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“It is obvious how highly significant a factor is habit in the genesis of such

generally serviceable means of exchange.”

– Carl Menger, On the Origin of Money (1892)

1 Introduction

What drives an asset’s shift from limited use to widespread acceptance in everyday trans-

actions? Why does this process vary across assets? A notable body of literature, from the

foundational work of Kiyotaki and Wright (1989, 1991, 1993) to more recent work by Lester

et al. (2012), addresses these questions by analyzing how an asset’s acceptability is estab-

lished in pairwise trades. These studies emphasize specialization patterns and information

frictions in determining which assets are widely accepted as a medium of exchange. Yet,

one critical dimension remains underexplored: the role of habit, or experience, in fostering

an asset’s acceptability. This idea, which traces back to classical literature such as Jevons

(1875) and Menger (1892), has yet to be integrated into modern monetary frameworks.

In this paper, I propose a general equilibrium framework that formalizes how experi-

ence impacts an asset’s acceptability in transactions. The framework features decentralized

markets with search frictions, and hence a need for liquid assets. My key methodological

contribution is formalizing asset’s acceptability as a slow-moving state variable, capturing

gradual shifts in liquidity over time. In this model, asset acceptance is a persistent state

achieved through investments of resources and time. These investments shape the dynamics

of an asset’s acceptability and generate hysteresis, where temporary shocks to an asset’s

return or utility in exchange can lead to persistent and possibly permanent changes in its

use as a means of payment.

The insight underlying my model can be explained with two examples. First, individ-

ual merchants who want to accept cryptocurrencies like Bitcoin need to invest in crypto-

compatible point-of-sale systems, secure digital wallets, and learn the logistics of managing

crypto transactions. This process often involves understanding tax implications and learn-

ing how to handle price volatility. All these actions consume time and resources. Only after

making these investments can a seller consistently accept cryptocurrency as a means of pay-

ment. Second, when Ecuador adopted the U.S. dollar as legal tender in 2000, individuals

and businesses across the country had to invest time and effort to adapt to the new currency.

They had to learn to distinguish between denominations, detect counterfeit bills, understand

relative values, make accurate change, and price products in dollars. They also had to adopt

point-of-sale systems—like credit card readers and cash registers—set up to accept payment
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in the new currency.

My model builds on the framework of Choi and Rocheteau (2021), a continuous-time

adaptation of the foundational structure developed by Lagos and Wright (2005). In this

setup, agents engage in two types of trade. First, certain goods are exchanged in decentralized

markets through pairwise meetings, where private trading histories are not publicly available,

creating a need for a medium of exchange—here, the asset—consistent with the rationale

in Kocherlakota (1998). Second, other goods are traded in a centralized market, where

agents can competitively exchange the asset for goods. This structure enhances the model’s

tractability by enabling competitive pricing of the asset in the centralized market, where

the asset’s price reflects not only its future dividends but also its liquidity value in future

decentralized trades.

Since the key feature of the model is the slow-moving nature of asset acceptability, I

begin by examining a simplified one-asset version of the model to illustrate the trajectory of

acceptability. The asset can take the form of either a Lucas tree or fiat money, depending

on whether it yields dividends. The time path of the asset’s acceptability depends on its

rate of return: when a higher return is anticipated—either through increased dividends or

greater trading opportunities—demand for the asset rises, boosting its value and likelihood

of acceptance. This acceptance process is gradual (in contrast to the model in Lester et al.

(2012), where transitions may occur immediately without gradual adjustment).

Network externalities generates multiple equilibria and hysteresis. Hysteresis occurs when

temporary shocks have persistent or even permanent effects on the acceptability of an asset

in transactions. This phenomenon is observed in practice, as I illustrate with an example

of hysteresis in dollarization. During Bolivia’s hyperinflation in 1984-1985, people shifted

from the local currency to the U.S. dollar. This dollarization remained entrenched long after

stabilization. Figure 1 shows that the share of total deposits held in foreign currency—a

proxy for dollarization—stayed elevated for decades.

To capture the concept of dollarization hysteresis, I expand the model to incorporate both

a domestic and a foreign currency. In this setup, the domestic currency is universally ac-

cepted, whereas the acceptability of the foreign currency evolves based on market dynamics.

When domestic inflation rises, agents find it worthwhile to invest in the technology needed

to accept the foreign currency. This adaptation creates a “social habit” where the foreign

currency becomes widely used and accepted in transactions. Once this habit is established,

it tends to persist even if inflation later declines, as the economy may lack a equilibrium path

to reverse dollarization. The entrenched acceptability of the foreign currency reduces agents’

incentives to revert to exclusive reliance on the domestic currency, making a transition back
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Figure 1: Inflation and dollarization rate in Bolivia.

to a purely domestic currency environment unlikely. In this way, dollarization becomes self-

reinforcing, with temporary shocks potentially having long-lasting effects on currency usage

in the economy.

My paper contributes to three strands of literatures. First, it builds on the literature

examining asset acceptability as a medium of exchange, a concept with historical roots.

Classical works, such as Jevons (1875) and Menger (1892), explored why specific goods, no-

tably gold and silver, emerged as money. Menger attributed this to qualities like divisibility,

durability, portability, and recognizability, which make these goods more saleable and widely

accepted.

This concept of endogenous acceptability was later formalized in models by Kiyotaki and

Wright (1989, 1991, 1993), where search frictions lead agents to engage in bilateral trade,

drawing from the framework introduced by Diamond (1982, 1984). In these models, an

asset’s acceptability grows as agents anticipate its wider acceptance, thus facilitating its role

as a medium of exchange in the absence of a double coincidence of wants.

As the literature evolved, the objective shifted toward modeling money and goods in a

divisible form. However, making money divisible in decentralized markets introduced com-

plexity: individuals would hold diverse portfolios of assets based on their trading histories,

rendering the model intractable. Lagos and Wright (2005) and Rocheteau and Wright (2005)

address this issue by incorporating a centralized market where agents can trade assets. This

adjustment simplifies the model, as assets can now be priced competitively, reflecting not

only their future dividend flows but also their liquidity value. However, it also sacrifices the

notion of endogenous acceptability, as the centralized market establishes a common market

price, incentivizing all agents to accept the asset.
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Lester et al. (2012) address this issue by reintroducing the “intrinsic properties” from

earlier literature, focusing on recognizability. They incorporate information frictions and

counterfeiting risks. Without reliable knowledge of an asset’s authenticity, agents face po-

tential losses, and costly information acquisition endogenizes asset acceptability. In this

framework, Lester et al. (2012) model acceptability as a control variable, allowing agents to

switch between accepting and rejecting an asset based on its perceived value.1

In contrast, my approach treats asset acceptability as a gradual, slow-moving state vari-

able. In this framework, frictions—whether from informational barriers or the need for spe-

cialized technology—are embodied in this state, where agents either gain or lack the capacity

to accept the asset. Through incremental investments in time and resources, agents adapt

to acceptability over time. This approach addresses a limitation in Lester et al. (2012): in

the absence of multiple steady states, an agent ready to accept an asset does so immediately

without gradual transition.

Second, this paper contributes to the currency substitution literature, specifically within

search-theoretic models of dollarization. Wright and Trejos (2001) was among the first to ap-

ply the Shi (1995) and Trejos and Wright (1995) models to examine dollarization and interna-

tional currency, where money is indivisible and goods are divisible. Subsequent work includes

Trejos (2003), Head and Shi (2003), and Craig and Waller (2004). Lester et al. (2012) was

the first to consider endogenous acceptability in dollarization contexts, while Zhang (2014)

extended this to a two-country model analyzing international currency adoption. Lotz and

Vasselin (2019) explored the coexistence of fiat and e-money, and Madison (2024) examined

fiscal and monetary policy impacts on currency substitution in dual-currency systems. Key

contributions of this paper are that (1) it focuses on the dynamic aspects of dollarization,

examining how currency substitution evolves over time rather than assuming a static equi-

librium, and (2) it models the gradual adaptation of agents to dual-currency use through

incremental investments, providing a framework that captures how currency substitution

can persist or fluctuate as agents adjust to economic conditions.

Third, this paper contributes to the literature on the hysteresis puzzle of dollarization.

Early surveys, such as Calvo and Végh (1996), document this phenomenon. Various authors

have attempted to explain hysteresis. Dornbusch et al. (1990) attributed it to financial adap-

tation, suggesting that new financial instruments provide alternatives to domestic currency,

reducing its demand regardless of interest rates. Duffy et al. (2006) emphasized the role of

worsening domestic financial development. My model relates more closely to Sturzenegger

1Other studies also endogenize different notions of asset liquidity beyond acceptability. For instance, Li
et al. (2012) endogenizes the pledgeability of assets through the threat of fraud.
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(1997) and Uribe (1997), who focus on the role of network externalities. In particular, Uribe

(1997) introduced the concept of dollarization capital, which measures a society’s cumulative

experience with dollar use. Uribe (1997) showed that network externalities—where the cost

of using foreign currency falls as more people use it—can lead to hysteresis in dollarization.

This paper also relies on network externalities: as individual sellers invest in technology to

accept an asset, that asset becomes more acceptable to all buyers. My contribution is that

I micro-found the dollarization capital concept from Uribe (1997) through a focus on asset

acceptability.

The paper is organized as follows. Section 2 introduces the model environment in a single-

asset framework. Section 3 characterizes the equilibrium in this one-asset economy. Section

4 examines the dynamics of asset acceptability under various restrictions, and provides a

comparison with Lester et al. (2012). Section 5 extends the model to a dual-currency setting,

demonstrating how it accounts for hysteresis in dollarization. Finally, Section 6 provides a

microfoundation for the habit formation process.

2 Environment

The general framework builds on Choi and Rocheteau (2021). It is a continuous-time version

of Lagos and Wright (2005) and Rocheteau and Wright (2005). Time is continuous and lasts

forever, indexed by t ∈ R+. The economy is populated with two types of infinitely-lived

agents: a unit measure of buyers and a unit measure of sellers. Trade occurs in two distinct

markets: the decentralized market (DM) and the centralized market (CM), each with unique

structures. In the DM, search frictions lead buyers and sellers to meet and trade bilaterally

at a random Poisson rate α. In contrast, the CM is continuously open, enabling all agents to

trade competitively. The CM serves as a modeling device, allowing competitive asset pricing

despite the presence of search frictions and ensuring model tractability.

The expected discounted lifetime utility of buyers is

U b = E

{
∞∑
n=1

e−ρTnu [y (Tn)] +

∫ ∞

0

e−ρtdC(t)

}
, (1)

where y(t) is the consumption in pairwise meetings at time t and C(t) is the cumulative net

consumption of the numeraire good.2 The first term on the right hand side of (1) is the

discounted sum of the utility from consuming in pairwise meetings, where Tn is the time

2The numeraire good can be consumed or produced both in flow and in discrete amounts; in the former
case dC(t) = c(t)dt and in the latter case C(t+) − C(t−) ̸= 0. See Choi and Rocheteau (2021) for a more
detailed discussion.

5



at which the n-th pairwise meeting occurs. A buyer who consumes y ∈ R+ units of good

in a pairwise meeting receives a utility of u(y), where u is infinitely differentiable, strictly

increasing, and strictly concave, with u(0) = 0 and u′(0) = ∞ is large. Furthermore, there

exists a y∗ ∈ R+ such that u′(y∗) = 1. The second term is the discounted linear utility from

consuming or producing the numeraire good.

The expected discounted lifetime utility of the sellers is

U s = E

{
−

∞∑
n=1

e−ρTny (Tn) +

∫ ∞

0

e−ρtdC(t)

}
. (2)

The first term on the right hand side of (2) is the disutility from producing y in the pairwise

meetings, and the second term is the discounted linear utility of consuming or producing the

numeraire good.

