. Then,

1

Ni

Ni∑
k=1

yNi,k
p−→ 1

Ni

Ni∑
k=1

E[yNi,k]

as Ni →∞.
145Investigating asymptotic properties that accommodate the other dependence — network spillovers between

sectors — is at the frontier of recent econometrics and statistics literature, and thus goes well beyond the scope of
this paper.

146The ultimate source of randomness of the xNi,k is the random realization of firms’ productivity, which follows
an identical distribution. The dependence arises due to the firms’ strategic interactions in each sector.
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Proof. Denote

V̄Ni := max
k

V ar(yNi,k)

C̄Ni := max
{k′,k′′}∈Ni

|Cov(yNi,k′ , yNi,k′′)|.

By the Chebyshev’s inequality, it holds that for every ε > 0,

Pr

(∣∣∣∣ 1

Ni

Ni∑
k=1

yNi,k −
1

Ni

Ni∑
k=1

E[yNi,k]

∣∣∣∣ > ε

)
≤ 1

ε2
V ar

(
1

Ni

Ni∑
k=1

yNi,k

)

=
1

ε2

1

N2
i

( Ni∑
k=1

V ar(yNi,k) + 2
∑
k′<k′′

Cov(yNi,k′ , yNi,k′′)

)

≤ 1

ε2

1

N2
i

( Ni∑
k=1

V̄Ni + 2
∑
k′<k′′

C̄Ni

)
=

1

ε2

(
1

Ni
V̄Ni +

1

2

(
1− 1

Ni

)
C̄Ni

)
→ 0

as Ni →∞. This proves the statement.

F.2.2 Asymptotic Normality

Next, I explore the asymptotic normality of 1
Ni

∑Ni
k=1 yik. To do so, I leverage the results developed

by Dvoretzky (1970, 1972). This requires some notational overhead. To begin with, define

xNi,k :=
yNi,k − E[yNi,k]

V ar(
∑Ni

k=1 yNi,k)
1
2

SNi :=

Ni∑
k=1

xNi,k.

I assume that the conditional mean and variance of xNi,k are well-defined.

Assumption F.3. For each Ni > 0 and each k ∈ Ni, the conditional means µNi,k := E
[
xNi,k |

DNi,k−1

]
and the conditional variances, σ2

Ni,k
:= V ar(xNi,k | DNi,k−1), exist and are finite almost

surely.

Assumption F.3 means that the triangular array has finite conditional second moments. In my

context, this means that responses of firm-level value added are “not too large” both in mean and

variance, conditional on changes of the competitors’ value added.

Remark F.2. It is immediate to establish σ2
Ni,k

= E
[
x2
Ni,k
| DNi,k−1

]
− µ2

Ni,k
.

To derive a central limit theorem, I follow Dvoretzky (1972) in further imposing the following

conditions, each of which can be rationalized in the present context.
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Assumption F.4. As Ni →∞, (i)
∑Ni

k=1 µNi,k
p−→ 0; (ii)

∑Ni
k=1 σ

2
Ni,k

p−→ 1; and (iii)
∑Ni

k=1E
[
x2
Ni,k

1{|xNi,k|>ε}
|

DNi,k−1

] p−→ 0 for every ε > 0.

To assess the economic content of these restrictions, it is helpful to consider them in terms of the

responsiveness of firm-level value added yNi,k. Assumption F.4 (i) is equivalent to

Ni∑
k=1

(
E[yNi,k | DNi,k−1]− E[yNi,k]

) p−→ 0 as Ni →∞.

Analogously, Assumption F.4 (ii) can be written as∑Ni
k=1 V ar(yNi,k | DNi,k−1)

V ar(
∑Ni

k=1 yNi,k)

p−→ 1 as Ni →∞.

