Insurers Monitor Shocks to Collateral: Micro Evidence from Mortgage-backed Securities^{*}

Thiemo Fetzer University of Warwick and Bonn & CEPR Benjamin Guin Bank of England

Felipe Netto Bank of England

Farzad Saidi University of Bonn & CEPR

February 10, 2025

Abstract

This paper examines how insurance companies monitor and react to cash flow shocks in commercial mortgage-backed securities (CMBS). Using detailed micro data around the onset of the COVID-19 pandemic, we show that lease expiration predicts commercial real estate mortgage delinquency, particularly for offices due to lower demand. Insurers monitor these risks and sell more exposed CMBS—mirrored by a surge in small banks holding CMBS. This monitoring effort also affects insurers' trading in other assets, indicating limited risk-assessment capacity. Our findings reveal that institutional investors actively monitor underlying asset risk and can even gain informational advantages over some banks.

JEL codes: G20, G21, G22, G23

<u>Keywords</u>: Insurance Sector, Risk Management, Mortgage Default, Commercial Real Estate, CMBS, Work-from-home

^{*}We thank Andreas Fuster, David Glancy, Christian Kubitza, Thorsten Martin, Ralf Meisenzahl and Lakshmi Naaraayanan, as well as seminar participants at Queen Mary University of London, University of Leicester, the 2024 BEAR Conference at the Bank of England, the 2024 Conference on Regulating Financial Markets at Frankfurt School of Finance & Management, and the Central Bank of the UAE for helpful comments. Saidi acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy (EXC 2126/1 – 390838866) and through CRC TR 224 (Project C03). Fetzer acknowledges funding by the Leverhulme Prize in Economics, a European Research Council Starting Grant (ERC, MEGEO, 101042703), and Deutsche Forschungsgemeinschaft (DFG, EXC 2126/1 – 390838866). The paper represents the authors' personal opinions and not necessarily the views of the Bank of England.

1. INTRODUCTION

Growing risks in mortgage-backed securities, along with perceived failure by intermediaries to perform due diligence and risk management, are considered some of the main causes of the Global Financial Crisis (Chen et al., 2020). For commercial mortgage-backed securities (CMBS), such risks arise due to the uncertainty about cash flows generated by the underlying mortgages. While monitoring these cash flows is particularly challenging due to the complex structure of CMBS and their multiple underlying assets (Ghent, Torous and Valkanov, 2019), studying investor reactions to salient cash flow shocks can reveal whether and how they monitor risks in these complex securities. Understanding how investors differ in their due diligence and risk-bearing capabilities is especially relevant today, as it determines how commercial real estate (CRE) risks from declining office demand are distributed across financial intermediaries.

In this paper, we examine how cash flow shocks driven by lease expirations and structural changes in office demand affect both mortgage performance and institutional investor behavior. Using detailed micro data around the onset of the COVID-19 pandemic, we show that lease expiration predicts commercial real estate mortgage delinquency, particularly for offices due to lower demand. Insurers—one of the largest investor groups in mortgage-backed securities—actively monitor these risks and sell more exposed CMBS before delinquencies materialize. This monitoring behavior also influences how insurers manage salient risks in the remainder of their asset portfolio. As insurers reduce their CMBS exposure, we document a significant increase in private-label CMBS holdings by small banks, suggesting important shifts in the distribution of CRE risks across the financial system.

We start by documenting how the timing of lease expiration affects mortgage default risk. Since commercial property values reflect the present value of expected rental income, changes in office demand around lease expirations can trigger significant cash flow shocks. Using comprehensive data on commercial mortgages in CMBS deals, containing detailed loan and property characteristics as well as information about lease contracts between borrowers and their core tenants, we find that lease expiration significantly increases CRE loan default risk for offices, particularly following COVID-19 when hybrid work arrangements reduced office demand (Barrero, Bloom and Davis, 2021) and, thus, rental income from CRE. The mortgage data enable us to observe the default status of each loan while also capturing relevant information about the underlying properties, including their location and designated use, as well as rental contract characteristics such as lease expiration dates for different types of properties. Changes in rental cash flows are more common when tenant lease contracts expire, since elevated early termination fees can incentivize tenants to retain their lease until it expires.¹ The lease-expiration timing generates a negative cash flow shock for borrowers if they need time to find a new tenant or if they cannot renew the lease at a similar rent.

Using the COVID-19 pandemic as a shock to the demand for office space, we estimate a difference-in-differences specification and show that lease expiration triggers increases in delinquencies, with a stronger effect after COVID-19. These effects are economically meaningful, with lease expiration leading to about 1.3 percentage points higher delinquency in the baseline period, and an additional 1.2 percentage-point increase in the post-pandemic period.

A challenge in establishing a causal link between lease expiration dates and delinquency rates is that these dates could coincide with other shocks that cause delinquency, e.g., other shocks that lower demand for CRE. Similarly, if mortgages with leases expiring have floating interest rates, concurrent increases in reference interest rates can also cause an increase in delinquency rates. We address these challenges by leveraging the granularity of our data, which allow us to include a rich set of fixed effects that capture several static and time-varying confounding factors that could affect delinquency rates. In addition, our identification strategy exploits lease expiration dates set well before the COVID-19 shock, so that the timing of lease termination is plausibly exogenous to pandemic-induced structural shifts in CRE demand.

If lease agreement information is monitored by investors, then these investors would be more likely to sell CMBS with a larger share of mortgages linked to leases expiring when faced with unexpected shocks to collateral demand. Moreover, this monitoring effort could make investors less reactive to risks in other assets if their capacity to monitor such risks is limited.

¹This should hold true under the condition that the costs of terminating the rental contract early are higher than the savings from moving to a smaller rental object, in particular office space.

We then document how large insurance companies' exposure to offices through their CMBS holdings is, and the extent to which these investors monitor cash flow risk caused by lease expiration. For this purpose, we complement our comprehensive monthly panel data on CMBS deals and mortgages against CRE with granular information on the asset portfolios of U.S. insurance companies. Insurance companies are indeed a large group of investors in CMBS, holding close to one-fourth of newly issued private-label CMBS between 2017 and 2022. We also find that the fraction of insurers' private-label CMBS portfolio exposed to offices peaks in 2020, and decreases afterwards, which is consistent with lower demand for CMBS with office exposures among those investors. Nonetheless, insurers remain largely exposed to cash flow risks arising from lower office demand. In our sample, the median insurance company holds a private-label CMBS portfolio with an average exposure of about 26% to offices. This potentially dwarfs banks' exposure to other CRE-related risks, often of indirect nature (Acharya et al., 2024).

We then test if insurers monitor cash flow risks in their CMBS portfolio by asking if bonds more sensitive to different cash flow shocks are more likely to be sold following the sudden, unexpected increase in risk caused by COVID-19. Our identification strategy relies on the idea that pandemic-driven lower demand for CRE constitutes an unexpected shock to CMBS cash flows, with different effects across property collateral types. We document how most CMBS have the majority of their cash flow shocks induced by lease expiration occur within six years. We use this threshold to estimate a difference-in-differences specification to assess if CMBS with exposure to office-linked loans whose main leases expire within six years are more likely to be sold after the pandemic. The richness of our data allows us to include insurer by time and insurer by bond fixed effects, on top of time-varying coupon type and risk classification fixed effects. This addresses concerns that our estimates may be contaminated by other time-varying insurer shocks or bond characteristics. Moreover, it allows us to capture changes in trading behavior within an asset class with similar capital costs for insurers.

We find that insurers infer risks from shocks to expected cash flows, affecting their trading behavior. Insurance companies are more likely to sell CMBS which are exposed to offices with leases expiring within six years. Insurers are also more likely to sell retail-exposed CMBS, but this effect is not sensitive to underlying lease expiration. This suggests that insurance companies can identify how different property types are affected by the pandemic, and the nature of cash flow risks caused by lower demand for offices. Treated bonds (those exposed to office lease expiration within six years) are over two percentage points more likely to be sold by insurers in the post-COVID period than comparable bonds with any office exposure. This sensitivity to underlying lease expiration in the medium term indicates that the market expects a whole asset class—commercial real estate—to be affected by the pandemic shock for a longer duration.

Insurers adjust to risks in CMBS also along other margins. First, the share of CMBS acquired by insurers with office exposure falls after 2020, along with the share of CMBS exposed to cash flow shocks via lease expiration. Second, insurers demand higher coupons for holding office-exposed CMBS originated after the pandemic, even when controlling for other determinants of CMBS returns. These findings corroborate the idea that insurers monitor risks to their CMBS portfolio, and learn about structural changes that make certain types of collateral more prone to cash flow-induced losses.

We also consider affected insurers' trading behavior in the remainder of their securities portfolio. As insurers react to immediate losses in retail-exposed CMBS, this could trigger sales of other risky assets (Ellul et al., 2022). Indeed, we find that insurance companies are more likely to sell risky assets if they have a larger exposure to retail collateral. At the same time, insurers put in effort to assess underlying risks in their portfolio of securitized assets as these risks become more relevant, as was the case for office-linked CMBS during the COVID-19 pandemic. By locking down valuable monitoring efforts, this gives rise to the possibility that insurance companies are subsequently less sensitive to increases in capital requirements or other consequences of holding on to riskier assets in the remainder of their portfolio. Consistent with this, we find that insurers are *less* likely to sell riskier bonds in the post-COVID period if they have a larger exposure to offices in their CMBS portfolio, even after accounting for time-varying unobserved heterogeneity at the insurer and security levels. The latter effect points to the limited resources that financial institutions have at their disposal to effectively constrain their exposure to investment with lurking risk (e.g., Chen et al., 2020).

If insurers reduce their exposure to private-label CMBS, other investors are acquiring these risky assets. Since monitoring of securitized assets is costly, it is possible that less sophisti-

cated investors are less sensitive to lurking risk and end up holding larger shares of privatelabel CMBS after the pandemic. In line with this view, we document a remarkable rise in the holdings of private-label CMBS by banks after 2020, especially by small and medium-sized banks. The number of small banks that hold private-label CMBS *nearly doubles* between 2020 and 2023. Since small banks are in general not exposed to large office-linked loans (Glancy and Kurtzman, 2024), this could be caused by additional risk-bearing capacity. However, to the extent that small banks have lower risk-management capabilities (Ellul and Yerramilli, 2013), this is also consistent with the idea that better informed insurers offload part of their office-borne CMBS risks to less well informed small banks. Moreover, contrary to insurers, other investors do not seem to demand higher coupons from office-exposed CMBS issued after the pandemic, suggesting these investors are indeed less sensitive to such risks. Our findings point to how investors' ability to monitor risks in complex assets contributes to the transfer of risks caused by systematic shocks.

Related literature. Our paper contributes to the literature studying securitized assets and mortgage-backed securities in particular.² This literature has documented how risks in mortgage-backed securities (MBS) affected institutional investors during the Global Financial Crisis. Several papers investigate how MBS characteristics such as equity retention (Begley and Purnanandam, 2017) and retention structure (Flynn, Ghent and Tchistyi, 2020) are used by originators to signal asset quality. Ghent, Torous and Valkanov (2019) show how more complex CMBS underperform during the Global Financial Crisis, with complexity contributing to both obfuscating collateral quality and allowing for cash flows to be diverted towards residual tranches. Moreover, investors do not price this complexity-induced default risk. These studies emphasize the difficulty in assessing risks in MBS, which requires costly infrastructure to be performed (Hanson and Sunderam, 2013). Our contribution is to show that despite these due-diligence challenges and being typically viewed as less capable of doing so, institutional investors monitor detailed, time-varying property and lease contract characteristics that predict CMBS losses, and divest on the basis of such information.

As such, our paper also relates to a broad literature that studies insurance companies'

²See, for example, DeMarzo and Duffie (1999), DeMarzo (2005), Demiroglu and James (2012), Ashcraft, Gooriah and Kermani (2019), and Aiello (2022).

portfolio decisions, and how they react to risks in their asset portfolio.³ This literature documents that insurance companies react to changes in observable risk such as downgrades (Ellul, Jotikasthira and Lundblad, 2011), and highlights how regulation affects insurers' behavior facing asset risk (Chen et al., 2020; Becker, Opp and Saidi, 2022; Sen, 2023). We contribute to it by showing how insurers divest from CMBS with larger cash flow risks following the pandemic, even if these risks do not immediately lead to higher capital costs. Moreover, in line with Ellul et al. (2022), we find that insurers divest from risky assets when a large share of their CMBS portfolio suffers a devaluation shock, and that the additional effort undertaken to monitor those cash flow risks seems to limit insurers' ability to react to salient risks in other assets. This finding is particularly relevant given the importance of insurance companies in absorbing fluctuations in asset prices (Chodorow-Reich, Ghent and Haddad, 2021).

Finally, we relate to the literature exploring the impact of work-from-home adjustments in CRE mortgage default risk. Thus far, this literature has not documented a direct link between lower office demand and CRE mortgage default (Van Nieuwerburgh, 2022).⁴ Moreover, Jiang et al. (2023) explore how losses from CRE loan portfolios affect the solvency of U.S. banks, and Glancy and Kurtzman (2024) consider how differences in small banks' CRE loan portfolios govern reduced exposure to loans whose poor performance was driven by lower office demand. Our contribution is to provide a detailed account of how insurers are affected by CRE risks through their CMBS holdings. Moreover, variation in how insurers react to shocks expected to materialize in the medium term suggests market participants expect the office demand shock to have a long duration. Finally, the exposure of small banks to CRE risks through their holdings of CMBS has been largely ignored so far. As CRE risks shifted across the financial sector, the number of small banks exposed to CMBS has increased substantially. In that sense, any comprehensive analysis of how CRE risks will affect financial stability should account for both banks' and non-banks' CMBS exposures alike.

³See, among others, Ge and Weisbach (2021), Koijen and Yogo (2022), Bretscher et al. (2022), Bhardwaj, Ge and Mukherjee (2025), and Koijen and Yogo (2023).

⁴As in our study, Glancy and Wang (2024) highlight the importance of lease expiration in the post-COVID period, showing that it affects office vacancies and loan performance. Both studies provide direct evidence of the importance of cash flow-triggered mortgage default for commercial real estate. Several papers study the relevance of strategic and cash-flow motives for default of *residential* mortgages (Ganong and Noel, 2023; Bhutta, Dokko and Shan, 2017; Gerardi et al., 2018), with less attention devoted to *commercial* mortgages.

2. LEASE EXPIRATION, CASH FLOW SHOCKS, AND CRE MORTGAGE DEFAULT

In this section, we develop hypotheses that will guide our empirical analysis. First, sudden drops in demand for office space lead to fewer occupied offices after leases expire, either by downsizing or lack of renewal, and longer search times for new tenants. This results in lower income from new leases, reducing overall lease revenue. As a result, to the extent that borrowers rely on such income to repay mortgages, mortgage default rates should increase, especially in periods of lower demand for office space.

Hypothesis 1: Lease expiration persistently increases defaults of mortgages against offices after the COVID-19 cash flow shock, whereas other types of collateral, especially retail, see defaults immediately and are, thus, less sensitive to lease expiration.