When in a pairwise meeting, agents do not have access to the technology to produce

the numeraire good. Moreover, unsecured promises to repay loans are not credible due to

lack of commitment and monitoring. These assumptions imply that the buyer of the good

in pairwise meetings cannot finance y with the production of the numeraire good, thereby

creating a need for a means of payment.

There is an asset that can serve as this means of payment. It is perfectly storable and

durable, and takes the form of a continuous-time Lucas tree, i.e., a claim to a non-negative

dividend flow d. If d > 0, the asset is intrinsically valuable, and is defined as a real asset.

If d = 0, the asset is a fiat money, an intrinsically useless object. The supply of the Lucas

tree in the economy at time t is Mt. In order to guarantee the existence of a steady state,

I assume that the supply of the asset is fixed if d ̸= 0, i.e., Mt = M for all t. If d = 0,

the money supply can grow (or shrink) at a rate γt ≡ Ṁt/Mt. New money is injected into

the economy as lump-sum transfers (taxes if γt < 0) to the buyers. In Section 3 and 4.1, I

consider one asset economies. In the subsequent sections, I generalize the setup to a multiple

asset economy. The asset is not fully acceptable to sellers. The probability that a random

seller accepts the asset is χ, where χ will be endogenized later.

3 Equilibrium in a one-asset economy

Define dM/ρ the fundamental value of the asset. It is the discounted sum of future dividends.

I focus on the case where dM/ρ < p(y∗), i.e., the fundamental value of the asset is not

enough to satisfy the maximum transaction need, or liquidity is scarce. In Appendix D, I

study the case where liquidity is abundant. Let ϕt denote the price of the asset in terms of
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the numeraire. The expected rate of return of the asset is

rt =
d+ ϕ̇t

ϕt

. (3)

It consists of two parts: dividend payment, and the changes in the value of the asset over

time. Let Wt(m) denote the value function of a buyer with real asset holdings equal to m.

In appendix C.1, I show that Wt(m) = m +Wt due to the linearity of buyers’ preferences

for the numeraire good.

The buyer’s value function solves the following Hamilton-Jacobi-Bellman equation:

ρWt = max
m≥0

{
−(ρ− rt)m+ αχtΓ(m) + τt + Ẇt

}
, (4)

where Γ(m) is the buyer’s surplus from a bilateral trade, which will be defined later. At

any time t, a buyer chooses their optimal real asset holdings in order to maximize the sum

of four terms on the right side of (4). The first term is the opportunity cost of holding the

asset. It is the difference between the rate of time preference and the rate of return of the

asset, multiplied by the buyer’s real asset holdings. The second term is the buyer’s expected

surplus from a bilateral trade, which is the product of three terms, the arrival rate of the

next pairwise meeting, the aggregate acceptability of the asset, and buyer’s surplus from the

trade. The third term is a lump-sum transfer (or tax). And the last term is the change of

the value function over time.

We now turn to the bargaining problem in a pairwise meeting between a buyer and

a seller. The outcome of the negotiation is a pair (y, p(y)) where y is the amount of good

produced by the seller for the buyer and p(y) is the payment from the buyer to the seller. The

payment function, p(y), is determined jointly by the buyers and the sellers. Here, I do not

specify the exact form of the payment function; the only restrictions are: (1) p(y) is infinitely

differentiable, with p′(y) > 0 and p′′(y) < 0 for all y ∈ (0, y∗) and p′(y) = 0 for all y > y∗, (2)

the buyer’s surplus is increasing and concave in the buyer’s real asset holdings, and (3) the

seller’s surplus is increasing in the buyer’s real asset holdings. For example, if the payment

function is determined according to the Kalai proportional bargaining, p(y) = θy+(1−θ)u(y)
for some θ ∈ (0, 1). If buyers and sellers trade according to gradual bargaining 3 (Rocheteau

et al., 2021), then

p(y) =

∫ y

0

u′ (x)

θu′(x) + 1− θ
dx for all y ≤ y∗.

3The gradual Nash solution has several advantages in this environment (Rocheteau et al., 2021): it has
axiomatic and strategic foundations ; it is strongly monotone, i.e., agents’ surpluses increase with the value
of their assets; gradual spending of real balances is optimal from the buyer’s standpoint; it guarantees that a
monetary equilibrium always exists provided that Inada conditions on preferences are imposed, u′(0) = +∞;
and it keeps the model tractable.
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Given the payment function, the trade surplus of a buyer with real asset holdings m is

Γ(m) = max
y≥0

{u(y)− p(y) s.t. p(y) ≤ min {m, p(y∗)}} .

It is the difference between the utility from consumption and the payment, subject to the

feasibility constraint that the payment cannot exceed the buyer’s total liquid wealth. If a

seller bargains with a buyer whose real asset holdings is m̃, the seller’s surplus is

Ψ(m̃) = p [y (m̃)]− y (m̃) .

where y (m̃) = p−1 [min (p(y∗),m)]. The first-order condition for the choice of asset holdings,

assuming interiority, is

ρ− d+ ϕ̇t

ϕt

= αχt

[
u′(yt)

p′(yt)
− 1

]
, (5)

where γ = 0 if d > 0. The left hand side of (5) is the cost of holding the asset. The right

hand side is the expected marginal liquidity value of the asset in a pairwise meeting. When

market clears, mt = ϕtM , and we can rewrite the buyer’s optimality condition (5) as

ρ+ γ − dM + ṁt

mt

= αχtL(mt), (6)

where L(m) ≡ u′ [y (m̃)] /p′ [y (m̃)]− 1.

Endogenous acceptability In order to formalize the idea that it takes time to adopt

an asset as a means of payment, I make the following assumptions. There is a technology

that the sellers must be equipped with in order to be able to accept the asset. Sellers either

possess this technology (type 1 ) or do not (type 0 ). Denote χ the fraction of sellers that are

type 1. From the buyer’s perspective, χ is the aggregate acceptability of the asset. A type

0 seller who wants to adopt the technology must choose some effort level e ∈ R+ to acquire

it at some flow cost φ(e). I assume that φ(0) = φ′(0) = 0, φ′(e) > 0, and φ′′(e) > 0. I also

assume that lime→∞ eφ′(e)− φ(e) = ∞. If the type 0 seller invests e then she transitions to

type 1 at Poisson arrival rate e. The technology, however, is not permanent and is destroyed

at Poisson arrival rate δ.

Sellers have no transactional motives to hold assets. The value function of a type 0 seller

is denoted V 0
t . It solves the following HJB equation:

ρV 0
t = max

e≥0

{
−φ(e) + e

(
V 1
t − V 0

t

)
+ V̇ 0

t

}
. (7)

where V 1
t is the value function of a type 1 seller. The type 0 seller does not trade, even if

she meets buyers, since she cannot accept the asset. She invests some effort e at cost φ(e) to
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acquire the technology, and transitions to type 1 at rate e, in which case she enjoys a gain

in her expected lifetime utility equal to V 1 − V 0. The first-order condition for the optimal

effort to learn about the asset is

φ′(et) = V 1
t − V 0

t . (8)

The marginal cost of the investment is equal to the capital gain from being able to accept it

as means of payment. The value function of a type 1 seller solves the following HJB equation

ρV 1
t = αΨ(m̃t) + δ

(
V 0
t − V 1

t

)
+ V̇ 1

t , (9)

At Poisson rate α the seller receives a trading opportunity with a buyer holding m̃ units of

the asset (in real terms), and obtains a trade surplus of size Ψ(m̃). At Poisson rate δ the

seller loses their technology and transitions to type 0. Let ωt ≡ V 1
t − V 0

t denote the gain

from having the technology. From (7) and (9), ωt solves

(ρ+ δ)ωt = αΨ(m̃t)−max
e

{−φ(e) + eωt}+ ω̇t.

When market clears, m̃t = mt for all buyers. Substituting the optimality condition, φ′(et) =

ωt, and applying the market clearing condition, the equation can be rewritten as

(ρ+ δ)φ′(et) = αΨ(mt) + φ(et)− etφ
′(et) + φ′′(et)ėt. (10)

The measure of sellers who accept the asset evolves according to:

χ̇t = et(1− χt)− δχt. (11)

It increases with the flow of type 0 sellers who become type 1, et(1−χt), and decreases with

the measure of type 1 sellers who receive the idiosyncratic shock, δχt.

An equilibrium is a list of time paths (mt, et, χt) that solves the system of ODEs, (6),

(10), (11), and the transversality condition

lim
t→∞

Et[e
−ρtmt] = 0, (12)

given the initial condition χ0. Equation (12) requires that the expected present value of the

buyer’s real asset holdings must approach zero as time goes to infinity.

4 Dynamics of asset acceptability

Before we proceed, let me define two concepts. First, a dynamical system exhibits hysteresis

if it is path-dependent, i.e., if the equilibrium set differs depending on the initial condition.
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Second, a monetary equilibrium is one where the asset is used as a medium of exchange and

priced above its fundamental value for a non-zero amount of time.

We start by considering a simplified case where the policymaker runs a policy that targets

the real asset value (real balances in the case of fiat money), so that m is fixed at m at all

time. This allows us to shut down the asset holding decisions and reduce the dimensionality

of the ODE system to a two dimensional system of e and χ, which enhances the tractability

of the model. In this case, the equilibrium condition for e becomes

ρφ′(et) = α{p[y(m)− y(m)]}+ φ(et)− φ′(et)(et + δ) + φ′′(et)ėt. (13)

The seller’s gains from trade is pinned down by the policy, and thus equation (13) is an ODE

of e that only depends on e.

The phase diagram of the e− χ system is plotted in Figure 2a.

χ
0

e
χ̇ = 0

ė = 0

(a) Phase diagram

χ
0

e
χ̇ = 0

ė = 0

(b) An increase in m

Figure 2: Phase diagram when m is targeted by the policy, i.e., m = m

There can only be a unique steady state, characterized by the intersection between ė = 0

and χ̇ = 0. For any initial condition χ0, there exists a unique equilibrium path that’s

along the red equilibrium path, which coincides with ė = 0. In the equilibrium, e jumps

immediately to e∗, and χ move towards its steady state value and e stays the same.

What is the policy that implements a constant real asset value? The buyer’s first order

condition for the optimal asset holdings can be written as

LP = αχL(m), (14)

where LP ≡ ρ−r is the liquidity premium, i.e., the spread between the rate of time preference

(the rate of return of an illiquid bond) and the rate of return of the asset. When the asset

is money, LP can be interpreted as the nominal interest rate of the illiquid asset according

to the Fisher equation.

10



Therefore the liquidity premium/nominal interest rate moves in the same direction as χ.

Intuitively, the more acceptable the asset is, the higher the liquidity value of the the asset

is, and thus a higher liquidity premium is required.

The following lemma considers the dynamics of effort, asset acceptability, and liquidity

premium . The dynamics is plotted in Figure 2b.

Lemma 1 Suppose the economy starts at the steady state. At time T , the policymaker

increases the target m. Then

1. Sellers’s effort level jumps up immediately and remains constant afterwards.

2. The acceptability of the asset gradually increases until the new steady state is reached.

3. The liquidity premium increases over time.

Now we remove the restrictions on the real asset value and assume that the supply of

the asset is fixed. When the asset is fiat money, we allow for its supply to increase at a

constant rate. This allows for the real asset value as well as its rate of return to respond to

its acceptability. When d = 0, there is a steady-state equilibrium that is non-monetary. The

following proposition summarizes the set of monetary equilibrium.

Proposition 1 (Monetary steady states in a one-asset economy) There exist an odd

number of monetary steady states, ranked by the value of χ∗, i.e., χ∗
1 < χ∗

2 < · · · < χ∗
2k−1. The

odd-indexed steady states are saddle points, and the even-indexed steady states are unstable

spirals.

