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Abstract

This paper investigates how anticipated AI-driven automation affects firms’ ap-

prenticeship training decisions through theoretical modeling and empirical analysis

conducting a vignette experiment among recruiters in more than 2800 firms in Switzer-

land. We find that firms significantly reduce apprenticeship positions when automation

is expected to affect a larger share of tasks and occur sooner, with a 10 percentage

point increase in automated tasks leading to a 1.51 percentage point reduction in

apprenticeships. The impact varies by occupation type, with routine-intensive and

AI-exposed occupations showing stronger responses. Firm size and sector also influ-

ence automation responses, with large firms demonstrating stronger responses to both

automation share and timing and specific sectors showing heightened sensitivity to

automation timing. Our research contributes to the literature on firm-based training,

task-biased technological change, and generative AI’s labor market impacts by reveal-

ing how automation expectations reshape firms’ human capital investment strategies,

potentially affecting career prospects for young labor market entrants.



1 Introduction

The launch of ChatGPT in November 2022 marked a milestone in artificial intelligence (AI),

demonstrating generative AI’s ability to perform previously human-exclusive tasks. While

earlier AI technologies were already transforming production processes and labor demand

(Acemoglu et al., 2022; Acemoglu and Restrepo, 2019), generative AI has intensified job

displacement concerns, with initial evidence showing negative employment effects on

exposed workers (Demirci et al., 2025; Hui et al., 2023). Unlike previous automation

technologies that primarily affected low and medium-skilled workers, generative AI

excels at cognitively demanding tasks like writing, designing, and programming, which

typically require advanced formal education or extensive professional training (Eloundou

et al., 2023). The threat of unprecedented automation of high-skilled tasks raises critical

questions about firms’ future training provision, which shapes both the development of

the active workforce (e.g., Konings and Vanormelingen 2015; Merriam and Baumgartner

2020) and the entry of future workers into the labor market in the form of apprenticeships

(Wolter and Ryan, 2011).

This paper examines how anticipated automation affects firms’ apprenticeship training

decisions, both through theoretical modeling and empirical analysis. Conducting a vi-

gnette experiment using hypothetical automation scenarios with recruiters from more than

2800 firms in Switzerland, we analyze how both the timeline and intensity of expected

task automation influence firms’ apprenticeship offerings. Based on a three-period model

of apprenticeship training, we hypothesize that firms reduce apprenticeship positions

more strongly when automation is expected sooner and affects a larger share of tasks. We

also analyze heterogeneous effects, with our model hypothesizing stronger reductions

in apprenticeships for occupations involving primarily cognitive and routine tasks and

higher exposure to AI, and how responses differ by firm size and industry.

Our results show that firms significantly adjust their apprenticeship offerings in re-
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sponse to expected automation shocks. A 10 percentage point increase in the share of tasks

automated on average leads to a 1.51 percentage point reduction in apprenticeship posi-

tions, while each additional year until automation reduces the cutback by 0.52 percentage

points. The impact of automation varies substantially by occupation type. Routine-

intensive occupations and those already exposed to AI demonstrate stronger responses,

with higher shares of automated tasks leading to larger reductions in apprenticeship

positions. Furthermore, firm characteristics strongly influence automation responses:

Large firms demonstrate stronger responses to both automation share and timing, and

a sectoral analysis reveals that Construction and Professional, Scientific and Technical

Services show significantly stronger responses to automation timing. Interestingly, while

the main effect of automation share is strong, its interaction with sector dummies is not

significant, suggesting that the impact of automation intensity is relatively uniform across

sectors.

The paper contributes to three main strands of literature. First, it extends research

on firm-based training by providing a theoretical framework that explicitly models how

automation affects training decisions through both production and investment motives,

focusing specifically on apprenticeship provision rather than continuing training. Second,

it contributes to the literature on routine-biased technological change by demonstrating

that the routine nature of tasks is a key determinant of how automation affects training

decisions, with routine-intensive occupations facing larger reductions in apprenticeship

positions. Third, it adds to emerging research on generative AI’s labor market impacts by

showing how firms can be expected to adjust their human capital investment strategies

in anticipation of further automation, revealing that these technologies reshape firms’

training decisions and potentially affect career prospects for young labor market entrants.