Since U.S. insurers frequently hold CMBS, any increase in the riskiness of these assets could influence their investment decisions. First, if insurance companies can observe lease expirations, the increased likelihood of future delinquencies due to lease expirations should make CMBS with a higher proportion of soon-to-expire mortgages less attractive to hold. Since lower demand increases the persistence of default triggered by lease expiration, investors are more likely to monitor characteristics associated with cash flow risks following the pandemic-linked shock to CRE demand. Consequently, they are more prone to selling CMBS with a larger exposure to cash flow shocks after the pandemic.

Hypothesis 2: Conditional on monitoring, insurers should sell CMBS with relatively more mortgages against offices undergoing lease expiration after the COVID-19 cash flow shock, while their propensity to sell CMBS with retail exposure increases immediately and is otherwise invariant to underlying lease expiration.

Mortgage-backed securities are complex assets, and assessing risks for these assets is costly and often accessible only to sophisticated institutional investors (Hanson and Sunderam, 2013). Even if insurers possess the ability to monitor the cash flow risks associated with lower CRE demand and lease expiration, as hypothesized, other intermediaries might not. In that case, if insurers sell CMBS with a larger exposure to cash flow risks, and if intermediaries differ in their monitoring capacity, CMBS sales by insurers should be accompanied by increasing holdings of less sophisticated investors.

Hypothesis 3: If monitoring capacity is heterogeneous, risky CMBS should, on average, flow from insurers to less sophisticated investors.

Finally, the demand shock for office space leading to an unexpected increase in cash flow risks to CMBS portfolios can affect insurers' trading activity in *other* assets. This is possible for two reasons. First, facing *immediate* losses—as is the case for retail-exposed CMBS—in their asset portfolio caused by higher delinquencies after the onset of the pandemic, insurers might de-risk by selling other, riskier assets (Ellul et al., 2022). Moreover, if insurance companies' risk-assessment capacity is limited (Chen et al., 2020), insurers which exert more effort to monitor cash flow risks—especially those linked to office collateral—to their CMBS portfolio after the onset of the COVID-19 pandemic could become less sensitive to consequences of holding riskier assets. This reduction in the salience of risk characteristics for other bonds in insurers' portfolios would lead to lower sales in response to changes in observable risk, such as rating downgrades or capital surcharges.

Hypothesis 4: *Insurers'* holdings of CMBS affect their trading behavior in other risky assets depending on the type of collateral.

3. DATA DESCRIPTION

Our data come from two main sources: Trepp and the National Association of Insurance Commissioners (NAIC). Trepp is a leading provider of commercial real estate-collateralized products data (Flynn, Ghent and Tchistyi, 2020), collecting origination information from CRE mortgages, CMBS deals and bonds, which is obtained from various sources. The data include detailed information such as property type and location, mortgage maturity, amount, interest rates, and delinquency information for each distribution date. We classify loans according to the use of the property serving as collateral for the loan. We distinguish between *Office, Retail,* and further property types.⁵ The data also contain information on lease agreements between borrowers and tenants. We focus on the lease information for the largest tenant only. Appendix-Table A.1 shows that the availability of lease expiration data varies by property type, with Office and Retail as the only two property types for which the date of lease expiration of the main tenant is available for more than 50% of the observations. For this reason, we mainly consider these two property types throughout the paper.

We obtain holdings and trades of fixed income assets of all insurance companies in the U.S. from the National Association of Insurance Commissioners (NAIC). The holdings data are based on NAIC Schedule D Part 1, and contain CUSIP-level end-of-year holdings of fixed income securities, including CMBS. The trading information is obtained from NAIC Schedule D, Parts 3 and 4, which contain information on acquisitions and dispositions of fixed income assets by insurance companies, respectively. We identify actual trades (sales and purchases) using a procedure similar as in Becker, Opp and Saidi (2022), which we describe in Appendix C.

We restrict our analysis to the post-2017 period.⁶ This ensures that we mitigate concerns about the influence of the Global Financial Crisis (GFC), e.g., through elevated delinquency rates responding to demand shocks that originated during the GFC. Table 1 shows the summary statistics of the mortgages in our sample. Panel A focuses on all properties, which have a median lease expiring in 2024 and a median mortgage maturity of 10 years. We classify a loan as delinquent if payments are past due for at least 90 days. On average, less than 1% of all loans are delinquent in our sample period, around 12% of our loans have floating interest rates, and less than 1% are recourse loans.

Finally, since our analysis mostly focuses on offices and retail CRE, we provide a breakdown of the characteristics of the mortgages used to finance these property types in Panels B and C of Table 1, respectively. Relative to retail, offices have floating interest rates more frequently, lower delinquency rates, and similar maturity. Moreover, the mean and the median share of each property occupied by the largest tenant is smaller in offices than in retail.

⁵These are classified as *Multifamily*, *Mixed Use*, *Healthcare-Nursing*, *Lodging-Restaurants*, *Industrial and Ware-houses*, and *Other*. The details of how these types are obtained, along with other details of our data cleaning procedure, can be found in Appendix B.

⁶Our Trepp sample covers CMBS information until June 2022.

4. Cash Flow Shocks and Mortgage Delinquencies

4.1. The Role of Lease Expiration

First, focusing on mortgages whose lease expiration dates occur between 2017 and 2022, we evaluate the importance of lease expiration-induced cash flow shocks to borrowers in driving delinquency rates. Using this sample period, we examine delinquency rates in the time window of one year prior and one year after the expiration date of the main lease. Given our definition of a loan being delinquent if it is at least 90 days, or about 3 months, past due, we expect to see delinquency rates to increase comparatively more only after the third month in which a lease expires.

Figure 1 shows the average delinquency rates for all property types for which such information is available. As expected, we observe that delinquency rates increase, with the sharpest increase occurring exactly in the fourth month after the lease expiration date. This is in line with the idea that cash flow shocks from lease expiration induce borrowers to stop making payments on their mortgages. This may be because the existing borrower cannot find a new tenant immediately or the lease generates lower income than the previous one. Moreover, delinquency rates seem to converge back to their pre-lease expiration trend approximately 10 months after lease expiration, which indicates that borrowers resume their payments once a new tenancy agreement is secured. This further illustrates the importance of cash flow shocks to the default behavior of CRE borrowers.

This preliminary analysis, however, does not account for potential differences in delinquency rates depending on the use of the property. There are reasons to assume that such differences exist. First, the specific use of the property might limit a borrower's ability to find a new tenant. For example, it may be more difficult to re-purpose office space for other uses, which can increase search costs and lower expected revenue after an existing lease expires. Second, firms in different sectors might be more likely to renew their lease contracts, and to the extent that these firms select into different types of properties, this would differentially affect borrowers depending on the property they are financing with their loan. Third, it may be borrower-specific characteristics that matter. For example, some borrowers who take out mortgages against certain types of properties might struggle more to find new tenants, which would be the case if search frictions are different when looking for office or retail tenants.

Against this background, we split our sample into two subsamples: offices and retail properties. Figure 2 shows a remarkable difference in delinquency behavior for these different property types. The plot on the left-hand side shows sharp increases in delinquency rates of offices following the end of the main lease agreement. By contrast, the plot on the right-hand side suggests that increases in delinquency rates of retail properties are more short-lived, with shocks introduced by the end of lease agreements being more transitory in nature. Overall, these results indicate that cash flow shocks are strong predictors of office delinquencies, but less so for retail properties.

So far, we have examined delinquencies focusing on the exact timing of the lease expiration for a specific property, but not explicitly considering the delinquency behavior of mortgages without leases expiring. This difference in exposure to cash flow shocks caused by lease expiration can be particularly relevant in the post-COVID period, as lower demand for offices could interact with these contractual terms and lead to more persistent losses for landlords. To the extent that lower CRE demand amplifies cash flow shocks, one would expect mortgages with leases expiring in the post-COVID period to perform worse than mortgages which are not subject to such cash flow shocks.

We assess differences in delinquency rates of properties with and without leases expiring by looking at office/retail properties for which we have lease expiration information (i.e., we know if the main lease expires or not), and zoom in on the immediate period before/after the start of the COVID-19 pandemic. We compare the average delinquency rate of loans with leases expiring in 2021-2022 with the average delinquency rate of loans without leases expiring in these two years.

The results are shown in Figure 3. The left-hand side plot shows a remarkable pattern for office mortgages with and without leases expiring in 2021-2022. Delinquency rates for the latter group are pretty much stable throughout the entire period, whereas there is a large spike in delinquency rates for mortgages the main leases of which expired in 2021-2022. This further indicates that cash flow shocks are a relevant determinant of office mortgage default, and that aggregate delinquency rates do not necessarily capture the extent to which work-from-home arrangements trigger CRE mortgage default given their effect on office demand.

By contrast, the trajectory of retail mortgage delinquencies on the right-hand side of Figure

3 shows a different pattern. Delinquency rates spike immediately at the onset of the COVID-19 pandemic, which coincides with lockdown periods during which retail stores did not generate income to tenants. Following that initial shock, mortgages with leases expiring in 2021-2022 demonstrate persistently higher delinquency rates, which suggests that lease expiration matters for the adjustment to the initial shock. In other words, while cash flow shocks do not seem to *cause* mortgages to go from performing to non-performing in the case of retail, they do seem to affect the *persistence* of the initial increase in delinquency rates.

By zooming in on offices rather than retail properties, we can focus on structural changes in the demand for office space without explicitly considering the implications of the 2020 lockdowns for businesses. Furthermore, if institutional investors trade CMBS holdings before losses materialize, then one would expect their trading behavior to be based on office exposure if these mortgage losses can be predicted by shocks to expected cash flows.

4.2. The Effect of Lease Expiration on Mortgage Delinquency

Our motivating evidence suggests a key role for lease expiration dates in driving delinquency behavior for CRE mortgage borrowers, especially for office properties. Nevertheless, there are a range of other factors that could be driving the delinquency dynamics we observe for properties subject to lease expiration. For example, lease expiration dates could correlate with systematic or region-specific shocks that affect the U.S. economy in specific times, such as the Global Financial Crisis and the onset of the COVID-19 pandemic. Moreover, loans for which we have lease expiration data could also have specific characteristics, such as floating interest rates, which can make them more susceptible to increases in delinquency in times of higher interest rates.

To evaluate the relationship between lease expiration and mortgage default, we leverage the richness of our data, allowing us to compare otherwise similar mortgages that have leases expiring and not. First, we estimate the following specification:

$$I_{jrt}^{D90} = \alpha_j + \alpha_{rt} + \alpha_{j(floating)t} + \sum_{\iota \in [-15, 15] \setminus \{3\}} D_{jt}^{\iota} \delta_{\iota} + \varepsilon_{jrt},$$
(1)

where I_{jrt}^{D90} is an indicator variable equal to 1 if loan j, for a property located in city r, is

delinquent for more than 90 days in year-month t, D_{jt}^{i} equals 1 if loan j is ι months after lease expiration in year-month t. α_{j} and α_{rt} are loan and city-year fixed effects, which allow us to control for time-invariant loan-level and time-varying regional characteristics that might influence default rates. $\alpha_{j(floating)t}$ are interest rate type by year fixed effects to capture differences in delinquency between floating and fixed interest rate loans.

The coefficients of interest δ_i capture the percent difference in delinquency rates *i* months before and after lease expiration, relative to three months after the lease expires. Importantly, the use of comprehensive fixed effects ensures this variation does not correspond to time-varying regional shocks or to index rate characteristics of the mortgages that could also influence delinquency behavior. We only include loans for which we have lease expiration information,⁷ and cluster standard errors at the loan level.

Since lower office demand caused by work-from-home (WFH) arrangements might affect CRE mortgage default rates, we estimate (1) separately for the period before and after the COVID-19 pandemic started (where we consider March 2020 as the beginning of the pandemic). Intuitively, if borrowers face lower demand for their properties as a result of structural changes associated with work-from-home preferences, then one would expect the cash flow shocks introduced by lease expiration to be long-lasting. Conversely, absent demand shocks, the initial drop in cash flows would cease after the borrower manages to find a new tenant, and delinquency rates would slowly transition back to their pre-lease expiration levels.

The results are shown in Figure 4, indicating that WFH demand adjustment did affect the persistence of the effect of cash flow shocks on delinquency rates. While the initial effect is similar in both periods, delinquency rates in the post-COVID period start to diverge further ten months after lease expiration. Our point estimates indicate that relative to three months following lease expiration, a mortgage experiences a one percentage-point higher delinquency rate 15 months after lease expiration before the pandemic. The effects of the cash flow shock induced by lease expiration are longer-lasting in the post-COVID period, with delinquency rates gradually becoming larger following a lease expiration. The difference in relative delinquency between 3 months after lease expiration and 15 months after

⁷This is to avoid including loans with leases expiring in our control group (which could happen for loans for which we do not observe that information, but might experience a lease expiration nonetheless).

lease expiration is about four percentage points, almost four times the respective point estimate from the pre-COVID period.

To formally estimate the differences in post-lease expiration delinquency behavior before and after the onset of the pandemic, we estimate a triple-differences specification:

$$\begin{split} I_{jrt}^{D90} &= \alpha_{j} + \alpha_{rt} + \alpha_{j(floating)t} + \gamma_{1} Post \ Expiration_{jt} \\ &+ \beta_{1} Post \ Expiration_{jt} \times \ Post \ Covid_{t} + \beta_{2} Post \ Expiration_{jt} \times \ Ind \ Office_{j} \\ &+ \beta_{3} Post \ Covid_{jt} \times \ Ind \ Office_{j} \\ &+ \beta_{4} Post \ Expiration_{jt} \times \ Post \ Covid_{t} \times \ Ind \ Office_{j} + \varepsilon_{jrt}, \end{split}$$
(2)

where *Post Covid*_t is a dummy equal to 1 after March 2020, *Post Expiration*_{jt} equals 1 if loan *j* had its main lease expiration before or in year-month *t*, and *Ind Of fice*_j equals 1 if loan *j* is linked to an office. The coefficient of interest β_4 captures the difference in the effect of lease expiration-induced cash flow shocks on delinquency rates since the onset of the pandemic.

The results are in Table 2. Across all specifications, the coefficient on the triple interaction term is positive and statistically significant, and the economic magnitude is relevant. The baseline effect of lease expiration on mortgage delinquency increases by about 1.2 percentage points, meaning the effect of cash flow shocks on delinquency rates is twice as strong after the COVID-19 pandemic. Cash flow shocks increase delinquency rates by more than 2 percentage points when compared to the average delinquency rate of 0.6% for properties without expired leases in the post-COVID period. This is an economically significant effect, with delinquency rates of office mortgages whose main tenancy agreement expired being more than four times as large as delinquency rates of mortgages that do not experience such cash flow shocks. These results reinforce the notion that demand shocks caused by hybrid work arrangements, which became prevalent after the beginning of the COVID-19 pandemic, further exacerbate the effects of cash flow shocks on CRE mortgage delinquency rates.

CMBS exposure to regional work-from-home characteristics. Our analysis hinges on the observation that by being relatively more affected by hybrid work arrangements, demand for office properties is also relatively more affected by the COVID-19 shock, thereby leading to more persistent cash flow shocks to rent revenue. Importantly, another dimension of hetero-

geneity in exposure to work-from-home adjustments refers to regional characteristics. For instance, cities like San Francisco or New York are perceived to be more affected by hybrid work arrangements than others (Gupta, Mittal and Nieuwerburgh, 2023).