The possibility of multiplicity is a result of the strategic complementarity between buyers

and sellers’ decisions. Indeed, combining the m and the e nullclines (that is, ṁ = 0 and

ė = 0), we obtain an increasing mapping from χ to e. The increasing relationship is a result

of the strategic complementarity between the buyers and the sellers’ decisions – a higher χ

encourages buyers to hold more assets, making the asset more valuable, which incentivizes

the sellers to invest more in acquiring the technology. In Figure 3, this mapping is represented

by the red curves in (labeled “OPT” for “optimization”). The χ nullcline (that is, χ̇ = 0)

is represented by the blue curves (labeled “LOM” for “law of motion”). It guarantees that

the proportion of sellers that possess the technology stays constant. While both curves are

increasing, LOM ranges from 0 to infinity and OPT ranges from a non-negative number to

a positive number. Therefore, the two curves intersect an odd number of times interiorly.

In Lemma 5 in Appendix B, I provide a sufficient condition for the uniqueness of monetary

steady state.
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χ
0

e
LOM

OPT

(a) d > 0, three steady states

χ
0

e
LOM

OPT

(b) d > 0, one steady state

χ
0

e
LOM

OPT

(c) d = 0, two steady states:
one non-monetary & one mon-
etary

Figure 3: Steady state(s) in a one asset economy.

Corollary 1 The dynamical system exhibits hysteresis only if there are multiple monetary

steady states.

For the rest of this section, I illustrate, with a numerical example, that there is no hysteresis

when there is a unique monetary steady state. We will focus more on the hysteresis case in

Section 5. The model is parameterized as follows: u(y) = log(y+ b)− log(b) with b = 0.0001,

p(y) =
∫ y

0
u′(x)/[θu′(x) + 1 − θ]dx with θ = 0.5, φ(e) = κe2 κ = 5, α = 0.5, ρ = 0.03,

δ = 0.06, M = 1, and d = 0.01. The red, blue and green surfaces represent the m, e and χ

isoclines, respectively. The three isoclines intersect once and only once at a unique the steady

state, (m∗, e∗, χ∗) = (1.27, 0.13, 0.68). The green curve represents the unique stable manifold

of the steady state. Starting from any initial condition χ0 ∈ [0, 1] \ {χ∗}, there is a unique

non-stationary equilibrium where (mt, et, χt) converges to the unique steady state along the

green curve. Along the equilibrium path, mt, et, and χt move in the same direction. For

example, if the initial acceptability of the asset is lower than the steady state, then sellers

and buyers choose the optimal effort and real asset holdings such that the acceptability

of the asset increases over time. Moreover, the increase in acceptability creates a positive

reinforcement on the sellers’ willingness to invest more and the buyers’ willingness to hold

more asset, which brings the acceptability of the asset up further. The process continues

over time until the steady state is reached, where the marginal cost of investment begins to

become too high for the sellers to be willing to increase their investment.

4.1 Acceptability as a control v.s. state variable

A key difference between this paper and Lester et al. (2012) is that here, acceptability is

modeled as a state variable, while in Lester et al. (2012), acceptability is a control variable
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Figure 4: Numerical example: a one-asset economy

chosen directly by sellers. In order to highlight how this difference affects the equilibrium

set, I study a version of this model where asset acceptability is a control, instead of state

variable. It is similar to a one-asset, continuous-time version of Lester et al. (2012) with

endogenous information.

I assume that there is only one type of sellers. At any point in time, all sellers choose

κ ∈ [0, 1] at cost ψ(κ) in order to be able to use the technology that allows them to accept

the asset with probability κ.4 The cost function ψ : [0, 1] → R+ is increasing and convex,

with ψ(0) = ψ′(0) = 0 and ψ(1) = ∞. The value function of a seller now solves

ρVt = max
κ∈[0,1]

{
−ψ(κ) + ακΨ(mt) + V̇t

}
,

where mt is the buyers’ degenerate asset holdings at time t. The seller’s first order condition

for the optimal choice of κ is

κt = ψ′−1 [αΨ(mt)] . (15)

Equation (15) implies that at any time t, given mt, all sellers choose the same κ that equates

the marginal cost of using the technology, ψ(κ) and the marginal benefit of the technology,

αΨ(κ). The right hand side of (15) is an increasing function of mt. As buyers’ real asset

4An alternative way to model it is to assume, as in Lester et al. (2012), that the cost of the technology is
linear, but is heterogeneous across agents according to some distribution. The case where the cost is linear
and homogeneous across agents has been studied in the working paper version of Rocheteau (2023).
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holdings increase, sellers are more willing to accept the asset at a higher rate and a higher

cost, The aggregate acceptability of the asset is

χt =

∫ 1

0

κtdi = ψ′−1 [αΨ(mt)] . (16)

Combining (16) and the buyer’s first order condition, (6), we obtain

ρ− dM + ṁt

mt

= αψ′−1 [αΨ(mt)]L(mt), (17)

An equilibrium is a time path, {mt} that solves (17).

A steady state is a m∗ that solves

ρ− dM

m∗ = αψ′−1 [αΨ(m∗)]L(m∗), (18)

The left panel of Figure 5 illustrates the determination of the steady-state equilibria. The red

curve plots the left side of (18), which represents the cost of holding the asset. It increases

from 0 to ρ as m goes from dM/ρ to ∞. The blue curve plots the right side of (18), which

represents the liquidity value of the asset. It is determined jointly by ψ′−1 [αΨ(m)], the

equilibrium asset acceptability, and L(m), the buyers’ marginal gains from trade once the

asset is accepted. When the asset is priced at its fundamental value, its liquidity value is

positive. When m = p(y∗), the liquidity value of the asset becomes zero. This suggests that

a steady state m∗ must exist.

Now consider possibilities for non-stationary equilibrium. The law of motion of m follows

ṁt

mt

= ρ− dM

mt

− αψ′−1 [αΨ(mt)]L(mt). (19)

The right panel of Figure 5 plots ṁ/m as a function of m in the case of a unique steady

state. It is negative when m < m∗ and positive when m > m∗. Therefore, if the initial value

of the asset, m0 is less than m∗, then m decreases over time and will eventually violate the

constraint that m cannot be priced below dM/ρ, its fundamental value. On the other hand,

if m0 > m∗, then m grows at rate ρ as m→ ∞, which violates the transversality condition.

Therefore, if there is a unique steady state, then there is no non-stationary equilibria. The

only equilibrium is the steady-state equilibrium.
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Figure 5: Equilibria when χ is a control variable

This reveals a key difference between the equilibrium set studied in Section 3 and the one

in Lester et al. (2012). Conditional on there being a unique steady state, Lester et al. (2012)

suggests that the equilibrium value of the asset, as well as its acceptability, always jumps

to the steady state regardless of initial conditions. In contrast, in the model considered in

Section 3, asset acceptability cannot jump. Instead, it transitions to the steady state slowly

over time. In Section 5, I show that this feature allows us to provide a novel explanation for

the hysteresis in dollarization.

5 Hysteresis in dollarization

In this section, I study a dual-currency economy where a partially liquid foreign currency

(dollars) coexists with a fully liquid domestic currency (pesos). Consider a small open

economy where two assets can serve as means of payment: the home currency (h) and the

foreign currency (f). The home currency is an intrinsically useless object that is issued

exclusively by the domestic central bank. The foreign currency is issued by a foreign country

that is not modeled explicitly. Both currencies are perfectly storable and durable. I assume

that all sellers are able to accept the domestic currency, while only a fraction χ of sellers

can accept the foreign currency, where χ is determined endogenously by sellers’ investment

decisions. The buyer’s value function now solves the following Hamilton–Jacobi–Bellman

equation:

ρW = max
mh,mf≥0

{
−(ρ− rh)mh − (ρ− rf )mf + αχΓ(mh +mf ) + α(1− χ)Γ(mh) + Ẇ

}
,

(20)

where mh and mf are real balances of the domestic and foreign currencies, respectively, and

rh and rf are the rate of return of holding the home and the foreign currencies, respectively.

15



Buyers and sellers are matched randomly. When a buyer is matched with a seller at rate

α, with probability χ, the seller is type 1, in which case the output is y2 = min{p−1(mh +

mf ), y∗}. With probability 1− χ, the seller is type 0, in which case only the home currency

is accepted, and yh = min{p−1(mh), y∗}. The rate of return of the foreign asset, rf , is taken

as given, while the rate of return of the domestic asset, rh, is determined endogenously.

The buyer’s optimal conditions are:

ρ− rh ≥ αχL(mh +mf ) + α(1− χ)L(mh) “ = ” if mh > 0, (21)

ρ− rf ≥ αχL(mh +mf ) “ = ” if mf > 0. (22)

The left sides of (21)-(22) are the flow costs of holding the real balances, measured by the

difference between the buyer’s rate of time preference and the rate of return of money. The

right sides are the expected marginal revenues, measured by the product of the frequency of

trading opportunities and the expected marginal match surplus. Assuming ρ− rh < αL(0),

one of the two inequality must hold as an equality, i.e., mh +mf > 0.

The sellers’ optimal conditions solve the following ODE:

ėφ′′(e) = (ρ+ δ + e)φ′(e)− α
[
Ψ(mh +mf )−Ψ(mh)

]
− φ(e). (23)

The right side is the difference in trade surpluses between the type 1 and the type 0 sellers.

Given any initial condition χ0, an equilibrium is a list of time paths, (mh
t ,m

f
t , et, χt) that

solves (21), (22) (23), (11), and the transversality condition

lim
t→∞

E0

[
e−ρt

(
mh

t +mf
t

)]
= 0. (24)

In the following, I define a dollarization steady state as a steady state equilibrium where the

domestic residents hold a positive amount of the foreign currency, i.e., when mf∗ > 0. A

non-dollarization steady state is defined as a steady state where mf∗ = 0.

5.1 Deterministic equilibrium under an inflation-targeting mone-
tary policy

I start by considering the case where rh is determined by an inflation-targeting monetary

policy, so that rh = −πh at all t, where πh is determined by the central bank. In Section 5.2,

I endogenize πh. With rh given, both mh
t and mf

t are pinned down by χt. This reduces the

dimensionality of the dynamical system and allows us to focus on the dynamic relationship

between e and χ. The following lemma studies the relationship between the rate of return

of the two currencies and the buyers optimal choice of real balances.
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Lemma 2 Suppose rh < rf and αL(0) > ρ− rh, then there exist a pair

(
χ, χ

)
=

(
ρ− rf

ρ− rh
, 1− rf − rh

αL(0)

)
such that when χ ∈

[
0, χ

]
, mh > 0 = mf ; when χ ∈

(
χ, χ

)
, mh,mf > 0, and mf/(mh +mf )

strictly increases in χ.

Lemma 2 states that buyers do not hold the foreign currency if χ is too low, and do not

hold the domestic currency if χ is too high. Moreover, if χ is neither too high nor too low,

then if all other exogenous variables are the same, the dollarization ratio, mf/(mh + mf ),

strictly increases as χ increases, suggesting that χ can be viewed as a proxy for dollarization.

We start by studying the set of steady states. A steady state is a pair (e∗, χ∗) that solves

(ρ+ δ + e)φ′(e)− φ(e) = α
[
Ψ(mh +mf )−Ψ(mh)

]
, (25)

e(1− χ) = δχ, (26)

where mh and mf are given by (21) and (22). We define a dollarization (resp. non-

dollarization) steady state as one where the foreign currency is (resp. is not) used in trans-

actions. The following lemma summarizes the sets of equilibria under an inflation-targeting

monetary policy.

Lemma 3 (Set of steady states in a dual-currency economy under inflation targeting)

1. If πh > −rf , there exist an odd number of steady states.

2. When δ is sufficiently small, there exists a π̃ ∈ R such that when πh > π̃, there exists

multiple steady states. When πh < π̃, there exists a unique steady state that is non-

dollarization.

Lemma 3 states that the existence of a dollarization steady state depends on domestic

inflation. When inflation is low, then the only possible steady state is the non-dollarization

one. Once domestic inflation is sufficiently high, the model starts to admit multiple dol-

larization steady states where the foreign currency is accepted and used in transactions.