To grasp an intuition behind this expression, it proves useful to consider a sufficient condition: it is

satisfied, for example, when (ii-a) max{k′,k′′}∈Ni
|Cov(yNi,k′ , yNi,k′′)|

p−→ 0 and (ii-b) supk∈Ni
|V ar(yNi,k)−

V ar(yNi,k | DNi,k−1)| p−→ 0 as Ni →∞.147 Condition (ii-a) is maintained in Assumption F.2, while

part (ii-b) means that the competitors’ actions become unrelated to the variability of yNi,k. Loosely

speaking, these conditions jointly require that the market competition, which is supposed to be

strategic, eventually turns to monopolistic. Assumption (iii) is a generalization of the canonical

Lindberg’s condition (see Dvoretzky (1972)). In the context of strategic competition, it requires

that the number of firms whose yNi,k deviates, conditional on the competitors actions, from its

expectation by a certain amount ε eventually goes to zero, whatever the value of ε is.

Under these conditions, Dvoretzky (1972) shows a central limit theorem for a sum of dependent

random variables.

Theorem F.2 (Theorem 2.2 of Dvoretzky (1972)). Suppose that Assumptions F.3 and F.4 are

satisfied. Then,

SNi
d−→ N (0, 1) as Ni →∞.

This theorem gives a CLT result for sector-level value-added. In fact, it can be read as∑Ni
k=1 yNi,k −

∑Ni
k=1E[yNi,k]

V ar(
∑Ni

k=1 yNi,k)
1
2

d−→ N (0, 1) as Ni →∞.

Moreover, this result can also be interpreted as stating a CLT for the sectoral average of firm-level

value-added, i.e.,

1
Ni

∑Ni
k=1 yNi,k −

1
Ni

∑Ni
k=1E[yNi,k]

V ar( 1
Ni

∑Ni
k=1 yNi,k)

1
2

d−→ N (0, 1) as Ni →∞.

147These conditions could be relaxed, respectively, to (ii-a)’
∑
k′<k′′ Cov(yNi,k′ , yNi,k′′)

p−→ 0 and (ii-b)’∑
k∈Ni

V ar(yNi,k)−
∑
k∈Ni

V ar(yNi,k | DNi,k−1)
p−→ 0 as Ni →∞.
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These results allow the researcher to calculate the standard errors of the estimates and confi-

dence intervals for the policy parameters, preparing a ground for statistical hypothesis testing.148

F.3 Results

F.3.1 Scenario A

Table 6 compares the simulation results for sectoral average of firm-level value added for different

sample sizes, i.e., Ni = 50, 100, 150.

148Consistently estimating the standard errors accounting for both strategic interactions and network dependence
is of great interest in its own right, and goes beyond the scope of this paper.
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Table 6: Results: Simulated and Estimated Policy Effects

Ni Specifications Sectors True Estimates 95% coverage

Mean Bias RMSE

50 Specification I Sector 1 5.3709 5.3202 -0.0506 0.1363 0.9680
Sector 2 — — — — —

Specification II Sector 1 5.5960 5.5271 -0.0689 0.1464 0.9740
Sector 2 1.9016 1.8940 -0.0076 0.0446 0.9940

Specification III Sector 1 -6.1124 -6.2453 -0.1329 0.2015 0.5480
Sector 2 — — — — —

Specification IV Sector 1 -8.5308 -8.7088 -0.1780 0.2692 0.5680
Sector 2 -0.0006 -0.0230 -0.0224 0.0225 0.0000

100 Specification I Sector 1 5.3682 5.3302 -0.0380 0.1379 0.9760
Sector 2 — — — — —

Specification II Sector 1 5.5932 5.5164 -0.0768 0.1231 0.9400
Sector 2 1.9006 1.8907 -0.0100 0.0344 0.9920

Specification III Sector 1 -6.0681 -6.1501 -0.0819 0.1348 0.5720
Sector 2 — — — — —

Specification IV Sector 1 -8.4689 -8.5921 -0.1231 0.1934 0.5840
Sector 2 -0.0006 -0.0161 -0.0155 0.0155 0.0000

150 Specification I Sector 1 5.3655 5.3204 -0.0451 0.0888 0.9680
Sector 2 — — — — —

Specification II Sector 1 5.5904 5.5134 -0.0770 0.1104 0.9240
Sector 2 1.8997 1.8897 -0.0100 0.0289 0.9900