While we cannot directly measure demand for office space, we can nevertheless assess how mortgages in our sample correlate with measures that have been constructed to capture regional sensitivity to work-from-home arrangements. For this purpose, we use the measure of jobs that can be performed remotely by Dingel and Neiman (2020), which should broadly indicate which areas are more likely to be affected by work-from-home arrangements. Figure A.2 in the Appendix shows the distribution of the percentage of teleworkable jobs in an MSA, for office-linked mortgages in our sample and for all MSAs. Relative to the distribution across all MSAs, office-linked mortgages are indeed located in areas with higher sensitivity to work-from-home shocks.

5. Do Insurers Monitor Cash Flow Risks?

We have documented a link between expected changes in the tenancy agreement of a specific office and default rates of the mortgage linked to that property, which has implications for assets whose cash flows depend on the performance of these CRE mortgages. In particular, insurance companies' cash flows obtained from their holdings of CMBS might be compromised if the underlying mortgages become non-performing. This raises several fundamental questions. What is the extent and dynamics of the exposure of insurance companies to office CRE through their holdings of CMBS? Given the predictable nature of expected cash flow shocks to mortgage payments, do insurance companies monitor such risks and sell bonds based on cash flow shocks to mortgage CRE? Finally, does lower office demand in the post-pandemic period affect the trading behavior of these intermediaries? We explore these issues next.

5.1. Insurer Holdings of WFH-sensitive CMBS

We start by leveraging our data to document the importance of insurance companies for the private-label CMBS market, and to characterize their exposure to shocks linked to office collateral. We are in a unique position to do so, given our access to detailed CMBS information

(including origination dates) and granular data on the portfolio of insurance companies.

First, we consider end-of-year outstanding balances and amounts issued for all privatelabel CMBS in our sample, and identify which bonds are held by insurance companies at the end of each year. Figure 5 shows that insurance companies are one of the main investors in CMBS markets. By the end of 2022, insurance companies hold about \$200 billion out of \$800 billion outstanding (Panel A). Similarly, between 2017 and 2019, insurance companies acquired around 20% of the total amount of new issues of private-label CMBS in a given year (Panel B). Interestingly, the share of new CMBS originations held by insurers drops to about 17% in 2022. This reduction in the overall amount of CMBS held by insurance companies would be consistent with lower insurer demand, which could arise as lower office demand leads to mortgage default rates.

We further explore the dynamics of CMBS holdings by insurance companies by documenting the exposure of the latter's CMBS portfolio to office CRE collateral. We classify a bond as exposed if it has *any* mortgages financing office properties within its pool of collateral. We then calculate the share of CMBS that is exposed to offices out of the entire portfolio of private-label CMBS held by insurance companies.

Figure 6 shows the share invested in *non-exposed* bonds for each year. One can see that the share of CMBS exposed to offices increases up until 2020, at which point this trend is reversed. In particular, insurance companies increase the share of CMBS *not exposed* to offices in 2021 and 2022 by about five percentage points. This further suggests that insurers reacted to risks arising from lower demand for office space by adjusting their holdings of CMBS.

Next, we document the exposure of insurers to risks related to expiring tenancy agreements of mortgage-financed offices. We calculate the percent share of mortgages against offices in each deal associated with a CMBS in our sample as of June 2022. We also compute the share of this portfolio of office-linked CMBS with underlying leases expiring between 2023 and 2026. Intuitively, this percentage represents how exposed to office mortgages a particular bond is, abstracting from seniority considerations.

The left panel of Figure 7 considers exposure to any office properties, while the right plot considers exposure to office properties with at least one underlying mortgage with a tenancy agreement expiring between 2023-2026. The median insurance company has its private-label CMBS with an average exposure of about 26% to office properties, and 4.6% to office

properties with tenancy agreements expiring in 2023-2026. Importantly, there is considerable heterogeneity in the size of the average exposure of CMBS to offices among insurance companies, with the top decile of the distribution of insurers having an average exposure of 39% of their portfolio to offices, and 10% to offices with underlying lease expiration.

5.2. CMBS Exposure to Cash Flow Shocks and Trading Behavior

We next exploit exposure heterogeneity across CMBS and insurers to estimate the effect of expected cash flow shocks on insurers' trading behavior. Insurance companies might anticipate the effect of work-from-home (WFH) shocks on the cash flows and on the value of their CMBS, and therefore attempt to sell these bonds. Moreover, even if insurance companies do not trade CMBS based on office exposure alone, they could still anticipate how shocks to their assets caused by upcoming lease expiration could lead to losses from mortgage default.

Each CMBS can be composed of multiple mortgages the underlying leases of which expire in different years. This gives rise to a dynamic structure for the share of the expected losses due to default following lease expiration. For example, consider a CMBS with four underlying equal-sized mortgages, all of which finance offices occupied by a single tenant. Assume that two leases expire in two years, one lease expires in three years, and one lease expires in six years. Such a CMBS would have 50% of its expected cash flow shocks materializing in two years, 75% of its expected cash flow shocks materializing within three years, and all expected cash flow shocks would materialize within six years. Thus, the time-sensitive nature of the expected cash flow shocks, along with the structure of CMBS, leads to heterogeneity in exposure to expected losses due to office mortgage default across different bonds.

To illustrate this point, we construct the distribution of expected cash flow shocks across future lease expiration years for all CMBS held by insurance companies. For each deal in our sample, we calculate the share of its largest underlying leases that expires τ years in the future. Formally, for a given deal *d*, we calculate:

$$Share(\%)_{dt}^{\tau} = \sum_{j \in J_{t}^{d}} \frac{\omega_{jt}^{\tau} \times Balance_{jt}}{\sum_{\tau} \omega_{jt}^{\tau} \times Balance_{jt}} \times 100,$$
(3)

where $\omega_{jt}^{\tau} \in [0, 100]$ denotes the share of mortgage *j*'s contract at the end of year *t* that expires

in year τ , *Balance_{jt}* is mortgage *j*'s outstanding balance at the end of year *t*, and J_t^d is the set of underlying mortgages in deal *d* at the end of year *t*.

Figure 8 shows the resulting distribution after averaging $Share(\%)_{dt}^{\tau}$ across all years in our sample, separately for offices and retail. A large share of expected cash flow shocks materializes only within three to six years relative to each year in which we obtain outstanding balances. The average bond in our sample experiences only around 16% of its cash flow shocks within two years. Hence, it would be incorrect to measure a bond's exposure to expected cash flow shocks limiting the analysis to bonds with leases expiring in the following one or two years, since, on average, a large share of the shocks is yet to materialize.

The average bond in our sample has around 50% of its expected cash flow shocks to office mortgages materializing *within six years*. This provides us with a natural threshold against which to compare individual bonds. To understand if insurance companies trade based on expected cash flow shocks, we test if they sell private-label CMBS with larger exposure to office mortgages with leases expiring in the near future more frequently after the pandemic started. We define a bond j in year t as *treated* if it has leases expiring within six years relative to year t. Hence, our control group consists of bonds whose expected cash flow shocks materialize only after most cash flow shocks have *already materialized for the average CMBS*. Intuitively, if insurers discount future cash flows (at any non-zero rate), they should value losses in the short to medium term more than any long-run losses.

We then estimate the following specification:

$$I_{ijt}^{sold} = \alpha_{it} + \alpha_{ij} + \alpha_{j(coupon)t} + \alpha_{j(NAIC)t} + \beta_1 Post \ Covid_t \times Treat_{jt}^{Exp \ Office} + \varepsilon_{ijt}, \tag{4}$$

where *Post Covid*_t equals 1 after 2019, and *Treat*_{jt}^{Exp Office} equals 1 if bond j is exposed to office-linked mortgages whose main lease expires within six years (excluding year t). We do not include delinquent loans when creating the lease expiration treatment dummies so as to avoid capturing the effect of concurrent losses. α_{it} , α_{ij} , $\alpha_{j(coupon)t}$, and $\alpha_{j(NAIC)t}$ are, respectively, insurer by year, insurer-security, coupon type by year, and NAIC designation by year fixed effects.

The results are in Table 3, and indicate that insurers do take into account how bonds are affected by cash flow shocks in the short to medium term when selling CMBS. In column 1,

we estimate (4) and find that insurance companies are more than 2 percentage points more likely to sell bonds which have office mortgages that expire in the next six years after the COVID-19 pandemic than before. The mean of the dependent variable I_{ijt}^{sold} equals 0.087 for private-label CMBS, indicating a meaningful economic effect from exposure to cash flow shocks expected to materialize in the short to medium term.

This effect is robust to other characteristics of the pool of mortgages of a given CMBS that could affect the likelihood of selling the bond. In particular, we account for the fact that $Treat_{jt}^{Exp \ Office}$ reflects de facto an interaction between any office exposure and lease expiration within six years, which we control for in turn.

In column 2, we include a dummy variable for the existence of any offices in the underlying pool of mortgages of bond j in year t. In spite of incorporating this control variable along with its interaction with the post-COVID indicator, our estimate remains virtually unaltered. This implies that the presence of office collateral affects the likelihood of sales only for those mortgages with cash flow shocks that are expected to materialize in the short to medium term.

In the same way, we account for lease expirations more generally. In column 3, we include a dummy variable that equals 1 for CMBS with *any* mortgage with a lease expiring within six years, I_{jt}^{Exp} . In line with the idea that insurers are sophisticated enough to understand how collateral type and lease characteristics jointly determine expected mortgage default, we find that underlying lease expiration affects only the post-COVID sales probability for bonds associated with office collateral. Furthermore, lease expiration and office properties play no role for insurance companies' selling decisions before the onset of the COVID-19 pandemic either. This lends support to our conjecture that insurance companies are learning about the increase in riskiness of the underlying collateral of CMBS posed by work-from-home demand shocks.

Our preliminary evidence in Section 4 shows contrasting patterns between office and retail loan delinquency rates. Loans linked to retail experience a spike in delinquency right at the onset of the pandemic, which would also pose a risk to holders of CMBS exposed to retail properties. Importantly, this risk is less sensitive to lease expiration, suggesting that the latter is less relevant for retail-exposed CMBS in comparison to office-exposed CMBS. Column 4 of Table 3 tests this idea by further breaking down the collateral and the lease-expiration dummies into mutually exclusive property types. In particular, the dummies $I_{jt}^{Exp \ Retail}$ and $I_{jt}^{Exp \ Other}$ equal 1 if bond *j* has underlying retail or other mortgages, respectively, with leases expiring within six years, where *Other* is a residual category for any loans with lease expiration information not linked to *Office* or *Retail* units. Moreover, I_{jt}^{Retail} is a dummy that equals 1 if bond *j* has any exposure to retail units in year *t*.

The coefficient of interest, β_1 , drops after adding these refined controls but remains statistically significant, confirming that insurers are sensitive to cash flow risks for offices after COVID-19. In contrast, while exposure to retail affects post-COVID CMBS sales, as reflected by the positive and significant coefficient on *Post Covid*_t × I_{jt}^{Retail} , this is not caused by lease expiration of the underlying retail-linked mortgages—in line with the idea that rising delinquency rates among retail loans at the onset of the pandemic were less sensitive to lease expiration. Overall, our evidence supports the idea that insurers do not only monitor cash flow risks, but are also sufficiently sophisticated to disentangle how these risks affect different types of CMBS collateral.

The results in Table 3 rely on the dynamic nature of our shocks, which uncovers how heterogeneity across bonds that have cash flow shocks expected to materialize in the short to medium run leads to different trading behavior. To understand how our results are sensitive to using a six-year cutoff to define our treatment, we re-estimate (4), defining $Treat_{jt}^{Exp \ Office}$ as equal to 1 for exposures within three or four, rather than six, years. These thresholds represent moments after which roughly 25% and 33% of the office-borne cash flow shocks have materialized for the average CMBS.

Appendix-Table A.2 shows that our results are robust to using these alternative thresholds. Moreover, the point estimates of β_1 are across all specifications larger for the longer horizon (columns 5 to 8). The reason is that thresholds implied by shorter horizons lead the *control group* to include bonds exposed to some medium-term shocks (those occurring in five and six years' time) as well. This lends further support to the idea that insurance companies monitor the timing of potential cash flow shocks to office-linked mortgages.

To bolster our identification assumption that insurers would not have reacted differently to shocks affecting the cash flow risks of CMBS exposed to offices with leases expiring within six years in the absence of the pandemic, we also estimate a dynamic difference-in-differences regression:

$$I_{ijt}^{sold} = \alpha_{it} + \alpha_{ij} + \alpha_{j(coupon)t} + \alpha_{j(NAIC)t} + Treat_{jt}^{Exp \ Office} + \sum_{\iota \neq 2019} D_{j\iota}^{Exp \ Office} \delta_{\iota} + \theta Controls_{jt} + \varepsilon_{ijt},$$
(5)

where $Controls_{jt}$ includes the same set of bond-level control variables as in column 3 of Table 3.

One can see in Figure A.3 that most of the effect we capture takes place in 2020, which sees a spike in sales of CMBS with more exposure to cash flow risks posed by lease expiration. Reassuringly, we find no visual evidence for violation of parallel trends, supporting our identification assumption that office lease expiration becomes a salient feature of CMBS only after the onset of the pandemic.

5.3. CMBS Acquisitions by Insurance Companies

Having documented that exposure to underlying cash flow shocks affects insurance companies' trading behavior, and given the dynamics of CMBS portfolio exposure to offices shown in Figures 5 and 6, we next consider insurers' purchasing behavior: are insurance companies also less willing to acquire private-label CMBS exposed to office CRE? Lower willingness to hold office-linked CMBS can manifest itself through smaller acquisition of these assets by insurers after COVID-19. Additionally, to the extent that insurers demand higher returns for holding assets perceived as riskier, newly issued office-exposed CMBS held by insurers should offer higher returns.

We start by considering how risk characteristics of private-label CMBS acquired by insurers change over the years, focusing on office exposure and cash flow risks represented by lease expiration. Figure 9 shows the distribution of office exposure for all private-label CMBS acquired by insurance companies before and after COVID-19. Importantly, there is a large jump in the share of CMBS acquired in 2020-2022 which have no underlying officelinked collateral, with close to 30% of the bonds acquired in 2022 having no exposure to office CRE. We observe a similar pattern when looking at exposure to cash flow shocks represented by lease expiration taking place within six years, our treatment measure. Figure 10 plots the corresponding distribution, before and after the COVID-19 pandemic. There is a shift towards the left of the distribution, with a larger share of the bonds acquired in the post-COVID period having no exposure to short- and medium-term cash flow shocks to office CRE. In particular, there is an increase of about 10% in the share of CMBS acquired in the post-COVID period that have no mortgages linked to office CRE whose main lease expires within six years.

The drastic reduction in holdings of cash flow risk-sensitive CMBS by insurers indicates that these investors adjust their exposure to risks along the extensive margin, by acquiring private-label CMBS with smaller exposure to offices. This adjustment can also occur along the intensive margin if lower willingness to hold office-exposed CMBS leads insurers to require higher returns in order to invest in office-linked CMBS after COVID-19.