The relationship between πh and the set of steady states is illustrated graphically in Fig-

ure 6. In both panels, the red curves represent equation (25), the e nullcline. The blue

curves represent equation (26), the χ nullcline. In the top left panel of Figure 6, domes-

tic inflation is sufficiently high, and the two nullclines intersect three times, including one

non-dollarization steady state where (χ, e) = (0, 0), and two non-dollarization steady states
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Figure 6: Phase diagrams. Left: when πh is large. Right: when πh is small

where (χ, e) ∈ (0, 1)×R++. In the top right panel, domestic inflation is sufficiently low, and

the two curves intersect at a unique non-dollarization steady state where (χ, e) = (0, 0).

Now consider the full set of perfect foresight equilibria. A non-stationary equilibrium

under an inflation targeting monetary policy is a time path (et, χt,m
h
t ,m

f
t ) that solves the

two-dimensional ODE system (11) and (23), given (21), (22), the transversality condition,

and the initial condition χ0. The following lemma studies the local stability around the

steady states.

Lemma 4 (Local stability in a dual-currency economy under inflation targeting)

If there are multiple steady states, ranked by the value of χ∗, i.e., χ∗
1 < χ∗

2 < · · · < χ∗
2k−1,

then the odd-indexed steady states are saddle points, and the even-indexed steady states are

unstable spirals.

Figure 6 illustrates the results in Lemma 4. In the left panel, the lower, non-dollarization

steady state is a saddle point. There is a saddle path (represented by the green curve) leading

towards this steady state. When χ < χ, the saddle path coincides with the horizontal axis,

meaning that the sellers do not exert any effort when χ is too small. The middle steady

state is a source, around which there is an equilibrium trajectory spiraling outward. The

high steady state is also a saddle point, around which there exists a saddle path that leads

toward it. The right panel of Figure 6 illustrates the phase diagram of the case where there

is only one steady state, the non-dollarization one. The steady state is a saddle point. There

exists a unique saddle path leading towards the non-dollarization steady state.
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Global dynamics In the following, I illustrate how the global dynamics depend on do-

mestic inflation.5 In Figure 7, domestic inflation is low . There is a unique steady state, the

non-dollarization one, which is a saddle point. The green curve represents the out-of-steady-

state equilibrium path. For any initial state χ0 ∈ (0, 1], the only equilibrium is the one where

e jumps to the green path and the economy dollarize until χ approaches 0 asymptotically.

0 1

Figure 7: Case I: low inflation

In Figure 8, domestic inflation is high, but not too high. In this case, the model admits

three steady states. The low and the high steady states are saddle points while the medium

one is an unstable spiral. When the initial acceptability, χ0, is sufficiently low, the equilibrium

is unique and approaches the non-dollarization steady state. Similarly, when χ0 is sufficiently

high, the equilibrium is unique and approaches the high steady state. When χ0 is in between,

there exist multiple equilibria that approaches either direction, depending on peoples’ beliefs.

5Here I show the set of global dynamics that are most relevant to hysteresis. It also shows up most
frequently in numerical examples.
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0 1

Figure 8: Case II: intermediate inflation

In Figure 9, domestic inflation is sufficiently high. The number of steady states, as

well as their local stability, are the same as the previous case, but the global dynamics are

different. If χ0 is sufficiently small, then there exist multiple out-of-steady-state equilibria,

one approaching the high steady state, others approaching the non-dollarization steady state.

However, if χ0 is sufficiently large, then the only perfect foresight equilibrium is the one that

leads to the high steady state.

0 1

Figure 9: Case III: high inflation

The global dynamics above reveals a key feature of acceptability the dual-currency
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model—its sensitivity to initial conditions. In the high inflation case, when the aggregate ac-

ceptability of the foreign currency is sufficiently low, the economy may dollarize, de-dollarize,

or fluctuate between the two. However, as acceptability exceeds a certain threshold, de-

dollarization is no longer possible. In the intermediate inflation case, dollarization is not

possible when the initial acceptability of the foreign currency is low. It is only when infla-

tion is sufficiently low that the economy de-dollarizes regardless of initial conditions. The

results are summarized in Figure 10. The red curves plot the mapping from πh to the set of

steady-state χ. The red shaded area represents the area where a spiral exist. The arrows rep-

resent the directions of χ in all possible equilibria. The three regions: low πh, intermediate

πh, and high πh, corresponds to the three types of global dynamics discussed above.

Figure 10: Inflation and the dynamics of χ

Hysteresis The left panel of Figure 11 illustrates the hysteresis in dollarization. Suppose

the economy starts at steady state S1, which lies within the intermediate πh region, and

therefore dollarization is not possible. When an unexpected increase in inflation brings πh

to a sufficiently high level, dollarization becomes possible, and the economy shifts slowly to

S2, a new steady state. Now consider an unexpected decrease in inflation that brings πh

back to its original value, then χ decreases slowly over time, until steady state S3 is reached.

Note that S3 is a dollarization steady state. The right panel of Figure 11 plots the time path

of χ for such an example.6 The hyperinflation episode begins at t = 5 and ends at t = 10,

during which the acceptability of the foreign currency grows from 0 to close to 1. However,

6The parameterization of the model as follows. u(y) = 2
√
y; p(y) =

∫ y

0

{
u′(x)/[θu′(x) + 1− θ]

}
dx with

θ = 0.5. φ(e) = κe2 with κ = 0.06. ρ = 0.02, α = 1/3, δ = 0.02, rh = 0.0225, and rf = −0.015. During the
hyperinflation episode rh = 0.15.
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Figure 11: Hysteresis in dollarization

after t = 10, even if domestic inflation has returned to the initial level, the foreign currency

decreases only slightly, remaining highly acceptable from t = 10 onward.

A full de-dollarization is possible only if πh is further decreased. In Figure 12, I plot

such an example. The difference between this example and the previous one is that at time

t = 15, rh decreases from 0.0225 to 0.02. This causes the economy to shift into the low

πh region, and the acceptability of the foreign currency decreases slowly over time until the

economy is fully de-dollarized. Note that the speed of de-dollarization can be significantly

lower than the speed of dollarization, if the cost of acquiring the technology, as well as the

separation rate δ, are sufficiently low.

5.2 Deterministic equilibrium under the money growth rule

In Section 5.1, the rate of return of the domestic currency is pinned down by an inflation-

targeting monetary policy. In this section, I study the case where the monetary policy is

implemented through a money growth rule, where the supply of the domestic currency grows

22



Figure 12: De-dollarization
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at a constant rate γ.

Assuming interiority, the buyer’s optimal choice of the domestic currency becomes

ρ+ γ − ṁh
t

mh
t

= αχtL(m
h
t +mf

t ) + α(1− χt)L(m
h
t ). (27)

The rest of the equilibrium conditions are the same as in Section 5.1. An equilibrium thus

solves the three dimensional ODE system (27), (23) and (11), given (22) and χ0.

I illustrate the equilibrium with a numerical example. The parameterization of the model

is as follows: u(y) = 2
√
y; p(y) =

∫ y

0

{
u′(x)/[θu′(x) + 1− θ]

}
dx with θ = 0.1. φ(e) = 1.5e2,

ρ = 0.02, α = 1/2, δ = 0.03, rf = −0.015, and γ = 0.06. Figure 13a projects the phase

diagram onto the χ − e plane, and Figure 13b projects the equilibrium trajectories onto

the χ −mh plane. The red curve in 13a is the combination of the e and the mh nullclines.

The blue curve is the χ nullcline. The two curves intersect at three steady states, one non-

dollarized and two dollarized, across which χ and e are positively correlated, and χ and mh

are negatively correlated. The non-dollarized and the highly dollarized steady states are

saddle points, and the middle steady state is a sink. In both Figure 13a and 13b, the green

curves represent the stable manifolds (saddle paths) of the saddle points, and the pin curves

represent one trajectory that leads to the sink. There is an unstable limit cycle around the

middle steady state.

As in Section 5.1, the set of equilibrium depends on the initial condition. If the accept-

ability is sufficiently low, dollarization, de-dollarization, and non-monotonic equilibria are all

possible, depending on agents’ beliefs. However, when the initial acceptability is sufficiently

high, the only equilibrium is to dollarize. In short, although with slight difference, the equi-

librium set here is similar to the one described in Figure 9. The rest of the analysis follows

through in the same manner.
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(a) Equilibrium: projected onto the χ− e plane
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(b) Equilibrium: projected onto the χ−mh plane

Figure 13: Equilibrium paths under the money growth rule

5.3 Self-fulfilling risk and sunspot equilibrium

In Sections 5.1 and 5.2, a necessary condition for dollarization is that the rate of return

of the foreign currency is higher than the domestic currency. In practice, however, dollar-

ized economies like Argentina can remain highly dollarized even during periods where the

inflation rate was comparable to the US. In this section, I address the phenomenon with

sunspot equilibrium: if agents believe that the domestic currency may crash in the future,

dollarization is possible even when domestic inflation is sufficiently low. The setup is similar

to Section 5.2 except for one modifications: there is an extrinsic shock (that is, the shock is

uncorrelated with economic fundamentals such as preferences or technology) that occurs at

Poisson arrival rate λ.

Let T denote the time at which the shock realizes. Consider an equilibrium where, after

the realization of the extrinsic shock, agents believe that the domestic currency is worthless,
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i.e., mh = 0, in which case the domestic currency is not useful in transactions, and the

foreign currency becomes the only medium of exchange. The economy reduced to a one-

asset economy with d = 0, as in Section 3, except that the rate of return of the asset (that

is, the foreign currency) is exogenously determined. For simplicity, let’s focus on the case

where there is a unique steady state, and thus a unique equilibrium given the χT .

Before the realization of the expectation shock, the expected rate of return of the domestic

currency is

rht =
ϕ̇t − λϕt

ϕt

=
ϕ̇t

ϕt

− λ =
ṁh

t

mh
t

− (γ + λ).

Therefore, λ decreases the rate of return of the domestic currency. Assuming interiority, the

buyer’s optimal choice of the domestic currency now becomes

ρ+ γ + λ− ṁh
t

mh
t

= αχtL(m
h
t +mf

t ) + α(1− χt)L(m
h
t ). (28)

The type 0 seller’s value function now solves:

ρV 0
t = max

e≥0

{
αΨ(mh

t )− φ(e) + e
(
V 1
t − V 0

t

)
+ λ

(
V̂ 0
t − V 0

t

)
+ V̇ 0

t

}
. (29)

ρV 1
t = αΨ(mh

t +mf
t ) + δ

(
V 0
t − V 1

t

)
+ λ

(
V̂ 1
t − V 1

t

)
+ V̇ 1

t , (30)

where V̂ 0
t (resp. V̂ 1

t ) is the continuation value of the type 0 (resp. 1) seller if the domestic

currency crashes at time t. The fourth (resp. third) term on the right side of (29) (resp. (30))

is new compared to the deterministic case. It states that at rate λ, the extrinsic shock is

realized, and seller’s life time utility switches from V 0
t to V̂ 0

t (resp. from V 1
t to V̂ 1

t ). First

order condition gives φ′(et) = V 1
t − V 0

t .

Combining (29)-(30), we obtain

(ρ+ δ + et)φ
′(et) = α

[
Ψ(mh

t +mf
t )−Ψ(mh

t )
]
+ φ(et) + λ [φ′(êt)− φ′(et)] + φ′′(et)ėt. (31)

where êt is the new optimal e that the sellers will choose if the expectation shock occurs at

time t. From Section 3, we know that êt is a function of χt. An equilibrium trajectory before

the realization of the shock thus solves (28), (22), (31) and (11) given χ0.