Specification III Sector 1 -6.0515 -6.1065 -0.0550 0.3030 0.5500
Sector 2 — — — — —

Specification IV Sector 1 -8.4458 -8.5511 -0.1054 0.1608 0.5500
Sector 2 -0.0006 -0.0139 -0.0133 0.0134 0.0000

Note: This table evaluates the performance of the proposed estimator in terms of the mean, bias, root

mean square error and empirical coverage probability for 95% nominal level. The true value is computed

as the average of the simulated policy effects over Monte Carlo simulations. For each sample size (Ni),

the table compares the results across different specifications.
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G Empirical Applications

G.1 Full Results

G.1.1 Responsiveness of GDP

Tables 7 and 8 report the detailed results of the empirical application for monopolistic and oligopolis-

tic competition, respectively. As explained in Section 5.2, the tables break down the responsiveness

of sectoral GDP into four components and display the estimates in descending order of the total

effects.

G.1.2 Macro and Micro Complementarities

Tables 9 and 10 exhibit the full results for the changes in sectoral price indices and material cost

indices, accompanied by the estimates for macro and micro complementarities. Table 9 summarizes

the results for monopolistic competition, while Table 10 shows those for oligopolistic competition.

G.2 Robustness

To explore robustness of my estimation procedure, I run the same algorithm for different choices of

the number of bins (v̄ in (26a)). Given that results in the main text are based on the choice v̄ = 20,

this subsection examines the variability of the estimates with respect to increasing and decreasing

the number of bins. Specifically, I consider v̄ = 10 for the former and v̄ = 30 for the latter. Table

11 shows the estimates of the policy effect ∆̂Y (τ0
n, τ

1
n) for both situations. Clearly, the estimates do

not vary significantly relative to my main result (Table 1). The robustness is further illuminated

by comparing Figures 2 and 6, which depicts the trajectories of the responsiveness of GDP.
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Table 7: Responsiveness of Sectoral GDP: Monopoly (in Billions of U.S. Dollars)

Industry Total Effect Effects on Revenue Effects on Material Cost

p.effect q.effect w.effect s.effect

Air transportation 833.27 -348.58 3178.59 -304.10 2300.85
Ground and other transportation 389.67 -335.04 1228.33 -246.67 750.30
Retail trade 116.81 -401.51 1070.13 -456.05 1007.85
Computer and electronic products 103.20 -391.62 748.17 -142.26 395.61
Wood products 50.67 -41.20 162.83 -47.38 118.33
Food and beverage and tobacco products 45.89 -81.58 180.13 -97.08 149.73
Motor vehicles, bodies and trailers, and parts 28.93 -26.24 111.84 -72.75 129.43
Petroleum and coal products 22.74 -120.46 316.15 -95.78 268.72
Nonmetallic mineral products 13.27 -16.76 44.55 -17.91 32.43
Primary metals 5.73 -32.64 104.58 -42.43 108.64
Machinery 0.47 -2.02 6.28 -23.21 27.00
Publishing industries -2.20 8.11 -10.67 0.20 -0.56
Oil and gas extraction -2.80 -0.35 1.42 2.67 1.19
Textile and apparel products -4.31 6.61 -12.91 1.88 -3.88
Furniture and manufacturing -6.99 11.06 -20.63 -1.57 -1.02
Educational services -9.34 12.69 -27.63 3.46 -9.06
Electrical equipment, appliances, and components -11.87 7.18 -22.19 -11.10 7.96
Information and data processing services -14.89 44.64 -64.01 8.85 -13.34
Arts -14.98 26.34 -52.71 10.35 -21.73
Fabricated metal products -19.35 21.52 -64.59 -3.04 -20.67
Professional services -22.66 28.04 -69.24 7.72 -26.26
Mining, except oil and gas -24.19 31.57 -69.78 3.50 -17.53
Plastics, rubber and mineral products -24.64 11.61 -34.64 16.68 -15.07
Health care services -43.45 40.25 -109.90 14.79 -40.99
Administrative and waste management -57.17 71.55 -170.29 22.71 -64.28
Support activities for mining -58.88 53.30 -198.17 27.29 -113.28
Media technologies and telecommunications -90.31 216.32 -391.50 86.18 -171.05
Construction -108.90 76.85 -333.80 44.81 -192.86
Chemical products -124.65 245.56 -448.59 104.82 -183.21
Wholesale trade -127.57 -362.95 1642.93 -430.07 1837.63
Accommodation and food services -138.15 78.84 -240.97 7.82 -31.79
Hospitals and nursing -201.25 76.57 -408.20 42.64 -173.02