To test this, we analyze how the coupons of newly issued private-label CMBS vary based on their exposure to offices, before and after the pandemic, by estimating the following specification at the bond issuance level:

$$Coupon_{jt} = \alpha_{maturity(j)t} + \beta_1 Post \ Covid_t \times Office_j + \beta_2 Office_j \times NAIC \ Held_{jt} + \beta_3 Post \ Covid_t \times Office_j \times NAIC \ Held_{jt} + \beta_4 X_{jt}, \tag{6}$$

where $Coupon_{jt}$ denotes the coupon offered by bond *j* issued in quarter *t*, *Post Covid*_t is an indicator variable that equals 1 after 2020Q1, *Of fice*_j is an indicator variable that equals 1 if bond *j* has underlying exposure to offices, and X_{jt} is a vector of bond-level controls. The ownership indicator variable, *NAIC Held*_{jt}, equals 1 if bond *j* is held by an insurance company at the end of the respective year, and reflects differences in the pricing of risk by insurers relative to other investors. Control variables include a dummy for investment grade bonds, the % share of pool in the largest state, the number of loans the deal to proxy for deal complexity (Ghent, Torous and Valkanov, 2019), a dummy for horizontal risk retention (Flynn, Ghent and Tchistyi, 2020), the weighted average LTV and debt-service coverage ratio of the deal at securitization, and a dummy for conduit loans.

Column 1 of Table 4 shows the results without accounting for differences between CMBS held by insurers vs. other investors, assuming that changes in office risks after the pandemic were not priced in differently by investors. However, the negative estimate masks significant underlying heterogeneity. When we account for CMBS ownership in column 2, we find that

bonds from deals with a larger share invested in office loans command a coupon premium, especially after COVID-19, when they are held by insurance companies as compared to bonds held by other investors. A one percentage-point increase in the office exposure of a deal translates to approximately 15 basis points larger coupon rates. This effect is robust to the inclusion of additional bond-level controls in columns 3 and 4.

Higher office percentage in general has a negative effect on coupons for CMBS, including those held by other intermediaries. This could be explained by different risk perception by these investors, and ultimately affects the allocation of cash flow risks across intermediaries. We analyze how risk migrates from insurers to other firms in Section 6. Overall, the changes in acquisition behavior by insurers documented in this section further corroborate that they do monitor work-from-home triggered changes in office loan risk.

5.4. Insurer-level Exposure to CMBS Shocks

Variation in CMBS risk introduced by higher delinquency risk in the post-pandemic period can also affect insurer behavior beyond investors' willingness to trade affected bonds themselves. In particular, Ellul et al. (2022) argue that in response to a drop in insurers' asset values, these investors would de-risk by selling illiquid bonds. Similarly, Becker, Opp and Saidi (2022) show that insurers are more likely to sell downgraded assets which would trigger higher capital requirements relative to assets that would not incur such surcharges.

In our context, a sudden increase in mortgage delinquencies at the onset of the pandemic would trigger an immediate drop in CMBS values for bonds more exposed to retail and lodging properties, as illustrated in Figure 3. Moreover, higher delinquency can also lead to rating downgrades and potential added capital surcharges for insurers holding those securitized bonds. In either case, we predict that insurers with larger exposure to such property types would be more likely to sell risky bonds.

Importantly, it is unclear how insurers' exposure to offices would affect their trading behavior after COVID-19. On the one hand, the dynamic nature of the materialization of cash flow risks arising from WFH suggests larger exposure to offices should not lead to immediate short-term adjustments. On the other hand, if investors' ability to assess risks is limited, then a large office exposure can lead to inattention to risks in other assets, as these insurers would have to use more of their monitoring capacity to track the materialization of cash flow risks stemming from office lease expiration.

To understand how exposure to different types of CMBS collateral affects insurers' trading behavior in other securities, we estimate the following specification:

$$\begin{split} I_{ijt}^{sold} &= \alpha_{it} + \alpha_{ij} + \alpha_{jt} + \gamma_1 T_{it-1}^{Office} \times I_{jt}^T + \beta_1 Post \ Covid_t \times T_{it-1}^{Office} \times I_{jt}^T \\ &+ \gamma_2 T_{it-1}^{Retail} \times I_{jt}^T + \beta_2 Post \ Covid_t \times T_{it-1}^{Retail} \times I_{jt}^T \\ &+ \gamma_3 T_{it-1}^{Lodging} \times I_{jt}^T + \beta_3 Post \ Covid_t \times T_{it-1}^{Lodging} \times I_{jt}^T + \varepsilon_{ijt}, \end{split}$$
(7)

where T_{it-1}^{prop} is the lagged exposure of insurer *i* to properties of type *prop* in year t - 1, I_{jt}^{T} is a time-varying indicator variable which equals 1 for riskier bonds, and α_{jt} denotes security-year fixed effects. Given that the relevant level of variation is now at the insurer level, we cluster standard errors accordingly.

In particular, we estimate specification (7) using two different indicator variables I_{jt}^T : I_{jt}^{Risky} equals 1 for bonds with NAIC designation 2 or greater (worse) in year *t*, and $I_{jt-1}^{Downgrade}$ equals 1 if bond *j* has been downgraded in year *t* – 1 such that capital buffers have to increase.⁸ Our exposure variables are the weighted average percent exposure of insurers' private-label CMBS portfolios to each property type, multiplied with the share of private-label CMBS in their entire bond portfolio. Each β_i term captures the effect of larger exposure to a type of collateral on insurance companies' sales of risky assets. Importantly, we use lagged exposures to address the fact that trading within one year would affect exposure in the same year (as it changes insurers' portfolio composition).

The results for the two risk variables I_{jt}^T are in Table 5 (columns 1-3 and columns 4-6, respectively). After controlling for time-varying unobserved heterogeneity at the insurer and security level, we yield a negative, albeit statistically insignificant, coefficient on β_1 in columns 1 and 4. This reflects the idea that CMBS exposure to office buildings desensitizes insurance companies to risky securities with higher capital requirements, which they would otherwise sell upon being downgraded (Ellul, Jotikasthira and Lundblad, 2011).

As post-COVID office exposure is associated with greater delinquencies, insurance compa-

⁸We use NAIC designations to infer downgrading. Effectively, $I_{jt-1}^{Downgrade}$ equals 1 if bond *j* had a NAIC designation in year *t* – 1 greater than its NAIC designation in year *t* – 2.

nies may be preoccupied with acquiring information regarding office collateral and selling the respective CMBS first. However, in line with higher retail and lodging mortgage delinquencies in Figure A.1, β_1 may be confounded with insurance companies' portfolio rebalancing in the face of retail and lodging mortgage delinquencies, i.e., T_{it-1}^{Office} could be correlated with insurers' respective exposures in their CMBS portfolio. To account for this possibility, we control for such confounding portfolio exposures by estimating (7) in columns 2 and 5 of Table 5.

After doing so, the estimated coefficient on β_1 becomes more negative and statistically significant. Importantly, it carries the opposite sign of the other triple interactions, thereby ruling out that our estimated effect is governed by other, correlated portfolio exposures. Instead, larger exposure to retail leads to more sales of risky assets, which is in line with the idea that facing a devaluation in their asset portfolio, insurers sell illiquid bonds first. Finally, in columns 3 and 6, we additionally control for the triple interaction with insurers' share of corporate bonds more generally, which leaves our coefficient of interest virtually unaltered: larger exposure to offices in insurers' CMBS portfolio is associated with a lower likelihood of selling riskier bonds in the post-COVID period.

6. MIGRATION OF CRE CASH FLOW RISKS FROM INSURANCE TO OTHER FIRMS

The evidence so far suggests that insurers are able to monitor risks in securitized assets that arise from lower office demand after the pandemic, and reduce their exposure to these private-label CMBS. In this section, we turn to the question of who acquires these assets in an attempt to understand which intermediaries become more exposed to WFH-borne risks and why these other investors are willing and able to acquire more exposed CMBS.

6.1. Who Purchases Private-label CMBS from Insurers?

We first analyze the purchasers of private-label CMBS from insurance companies in our sample period. To this end, we categorize the buyers into three groups: banks, insurance companies, and others (which includes uncategorized buyers and instances where the buyer name is not specified in the data). Figure A.5 illustrates the trends in these categories over time. We notice a dip in the share of insurance buyers in 2021 although it is not persistent.⁹ Importantly, while banks are prominent purchasers throughout, they are also very important for offices (Figure A.6).

To test more formally whether insurance companies sell off CRE-related cash flow risks to banks, we re-estimate the same specifications as in Table 3, but replace the dependent variable with a sales indicator that is equal to one only for the subset of sales to banks. That is, the dependent variable equals zero if insurer i sold any fraction of security j in year t to any non-bank purchaser or nothing at all.

In Table 6, the coefficient on treated CMBS, β_1 in (4), is positive—as in Table 3—and statistically significant once one accounts for differential sales behavior based on other collateral characteristics (columns 3 and 4). The estimated coefficient in the most conservative regression specification (column 4), where we explicitly control for differential sales behavior for any other type of collateral and lease expiration separately, amounts to half of the respective coefficient in column 4 of Table 3. This indicates that sales are more likely to banks if the CMBS is related to office properties with leases expiring within six years in the post-COVID period.

For completeness, Appendix-Table A.3 examines sales from insurance companies to other insurance companies by adjusting the dependent variable accordingly. The results suggest some effects for sales to insurers if the CMBS in question is related to office properties with leases expiring within six years, but with much smaller magnitude. Moreover, we show in Figure A.4 the share of the portfolio of private-label CMBS held by insurers exposed to lease expiration within six years as captured by $Treat_{jt}^{Exp \ Office}$. There is a sharp drop in the share of insurers' CMBS portfolio exposed to cash flow shocks after 2019, consistent with the idea that insurers reduce their exposure to cash flow risks by selling exposed bonds to other types of investors, as indicated in Table 6.

Overall, these results can be seen as suggestive of a transfer of this particular risk from insurance companies to banks.

⁹We exclude three major buyers: FA REINSURANCE, RESOLUTION LIFE, COINSURANCE TALCOTT-ALLIANZ.

6.2. Bank Holdings of Private-label CMBS

Purchaser information reported by insurers suggests most of the buyers of private-label CMBS with office exposure are banks, as shown in Figure A.6. Nonetheless, these banks might be acting as dealers on behalf of other buyers, which limits the conclusions we can draw from reported buyer information on NAIC files.

To better understand the extent to which banks acquire more CMBS after the pandemic, we use Call Reports data and construct bank-level holdings of private-label CMBS. Using that information, we first document how aggregate holdings of private-label CMBS evolve over time for banks of different size.

Figure 11 shows a remarkable increase in holdings of CMBS by small and medium-sized banks (i.e., those with assets under \$100 billion) from 2021 onwards. This pattern is more striking relative to 2017 and 2018, when the aggregate amount of private-label CMBS hold-ings by banks was at similar levels, but with a substantially smaller role played by small and medium-sized banks. This bigger role could be explained by a larger exposure to private-label CMBS by those institutions that held CMBS in the past, or by a larger number of banks investing in these assets. Figure 12 shows that the latter is the main driving force. In Panel A, we see that the number of small banks (total assets under \$10 billion) that hold private-label CMBS nearly doubles between March 2020 and December 2023. Moreover, these "new entrants" are holding meaningful shares of private-label CMBS; as shown in Panel B.

Between 2020 and 2022, holdings of private-label CMBS by small and medium-sized banks nearly doubled from \$9 billion to \$17 billion. This increase closely mirrors changes in insurers' portfolio behavior. Prior to the pandemic, insurers had steadily increased their holdings of CMBS exposed to offices with leases expiring within six years, adding approximately \$8 billion annually. However, this pattern reversed during 2020-2022, with exposed CMBS holdings decreasing by \$0.1 billion (Figure A.4). This decline reflects insurers' reduced appetite for assets vulnerable to cash flow shocks from office lease expiration. The matching magnitudes and timing of these shifts lends further support to a redistribution of exposed CMBS from insurers back to the banking sector.

To understand how this unprecedented increase in the number of small banks investing in

CMBS is related to the characteristics of these banks, we divide our sample of small banks into three types: banks that held private-label CMBS between 2017 and March 2020, banks that held private-label CMBS *only after* March 2020, and banks that do not hold privatelabel CMBS between 2017 and 2023. Table A.4 shows mean values of selected characteristics for these three different bank types. Banks that began investing in private-label CMBS after COVID-19 are smaller than those that invested in CMBS before the pandemic, but have similar leverage, exposure to CRE loans, and have a similar share of their total assets and securities invested in private-label CMBS. Banks that do not invest in CMBS (column 3) are smaller, have lower exposure to non-owner-occupied CRE loans, and are more levered than banks that invest in private-label CMBS between 2017 and 2023.

Banks increasing their holdings of private-label CMBS suggests that risks in CMBS with office-linked mortgages flow from the insurance sector to the banking sector. What explains this shift in CMBS ownership from insurers to banks, especially small banks? To the extent that small banks make smaller loans (Ghent and Valkanov, 2016; Glancy et al., 2022), they are unlikely to originate loans that can be used to finance office properties, meaning they are not exposed to risks related to the effects of hybrid work arrangements on office vacancies.¹⁰

This has two implications: first, by investing in office-exposed CMBS, these small banks would effectively diversify their CRE exposure, so these banks could have additional risk-bearing capacity. Additionally, small banks' ability to perform due diligence in CMBS might be limited, which would facilitate the sale of office-exposed CMBS by insurance companies to small banks. While both forces could be at play, we have provided evidence of insurers' ability to monitor risks in securitized assets, which in turn contributes to a transfer of these risks to the banking sector.

7. FINANCIAL STABILITY AND POLICY IMPLICATIONS

Our empirical findings reveal how institutional investors assess and respond to underlying risks in MBS. Given the systemic importance of both insurers and CRE loans in financial markets, these findings have direct implications for financial stability and policy, which we

¹⁰For example, this article suggests that small banks did not experience substantial losses in their CRE loans due to reduced exposure to offices.

outline below.

7.1. Institutional Investors and Risk in Securitized Assets

The central role of asset-backed securities in the Global Financial Crisis (GFC) led regulators to overhaul securitization regulation, focusing on better aligning originator incentives and strengthening investor risk assessment. Post-GFC reforms introduced due diligence requirements that mandate investors to evaluate risk characteristics of underlying exposures in securitized positions.¹¹ These requirements were designed to address investors' apparent failure to monitor securitization risks before the crisis. Our analysis of insurers' CMBS trading following the pandemic demonstrates that sophisticated institutional investors can effectively assess and actively monitor risks in their securitized-asset portfolios. This strongly suggests that at least the largest, most systemically important banks always had this ability to start with.

However, as insurance companies adjust their portfolios in response to mounting risks, we observe a dramatic increase in private-label CMBS holdings by small banks. This redistribution reveals substantial heterogeneity in financial intermediaries' risk-management capabilities and raises concerns about less sophisticated investors increasing their exposure to these assets precisely when their risks are rising. The situation is particularly concerning given that default risks from hybrid work arrangements are materializing gradually through cash flow shocks, suggesting both insurers and banks may face significant future losses from CRE mortgage defaults. These findings underscore that even sophisticated risk-assessment capabilities cannot substitute for robust capital requirements, which remain essential for ensuring investors can absorb unexpected losses and internalize financial-stability risks.