I illustrate the equilibrium with a numerical example. The parameterization of the model

is as follows: u(y) = 2
√
y; p(y) =

∫ y

0

{
u′(x)/[θu′(x) + 1− θ]

}
dx with θ = 0.1. φ(e) = 1.5e2,

ρ = 0.015, α = 1/3, δ = 0.0375, rf = −0.015, and γ = 0.015. In a deterministic equilibrium,

dollarized steady states do not exist. However, if we set λ = 0.02, then dollarization is

possible, and in fact, inevitable. Figure 14a plots the equilibrium after the realization of

the shock. There is a unique monetary steady state which is a saddle point, and a unique
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saddle path, represented by the green curve, that leads towards it. Denote ê = J(χ) the

saddle path. When the shock realizes at T , e jumps immediately to êT = J(χT ). In Figure

14b, I plot the equilibrium trajectories before the realization of the shock, projected from

the χ− e−mh space onto the χ− e plane. The equilibrium set is similar to Sections 5.1 and

5.2, except that the non-dollarized steady state is now replaced by a dollarized one.
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(a) After the realization of the shock
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(b) Before the realization of the shock (Projec-
tion of the equilibrium onto the χ− e plane)

Figure 14: Equilibrium after and before the realization of the shock

This exercise reveals that dollarization, and consequently, the hysteresis of dollarization,

is possible even when money growth rate is under control, and domestic inflation is low.

When agents believe that there is a possibility that the domestic currency may crash eventu-

ally, the buyers preemptively hold more foreign currency and less domestic currency, and the

sellers preemptively invest more in acquiring the technology that allows them to accept the

foreign currency. As a result, persistent dollarization can be rational even with low inflation.
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6 More on habit diffusion

So far, the acceptability of an asset is determined by two key factors: technology acquisi-

tion and technology depreciation. In this section, I provide a microfoundation for the two

processes. I interpret the technology as some knowledge that allows sellers to distinguish

between authentic and fake foreign cash or to operate the point-of-sale system that accepts

foreign currency denominated cards. The knowledge spreads within the population through

imitation. As in Lucas Jr and Moll (2014), knowledge accumulates when sellers learn from

each other. The depreciation of the technology is interpreted as the death of existing sellers.

I show that (1) acceptability exhibits hysteresis only if imitation is costly—if sellers pay to

meet other sellers; (2)

To formalize this, I assume that sellers meet each other randomly at rate β. When a

type 0 seller meets a type 1 seller, she learns the knowledge immediately. Upon a meeting,

the probability of the other seller being type 1 is χ. Therefore, learning happens more

frequently if the foreign currency is more acceptable. Moreover, once a seller becomes type

1, she remains type 1 for the rest of her life.

Let δ be the rate at which the sellers die. When an existing seller (the parent) dies, she

is replaced by a new seller (the child). If a seller is type 1 when she dies, the child inherit

the technology from the parent with probability q. For now, I assume q is exogenous. The

child of a type 0 seller is also type 0.

Solving the sellers’ maximization problems following the same logic as in Section 3, we

obtain

∆̇t = (ρ+ δ + βχt)∆t − αχt

[
Ψ(mh

t +mf
t )−Ψ(mh

t )
]
, (32)

where ∆t ≡ V 1
t − V 0

t . The buyers’ demand for mh and mf solves equations (21)-(22). The

law of motion of χt is now

χ̇t = βχt(1− χt)− δ(1− q)χt. (33)

Different from Section 5, the only endogenous variable on the right hand side of equation

(33) is χ. Therefore, the equilibrium path of χ is independent of the other variable. Suppose

without loss of generality that β > δq. At χ̇t = 0, equation (33) becomes χt ∈
{
0, 1− δ(1−q)

β

}
.

For any χ ∈ (0, 1] \
{
1− δ(1−q)

β

}
, it approaches 1− δ(1−q)

β
asymptotically.

Equation (33), (21), and (22) can be described as an independent system of two ODEs in

terms of mh and χ. The left panel of Figure 15 plots the phase diagram of the χ−mh system.

There is a unique steady state where the foreign currency is used and is acceptable.7 For any

7Note that there is one additional steady state where the χ, e, and mf are all zeros, in which case the
foreign currency is not used in transactions and not valued.
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χ ∈ (0, 1] there is a unique equilibrium path, represented by the green curve, that leads to

the steady state. Along the equilibrium path mh and χ move in the opposite directions—as

the foreign currency becomes more acceptable, buyers hold less domestic currency. This

suggests that the right side of equation (32) as a function of ∆t and χ. The right panel of

Figure 15 plots the phase diagram of the χ−∆ system. There is, again, an interior steady

state and a unique saddle path leading towards the steady state.

The exercise suggests that if knowledge spreads within the population through imitation,

which is costless, and if the rate of inheritance of the knowledge is exogenous, then accept-

ability does not exhibit hysteresis. In the following two subsections, I show that if learning

is costly, or if inheritance is endogenous, acceptability can exhibit hysteresis.

mh

0

χ

ṁh = 0

χ̇ = 0

χ
0

∆

∆̇ = 0

χ̇ = 0

Figure 15: Phase diagrams. Left: the χ−mh system; right: the χ−∆ system

6.1 Endogenous search intensity

Now suppose that in order to meet other sellers, sellers need to pay a flow cost. Indeed,

it requires more effort for a shop owner to contact other sellers while maintaining normal

operation of their business. I assume that a seller who pays a flow cost φ(e) can meet a

random seller at rate e. As χ increases, the probability of meeting a type-1 seller increases,

and thus type 0 sellers are more wiling to invest. For simplicity, I assume, as in Section 5.1,

that the monetary policy is implemented through a constant nominal interest rate. Equation

(33) now becomes

(ρ+ δ + eχ)φ′(e)− χφ(e) = αχ
[
Ψ(mh

t +mf
t )−Ψ(mh

t )
]
+ φ′′(e)ė− φ′(e)

χ
χ̇. (34)

The law of motion of χt is

χ̇t = etχt(1− χt)− δ(1− q)χt. (35)
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And therefore, when χ ̸= 0, (34) can be rewritten as

(ρ+ δq + e)φ′(e)− χφ(e) = αχ
[
Ψ(mh

t +mf
t )−Ψ(mh

t )
]
+ φ′′(e)ė. (36)

Figure 16 illustrates the equilibrium with a numerical example. The model is parameterized

as follows: u(y) = A [(y + b)1−σ − b1−σ] /(1 − σ) with b = 0.0001 and σ = 0.8, φ(e) = 2e2,

and p(y) = θy+(1− θ)u(y) with θ = 1/2, α = 1, δ = 0.05, ρ = 0.05, rf = −0.02, rh = −0.1,

and q = 0.7. I plot the equilibrium in Figure 16a. Similar to Section 5.1, the equilibrium set

is sensitive to initial conditions, suggesting that the system exhibits hysteresis.

The results hold through even if the rate at which new sellers inherit the knowledge

from their parents, q is endogenously determined. Indeed, whether some knowledge can be

passed on to the next generation is often times endogenously determined by, for instance,

how common this knowledge is, and how often it is used, etc. Therefore, in Figure 16b,

I consider the case where q is an increasing function of χ, using q = χ3/4 as an example.

Note that as χ→ 1, q → 1, suggesting that the the knowledge is perfectly passed on across

generations if the foreign currency is fully acceptable. As a result, the highly dollarized

steady state now has χ = 1, i.e., all sellers are able to accept the foreign currency.

7 Conclusion

This paper presents a novel framework for understanding the gradual acceptance of assets as a

medium of exchange by highlighting the role of habit formation and experience. By modeling

asset acceptability as a slow-moving state variable influenced by network externalities, this

approach captures the persistent effects of initial investments and social habits on liquidity.

The model provides a new lens through which to view dollarization and similar phenomena,

demonstrating how temporary shocks can lead to lasting changes in currency usage. This

perspective enriches existing monetary theory by embedding classical insights on habit-driven

acceptability into modern search-theoretic frameworks, offering a structured way to explore

policy implications in contexts where liquidity transformations shape economic stability and

growth.
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(a) q = 0.7

(b) q = χ3/4

Figure 16: Equilibrium: endogenous search intensity
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Appendix A Proofs of propositions

Proof of Proposition 1 (Part 1). A steady-state equilibrium is triple (m∗, e∗, χ∗) that

solves

ρ+ γ − dM

mt

= αχtL(mt), (37)

(ρ+ δ + et)φ
′(et)− φ(et) = αΨ(mt), (38)

et(1− χt) = δχt, (39)

where γ = 0 if d > 0. Equations (37), (38), and (39) give increasing relationships between

m∗ and χ∗, e∗ and m∗, and χ∗ and e∗, respectively. In particular, the left hand side of

equation (38) is increasing in e because eφ′(e)− φ(e) is non-negative and strictly increasing

for all e ∈ R+. Combining (37) and (38), we obtain a mapping from χ∗ to e∗ that is strictly

increasing. Let e∗ = g1(χ
∗) define the explicit form of the mapping. Let e∗ = g2(χ

∗)

define the explicit form of (39). A steady state is an intersection between e∗ = g1(χ
∗) and

e∗ = g2(χ
∗). It can be checked that both g1 and g2 are non-decreasing functions of χ. In

particular, when m < dM/ρ, g1 is strictly increasing. Moreover,

g1(0) > 0 = g2(0) (40)

g1(1) <∞ = g2(1) (41)

(40) and (40) imply that an interior (monetary) steady state must exist, and there can be

an odd number of interior steady states.

Proof of Proposition 1 (Part 2). We start by considering the case where dM/ρ <

p (y∗), i.e., when liquidity is scarce. We focus on cases where there is a unique steady state,

(m∗, e∗, χ∗). The Jacobian matrix of the system evaluated at the steady state is

J =

∂ṁ
∂m

0 ∂ṁ
∂χ

∂ė
∂m

∂ė
∂e

0

0 ∂χ̇
∂e

∂χ̇
∂χ


(m∗,e∗,χ∗)

=

j11 0 j13
j21 j22 0
0 j32 j33

 =

ρ− αχ∗L(m∗)− αχm∗L′(m∗) 0 −αm∗L(m∗)
− α

φ′′(e∗)
(1− 1

p′(y(m∗))
) ρ+ δ + e∗ 0

0 1− χ∗ −(e∗ + δ)

 .
Let λ1 λ2 and λ3 denote the three eigenvalues of matrix J . Then,

λ1 + λ2 + λ3 = tr(J) = ρ− αχ∗L(m∗)− αχ∗m∗L′(m∗) + ρ+ δ + e∗ − (e∗ + δ),

= ρ+
dM

m∗ − α∗χ∗m∗L′(m∗) > 0.

Moreover,

λ1λ2λ3 = det(J) =
∂ṁ

∂m
· ∂ė
∂e

· ∂χ̇
∂χ

∣∣∣
(m∗,e∗,χ∗)

+
∂ė

∂m
· ∂χ̇
∂e

· ∂ṁ
∂χ

∣∣∣
(m∗,e∗,χ∗)

.
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To continue discussing the sign of λ1λ2λ3, note that g1(χ) crosses g2(χ) from above, and

thus,

∂e

∂m
|ė=0,(m∗,e∗,χ∗) ·

∂m

∂χ
|ṁ=0,(m∗,e∗,χ∗) <

∂e

∂χ
|χ̇=0,(m∗,e∗,χ∗)

⇐⇒ α

(ρ+ δ + e∗)φ′′(e∗)

[
1− 1

p′(y(m∗))

]
· αm∗L(m∗)

ρ− αχL(m∗) + αχm∗L′(m∗)
<

δ

(1− χ∗)2

⇐⇒ (−j21)(−j13)
j11j22

<
δ

j232

=⇒ j21j13j32 <
j12j22δ

j32
< j11j22(−j33)

⇐⇒ λ1λ2λ3 = det (J) = j11j22j33 + j21j13j32 < 0

And thus, if all eigenvalues are real, then two of them must be positive while one of them

is negative. The next step is to show that the eigenvalues are real. To see this, note that an

eigenvalue λ solves the following equation:

(j11 − λ)(j22 − λ)(j33 − λ) + j13j21j22 = 0,

or

(λ− j11)(λ− j22)(λ− j33) = j13j21j22. (42)

Define h(λ) ≡ (λ− j11)(λ− j22)(λ− j33). We first observe that

h(0) = −j11j22j33 > j21j13j32. (43)

Next, we observe that as λ→ ∞,

lim
λ→∞

h(λ) = ∞ > j21j13j32. (44)

And finally, we observe that

h(j11) = h(j22) = h(j33) = 0 < j21j13j32. (45)

Given (43), (44), (45), continuity implies that there exist a couple (λ1, λ2), with λ1 ∈ (j33, 0)

and λ1 ∈ (max{j11, j22},∞), such that both λ1 and λ2 are solutions to equation (42). Now

that we already find two real solutions to (42), the third solution cannot be complex.