The rest of the paper is organized as follows. Section 2 discusses the relevant literature,

Section 3 portrays the Swiss apprenticeship market and Section 4 presents our theoretical
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model. In the empirical part of the paper, Section 5 documents our estimation strategy

and Section 6 discusses the results of our experiment. Section 7 concludes.

2 Literature

Digital Technology and labor demand

Over recent decades, advances in digital technology have substantially transformed

labor markets in developed economies. The impact of this transformation has evolved:

whereas twentieth-century innovations increased demand for skilled labor (Katz and

Murphy, 1992), more recent automation technologies increasingly substitute for rather

medium-skilled human labor in routine tasks (Autor et al., 2003; Goos et al., 2014). Even

more recently, the emergence of generative AI represents a new frontier in automation,

enabling the substitution of tasks previously restricted to high-skilled workers, with early

evidence indicating negative labor market effects among exposed workers (Demirci et al.,

2025; Hui et al., 2023). This latest wave has not only intensified workers’ concerns about

their occupations’ vulnerability to automation (Cattaneo et al., 2024) but is also already

shifting the career choices of labor market entrants (Goller et al., 2023).

Determinants of firm training

The factors driving firms’ decision to train workers, and apprentices particularly, are

manifold. Expected productivity gains drive firms’ general training decisions (Colombo

and Stanca, 2008), whereas apprenticeship provision specifically depends on apprentices’

relative productivity and wages compared to skilled workers (Muehlemann and Wolter,

2014): Firms’ incentives to train are stronger where apprentices’ productivity is high

relative to both their own wages and skilled workers’ productivity, and where apprentices’

wages are low compared to skilled workers’ wages. While a high density of competing

firms in the regional labor market decreases the incidence of firm-sponsored training (e.g.,
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Brunello and Gambarotto 2007; Harhoff and Kane 1997), the effects of product market

competition are ambiguous (Muehlemann and Wolter, 2014), with empirical evidence

pointing to a positive effect of deregulation on training incidence (Bassanini and Brunello,

2011).

Determinants of apprenticeship provision

Research has identified two distinct motivations for firms to offer apprenticeship train-

ing: production and investment motives (Wolter and Ryan, 2011). Under the production

motive, firms view apprentices primarily as substitutes for other labor inputs in current

production processes, despite their initially lower productivity (Lindley, 1975). While

some upfront training is necessary, firms following this motive hire apprentices based

on expected net benefits from their productive work relative to their wages during their

apprenticeships. In contrast, the investment motive, grounded in human capital the-

ory (Becker, 1964), conceptualizes apprentices as future skilled workers (Stevens, 1994).

Accordingly, firms accept net training costs during the time of the apprenticeships in

exchange for future benefits after apprenticeships are completed, particularly in the form

of secured access to skilled labor. Several labor market imperfections allow firms to recover

these investments by being able to keep fully trained apprentices in their outfit: infor-

mation asymmetries (Acemoglu and Pischke, 1999), worker mobility costs (Beckmann,

2002), and institutional rigidities from trade unions and work councils (Dustmann and

Schönberg, 2009; Kriechel et al., 2014). Empirical evidence from cost-benefit analyses

suggests that while investment motives predominantly drive German firms’ demand for

apprentices, significantly influenced by labor market regulations (Muehlemann et al.,

2010), the majority of Swiss training firms achieve direct net benefits from apprenticeships

(Muehlemann and Wolter, 2014).

Digital technology and firm training

Emerging literature examines how recent advances in digital technology affect firm-
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based training, with mixed findings. Heß et al. (2023) find that workers exposed to

automation participate less in training, primarily because firms reduce their training

support. While Brunello et al. (2023) find that advanced digital technologies reduce firm-

sponsored training suggesting that the use of such technologies and employee training

are substitutes, Gathmann et al. (2024) show that German firms investing in digital

technologies during the pandemic reported increased training needs and provided more

training to their workforce. Concerning apprenticeships, Muehlemann (2024) shows that

pre-generative AI adoption in firms increases the number of apprenticeship contracts,

particularly in SMEs. While these findings from the pre-generative AI era are important, it

remains unclear how firms will adjust their training provision in response to automation

prospects, particularly now that generative AI threatens to automate tasks previously

performed exclusively by skilled workers.