7.2. Commercial Real Estate Mortgage Default Risk

The COVID-19 pandemic triggered an unprecedented shift in work arrangements, fundamentally altering CRE valuations through the widespread adoption of hybrid work. These structural changes in asset prices have raised financial-stability concerns, given that CRE serves as collateral for bank loans and underlies CMBS. Our study fills an important gap by

¹¹See, for example, Chapter 2, Article 5 in EBA (2017).

demonstrating how the sensitivity to borrower income and the timing of cash flow shocks matter for the transmission of lower office demand to credit risk.

Our results address several key policy challenges. First, they demonstrate the critical importance of property-specific contract information, particularly lease expiration dates, in identifying mortgages materially dependent on cash flows. This informs the implementation of revised banking standards ("Basel 3.1") currently under consideration by prudential regulators globally. These standards differentiate mortgages based on whether they are "*materially dependent on cash flows generated by the property*" (CRE20 in BCBS, 2022) for credit risk capitalization. The UK's Prudential Regulation Authority (PRA), for instance, proposes in its Basel 3.1 consultation to "assign risk weights to mortgage exposures depending on whether repayment of the loan is materially dependent on the cash flows generated by the property."¹²

Second, we have shown that aggregate delinquency rates alone provide an incomplete and potentially misleading picture of CRE credit risk, as they fail to capture the forward-looking risks from post-COVID changes in office demand. Our findings demonstrate that granular data, particularly the monitoring of tenancy agreement characteristics, are crucial for accurate credit-risk assessment. This is especially important given that a significant portion of tenancy agreements is set to expire in the coming years (Table 1), suggesting that the full impact of work-from-home adjustments on mortgage default—and consequently on financial stability—has yet to materialize.

8. Conclusion

In this paper, we examine how cash flow shocks from commercial property leases affect mortgage delinquencies and assess insurers' monitoring of these risks in securitized assets. Using detailed data on commercial mortgages in CMBS deals combined with insurers' portfolio and trading behavior, we document that borrower cash flow shocks significantly impact CRE loan defaults following the COVID-19 pandemic. For office properties specifically, we find that lease expiration becomes a stronger predictor of default during the pandemic, driven by

¹²See https://www.bankofengland.co.uk/prudential-regulation/publication/2022/november/ implementation-of-the-basel-3-1-standards.

reduced office demand due to work-from-home arrangements.

Our analysis reveals that insurers actively manage these risks by reducing their exposure to vulnerable CMBS before delinquencies materialize. This finding challenges the common view that institutional investors do not (sufficiently) monitor underlying asset risks. However, we also find that this monitoring effort affects insurers' reactions to risks in other assets, suggesting constraints on their monitoring capacity. As existing leases expire and need to be renewed, our results point to a likely build-up of default risk and highlight which CRE loan features are most relevant for tracking such risks.

These findings have broader implications for financial policy. While they demonstrate that sophisticated investors can effectively monitor complex securities, they also reveal the limitations of relying on institutional due-diligence requirements alone to promote active risk management. Although our analysis focuses on U.S. CMBS data, these mechanisms likely operate similarly in other markets and countries. Given the systemic importance of both insurers and mortgages in financial markets, our findings underscore the need for continued scrutiny and monitoring of risks stemming from structural changes in office demand.

References

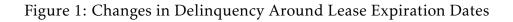
- Acharya, Viral V., Manasa Gopal, Maximilian Jager, and Sascha Steffen. 2024. "Shadow Always Touches the Feet: Implications of Bank Credit Lines to Non-Bank Financial Intermediaries."
- Aiello, Darren J. 2022. "Financially Constrained Mortgage Servicers." Journal of Financial Economics, 144: 590–610.
- Ashcraft, Adam B., Kunal Gooriah, and Amir Kermani. 2019. "Does Skin-in-the-game Affect Security Performance?" Journal of Financial Economics, 134: 333–354.
- **Barrero, Jose Maria, Nicholas Bloom, and Steven J. Davis.** 2021. "Why Working from Home Will Stick." NBER Working Paper No. 28731.
- BCBS. 2022. "The Basel Framework."

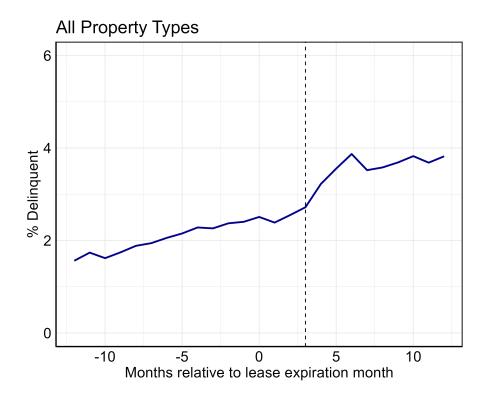
- **Becker, Bo, Marcus M. Opp, and Farzad Saidi.** 2022. "Regulatory Forbearance in the U.S. Insurance Industry: The Effects of Removing Capital Requirements for an Asset Class." Review of Financial Studies, 35(12): 5438–5482.
- Begley, Taylor A., and Amiyatosh Purnanandam. 2017. "Design of Financial Securities: Empirical Evidence from Private-Label RMBS Deals." <u>Review of Financial Studies</u>, 30: 120– 161.
- Bhardwaj, Abhishek, Shan Ge, and Saptarshi Mukherjee. 2025. "Does Loan Securitization Expose Borrowers to Non-Bank Investor Shocks?—Evidence from Insurers." <u>NBER</u> Working Paper No. 33449.
- **Bhutta, Neil, Jane Dokko, and Hui Shan.** 2017. "Consumer Ruthlessness and Mortgage Default During the 2007 to 2009 Housing Bust." Journal of Finance, 72: 2433–2466.
- **Bretscher, Lorenzo, Lukas Schmid, Ishita Sen, and Varun Sharma.** 2022. "Institutional Corporate Bond Pricing." Swiss Finance Institute Research Paper No. 21-07.
- **Chen, Xuanjuan, Eric Higgins, Han Xia, and Hong Zou.** 2020. "Do Financial Regulations Shape the Functioning of Financial Institutions' Risk Management in Asset-Backed Securities Investment?" Review of Financial Studies, 33: 2506–2553.
- **Chodorow-Reich, Gabriel, Andra Ghent, and Valentin Haddad.** 2021. "Asset Insulators." Review of Financial Studies, 34: 1509–1539.
- **DeMarzo, Peter M.** 2005. "The Pooling and Tranching of Securities: A Model of Informed Intermediation." Review of Financial Studies, 18: 1–35.
- **DeMarzo, Peter M., and Darrell Duffie.** 1999. "A Liquidity-based Model of Security Design." Econometrica, 67: 65–99.
- **Demiroglu, Cem, and Christopher James.** 2012. "How Important is Having Skin in the Game? Originator-Sponsor Affiliation and Losses on Mortgage-backed Securities." <u>Review</u> of Financial Studies, 25: 3217–3258.
- **Dingel, Jonathan I., and Brent Neiman.** 2020. "How Many Jobs Can Be Done at Home?" Journal of Public Economics, 189: 104235.

EBA. 2017. "European Banking Authority: Securitisation Regulation."

- **Ellul, Andrew, and Vijay Yerramilli.** 2013. "Stronger Risk Controls, Lower Risk: Evidence from U.S. Bank Holding Companies." Journal of Finance, 68: 1757–1803.
- Ellul, Andrew, Chotibhak Jotikasthira, Anastasia Kartasheva, Christian T. Lundblad, and Wolf Wagner. 2022. "Insurers as Asset Managers and Systemic Risk." <u>Review of Financial</u> Studies, 35: 5483–5534.
- Ellul, Andrew, Chotibhak Jotikasthira, and Christian T Lundblad. 2011. "Regulatory Pressure and Fire Sales in the Corporate Bond Market." Journal of Financial Economics, 101: 596–620.
- **Flynn, Sean J, Andra C Ghent, and Alexei Tchistyi.** 2020. "Informational Efficiency in Securitization after Dodd-Frank." Review of Financial Studies, 33: 5131–5172.
- **Ganong, Peter, and Pascal Noel.** 2023. "Why do Borrowers Default on Mortgages?" Quarterly Journal of Economics, 138: 1001–1065.
- Gerardi, Kristopher, Kyle F. Herkenhoff, Lee E. Ohanian, and Paul S. Willen. 2018. "Can't Pay or Won't Pay? Unemployment, Negative Equity, and Strategic Default." <u>Review of</u> Financial Studies, 31: 1098–1131.
- **Ge, Shan, and Michael S. Weisbach.** 2021. "The Role of Financial Conditions in Portfolio Choices: The Case of Insurers." Journal of Financial Economics, 142: 803–830.
- **Ghent, Andra C., and Rossen I. Valkanov.** 2016. "Comparing Securitized and Balance Sheet Loans: Size Matters." Management Science, 62: 2784–2803.
- Ghent, Andra C., Walter N. Torous, and Rossen I. Valkanov. 2019. "Complexity in Structured Finance." Review of Economic Studies, 86: 694–722.
- **Glancy, David P., and J. Christina Wang.** 2024. "Lease Expirations and CRE Property Performance."
- **Glancy, David P., and Robert J. Kurtzman.** 2024. "Determinants of Recent CRE Delinquency: Implications for the Banking Sector."

- **Glancy, David P., John R. Krainer, Robert J. Kurtzman, and Joseph B. Nichols.** 2022. "Intermediary Segmentation in the Commercial Real Estate Market." Journal of Money, Credit and Banking, 54(7): 2029–2080.
- **Gupta, Arpit, Vrinda Mittal, and Stijn Van Nieuwerburgh.** 2023. "Work From Home and the Office Real Estate Apocalypse."
- Hanson, Samuel G., and Adi Sunderam. 2013. "Are There Too Many Safe Securities? Securitization and the Incentives for Information Production." Journal of Financial Economics, 108: 565–584.
- Jiang, Erica X., Gregor Matvos, Tomasz Piskorski, and Amit Seru. 2023. "Monetary Tightening, Commercial Real Estate Distress, and US Bank Fragility." <u>NBER Working Paper No.</u> 31970.
- Koijen, Ralph S. J., and Motohiro Yogo. 2022. "The Fragility of Market Risk Insurance." Journal of Finance, 77: 815–862.
- Koijen, Ralph S. J., and Motohiro Yogo. 2023. "Understanding the Ownership Structure of Corporate Bonds." American Economic Review: Insights, 5: 73–92.
- Sen, Ishita. 2023. "Regulatory Limits to Risk Management." <u>Review of Financial Studies</u>, 36: 2175–2223.
- **Van Nieuwerburgh, Stijn.** 2022. "The Remote Work Revolution: Impact on Real Estate Values and the Urban Environment." NBER Working Paper No. 30662.





Notes: This figure shows average delinquency rates in each month relative to lease expiration, for properties with leases expiring between 2017 and June 2022. Delinquency is a dummy variable which equals 1 if a mortgage is at least 90 days past due. Sources: Trepp loan data and authors' calculations.

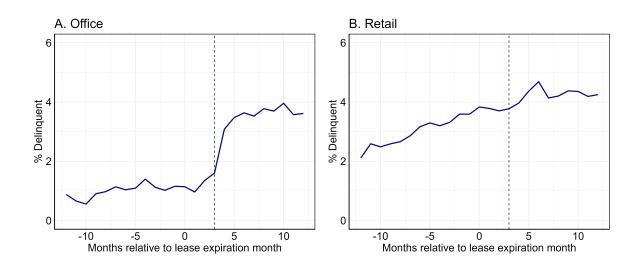


Figure 2: Changes in Delinquency Around Lease Expiration Dates for Office and Retail

Notes: This figure shows average delinquency in each month relative to lease expiration, for properties with leases expiring between 2017 and June 2022. **Panel A** shows delinquency rates for properties classified as *Office*. **Panel B** shows delinquency rates for properties classified as *Retail*. Delinquency is a dummy variable which equals 1 if a mortgage is at least 90 days past due. The vertical line marks three months after lease expiration. Sources: Trepp loan data and authors' calculations.

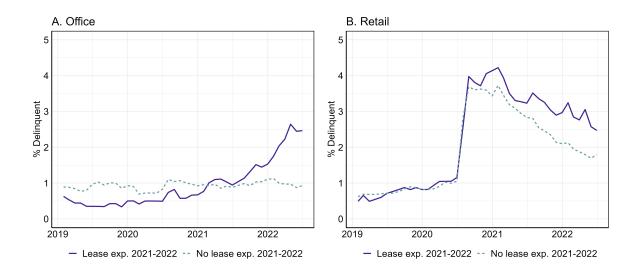
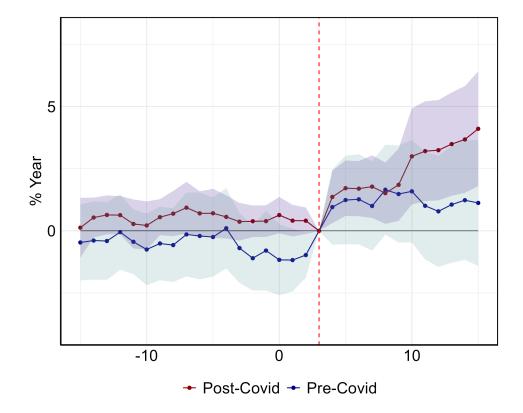


Figure 3: Delinquency Rates of Mortgages With and Without Leases Expiring in 2021-2022

Notes: This figure shows average delinquency rates for mortgages *with* leases expiring in 2021-2022, and mortgages *without* leases expiring in these two years. **Panel A** shows delinquency rates for properties classified as *Office*. **Panel B** shows delinquency rates for properties classified as *Retail*. Delinquency is a dummy variable which equals 1 if a mortgage is at least 90 days past due. Sources: Trepp loan data and authors' calculations.

Figure 4: Delinquency Rates Around Lease Expiration Dates—Office WFH Sensitivity



Notes: This figure shows the effects of lease expiration on delinquency rates of properties classified as *Office*. The level of observation is loan *j* in city *r* in year-month *t*, which refers to the distribution month of each securitized mortgage. The sample period is Jan/2017 to Jun/2022. The dependent variable I_{jrt}^{D90} is a dummy variable which equals 1 if a loan is at least 90 days past due. The δ_i estimates from specification (1) show delinquency rates relative to the lease expiration month. The vertical line marks three months after lease expiration. "Pre-Covid" includes all months before March 2020, and "Post-Covid" includes all months after March 2020. Shaded areas correspond to the 95 percent confidence intervals around point estimates. Standard errors are clustered at the loan level. Sources: Trepp and authors' calculations.