Therefore, the Jacobian matrix of the linearized system at the unique steady state

(a∗, e∗, χ∗) has two positive eigenvalues and one negative eigenvalue, and thus there should

be a one-dimensional stable manifold around the steady state.

Now we show that this stable manifold exists for all χ ∈ [0, 1]\{χ∗}. The goal is to show

that there does not exist cases where the equilibrium path requires that e or m fall outside
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of their domain for some χ. By assumption, e is defined from 0 to ∞. Now suppose that at

a time point t̃, m ≥ p(y∗). Then (6) becomes

ρ− dM + ṁt̃

mt̃

= 0,

and thus

ṁt̃ = ρmt̃ − dM,

which violates the transversality condition. Therefore, along the equilibrium path mt is

always less than p(y∗). Therefore, e or m will not fall outside of their domain for some

χ ∈ [0, 1] \ {χ∗}.
Proof of Lemma 2. We focus on equilibria where mh and mf are not both zero, and

prove by contradiction.

1. First, we show that when χ ∈ [0, χ], mh > 0 = mf . Suppose instead that mh = 0, then

mf > 0. Equations (21) and (22) become

ρ− rh ≥ αχL
(
mf

)
+ α(1− χ)L (0) , (46)

ρ− rf = αχL
(
mf

)
. (47)

Subtracting (47) from (46), we obtain

rf − rh ≥ α(1− χ)L(0) =⇒ χ ≥ 1− rf − rh

αL(0)
= χ,

which is a contradiction. Therefore, when χ ∈ [0, χ], mh must be strictly positive.

Now we show that mh and mf cannot both be strictly positive. To see this, suppose

instead that mf > 0, then both (21) and (22) hold at equality. Subtracting (22) from

(21), we obtain

rf − rh = α(1− χ)L(mh).

Rearranging, we obtain

χ = 1− rf − rh

αL(mh)
> 1− rf − rh

αL(mh +mf )
= 1− rf − rh

ρ− rf
· χ

=⇒
(
1 +

rf − rh

ρ− rf

)
χ > 1 =⇒ χ >

ρ− rf

ρ− rh
= χ,

which is a contradiction. Therefore, when χ ∈ [0, χ], it must be that mh > 0 = mf .

2. Next, we show that when χ ∈
(
χ, χ

)
, both mh and mf are strictly positive. From

above, we know that if mh = 0, then χ ≥ χ, which is a contradiction. In the following,
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we show that if mf = 0, then χ ≤ χ, which is also a contradiction. Suppose instead

that mf = 0, then mh > 0. Equations (21) and (22) become

ρ− rh = αχL
(
mh

)
+ α(1− χ)L

(
mh

)
= αL(mh), (48)

ρ− rf ≥ αχL
(
mh

)
. (49)

Substituting (48) into (49), we obtain

ρ− rf ≥ χ
(
ρ− rh

)
=⇒ χ ≤ ρ− rf

ρ− rh
= χ,

which is a contradiction. Therefore, when χ ∈
(
χ, χ

)
, it must be that both mh and

mf are strictly positive.

3. Finally, we show that when χ ∈ [χ, 1], an inflation-targeting monetary policy is unsus-

tainable. From above, we know that if mf = 0, then χ ≤ χ. Therefore, it must be that

mf > 0. Now we show that mh and mf cannot both be strictly positive. To see this,

suppose instead that mh > 0, then both (21) and (22) hold at equality. Subtracting

(22) from (21), we obtain

rf − rh = α(1− χ)L(mh).

Rearranging, we obtain

χ = 1− rf − rh

αL(mh)
< 1− rf − rh

αL(0)
= χ,

which is a contradiction. Therefore, when χ ∈ [χ, 1], it must be that mf > 0 = mh.

However, by definition,

rh =
ṁh

mh
> 0,

which is not possible when mh is fixed at 0. Therefore, an inflation targeting monetary

policy is not sustainable when χ ≥ χ̄.

Proof of Proposition 3.

1. We start by checking that (e, χ) = (0, 0) is always a steady state. When χ = 0,

equation (26) gives e = 0; Lemma 2 implies that mh > 0 = mf , which implies that

the right hand side of equation (25) is zero, and thus the left hand side of (25) is zero,

meaning that e = 0. As a result, (e, χ) = (0, 0) satisfies both (25) and (26), as well as

(21) and (22). When (e, χ) = (0, 0), then conditional on mh∗ ̸= 0, mh∗ solves

ρ+ πh = αL(mh∗). (50)

38



Under gradual bargaining and the Inada conditions, there must be an interior solution

to equation (50). Now check the possibility for other steady states. A steady state is an

intersection between the χ isocline and the e isocline. Let e = g̃1(χ) denote the explicit

form of the e isocline and e = g̃2(χ) denote the explicit form of the χ isocline. Then,

g̃1(χ) and g̃2(χ) do not intersect within the interval (0, χ), as g̃1(χ) = 0 < g̃2(χ) within

the region. When χ = χ, g̃1(χ) = 0 < g̃2(χ). When χ = 1, g̃1(χ) = g̃1(1) <∞ = g̃2(1).

g̃1(1) is finite since the seller’s gain from trade is finite. Therefore, there can be

2k(k ∈ N) steady states within the region χ ∈ [χ, 1] , and 2k + 1(k ∈ N) steady states

in total.

2. Now we prove the second part of the lemma. We start by showing that when πh

increases, the e isocline shift up. To see this, consider an increase in πh from π1 to π2.

Then χ decreases from χ
1
= (ρ − rf )/(ρ + π1) to χ2

= (ρ − rf )/(ρ + π2). Therefore,

the e isocline shifts up for χ ∈ [χ
2
, χ

1
]. Now consider χ ∈ (χ

1
, 1], in which case both

mf and mh are positive according to Lemma ??. Therefore, both (21) and (22) hold

at equality, and can be rewritten as

ρ− rf = αχL(mh +mf ), (51)

πh + rf = α(1− χ)L(mh). (52)

Fixing χ, an increase in πh implies that mh decreases, while mh +mf stays constant.

Since Ψ(m) is an increasing function of m, this implies that Ψ(mh + mf ) − Ψ(mh)

increases. From (25), e also increases, i.e., the e isocline shifts up.

Next, we show that the two isoclines intersect multiple times when πh → ∞. When

πh → ∞, χ → 0. Let χ∗ be an arbitrary value between χ and 1. From (26), g̃2(χ
∗) =

δχ/(1 − χ). From (51) and (52), mh and mf , and thus Ψ(mh +mf ) and Ψ(mh) are

pinned down uniquely, with Ψ(mh +mf ) > Ψ(mh), and therefore the right hand side

of (25) is strictly positive. Define f(e) = (ρ+ e)φ′(e)− φ(e). One can show that f(e)

is an increasing function of e and ranges from 0 to ∞ and e goes from 0 to ∞. Then,

when δ → 0, g̃2(χ
∗) → f−1

[
α
(
Ψ(mh +mf )−Ψ(mh)

)]
> 0 . On the other hand, as

δ → 0, g̃1(χ
∗) → 0. Therefore g̃2(χ

∗) > g̃1(χ
∗) and g̃2(1) < g̃1(1) = ∞, and thus there

must be an intersection between g̃1 and g̃2 at a point where χ ∈ (χ∗, 1). By continuity,

such an intersection exists when δ is sufficiently small and when πh is sufficiently large.

Now, when πh → −rf , χ→ 1, in which case the e isocline becomes a straight line e = 0

for χ ∈ [0, 1], and the two isoclines do not intersect except at (0, 0). By continuity,

there exists an ε2 ∈ R++ such that for all πh ∈ (−rf − ε2,−rf ], the two isoclines

intersect once and only once at (0, 0).
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Define π̃ the largest πh under which the two isoclines intersect more than once. We

show that for all π > π̃, the two isoclines intersect more than once. To see this, suppose

that πh increases from π̃ to π̃′ > π̃. Define (χ1, e1) one dollarization steady state when

πh = π̃. Then when πh = π̃′, define g̃1
′(χ) the e isocline at πh = π̃′, it must be than

g̃1
′(χ1) = e′1 > e1 = g̃2(χ1).

From part 1, g̃1
′(∞) < g̃2(∞) = ∞. Therefore, g̃1

′ and g̃2 must intersect at least once

between (χ1, 1). Moreover, there is a non-dollarization steady state. Therefore, For all

πh > π̃, there exists more than one steady state.

Proof of Lemma 4. Taking total derivatives with respect to χ on both sides of (25),

we obtain

[φ′(e) + (ρ+ δ + e)φ′′(e)− φ′(e)]
de

dχ
= g(χ),

where

g(χ) =
∂

∂χ
α
{[
p[y(mh +mf )]− y(mh +mf )

]
−
[
p[y(mh)]− y(mh)

]}
.

And thus, the slope of the e isocline is

de

dχ
|ė=0 =

g(χ)

(ρ+ δ + e)φ′′(e)
.

The slope of the χ isocline is
de

dχ
|χ̇=0 =

δ

(1− χ)2
.

The Jacobian matrix at the steady state(s) is

J =

[
∂ė
∂e

∂ė
∂χ

∂χ̇
∂e

∂χ̇
∂χ

]
(χ∗,e∗)

=

[
ρ+ δ + e∗ − g(χ∗)

φ′′(e∗)

1− χ∗ −(e∗ + δ)

]
When the e isocline crosses the χ isocline from above,

de

dχ
|ė=0 <

de

dχ
|χ̇=0,

and thus

g(χ∗) <
δ(ρ+ δ + e∗)φ′′(e∗)

(1− χ∗)2
,

which implies that

det(J)|(χ∗,e∗) = −(ρ+ δ + e∗)(e∗ + ν) +
(1− χ∗)g(χ∗)

φ′′(e∗)

< −(ρ+ δ + e∗)(e∗ + δ) +
δ(ρ+ δ + e∗)

1− χ∗

= (ρ+ δ + e∗)
(
− e∗ +

δχ∗

1− χ∗

)
= 0,
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and thus, the steady state is a saddle.

Similarly, we can show that when

de

dχ
|ė=0 >

de

dχ
|χ̇=0,

it must be that

det(J)|(χ∗,e∗) > 0.

This result, combined with the arrows of motions in the left panel of Figure 6, implies that

when the e isocline crosses the χ isocline from below, the steady state is an unstable spiral.

Appendix B Additional lemmas

Lemma 5 There exists a unique monetary steady state if the following conditions hold: for

all m ∈ [dM/ρ, p(y∗)),

(a) φ′′′(e) ≥ 0; (b)

∣∣∣∣mL′′(m)

L′(m)

∣∣∣∣ ≥ 2; (c)

∣∣∣∣mL′(m)

L(m)

∣∣∣∣ ≥ 1

2

∣∣∣∣mL′′(m)

L′(m)

∣∣∣∣ .
Lemma 5 provides a sufficient condition for uniqueness in the one-asset case. Condition

(a) states that the cost function φ(e) becomes more convex as e increases. Condition (b)

states that the elasticity of the “marginal liquidity premium”, L′(m), is sufficiently large

(greater than 2). Condition(c) states that the elasticity of the liquidity premium, L(m), is

also sufficiently large (at lease one half of that of L′(m)).

Proof of Lemma 5.