3 Apprenticeship Training in Switzerland: Economic Moti-

vations and Digital Technology Impact

After compulsory school, approximately 70% of young people in Switzerland start an

apprenticeship and choose among about 200 different occupations to train in for the next

three or four years. During this time, they spend 1-2 days a week in vocational school

and the remaining weekdays in their training company, where they acquire general, but

more importantly occupation-specific skills and earn a small wage. While for young labor

market entrants the decision to do an apprenticeship is driven by the perspective of a

relatively secure labor market integration after finishing it, the reasons for companies to

train apprentices are mainly twofold. Apprentices can be viewed both as cheap substitutes

for unskilled labor and investments in future skilled workers: While many firms accept

net investments into apprenticeships in order to train and secure their future skilled

workforce, a majority of training companies in Switzerland even achieve direct net benefits

5



from training apprentices, that is, they are able to recoup their investments by the end

of the training period (Muehlemann and Wolter, 2014). Beyond these strictly economic

factors, heads of training firms report their personal preferences and values to play an

important role in their decision to train apprentices, at least in small firms (Baumeler and

Lamamra, 2024).

Table 1: Determinants of apprentice share of firm workforce

(1) (2) (3)

Number of employees (FTEs) -0.000∗∗ 0.001∗∗

(0.000) (0.001)

Sales (CHF) -0.000 -0.000∗

(0.000) (0.000)

Product innovations -0.677∗∗ -0.693∗∗

in current year (0.270) (0.277)

ICT specialists in firm -0.446∗ -0.449
(0.267) (0.280)

Use of AI -0.853∗∗ -0.848∗∗

(0.411) (0.424)

Constant 5.859∗∗∗ 5.400∗∗∗ 5.427∗∗∗

(0.053) (0.179) (0.183)

Observations 22,556 3,194 2,988
Note: The table presents regression results examining how firms’ apprenticeship

intensity–measured as the percentage of apprentices among total employees—-correlates with
various firm characteristics derived from the Swiss Innovation and Digitalization Survey 2021.

How does the firms’ decision to train or not to train apprenticeships relate to their use

of digital technology? The Swiss Innovation and Digitalization Survey (SIDS) biennially

surveys the degree of digitalization in a representative sample of Swiss firms, also offering

additional information on the surveyed firms, such as the education of their workers, num-

ber of sales—and the share of apprentices in their workforce. Regression results in Table 1

show that this share seemingly decreases with the total number of employees. Including

several indicators for digital technology use into the regression, this relationship turns

positive and reveals negative relationships with these indicators: Firms that introduced
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product innovations in the given year have a 0.70 ppt. or 13% lower share of apprentices in

the firm than those without product innovations. Similarly, their share is 0.85 ppt. or 16%

lower for firms that use AI compared to those that did not. While negative, the coefficient

on ICT specialist employment—–commonly used to measure firms’ technological intensity

(Calvino et al., 2018)—does not reach statistical significance. All in all, these descriptive

findings suggest a negative relationship between firms’ use of digital technologies and the

share of apprentices in their workforce.

4 Three-Period Apprenticeship Model with Automation,

Occupational Exposure, and Firm Characteristics

The following model formalizes how automation affects firms’ decisions to provide appren-

ticeship training. We develop a three-period framework that incorporates the investment

motive for training, while accounting for the share of automated trained workers’ tasks,

duration until automation, occupational exposure to automation, and firm-specific charac-

teristics. The model allows us to derive testable predictions about how automation affects

training incentives across different types of firms and occupations. For firms following

the production motive, we provide the corresponding analysis in Appendix A. Notably,

our theoretical model predicts that the directional effects of automation share, timing,

occupational exposure, and firm characteristics should be consistent regardless of whether

firms follow production or investment motives, though the magnitude of these effects may

differ.