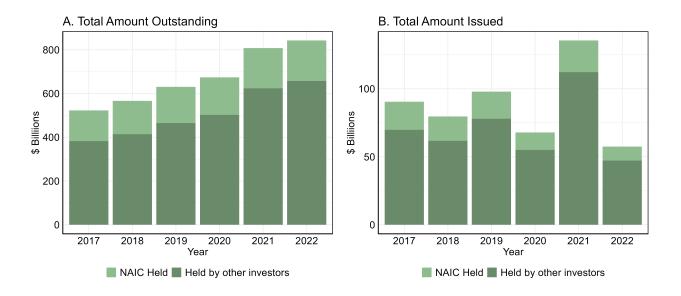
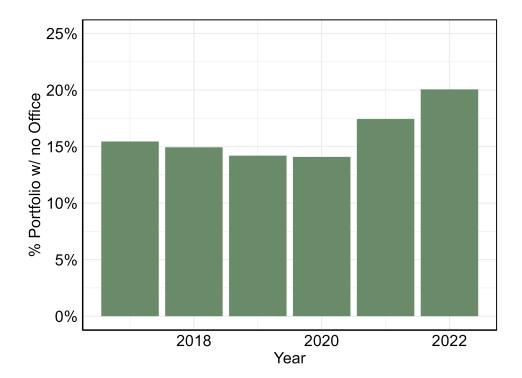


Figure 5: Insurance Holdings of CMBS

Notes: This figure shows the total amount outstanding (**Panel A**) and amount originated (**Panel B**) of private-label CMBS per year, differentiating between the amount held by insurance companies and that held by other investors. We identify holdings of insurance companies using NAIC Schedule D, Part 1. Insurer-held amounts are calculated as the sum of the BACV of the CMBS held by insurers. Amount held by other investors is the residual value relative to the total original balance outstanding/originated in a given year. Both plots exclude interest-only and agency CMBS. Source: Trepp, NAIC, and authors' calculations.

Figure 6: % CMBS Portfolio Without Office Exposure



Notes: This figure shows the share of insurance companies' private-label CMBS portfolio not exposed to *any* mortgages linked to properties classified as *Office*. Shares are calculated aggregating BACV for exposed and non-exposed CMBS, where exposure is defined as any percentage of the pool of mortgages used to finance office CRE. Source: Trepp, NAIC, and authors' calculations.

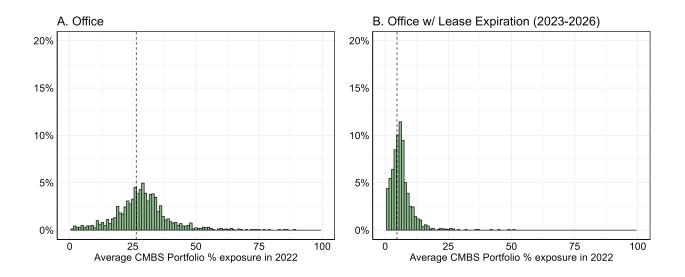
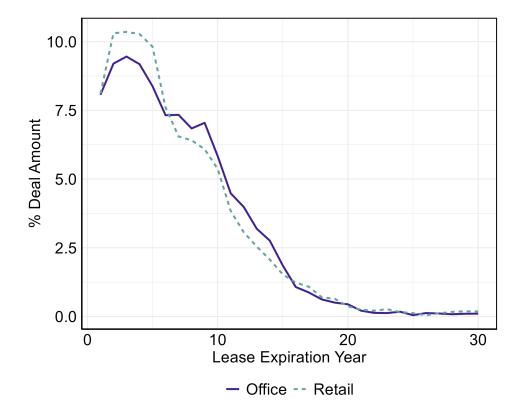


Figure 7: CMBS Bonds Held by Insurance Companies—Exposure to Offices

Notes: This figure shows the distribution of office-exposed shares of insurance companies' privatelabel CMBS portfolio. **Panel A** shows the distribution for any office exposure. **Panel B** shows the distribution conditional on any mortgages having main leases expiring between 2023-2026. Source: Trepp, NAIC, and authors' calculations.

Figure 8: CMBS Cash Flow Shock Dynamics



Notes: This figure shows the average distribution of expected cash flow shocks for deals in our sample in each lease expiration year after the reference year. We first calculate, for each deal in a given year, what share of mortgages have leases expiring in τ years. Then, we average these shares, first across bonds of a given property type in a given year, then across years, separately for offices and retail. Source: Trepp, NAIC, and authors' calculations.

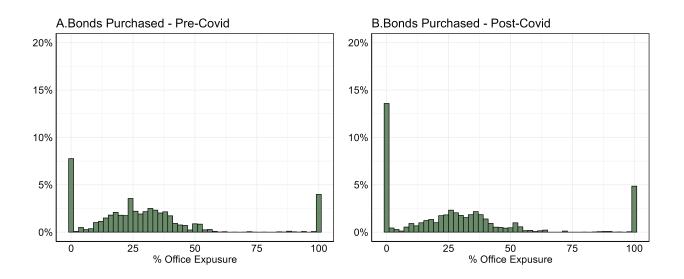
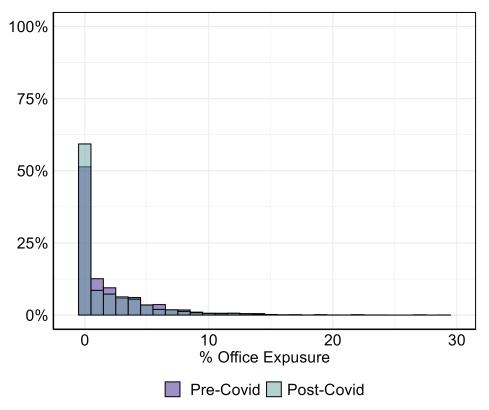


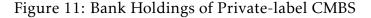
Figure 9: Distribution of Office Exposure—CMBS Acquired Before and After COVID-19

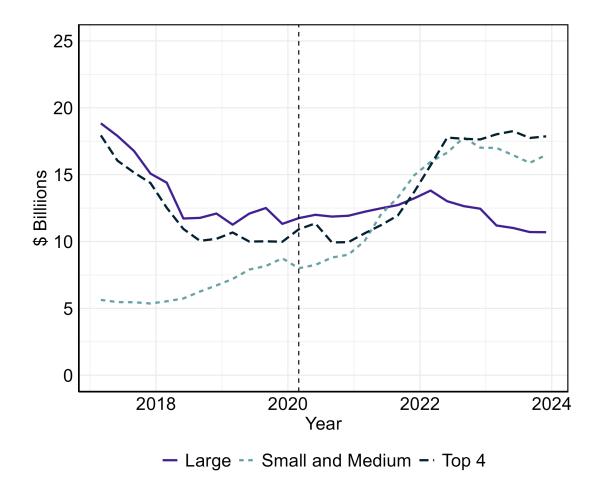
Notes: This figure shows the distribution of office exposures of private-label CMBS acquired by insurance companies, before and after COVID-19. Percent exposure equals the amount of the pool of mortgages linked to office CRE. **Panel A** panel plots the distribution of office exposure for CMBS acquired between 2017-2019. **Panel B** plots the distribution of office exposure for CMBS acquired between 2020-2022. The width of each distribution bar equals 2%. Source: Trepp, NAIC, and authors' calculations.

Figure 10: Distribution of Office Exposure with Leases Expiring—CMBS Acquired Before and After COVID-19



Notes: This figure shows the distribution of treatment exposure of private-label CMBS acquired by insurance companies, before and after COVID-19, based on underlying office-linked lease expiration. Percent exposure equals the amount of the pool of mortgages linked to office CRE whose main lease agreement expires within six years. Source: Trepp, NAIC, and authors' calculations.





Notes: This figure shows the total amount of private-label CMBS holdings of U.S. banks, including held-to-maturity and available-for-sale assets. Top 4 banks are J.P. Morgan Chase, Bank of America, Citigroup, and Wells Fargo. Large banks are institutions with total assets above \$ 100 billion, medium banks are institutions with total assets between \$10 billion and \$100 billion, and small banks are institutions with total assets under \$10 billion. We also exclude TD Bank from the plots as it shows discontinuity in holdings of private CMBS in 2018 that is not present on the aggregate series. Source: Call Reports and authors' calculations.

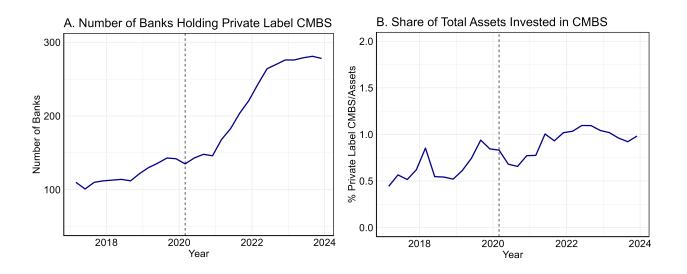


Figure 12: Small Banks' Exposure to Private-Label CMBS

Notes: This figure shows the number of small U.S. banks which hold private-label CMBS (Panel A) and the median % share of private-label CMBS out of total assets for small banks with CMBS exposure (Panel B). Small banks are defined as institutions with total assets under \$10 billion. Source: Call Reports and authors' calculations.

TABLES

Panel A. All Properties	Mean	Median	Min	Max	N
Outstanding Balance	12,126,498.41	4,665,665.69	535.94	9,016,115,069.00	7,081,912
Floating Interest Rate	0.12	0.00	0.00	1.00	7,081,912
Delinquency (90 days)	0.01	0.00	0.00	1.00	7,081,912
Recourse Loan	0.01	0.00	0.00	1.00	7,081,912
Loan Term	228.39	120	1	515	7,010,744
Lease Expiration Year	2026	2024	2016	2099	747,189
Largest Tenant % Sqr Ft	45.11	33.44	0.00	100.00	748,523
Panel B. Office	Mean	Median	Min	Max	N
Outstanding Balance	35,592,214.49	17,545,061.17	6,760.18	3,000,000,000.00	276,561
Floating Interest Rate	0.08	0.00	0.00	1.00	276,561
Delinquency (90 days)	0.01	0.00	0.00	1.00	276,561
Recourse Loan	0.02	0.00	0.00	1.00	276,561
Loan Term	112.87	120	1	363	275,307
Lease Expiration Year	2025	2024	2016	2099	209,965
Largest Tenant % Sqr Ft	42.20	29.71	0.00	100.00	211,306
Panel C. Retail	Mean	Median	Min	Max	N
Outstanding Balance	17,123,979.19	7,331,549.50	797.55	2,400,000,000.00	516,328
Floating Interest Rate	0.02	0.00	0.00	1.00	516,328
Delinquency (90 days)	0.02	0.00	0.00	1.00	516,328
Recourse Loan	0.01	0.00	0.00	1.00	516,328
Loan Term	123.63	120	1	360	506,734
Lease Expiration Year	2027	2024	2016	2099	415,663
Largest Tenant % Sqr Ft	45.68	34.52	0.00	100.00	417,838

Table 1: Summary Statistics

Notes: This table shows summary statistics from our sample of commercial real estate mortgages. The sample period is from Jan/2017 to Jun/2022. **Panel A** includes summary statistics for all property types in the sample. **Panel B** includes summary statistics for properties classified as *Office*. **Panel C** includes summary statistics for properties classified as *Retail*. Source: Trepp and authors' calculations.

		I_{jrt}^{D90}	
	(1)	(2)	(3)
Post Expiration _{it}	0.0131***	0.0132***	0.0140***
- ,,	(0.0029)	(0.0029)	(0.0034)
Post $Covid_t \times Post Expiration_{it}$	-0.0029	-0.0029	-0.0013
,	(0.0033)	(0.0033)	(0.0040)
Post $Covid_t \times Ind \ Office_i$	-0.0162***	-0.0160***	-0.0216***
,	(0.0019)	(0.0019)	(0.0031)
Post Expiration _{it} × Ind Of fice _i	0.0013	0.0014	0.0004
	(0.0062)	(0.0062)	(0.0068)
<i>Post</i> $Covid_t \times Post Expiration_{jt} \times Ind Office_j$	0.0122^{*}	0.0121*	0.0132*
	(0.0064)	(0.0064)	(0.0074)
Observations	751,294	751,294	751,294
\mathbb{R}^2	0.42319	0.42324	0.57382
Within R ²	0.00208	0.00206	0.00300
Month-year fixed effects	\checkmark		
Loan ID fixed effects	\checkmark	\checkmark	\checkmark
Month-year × Floating fixed effects		\checkmark	\checkmark
Month-year × City fixed effects			\checkmark

Table 2: The Effect of Lease Expiration on Mortgage Default Before and After COVID-19

Notes: This table shows the effects of lease expiration on delinquency rates for mortgages linked to different property types, before and after COVID-19, as in (2). The level of observation is loan *j* in city *r* in year-month *t*, which refers to the distribution month of each securitized mortgage. The sample period is Jan/2017 to Jun/2022. The dependent variable I_{jrt}^{D90} is a dummy variable which equals 1 if a loan is at least 90 days past due. *Post Covid*_t equals 1 after March 2020, *Post Expiration*_{jt} equals 1 if loan *j* had its main lease expiration before or in year-month *t*, and *Ind Of fice*_j equals 1 if loan *j* is linked to an office. Standard errors clustered at the loan level in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels. Sources: Trepp and authors' calculations.

	I ^{sold} ijt			
	(1)	(2)	(3)	(4)
$Treat_{jt}^{Exp \ Office}$	0.0040	0.0055	0.0026	0.0020
	(0.0043)	(0.0045)	(0.0066)	(0.0054)
Post Covid _t × Treat ^{Exp Office}	0.0242***	0.0205***	0.0254***	0.0123*
	(0.0048)	(0.0059)	(0.0087)	(0.0072)
I_{jt}^{Office}	. ,	-0.0140	-0.0152	-0.0086
jt		(0.0207)	(0.0207)	(0.0212)
Post Covid _t × I_{jt}^{Office}		0.0085	0.0084	0.0075
jt		(0.0078)	(0.0078)	(0.0079)
I_{jt}^{Exp}		()	0.0038	()
jt			(0.0072)	
Post Covid _t $\times I_{jt}^{Exp}$			-0.0066	
,			(0.0089)	
I ^{Exp} Retail I _{jt}			()	0.0067
- Jt				(0.0066)
$I_{jt}^{Exp \ Other}$				0.0074
- Jt				(0.0047)
I ^{Retail}				-0.0242
jı				(0.0311)
$Post \ Covid_t \times I_{jt}^{Exp \ Retail}$				0.0047
r ji				(0.0094)
Post $Covid_t \times I_{jt}^{Exp \ Other}$				0.0022
Jt				(0.0050)
Post Covid _t × I_{it}^{Retail}				0.0155*
- jt				(0.0086)
Observations	219,731	219,731	219,731	219,731
R ² Within R ²	$0.60756 \\ 0.00055$	0.60757 0.00057	0.60757 0.00058	$0.60768 \\ 0.00086$
	0.00055	0.00037	0.00030	0.00000
Year x Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
CUSIP x Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
Year x Coupon Type fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
Year x NAIC Designation fixed effects	\checkmark	\checkmark	\checkmark	\checkmark

Table 3: CMBS Trading Difference-in-Differences—Exposure to Lease Expiration

Notes: This table shows the effect of exposure to underlying lease expiration and offices on the likelihood of sales of private-label CMBS by insurance companies, as in (4). The level of observation is bond *j* held by insurer *i* at the end of year *t*. The sample period is 2017 to 2022. The dependent variable I_{ijt}^{sold} is a dummy which equals 1 if bond *j* was sold by insurer *i* in year *t*. Post Covid_t equals 1 after 2019. Treat_{jt}^{Exp Office} is a dummy which equals 1 if bond *j* is exposed to office mortgages whose main lease expires within six years (excluding year *t*). $I_{jt}^{Exp Retail}$, and $I_{jt}^{Exp Other}$ are dummy variables which equal 1 if bond *j* is exposed to mortgages whose main lease expires within six years (excluding year *t*), for all properties, retail only, and properties that are neither retail nor offices. I_{jt}^{Office} and I_{jt}^{Retail} are dummies which equal 1 for any exposure to offices and retail. Coupon Type is the type of coupon payment for bond *j* (e.g., fixed rate, floating rate, interest only). Standard errors clustered at the security level in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels. Sources: Trepp, NAIC, and authors' calculations.