1. We start by studying the shape of g1. From equation (37),m is defined over
[
dM/ρ, m̂∗

]
,

where m̂∗ is the solution to

ρ− dM

m̂∗
= αL

(
m̂∗

)
.

When m = dM/ρ, equation (37) implies that χ = 0, and equation (38) implies that e

is positive. When m→ m̂∗, (37) implies that χ→ 1, and equation (38) implies that e

is finite.

In order to study the concavity of function g1, we study separately the equation (37)

and (38). From (37),

ρ− dM

m
= αχL(m). (53)

Totally differentiating both sides of (53) with respect to χ, we obtain

dM

m2

dm

dχ
= αL(m) + αχL′(m)

dm

dχ
. (54)
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M
0

ϕ

ϕ̇ = 0

Ṁ = 0

Rearranging (54), we obtain

dm

dχ
=

αL(m)
dM
m2 − αχL′(m)

, (55)

and therefore,

d2m

dχ2
=

αL′(m)dm
dχ

[
dM
m2 − αχL′(m)

]
− αL(m)

[
−2dM

m3
dm
dχ

− αL′(m)− αχL′′(m)dm
dχ

]
[
dM
m2 − αχL′(m)

]2 ,

=
α2L′(m)L(m)− αL(m)

[
−2dM

m3
dm
dχ

− αL′(m)− αχL′′(m)dm
dχ

]
[
dM
m2 − αχL′(m)

]2 . (56)

2. Now, we study the function f2. From equation (38), m is defined over [dM/ρ,∞).

Totally differentiate both sides of equation (38) with respect to m, and we obtain

(ρ+ δ + e)φ′′(e)
de

dm
= α

[
1− 1

p′(y)

]
, (57)

and thus

de

dm
=

α
[
1− 1

p′(y)

]
(ρ+ δ + e)φ′′(e)

, (58)

Totally differentiate both sides of equation (57) with respect to m, and we obtain

[φ′′(e) + (ρ+ δ + e)φ′′′(e)]

(
de

dm

)2

+ (ρ+ δ + e)φ′′(e)
d2e

dm2
= α

p′′(y)

[p′(y)]3
. (59)

Rearranging (57), we obtain

d2e

dm2
=
α p′′(y)

[p′(y)]3
− [φ′′(e) + (ρ+ δ + e)φ′′′(e)]

(
de
dm

)2
(ρ+ δ + e)φ′′(e)

. (60)

By assumption, p′(y) > 0, p′′(y) < 0, and φ′′(e) > 0. Therefore, if p′′(y) < 0 and

φ′′′(e) ≥ 0, then d2e/dm2 < 0.
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3. Now we can study the concavity of g1. By definition,

g′1(χ) =
de

dχ
=

de

dm

dm

dχ
, (61)

where de
dm

and dm
dχ

are defined by (58) and (55), both of which are positive, and thus

g1(χ) is increasing in χ. Now, (61) implies that

g′′1(χ) =
d2e

dχ2
=

d2e

dm2

(
dm

dχ

)2

+
de

dm

d2m

dχ2
. (62)

From (60), d2e/dm2 < 0 if φ′′′(e) ≥ 0. Therefore, if d2m
dχ2 ≤ 0, then g′′1(χ) < 0. Now we

find conditions under which d2m
dχ2 ≤ 0.

α2L′(m)L(m)− αL(m)

[
−2dM

m3

dm

dχ
− αL′(m)− αχL′′(m)

dm

dχ

]
≤ 0,

⇐⇒ dm

dχ

[
2dM

m3
+ αχL′′(m)

]
≤ −2αL′(m).(63)

From (53),

αχ =
ρ− dM

m

L(m)
,

and thus equation (63) can be written as

αL(m)
dM
m2 − L′(m)

L(m)

(
ρ− dM

m

) [2dM
m3

+
L′′(m)

L(m)

(
ρ− dM

m

)]
≤ −2αL′(m),

⇐⇒
2dM
m3 + L′′(m)

L(m)

(
ρ− dM

m

)
dM
m2 − L′(m)

L(m)

(
ρ− dM

m

) ≤ −2
L′(m)

L(m)
,

⇐⇒ −L
′′(m)

L′(m)
+

dM
m3

[
2 + mL′′(m)

L′(m)

]
dM
m2 − L′(m)

L(m)

(
ρ− dM

m

) ≤ −2
L′(m)

L(m)
. (64)

By assumption, L′(m) < 0. Equation (64) holds if the following two conditions are

satisfied:

L(m)L′′(m)

[L′(m)]2
≤ 2, (65)

mL′′(m)

L′(m)
≤ −2. (66)

If condition (65) is satisfied, then the first term on the right hand side of (64) is no

greater than the right hand side. Under condition (66), the second term on the left

hand side of (64) is negative. Therefore, if (65) and (66) are satisfied, then (64) holds.
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4. Now we show that if g1(χ) is concave, then g1(χ) and g2(χ) intersect once and only

once. From (39), we know that

g2(χ) =
e

e+ δ
.

Therefore,

g′′2(χ) =
−2δ

(e+ δ)2
< 0.

Denote S1 = (χ1, e1) the steady state that is closest to the origin. Because g1(0) > 0 =

g2(0), at χ1, g1(χ) must intersect g2(χ) from above, i.e., g′1(χ1) < g′2(χ1). Therefore,

suppose that there exists another steady state, S2 = (χ2, e2), that is to the right of S1,

i.e., χ2 > χ1, then g1(χ) must intersect g2(χ) from below, i.e., g′1(χ1) > g′2(χ1).

However, since g′′1(χ) < 0 and g′′2(χ) > 0, it must be that for all χ2 > χ1,

g′1(χ2) < g′1(χ1) < g′2(χ1) < g′2(χ2),

which is a contradiction. Therefore, if Conditions (a)-(c) hold, then there exists one

and only one steady state.

Appendix C Derivation of the Hamilton-Jacobi-Bellman

equations

In this section, we derive the Hamilton-Jacobi-Bellman equations for the buyers and sellers

in an economy where there are a finite number J types of assets.

C.1 HJB for the buyers

We focus on equilibria where buyers adjust their asset holdings only at the beginning of

time, and immediately after the pairwise meetings. Otherwise, they consume or produce in

flow. At time 0, the buyer’s value function solves

V b
0 (a0) = max

at,ct,∆C0

{
∆C0 + E

∫ T

0

e−ρtctdt+ e−ρTW b
T (aT )

}
, (67)

s.t. ˙(1 · at) = rt · at − ct + τt, (68)

∆C0 = 1 · (a0 − a+
0 ), (69)

a0 is given. (70)
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where T is the time the next pairwise meeting occurs, and W b
T (aT ) is the expected continu-

ation value at the moment the buyer enters the pairwise meeting. T follows an exponential

distribution with parameter 1/α. And finally, we assume the following transversality condi-

tion:

lim
t→∞

E0[e
−ρt(1 · at)] = 0. (71)

We can rewrite (67) and obtain the following equation:

V b
0 (a0) = 1 · a0 +max

at,ct

{
− 1 · a+

0 +

∫ ∞

0

e−(ρ+α)t[ct + αW b
t (at)]dt

}
. (72)

From (68), we can rewrite∫ ∞

0

e−(ρ+α)tctdt =

∫ ∞

0

e−(ρ+α)t(rt · at + τt)dt−
∫ ∞

0

e−(ρ+α)t ˙(1 · at)dt.

Using integrating by part and the transversality condition,∫ ∞

0

e−(ρ+α)t ˙(1 · at)dt = −1 · a+
0 +

∫ ∞

0

e−(ρ+α)t(ρ+ α)1 · adt.

And thus, (72) can be rewritten as

V b
0 = max

at

∫ ∞

0

e−(ρ+α)t[rt · at + τt − (ρ+ α)1 · at + αW b
t (at)]dt,

= max
at

∫ ∞

0

e−(ρ+α)t
{
− (ρ1− rt) · at + τt + α

[
W b

t (at)− 1 · at

]}
dt. (73)

where V b
0 = V b

0 (a0)− 1 · a0.

Let P be the power set of {1, 2, . . . , J}. P has 2J elements, each corresponding to a type

of sellers. For example, {1, 2} corresponds to a seller who recognizes asset 1 and asset 2.

It follows that there are 2J types of meetings. Let Pri be the probability of being in the

type i meeting. Let 1i denote an indicator vector that indicates the set of assets that can

be recognized in meeting i. For example, if in the type i meeting, only asset 1 and asset 2

can be recognized, then 1i = (1, 1, 0, . . . , 0)T . Therefore,

W b(at) =
2J∑
i=1

Pri,t max
p(yi)≤1i·at

{
u(yi) + V b

t (a
′
i,t)

}
s.t. 1 · a′

i,t = 1 · at − p(yi) (74)

By the linearity of V b(a), (74) can be rewritten as

W b
t (at) =

2J∑
i=1

Pri,t max
p(yi)≤1i·at

{
[u(yi)− p(yi)] + V b

t (at)
}

=
2J∑
i=1

Pri,t max
p(yi)≤1i·at

[u(yi)− p(yi)] + V b
t (at) (75)
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Substituting (75) into (73), we obtain

V b
0 = max

at

∫ ∞

0

e−(ρ+α)t
{
−(ρ1−rt)·at+τt+α

{ 2J∑
i=1

Pri,t max
p(yi)≤1i·at

[u(yi)−p(yi)]+V b
t

}}
dt. (76)

We can renormalize time and rewrite (76). Along the optimal path,

V b
t =

∫ ∞

0

e−(ρ+α)x
{
−(ρ1−rt+x)·a∗

t+x+τt+x+α
{ 2J∑

i=1

Pri,t+x max
p(yi)≤1i·a∗

t+x

[u(yi)−p(yi)]+V b
t+x

}}
dx.

(77)

Differentiating both sides by t, we obtain

V̇ b
t =

∫ ∞

0

e−(ρ+α)x d

dt

{
− (ρ1− rt+x) · a∗

t+x + τt+x + α
{ 2J∑

i=1

Pri,t+x max
p(yi)≤1i·a∗

t+x

[u(yi)− p(yi)] + V b
t+x

}}
dx

=

∫ ∞

0

e−(ρ+α)x d

d(t+ x)

{
− (ρ1− rt+x) · a∗

t+x + τt+x + α
{ 2J∑

i=1

Pri,t+x max
p(yi)≤1i·a∗

t+x

[u(yi)− p(yi)] + V b
t+x

}}
dx

=

∫ ∞

0

e−(ρ+α)xd
{
− (ρ1− rt+x) · a∗

t+x + τt+x + α
{ 2J∑

i=1

Pri,t+x max
p(yi)≤1i·a∗

t+x

[u(yi)− p(yi)] + V b
t+x

}}
(78)

Using integration by part, we rewrite (78) as

V̇ b
t = lim

x→∞
e−(ρ+α)x

{
− (ρ1− rt+x) · a∗

t+x + τt+x + α
{ 2J∑

i=1

Pri,t+x max
p(yi)≤1i·a∗

t+x

[u(yi)− p(yi)] + V b
t+x

}
+(ρ1− rt) · a∗

t − τt − α
{ 2J∑

i=1

Pri,t max
p(yi)≤1i·a∗

t

[u(yi)− p(yi)]− V b
t

}
+(ρ+ α)

∫ ∞

0

e−(ρ+α)xd
{
− (ρ1− rt+x) · a∗

t+x + τt+x + α
{ 2J∑

i=1

Pri,t+x max
p(yi)≤1i·a∗

t+x

[u(yi)− p(yi)] + V b
t+x

}}
= (ρ1− rt) · a∗

t − τt − α
{ 2J∑

i=1

Pri,t max
p(yi)≤1i·a∗

t

[u(yi)− p(yi)]− V b
t

}
+ (ρ+ α)V b

t (79)

Rearranging equation (79), we obtain the Hamilton-Jacobi-Bellman equation for the buyers:

ρV b
t = −(ρ1− rt) · a∗

t + τt + α
{ 2J∑

i=1

Pri,t max
p(yi)≤1i·a∗

t

[u(yi)− p(yi)] + V̇ b
t (80)

When J = 1, (80) coincides with (4). (82) and (20) are special cases of (80) with J = 2.
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Appendix D A one-asset economy with abundant liq-

uidity

So far, we have only considered cases where liquidity is scarce, i.e., dM/ρ < p (y∗). When

dM/ρ ≥ p (y∗), i.e., liquidity is abundant, liquidity premium L(m) becomes zero. Therefore,

the only possible path for m that satisfies the transversality condition (12) is mt = dM/ρ

for all t, and thus (10) becomes

φ′′(e)ė = (ρ+ δ + e)φ′(e)− αΨ

(
dM

ρ

)
− φ(e). (81)

Figure 17 plots the phase diagram of this economy. When liquidity is abundant, the e isocline

is a horizontal line. Therefore, for any initial state χ0, there is a unique solution to the ODE.