Total 502.11

Note: This table reports the full results for Panel (a) of Table 2. The industries are arranged in descending order in

terms of the total effects, which are in turn broken down into the effects on revenue and material input costs. They

are further decomposed into four effects according to (27), namely, p.effect stands for the price effects, q.effect the

quantity effects, w.effect the wealth effects, and s.effect the switching effects. Notice that the total effects are given

by the effects on revenue minus the effects on material costs (see (27)). Note also that the first column in each panel

indicates names of industries based on the segmentation given in Table B.2.
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Table 8: Responsiveness of Sectoral GDP: Oligopoly (in Billions of U.S. Dollars)

Industry Total Effect Effects on Revenue Effects on Material Cost

p.effect q.effect w.effect s.effect

Plastics and rubber products 2.81 -8.38 8.38 -9.20 6.39
Food and beverage and tobacco products 2.33 -123.31 123.31 -75.17 72.84
Information and data processing services 0.00 -22.42 22.42 -6.87 6.87
Educational services -0.03 -4.36 4.36 -2.35 2.38
Publishing industries -0.24 -12.87 12.87 -3.12 3.36
Furniture and manufacturing -0.32 -23.22 23.22 -10.04 10.36
Chemical products -0.48 -60.82 60.82 -27.89 28.37
Textile and apparel products -0.52 -7.62 7.62 -3.13 3.65
Professional services -0.61 -10.55 10.55 -6.04 6.65
Accommodation and food services -0.62 -13.06 13.06 -8.14 8.76
Mining, except oil and gas -0.62 -38.31 38.31 -22.89 23.51
Oil and gas extraction -0.72 -7.85 7.85 -3.12 3.83
Health care services -1.37 -13.59 13.59 -6.80 8.16
Arts -1.40 -9.07 9.07 -4.34 5.74
Administrative and waste management -1.86 -28.16 28.16 -15.29 17.15
Electrical equipment, appliances, and components -2.12 -37.96 37.96 -22.07 24.19
Wood, paper, printing, and related products -2.78 -39.58 39.58 -26.56 29.35
Hospitals and nursing -2.81 -18.56 18.56 -13.13 15.95
Ground and other transportation -3.11 -45.44 45.44 -31.07 34.18
Machinery -3.95 -89.03 89.03 -54.96 58.92
Nonmetallic mineral products -4.48 -31.73 31.73 -15.24 19.72
Support activities for mining -4.62 -34.60 34.60 -21.99 26.61
Construction -4.78 -84.03 84.03 -59.62 64.40
Fabricated metal products -5.32 -53.85 53.85 -33.05 38.37
Media technologies and telecommunications -6.62 -88.92 88.92 -39.58 46.20
Wholesale trade -7.89 -93.42 93.42 -104.66 112.56
Air transportation -10.43 -60.01 60.01 -49.50 59.93
Motor vehicles, bodies and trailers, and parts -13.59 -227.66 227.66 -164.33 177.93
Retail trade -16.74 -126.28 126.28 -114.11 130.85
Primary metals -32.12 -223.77 223.77 -140.08 172.20
Computer and electronic products -106.08 -348.57 348.57 -87.86 193.94
Petroleum and coal products -177.81 -841.31 841.31 -524.84 702.65

Total -408.92

Note: This table reports the full results for Panel (b) of Table 2. The industries are arranged in descending order in

terms of the total effects, which are in turn broken down into the effects on revenue and material input costs. They

are further decomposed into four effects according to (27), namely, p.effect stands for the price effects, q.effect the

quantity effects, w.effect the wealth effects, and s.effect the switching effects. Notice that the total effects are given

by the effects on revenue minus the effects on material costs (see (27)). Note also that the first column in each panel

indicates names of industries based on the segmentation given in Table B.2.
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Table 9: The Changes in Sectoral Price Indices and Material Cost Indices: Monopoly