	Coupon _{it}				
	(1)	(2)	(3)	(4)	
Office _i %	-0.0043***	-0.0115***	-0.0117***	-0.0068**	
	(0.0016)	(0.0037)	(0.0040)	(0.0035)	
$Office_j \% \times Post Covid_t$	-0.0015	-0.0124**	-0.0113**	-0.0136***	
	(0.0023)	(0.0051)	(0.0051)	(0.0050)	
$Office_j \% \times NAIC Held_{jt}$		0.0099***	0.0085**	0.0042	
Office % x Dest Covid x NAIC Held		(0.0036) 0.0147^{***}	(0.0036) 0.0148^{***}	(0.0032) 0.0175^{***}	
$Office_j \% \times Post \ Covid_t \times NAIC \ Held_{jt}$		(0.0147) (0.0049)	(0.0148) (0.0047)	(0.0175)	
Retail _i %		(0.0049)	(0.0047)	-0.0109**	
Ketuti _j 70				(0.0053)	
Post $Covid_t \times Retail_i \%$				-0.0005	
1 oor oor m _l 1 oor m _l , o				(0.0076)	
Retail _i % × NAIC Held _{it}				0.0115**	
j ji				(0.0051)	
Retail _i % × Post Covid _t × NAIC Held _{it}				0.0137*	
, ,				(0.0077)	
Prime rating _i			-0.6106***	-0.0996*	
			(0.0404)	(0.0546)	
Main state (share in %) _j			0.0003	0.0077***	
			(0.0015)	(0.0020)	
Num Loans at Securitization _j			-0.0062***	-0.0065***	
			(0.0017)	(0.0018)	
Horizontal Risk Retention _j			0.0495	0.0076	
			(0.0369)	(0.0407)	
Weighted Avg LTV at Securitization _j				0.0396^{***}	
Weighted Avg DSCR at Securitization _i				(0.0078) 0.1950^{**}	
Weighten Alg DSCK ut Securitization				(0.0850)	
Conduit _i				-0.3504**	
Conduring				(0.1367)	
				(01207)	
Observations	3,302	3,302	3,302	2,529	
R ²	0.58652	0.61258	0.64864	0.67202	
Within R ²	0.02036	0.08209	0.15321	0.23219	
Year-quarter × Maturity fixed effects	/	/	/	/	
Lead Underwriter fixed effects	V	v	× ./	× .	
Deau Onucrwiner inteu enects			V	V	

Table 4: Bond Pricing

Notes: This table shows a regression of fixed-rate bond coupons of private-label CMBS on the office collateral and insurance ownership before and after COVID-19, as in (6). The level of observation is bond *j* originated in quarter *t*. The sample period is 2017 to 2022. The dependent variable *Coupon_{jt}* is the coupon rate of fixed-rate bond *j* originated in quarter *t*. *Post Covid*_t equals 1 after 2019. *NAIC Held_{jt}* equals 1 if bond *j* is held by any insurer at the end of the year of origination of the respective quarter *t*. *Of fice*_j % and *Retail*_j % are the percent shares of the deal linked to office and retail loans. *Prime rating*_j equals 1 if the bond is rated at least BBB by S&P or by Fitch, or at least Baa3 by Moody's. *Main State* (*share in* %)_j is the share of the deal invested in the main state. *Num of Loans at Securitization*_j is the number of loans in the deal at origination. *Horizontal Risk Retention*_j and *Conduit*_j are dummies for deals of each type, respectively. *Weighted Avg LTV at Securitization*_j and *Weighted Avg DSCR at Securitization*_j are average LTV and DSCR weighted by loan volume within each deal. Standard errors clustered at the security level in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels. Sources: Trepp, NAIC, and authors' calculations.

				I ^{sold}		
		I_{jt}^{Risky}		ijı	$I_{jt-1}^{Downgrade}$	
	(1)	(2)	(3)	(4)	(5)	(6)
$I_{jt}^T \times T_{it-1}^{Office}$	-0.0008	-0.0016	-0.0017	0.0015	0.0102***	0.0103***
	(0.0021)	(0.0035)	(0.0035)	(0.0021)	(0.0040)	(0.0039)
$I_{jt}^T \times T_{it-1}^{Retail}$		0.0007	0.0006		-0.0070**	-0.0071**
		(0.0024)	(0.0024)		(0.0029)	(0.0029)
$I_{it}^T \times T_{it-1}^{Lodging}$		0.0023	0.0040		-0.0051	-0.0057
		(0.0071)	(0.0070)		(0.0067)	(0.0068)
Post Covid _t × $I_{jt}^T \times T_{it-1}^{Office}$	-0.0022	-0.0095***	-0.0093***	-0.0007	-0.0117**	-0.0117**
<i>J</i> , <i>L</i>	(0.0021)	(0.0035)	(0.0034)	(0.0027)	(0.0046)	(0.0046)
$Post \ Covid_t \times I_{jt}^T \times T_{it-1}^{Retail}$		0.0078**	0.0076**		0.0094**	0.0095**
,		(0.0031)	(0.0031)		(0.0038)	(0.0037)
Post Covid _t × I_{it}^T × $T_{it-1}^{Lodging}$		0.0056	0.0042		0.0069	0.0085
		(0.0069)	(0.0069)		(0.0094)	(0.0093)
$I_{it}^T \times T_{it-1}^{\%CorpBonds}$			0.0401***			-0.0076
<i>jt tt</i> 1			(0.0137)			(0.0115)
Post Covid _t × I_{it}^T × $T_{it-1}^{\%CorpBonds}$			-0.0282*			0.0241
ji li-1			(0.0146)			(0.0150)
Observations	7,091,153	7,091,153	7,091,153	5,605,453	5,605,453	5,605,453
R^2	0.71081	0.71082	0.71083	0.78171	0.78171	0.78171
Within R ²	0.00086	0.00090	0.00093	6.25×10^{-6}	1.55×10^{-5}	1.95×10^{-5}
Year × CUSIP fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CUSIP × Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year \times Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

 Table 5: Insurer CMBS Portfolio Exposure and Asset Sales

Notes: This table shows the effect of exposure to different types of collateral via CMBS holdings on the likelihood of sales of risky assets by insurance companies, as in (7). The level of observation is bond *j* originated in quarter *t*. The sample period is 2017 to 2022, and the sample includes all bonds. The dependent variable I_{ijt}^{sold} is a dummy which equals 1 if bond *j* was sold by insurer *i* in year *t*. *Post Covid*_t equals 1 after 2019, T_{it-1}^{Prop} is the size of the exposure of insurance company *i* to property type $Prop \in \{Of fice, Retail, Lodging\}$ in year t - 1, and I_{jt}^{T} is a dummy which equals 1 if the bond is classified as *Risky* or if it was downgraded in year t - 1. $T_{it-1}^{\%CorpBonds}$ is the share of insurance company *i* fixed income portfolio invested in corporate bonds in year t - 1. Standard errors clustered at the insurer level in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels. Sources: Trepp, NAIC, and authors' calculations.

	I ^{sold} to bank				
	(1)	$(2)^{iji}$	(3)	(4)	
$Treat_{jt}^{Exp \ Office}$	0.0069***	0.0074***	0.0034	0.0033*	
	(0.0013)	(0.0014)	(0.0021)	(0.0018)	
$Post \ Covid_t \times Treat_{jt}^{Exp \ Office}$	0.0020	0.0007	0.0051**	0.0054**	
	(0.0016)	(0.0020)	(0.0025)	(0.0026)	
I_{jt}^{Office}		-0.0017	-0.0025	-0.0020	
Ji		(0.0068)	(0.0068)	(0.0070)	
$Post \ Covid_t \times I_{jt}^{Office}$		0.0028	0.0026	0.0023	
r ji		(0.0028)	(0.0028)	(0.0029)	
I_{jt}^{Exp}			0.0056**	. ,	
Ju			(0.0022)		
Post Covid _t × I_{it}^{Exp}			-0.0057**		
,			(0.0027)		
I ^{Exp} Retail			. ,	0.0029	
				(0.0019)	
I ^{Exp} Other _{jt}				0.0039**	
Ji				(0.0017)	
I ^{Retail}				-0.0072	
				(0.0094)	
$Post \ Covid_t \times I_{jt}^{Exp \ Retail}$				-0.0048	
				(0.0031)	
Post $Covid_t \times I_{jt}^{Exp \ Other}$				-0.0002	
j.				(0.0017)	
Post Covid _t × I_{it}^{Retail}				-0.0017	
, . , .				(0.0031)	
Observations	202 007	202 007	202 007	202.087	
Observations R ²	203,987 0.39362	203,987 0.39363	203,987 0.39366	203,987 0.39373	
Within R ²	0.00034	0.00035	0.00040	0.00051	
· · · · · · · · · · · · · · · · · · ·					
Year x Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	
CUSIP x Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	
Year x Coupon Type fixed effects Year x NAIC Designation fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	
rear a marc Designation fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	

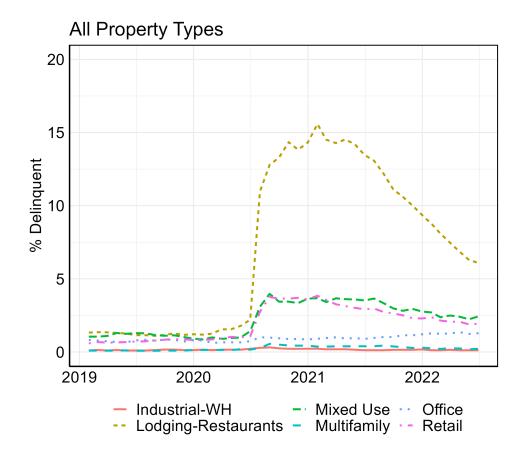
Table 6: CMBS Bank Buyer Difference-in-Differences—Exposure to Lease Expiration

Notes: This table shows the effect of exposure to underlying lease expiration and offices on the likelihood of sales of private-label CMBS by insurers to *banks*. The level of observation is bond *j* held by insurer *i* at the end of year *t*. The sample period is 2017 to 2022. The dependent variable $I_{ijt}^{sold to bank}$ is a dummy which equals 1 if bond *j* was sold by insurer *i* in year *t* to a bank. We excluded CMBS holdings with the following buyers: FA REINSURANCE, Resolution Life Insurance, Coinsurance Talcott-Allianz. *Post Covid*_t equals 1 after 2019. $Treat_{jt}^{Exp Office}$ is a dummy which equals 1 if bond *j* is exposed to office mortgages whose main lease expires within six years (excluding year *t*). $I_{jt}^{Exp Retail}$, and $I_{jt}^{Exp Other}$ are dummy variables which equal 1 if bond *j* is exposed to mortgages whose main lease expires within six years (excluding year *t*), for all properties, retail only, and properties that are neither retail nor offices. I_{jt}^{Office} and I_{jt}^{Retail} are dummies which equal 1 for any exposure to offices and retail. Coupon Type is the type of coupon payment for bond *j* (e.g., fixed rate, floating rate, interest only). Standard errors clustered at the security level in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels. Sources: Trepp, NAIC, and authors' calculations.

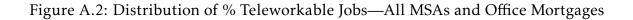
Appendix

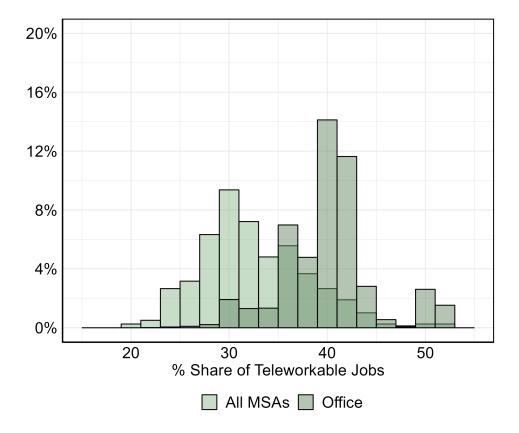
A. Additional Figures and Tables

Figure A.1: Delinquency Rates by Property Type



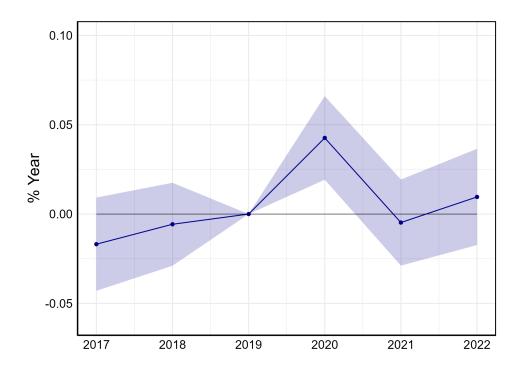
Notes: This Figure reports average delinquency for mortgages linked to different property types. Property types are defined as in Appendix B. Delinquency is a dummy variable which equals 1 if a mortgage is more than 90 days past due. Source: Trepp and authors' calculations.





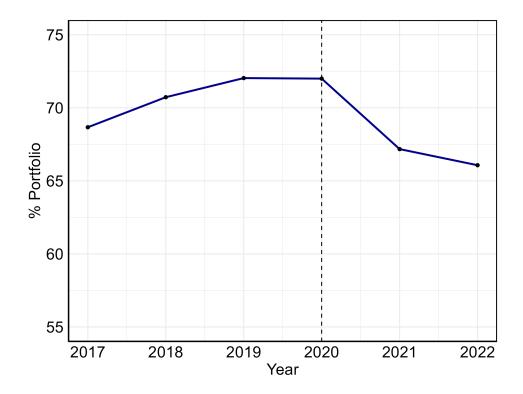
Notes: This figure shows the distribution of the share of jobs in each MSA that can be performed from home, using the measure proposed by Dingel and Neiman (2020). We plot the distribution of all MSAs in the Dingel and Neiman (2020) dataset, and the distribution of the MSAs from the mort-gages in the Trepp data, focusing on properties classified as *Office*. The width of each distribution bar is 2%. Source: Trepp and authors' calculations.

Figure A.3: Dynamic Difference-in-Differences: Trading of CMBS Exposed to Cash Flow Risks



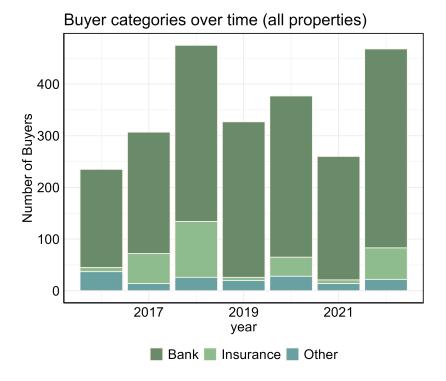
Notes: Each plot shows the dynamic effect of exposure to underlying office lease expiration on the likelihood of sales of private-label CMBS by insurers, as in specification (5). Shaded area corresponds to the 95 percent confidence interval around point estimates. Source: Trepp, NAIC, and authors' calculations.