The equilibrium trajectory coincides with the e isocline.

χ
0

e
χ̇ = 0

ė = 0

Figure 17: Phase diagram when liquidity is abundant, i.e., dM/ρ ≥ p (y∗).

Appendix E Asset liquidity and monetary policy trans-

missions

In this section, I study the role of asset liquidity as a channel through which monetary policy

affects the real economy. Consider an economy where a fiat currency, m, coexists with a

Lucas tree, a, which pays a positive dividends d. The supply of the Lucas tree is fixed at

A, with dA/ρ < p(y∗), and the supply of the fiat money grows at a constant rate γ, i.e.,

γ = Ṁt/Mt. Assume that all sellers are able to accept the fiat money, but only a fraction χ

of sellers are equipped with the technology to accept the real asset.

Let ϕa and ϕm denote the value of the Lucas tree and the fiat currency, respectively.

Therefore, the rate of return of holding the real asset and the fiat money are

ra =
d+ ϕ̇a

ϕa
, rm =

ϕ̇m

ϕm
.
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The buyer’s value function now solves:

ρWt = max
a,m≥0

{
− (ρ− rat ) a− (ρ− rmt )m+ α [χtΓ (a+m) + (1− χt) Γ (m)] + τt + Ẇt

}
.

(82)

where a and m are a buyer’s real asset holdings and real money balances, respectively. The

first two terms on the right hand side are the opportunity cost of holding a and m. The

buyer is matched randomly with a seller at rate α. With probability χ, the seller is type 1,

in which case both a and m are accepted. With probability 1 − χ, the seller is type 0, in

which case only m is accepted. When market clears, at = Aϕa
t and mt = Mtϕ

m
t . Under the

market clearing conditions, the first order conditions are:

ρ− dA+ ȧ

a
= αχL(m+ a), (83)

ρ+ γ − ṁ

m
≥ αχL(m+ a) + α(1− χ)L(m), “ =′′ if m > 0. (84)

The left side of (83)-(84) is the flow cost of holding the real asset and the fiat money under

market clearing. The right side of (83) is the expected marginal benefit of holding the asset,

measured by the product of α, the frequency of trade, χ, the probability of meeting a type 1

seller, and the liquidity premium. Similarly, the right side of (84) is the expected marginal

benefit of holding the money, measured by the expected liquidity premium from two types

of meetings where the fiat money is used: meetings with type 1 sellers and meetings with

type 0 sellers. In the latter case the buyer cannot make payment offers that exceed m.

The seller’s optimization problem reduces to the following ODE:

φ′′(e)ė = (ρ+ δ + e)φ′(e)− φ(e)− α [Ψ(m+ a)−Ψ(m)] , (85)

where the terms on the ride side between the brackets is the increase in trade surplus from

acquiring the knowledge and becoming a type 0 seller. The law of motion of χ solves equation

(11). Given an initial state χ0, an equilibrium is a list of time paths (at,mt, et, χt) that solves

(83), (84), (85), (11), and the transversality condition

lim
t→∞

E0[e
−ρt(mt + at)] = 0. (86)

Consider a passive monetary policy, where the money authority changes the rate of

money growth, γ. I study numerically the effects of a monetary policy shock. The model

is parameterized as follows. The utility function is u(y) = 2
√
y. I assume proportional

bargaining, p(y) = θy + (1− θ)u(y), with θ = 0.5. φ(e) = 4e2. ρ = 0.05, α = 1, dA = 0.01,

and δ = 0.02. Initially, the money growth rate γ0 = 0.01, and the economy is at the steady

state, with

(m∗
0, a

∗
0, e

∗
0, χ

∗
0) = (1.13, 0.28, 0.027, 0.57).
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Define y2 (resp. ym) the output in a meeting between a buyer and a type 1 (resp. type 0)

seller. Initially,

(y∗2,0, y
∗
m,0) = (0.91, 0.65),

which implies that the initial expected output is

E(y∗0) = χ∗
0y

∗
2,0 + (1− χ∗

0)y
∗
m,0 = 0.80.
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Figure 18: The effects of an unexpected increase in γ (Red dotted parts represent discrete
jumps.)

At t = 10, γ jumps to 0.05 unexpectedly and permanently. Figure 18 plots the responses

of m, a, χ, y2, ym, and E(y), to the increase in γ.8 At the time of the shock, the real money

balances m jumps down to 0.31 immediately, while the market capitalization of the asset,

a, jumps up to 1.08 immediately, suggesting that the asset now becomes more desirable

as the money becomes more costly to hold. The trends continue in the long run, with m

reaching a new and lower steady state, 0.14, and a reaching a higher steady states, 1.20. The

8The response of e is not plotted in Figure 18, but e’s response is qualitatively similar to a, i.e., at t = 0,
e jumps immediately from 0.027 to 0.22, and then evolves slowly over time to the new steady state, 0.24.
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acceptability of the asset, χ, adjusts slowly and evolves over time to a higher new steady

state, i.e., more agents become familiarized with the real asset. In terms of output, ym is

pinned down by m and responds to the monetary policy shock in a similar way, jumping

from 0.65 down to 0.073 immediately and slowly transitions to the new steady state, 0.017.

In contrast, y2 is determined bym+a, the total liquidity. The decrease inm and the increase

in a partially cancel out. As a result, y2 does not respond as much to the shock. When the

shock hits, y2 jumps from 0.91 to 0.89, and continuously decreases over time until it reaches

the new steady state, 0.83. The bottom right panel of Figure 18 plots the response of E[y]

to the shock, which is non-monotone. When the shock hits at t = 10, E[y] jump down from

0.80 to 0.54. However, after t = 10, E[y] starts recovering, moving up slowly over time until

it reaches the new steady state at 0.77.

This exercise suggests that the effects of monetary shocks are mitigated by the the re-

actions of the liquidity of assets. When the central bank increases the money growth rate,

and thereby targeting a higher inflation rate, money becomes more costly to hold, and real

balances drop. In an economy where the fiat money is the only medium of change, an un-

expected increase in the money growth rate may create a significant drop in output in the

long run. However, this model suggests that when money becomes more costly to hold,

more sellers will be willing to invest in acquiring the technology that allows them to accept

alternative means of payments, and the liquidity of other assets increases. Over time, output

recovers, and the long-run negative effect of inflation can be much lower than the case where

only money can be used in transactions.

Appendix F More on dollarization

F.1 The seigniorage rule

In this section, I consider a different monetary policy regime—the seigniorage rule.9 Consider

an economy where the government is committed to a fixed real consumption stream g. The

government consumption is funded solely by issuing money. I show through a numerical

example that there can be limit cycles in this case. The seigniorage income requirement pins

down the speed of money creation:

Ṁhϕh = g, (87)

where ϕh is the price of the domestic currency in terms of the numeraire. Equation (87)

equates the real value of the created money with government consumption. Under market

9The way the seigniorage rule is modeled in this section follows from Rocheteau (2023).
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clearing, we can rewrite (87) as

Ṁh

Mh
=

g

mh
, (88)

and thus the rate of return of the domestic currency is determined endogenously by

rh =
ϕ̇h

ϕh
=
ṁh

mh
− Ṁh

Mh
=
ṁh

mh
− g

mh
. (89)

Given (89), we can rewrite the buyers’ optimal condition (21) as

ρ+
g

mh
− ṁh

mh
= αχL(mh +mf ) + α(1− χ)L(mh). (90)

An equilibrium is a list of time paths (mh
t ,m

f
t , et, χt) that solves (90), (22), (23), (11), and

the transversality condition (24). In the following, I show numerically that there can be

limit cycles. The model is parameterized as follows: u(y) = [(y + b)1−σ − b1−σ]/(1− σ) with

σ = 1/2 and b = 0.0001, p(y) = θy + (1 − θ)u(y), with θ = 0.5. ρ = 0.03, δ = 0.02, κ = 5,

rf = −0.01, and g = 0.1. In Figure 19, I plot the phase diagram of the system from two

perspectives. The red, blue and green surfaces represent the mh, the e and the χ isoclines,

respectively. The mh isocline,

ρ+
g

mh
= αχL(mh +mf ) + α(1− χ)L(mh),

describes a mapping from χ to mh. Unlike the previous sections, the mh isocline is hump-

shaped, suggesting that one χ corresponds to two mh-s. Intuitively, this is because there is

a trade-off between the speed of money creation and the value of money in equilibrium. In

order to collect g units of seigniorage income, the central bank may issue new money at a

faster speed, in which case money also depreciates faster, or it may issue new money at a

lower speed, but the money has high value. The three surfaces intersect trice, suggesting

two steady states:

S1 = (mh∗
1 ,m

f∗
1 , e

∗
1, χ

∗
1) = (0.1375, 0.0007, 0.0011, 0.0529),

S2 = (mh∗
2 ,m

f∗
2 , e

∗
2, χ

∗
2) = (1.0533, 0.0492, 0.0109, 0.3519).

Steady states S1 is a saddle, and S2 is a sink. Moreover, S1 is a steady state with little real

balances of both currencies, and S2 is a steady state where dollarization is high and the real

balances of both currencies are high. The green curve represents the stable manifold of the

lower steady state, and the red curve represents the stable manifold around the higher steady

state. The two manifolds approach an unstable limit cycle asymptotically from both sides.10

10Related work that includes limit cycles include Boldrin et al. (1993) and Coles and Wright (1998).
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Figure 19: Numerical example: seigniorage income: two perspectives

The model suggests that there exists a quadruple (ε11, ε12, ε21, ε22) ∈ R4, with ε11 < ε21 and

ε21 < ε22, such that when the initial acceptability, χ0, is such that χ0 ∈ (χ∗
2 − ε11, χ

∗
2 + ε12),

then there exists a continuum of perfect foresight equilibria, indexed by the initial e0 and

m0, that spiral towards S2, as well as a continuum of perfect foresight equilibria that spiral

outwards and eventually approach S1. When χ0 ∈ (χ∗
2 − ε21, χ

∗
2 − ε11)∪ (χ∗

2 + ε12, χ
∗
2 + ε22),

then the only equilibria are a continuum of non-stationary perfect-foresight equilibria that

spiral outwards. When When χ0 ∈ (0, χ∗
2 − ε21), the equilibrium trajectory is monotone and

approaches S1. And finally, when χ(0) > χ∗
2 + ε22, there is no perfect foresight equilibrium.

The exercise suggests that, first, when the monetary authority follows the seigniorage rule,

equilibrium may not exist for any initial χ0. Moreover, if the initial χ0 is within a certain

range, the equilibrium may fall into a dollarization trap, where the equilibrium trajectory
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fluctuates around a limit cycle for a long period of time before it stabilizes. Moreover, the

instability of the limit cycle suggests that small perturbations may have significant effects.

For example, a small, exogenous change in χ, e.g., when a number of type 1 sellers enter

or leave the economy, might switch the equilibrium trajectory from the yellow region to the

green region, or vice versa, resulting in different long-run equilibrium outcomes.
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