Industry hLi hMi,n
dPM

i
∗

dτn
λ̄Li· λ̄Mi·

dP∗i
dτn

Air transportation -92.59 -1.22 -1478.12 -1.22 7.38 -1402.80
Ground and other transportation -162.84 -1.66 -2971.03 -1.66 2.20 -1091.63
Retail trade -65.16 -0.39 -1402.42 -0.39 2.71 -281.64
Computer and electronic products 31.30 3.41 -1784.66 3.41 1.18 -340.75
Wood, paper, printing, and related products -123.86 -3.11 -856.41 -3.11 2.32 -171.82
Food and beverage and tobacco products -96.87 -2.95 -270.17 -2.95 1.12 -39.87
Motor vehicles, bodies and trailers, and parts -29.56 -0.78 -176.11 -0.78 2.46 -26.11
Petroleum and coal products -0.69 -0.00 -17.41 -0.00 0.16 -16.55
Nonmetallic mineral products -25.31 -0.05 -617.66 -0.05 2.11 -84.50
Primary metals -4.95 -0.07 -76.13 -0.07 1.98 -30.73
Machinery 15.14 0.86 -262.90 0.86 2.34 -3.63
Publishing industries 17.65 0.57 24.77 0.57 0.93 26.61
Oil and gas extraction 21.79 0.40 262.51 0.40 -0.20 -7.52
Textile and apparel products -0.76 -0.32 226.15 -0.32 1.26 69.33
Furniture and manufacturing 13.15 0.61 -120.32 0.61 1.82 35.50
Educational services 58.34 0.85 868.60 0.85 3.03 178.60
Electrical equipment, appliances, and components 17.14 0.96 -286.61 0.96 3.87 28.96
Information and data processing services 56.94 1.32 479.49 1.32 1.07 82.53
Arts 13.22 -0.58 788.14 -0.58 2.33 190.07
Fabricated metal products 3.20 0.16 -37.29 0.16 3.09 63.85
Professional services 59.09 1.22 606.21 1.22 3.27 189.78
Mining, except oil and gas 20.47 0.61 65.55 0.61 1.78 56.03
Plastics and rubber products 24.85 0.06 602.96 0.06 0.93 83.38
Health care services 81.14 0.89 1432.33 0.89 3.48 262.22
Administrative and waste management 50.70 0.86 665.87 0.86 2.74 181.37
Support activities for mining 82.09 1.75 803.67 1.75 2.73 215.73
Media technologies and telecommunications 105.37 2.63 738.56 2.63 0.97 195.34
Construction 54.73 1.25 475.63 1.25 1.84 215.56
Chemical products 33.83 0.19 736.32 0.19 1.08 271.41
Wholesale trade -57.25 -0.08 -1428.47 -0.08 1.32 -746.62
Accommodation and food services -50.54 -2.17 338.28 -2.17 7.22 218.35
Hospitals and nursing 69.26 0.56 1376.89 0.56 9.26 545.97

Note: This table displays the estimates for the elements of (29) and (30) for those industries listed in Table 7. The

subscript n on the variables denotes the targeted industry, i.e., the computer and electronic product industry.
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Table 10: The Changes in Sectoral Price Indices and Material Cost Indices: Oligopoly