Figure A.4: Share Insurers' CMBS Portfolio Exposed to Treatment (Office Lease Expiration



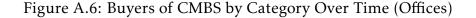
Notes: The plot shows the share of the private-label CMBS portfolio of insurance companies at the end of each year, for bonds which have $Treat_{jt}^{Exp \ Office}$ equal 1, that is, bond *j* has any underlying office-linked mortgages whose leases expire within six years in year *t*. Source: Trepp, NAIC, and authors' calculations.

Figure A.5: Buyers of CMBS by Category Over Time (All Properties)



Notes: This figure reports the share of buyers of all privatelabel CMBS against all properties sold by insurance firms by categories over time. We exclude three major buyers (FA REIN-SURANCE, RESOLUTION LIFE, COINSURANCE TALCOTT-ALLIANZ). Property types are defined as in Appendix B. Source: Trepp, NAIC, and authors' calculations.

A-5



Buyer categories over time (Office)

Notes: This figure reports the share of buyers of all private-label CMBS against offices sold by insurance firms by categories over time. We exclude three major buyers (FA REINSURANCE, RES-OLUTION LIFE, COINSURANCE TALCOTT-ALLIANZ). Property types are defined as in Appendix B. Source: Trepp, NAIC, and authors' calculations.

Property Category	# without lease expiration	# with lease expiration	% with lease expiration
Healthcare-Nursing	464727	51	0.01
Industrial-WH	147055	53515	26.68
Lodging-Restaurants	208574	180	0.09
Mixed Use	66103	56571	46.11
Multifamily	5057710	831	0.02
Office	66596	209965	75.92
Other	223293	10413	4.46
Retail	100665	415663	80.50

Table A.1: Property Types and Lease Expiration Information

Notes: This table shows the number of observations in our CRE mortgage sample for which the lease expiration information is included, and the number of observations for which the lease expiration information is missing. Sample is from Jan/2017 to Jun/2022. Breakdown is provided by property type. Source: Trepp and authors' calculations.

				I_{ij}^{sc}	old t			
		Threshol	d = 25%	IJ	L	Threshol	d = 33%	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$Treat_{jt}^{Exp \ Office}$	0.0021	0.0039	0.0040	0.0031	0.0028	0.0045	0.0054	0.0036
Jt	(0.0031)	(0.0032)	(0.0037)	(0.0033)	(0.0036)	(0.0036)	(0.0045)	(0.0040)
Post Covid _t × Treat $_{jt}^{Exp \ Office}$	0.0176***	0.0135***	0.0068	0.0099**	0.0210***	0.0168***	0.0128**	0.0101*
t jt	(0.0040)	(0.0044)	(0.0053)	(0.0047)	(0.0043)	(0.0049)	(0.0061)	(0.0054)
I ^{Office} _{jt}	,	-0.0151	-0.0115	-0.0088	· · · ·	-0.0146	-0.0130	-0.0086
ji		(0.0207)	(0.0209)	(0.0212)		(0.0207)	(0.0209)	(0.0211)
Post Covid _t × I_{jt}^{Office}		0.0151**	0.0094	0.0121		0.0120*	0.0107	0.0104
: Jt		(0.0071)	(0.0075)	(0.0074)		(0.0073)	(0.0075)	(0.0075)
I_{jt}^{Exp}		· · · ·	0.0033	()		· /	-0.0008	()
ji			(0.0052)				(0.0059)	
Post $Covid_t \times I_{jt}^{Exp}$			0.0166**				0.0071	
,			(0.0070)				(0.0075)	
I ^{Exp} Retail I _{jt}				0.0042				0.0043
				(0.0043)				(0.0053)
$I_{jt}^{Exp \ Other}$				0.0104***				0.0076**
<i>J</i> 1				(0.0032)				(0.0036)
I ^{Retail}				-0.0247				-0.0242
				(0.0314)				(0.0313)
$Post \ Covid_t \times I_{jt}^{Exp \ Retail}$				0.0072				0.0072
				(0.0068)				(0.0076)
$Post \ Covid_t \times I_{jt}^{Exp \ Other}$				-0.0078**				-0.0031
				(0.0038)				(0.0043)
Post $Covid_t \times I_{jt}^{Retail}$				0.0193**				0.0171**
,				(0.0077)				(0.0080)
Observations	219,731	219,731	219,731	219,731	219,731	219,731	219,731	219,731
R ²	0.60753	0.60756	0.60762	0.60771	0.60755	0.60756	0.60757	0.60767
Within R ²	0.00047	0.00054	0.00069	0.00092	0.00051	0.00055	0.00057	0.00083
Year x Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CUSIP x Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year x Coupon Type fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year x NAIC Designation fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table A.2: CMBS Trading Difference-in-Differences—Exposure to Lease Expiration (Extension)

Notes: This table shows the effect of exposure to underlying lease expiration and offices on the likelihood of sales of private-label CMBS by insurance companies. The level of observation is bond *j* held by insurer *i* at the end of year *t*. The sample period is 2017 to 2022. The dependent variable I_{ijt}^{sold} is a dummy which equals 1 if bond *j* was sold by insurer *i* in year *t*. *Post Covid*_t equals 1 after 2019. Treat_{jt}^{Exp Office} is a dummy which equals 1 if bond *j* is exposed to office mortgages whose main lease expires within three years (threshold = 25%) or within four years (threshold = 33%), excluding year *t*. I_{jt}^{Exp} , $I_{jt}^{Exp Other}$ are dummy variables which equal 1 if bond *j* is exposed to mortgages whose main lease expires (threshold = 25%) or four years (threshold = 33%), excluding year *t*. I_{jt}^{Exp} , $I_{jt}^{Exp Other}$ are dummy variables which equal 1 if bond *j* is exposed to mortgages whose main lease expires within three years (threshold = 25%) or four years (threshold = 33%), excluding year *t*. for all properties, retail only, and properties that are neither retail nor offices. I_{jt}^{Office} and I_{jt}^{Retail} are dummy variables which equal 1 for any exposure to offices/retail. Coupon Type is the type of coupon payment for bond *j* (e.g., fixed rate, floating rate, interest only). Standard errors clustered at the security level in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels. Sources: Trepp, NAIC, and authors' calculations.

		Isold t	o insurer	
	(1)	(2)	(3)	(4)
Treat ^{Exp Office}	0.0011**	0.0009*	0.0005	-5.71×10^{-5}
	(0.0005)	(0.0005)	(0.0006)	(0.0006)
Post Covid _t × Treat ^{Exp Office}	0.0003	0.0008	0.0018^{*}	0.0017^{*}
	(0.0006)	(0.0007)	(0.0009)	(0.0009)
I_{jt}^{Office}		-0.0017	-0.0019	-0.0014
		(0.0013)	(0.0013)	(0.0013)
$Post \ Covid_t \times I_{jt}^{Office}$		-0.0011	-0.0011	-0.0010
		(0.0009)	(0.0009)	(0.0009)
I_{jt}^{Exp}			0.0004	
J.			(0.0007)	
$Post \ Covid_t \times I_{jt}^{Exp}$			-0.0013	
,			(0.0009)	
I ^{Exp Retail} I _{jt}				0.0008
				(0.0008)
$I_{jt}^{Exp \ Other}$				0.0012**
				(0.0006)
I ^{Retail}				-0.0020
Even Data H				(0.0014)
$Post \ Covid_t \times I_{jt}^{Exp \ Retail}$				-0.0012
				(0.0008)
$Post \ Covid_t \times I_{jt}^{Exp \ Other}$				-0.0010^{*}
				(0.0005)
$Post \ Covid_t \times I_{jt}^{Retail}$				0.0016*
				(0.0009)
Observations	203,987	203,987	203,987	203,987
R^2	0.41866	0.41867	0.41868	0.41871
Within R ²	5.36×10^{-5}	7.15×10^{-5}	8.45×10^{-5}	0.00014
Year x Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
CUSIP x Insurer ID fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
Year x Coupon Type fixed effects	\checkmark	\checkmark	\checkmark	\checkmark
Year x NAIC Designation fixed effects	\checkmark	\checkmark	\checkmark	\checkmark

Table A.3: CMBS Insurance Buyer Difference-in-Differences—Exposure to Lease Expiration

Notes: This table shows the effect of exposure to underlying lease expiration and offices on the likelihood of sales of private-label CMBS by insurance companies to *insurers*. The level of observation is bond *j* held by insurer *i* at the end of year *t*. The sample period is 2017 to 2022. The dependent variable $I_{ijt}^{sold to insurer}$ is a dummy which equals 1 if bond *j* was sold by insurer *i* in year *t* to another insurer. We excluded CMBS holdings with the following buyers: FA REINSURANCE, Resolution Life Insurance, Coinsurance Talcott-Allianz. *Post Covid*_t equals 1 after 2019. *Treat*_{jt}^{Exp Office} is a dummy which equals 1 if bond *j* is exposed to offices whose main lease expires within six years (excluding year *t*). I_{jt}^{Exp} , $I_{jt}^{Exp Retail}$ and $I_{jt}^{Exp Other}$ are also variables which equal 1 if bond *j* is exposed to mortgages whose main lease expires within six years (excluding year *t*), for all properties, retail only, and properties that are neither retail nor offices. I_{jt}^{Office} and I_{jt}^{Retail} are dummies which equal 1 for any exposure to offices and retail. Coupon Type is the type of coupon payment for bond *j* (e.g., fixed rate, floating rate, interest only). Standard errors clustered at the security level in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels. Sources: Trepp, NAIC, and authors' calculations.

	CMBS Before COVID-19	CMBS Only After COVID-19	No CMBS
Total Assets (000s)	1,751,887	1,267,447	707,091
% Non-owner occ CRE loans	16.35	17.16	13.28
% Private CMBS over total assets	1.18	1.26	0
% Private CMBS	1.98	2.37	0
% Short term securities	2.93	2.76	5.55
% US Treasury	8.22	9.56	16.39
% State and Municipal Bonds	28.64	28.67	27.51
% Other Debt Securities	3.28	3.42	1.95
% Foreign Debt Securities	0.13	0.10	0.09
% Agency MBS	10.43	9.83	7.53
Tier 1 Leverage	10.85	10.81	11.57

Table A.4: Small Bank Characteristics by CMBS Ownership

Notes: This table shows average values for selected characteristics for three types of small banks over the four quarters of 2023. The first column includes all banks that hold private-label CMBS between 2017 and March 2020. The second column includes all banks that hold private-label CMBS only after March 2020. The last column includes all remaining banks, i.e., banks that do not hold any private-label CMBS between 2017 and 2023. Source: Call Reports and authors' calculations.

B. DATA CONSTRUCTION

Our data comes from two main sources, Trepp and NAIC, and are complemented by Call Reports data for our bank level analysis. In what follows, we document the data cleaning procedures for each of the two data sources, and show how we obtain measures of exposure to cash flow shocks at the CMBS level.

Trepp CRE mortgage data. Mortgage data is informed at the loan level with frequency dictated by distribution dates (*ddate*). We use these distribution dates as our main date variables in the loan level analysis. In constructing our sample for the analysis, we exclude:

- Observations without *city* information;
- Observations with an outstanding balance lower than \$ 500;
- Observations for which lease expiration is patchy, that is, when lease expiration information exists for certain months, ceases to be included, and is again included afterwards;
- Observations which have more than one broad property type associated with it in the year in our sample.

Furthermore, we use information from the variable *proptype*, informed by Trepp, to construct the broad property types which we use in our analysis. The variable *proptype* has a large number of stringers indicating the use of the property serving as collateral for each mortgages. We aggregate these strings into eight different property types: *Office*, *Retail*, *Multifamily*, *Mixed Use*, *Healthcare-Nursing*, *Lodging-Restaurants*, *Industrial and Warehouses*, and the residual category *Other*. Examples of how we bin different *proptype* into our broader property type category are:

- Office includes *proptype* strings such as "Office" "Office/Hdqr", "Office Building" and "office properties";
- **Retail** includes *proptype* strings such as "Retail", "Retail Unanchored", "Retail Anchored" and "Retail Mall";

- **Multifamily** includes *proptype* strings such as "Multi-Tenant", "Multifamily" and "Multi-family";
- **Mixed Use** includes *proptype* strings such as "Mixed-Use", "Office/Warehouse", "Multifamily/Retail" and "Offc/Retail/Mltfmly";
- Healthcare-Nursing includes *proptype* strings such as "Nursing Home", "Medical Office", "Assisted Living" and "Medical Office";
- Lodging-Restaurants includes *proptype* strings such as "Hospitality", "Lodging Full Service", "Restaurant" and "Hotel";
- Industrial and Warehouses includes *proptype* strings such as "Industrial", "Self-Storage", "Warehouse" and "Industrial/warehouse".

The full list of strings and their respectively classification can be obtained upon request. Following this procedure, we obtain the loan level monthly panel summarized in Table 1.

Call Reports. We obtain bank level data at quarterly frequency from the Reports of Condition and Income (call reports), available here. We construct our series of holdings of private CMBS by following the construction of the LM763063653.Q and LM763063693.Q variables at the bank level. Detailed instructions for the construction of these two series can be found here and in here.¹³

B.1. CMBS and Insurer Level Exposure to Underlying Loan Characteristics

Since NAIC data is at annual frequency and Trepp data is at distribution date frequency (monthly), we follow an aggregation procedure to plug loan information into CMBS. Specifically, we collect deal level information corresponding to December of each year (and June for 2022, the last month in our sample from Trepp), and add this information to the bonds linked to each deal.

¹³We exclude TD Bank from the analysis as its holdings of private-label CMBS suddenly drop in 2018, and no discontinuous drop is observed in either of the aggregate series. Our small bank analysis is identical as TD Bank would not be classified as a small bank.

Specifically, let $TotAmt_{djt}$ denote the total amount outstanding of the pool of loans of deal d which is linked to bond j and $TotAmt_{djt}^{Offices}$ denote the same amount for loans linked to office properties. Then bond j's exposure to offices in year t is defined as $T_{jt}^{Office} \equiv \frac{TotAmt_{djt}^{Offices}}{TotAmt_{djt}}$. This exposure variable is used to construct dummy variables for positive exposure to offices using variables analogous to $TotAmt_{djt}^{Offices}$ that only include amount for loans with leases expiring within τ years.

To obtain insurer level exposures, we calculate a weighted average exposure at the bond level (weighted by BACV), times the size of the portfolio of private-label CMBS for each insurer.

C. Identifying Active Sales and Acquisitions

The results in Section 5 rely on measures of active asset sales and acquisitions by insurers, obtained from NAIC Schedule D, parts 3 and 4. We identify active sales using a procedure similar to Becker, Opp and Saidi (2022). First, we use the information contained in the variable *name of the purchaser* to exclude entries with keywords associated with *maturity*, *redemption*, *repayment* and *default*, for example. We also impose the requirement of strict positive or negative value in the variable *realized gain(loss) on disposal*. Finally, we further exclude observations for which maturity dates coincide with the report date.

To classify active acquisitions, we identify a series of keywords for the *vendor* variable which contain information not associated with active acquisitions. These keywords include references to *exchange, capitalization, merger* and *transfer,* for example. The full list of keywords, alongside the R code, can be obtained from the authors upon request.