Industry hLi hMi,n
dPM

i
∗

dτn
λ̄Li· λ̄Mi·

dP∗i
dτn

Plastics and rubber products 56.60 0.43 -332.63 0.43 0.58 -20.17
Food and beverage and tobacco products 39.02 0.27 -209.20 0.27 0.57 -27.29
Information and data processing services 58.49 0.48 -371.95 0.48 0.73 -28.91
Educational services 99.90 0.76 -588.75 0.76 1.39 -28.21
Publishing industries 56.98 0.50 -386.50 0.50 0.79 -32.10
Furniture and manufacturing 116.74 1.00 -771.32 1.00 0.95 -39.96
Chemical products 33.88 0.25 -195.90 0.25 0.61 -36.80
Textile and apparel products 62.57 0.49 -375.73 0.49 0.83 -40.93
Professional services 76.98 0.62 -474.17 0.62 1.20 -28.95
Accommodation and food services 67.69 0.46 -352.36 0.46 2.66 -11.84
Mining, except oil and gas 81.29 0.56 -428.83 0.56 0.89 -30.76
Oil and gas extraction 57.59 0.40 -306.52 0.40 0.29 -41.67
Health care services 105.57 0.86 -658.48 0.86 1.46 -32.42
Arts 69.69 0.43 -330.55 0.43 1.44 -32.69
Administrative and waste management 80.80 0.58 -448.31 0.58 1.14 -29.99
Electrical equipment, appliances, and components 82.29 0.74 -570.11 0.74 1.28 -49.54
Wood, paper, printing, and related products 77.24 0.62 -480.19 0.62 0.74 -41.77
Hospitals and nursing 82.06 0.55 -424.06 0.55 2.62 -24.83
Ground and other transportation 72.42 0.48 -374.21 0.48 0.64 -40.38
Machinery 91.32 0.81 -622.60 0.81 0.79 -51.44
Nonmetallic mineral products 91.35 0.68 -525.61 0.68 1.08 -60.77
Support activities for mining 115.27 0.84 -647.81 0.84 0.87 -37.66
Construction 111.78 0.82 -632.83 0.82 0.46 -54.26
Fabricated metal products 67.83 0.53 -405.19 0.53 0.91 -53.23
Media technologies and telecommunications 44.81 0.44 -339.18 0.44 0.55 -43.88
Wholesale trade 56.34 0.45 -347.64 0.45 0.30 -42.62
Air transportation 50.90 0.31 -240.59 0.31 0.78 -26.48
Motor vehicles, bodies and trailers, and parts 52.70 0.52 -397.80 0.52 0.65 -53.14
Retail trade 62.37 0.46 -350.92 0.46 1.02 -33.24
Primary metals 45.12 0.33 -251.32 0.33 0.45 -65.75
Computer and electronic products 39.62 1.82 -1394.16 1.82 0.66 -160.64
Petroleum and coal products 18.48 0.12 -95.38 0.12 0.06 -44.05

Note: This table displays the estimates for the elements of (29) and (30) for those industries listed in Table 8.

The subscript n on the variables denotes the targeted industry, i.e., the computer and electronic product industry.
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Figure 6: The total derivative of Y with respect to τn

(i) v̄ = 10

(a) Monopolistic Competition (b) Oligopolistic Competition

(ii) v̄ = 30

(a) Monopolistic Competition (b) Oligopolistic Competition

Note: This figure illustrates the estimates of the total derivative of (economy-wide) GDP with respect to the semicon-

ductor subsidy between τn = 15.21% and 16.21%. Panel (a) shows the result for the case of monopolistic competition

and panel (b) for the case of oligopolistic competition. The red line represents the estimates based on the nonlinear

approximation (26a). The blue line indicates the estimates based on the linear approximation (26b). The broken line

stands for zero. Hence, the part surrounded by the broken line and those (solid and dotted) red lines above it measures

the total increment of GDP over the course of the policy change, while the other part gives the total decrement in GDP.

The difference between these two areas delivers the estimated value of the policy effect according to (26a). Similarly,

the area surrounded by the broken line and blue line gives the estimated value of the policy effect according to (26b).
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Table 11: The estimates of the object of interest

(i) v̄ = 10

(billion U.S. dollars) Monopolistic competition Oligopolistic competition

Estimates based on (26a) 3.75 -4.29
Estimates based on (26b) 5.02 -4.09

(ii) v̄ = 30

(billion U.S. dollars) Monopolistic competition Oligopolistic competition

Estimates based on (26a) 3.41 -4.24
Estimates based on (26b) 5.02 -4.09

Note: This table compares the estimates for the object of interest (14) based on the benchmark

and my method. The estimates are measured in billions of U.S. dollars.
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