4.1 Model Structure

We model a firm’s decision to provide apprenticeship training as an investment problem

based on the net present value (NPV) of expected benefits and costs over three periods. This

approach follows the human capital investment framework established in the literature
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(Becker, 1964; Stevens, 1994).

The firm’s NPV is given by:

NPV = B1 + δB2 + δ2B3 −C (1)

Period 1 represents the initial apprenticeship phase before any automation occurs:

B1 = α1qt −wa (2)

where α1 represents the apprentice’s relative productivity compared to a trained worker

(with 0 < α1 < 1), qt is the output of a trained worker, and wa is the apprentice wage. The

difference between the apprentice’s productive contribution and their wage determines

the first-period benefit.

Period 2 introduces the automation shock with variable timing:

B2 = λ(α2qt −wa) + (1−λ)[α2(1− εx ·φ(s,g))qt −wa] (3)

B2 = α2qt[λ+ (1−λ)(1− εx ·φ(s,g))]−wa (4)

where α2 is the improved apprentice productivity in period 2 (with α1 < α2 < 1), λ

represents the share of period 2 before automation occurs, ε is the occupational exposure

to automation, x is the share of tasks that can be automated, and φ(s,g) captures how firm

size s and sector g modify the automation effect. The parameter λ allows us to model the

timing of automation within the apprenticeship period.

Period 3 represents the post-apprenticeship phase when the worker is fully trained:

B3 = (1−µ)[(1− εx ·φ(s,g))qt −wt] (5)
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where µ is the probability that the trained worker leaves the firm, and wt is the trained

worker wage. The term (1−εx ·φ(s,g))qt captures how automation reduces the productivity

of trained workers by eliminating a portion of their tasks.

Combining the three periods, the complete net present value of apprenticeship training

is:

NPV = (α1qt −wa) + δ[α2qt(λ+ (1−λ)(1− εx ·φ(s,g)))−wa]+

δ2(1−µ)[(1− εx ·φ(s,g))qt −wt]−C
(6)

This equation captures the full investment calculation that firms face. The first term

represents the net benefit from the apprentice’s work in period 1. The second term,

discounted by factor δ, represents the period 2 benefit, which is affected by automation

according to the share of automated tasks (x) and its timing (λ), as well as occupation (ε)

and firm characteristics φ(s,g). The third term, discounted by δ2, captures the expected

future return from retaining the trained worker, accounting for both the probability of

retention (1 − µ) and the automation-adjusted output. Finally, C represents the fixed

training costs incurred by the firm. This formulation allows us to analyze how automation

affects both the production value of apprentices during training and their future value as

skilled workers.

4.2 Training Viability Condition

The firm will provide apprenticeship training only when the expected benefits exceed the

costs:

(α1qt −wa) + δ[α2qt(λ+ (1−λ)(1− εx ·φ(s,g)))−wa]+

δ2(1−µ)[(1− εx ·φ(s,g))qt −wt] > C
(7)
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This inequality establishes a critical threshold for training provision. The left side

captures all benefits: the apprentice’s productive contribution in periods 1 and 2 (adjusted

for automation effects), plus the expected returns from employing the fully trained worker

in period 3. For training to be viable, these cumulative benefits must exceed the fixed

training costs C. This condition allows us to identify how automation parameters (x,

λ, and ε) shift the training threshold. As automation increases, the benefits from both

apprentice productivity during training and post-training employment diminish, poten-

tially pushing some firms below the viability threshold and causing them to cease offering

apprenticeships.

4.3 Comparative Statics

Our model provides testable predictions about how automation affects training incentives:

Effect of automation share (x) on training:

∂NPV
∂x

= −δα2qt(1−λ)εφ(s,g)− δ2(1−µ)qtεφ(s,g) < 0 (8)

This derivative indicates that increasing the share of automated tasks reduces training

incentives through two channels: by diminishing apprentice productivity in period 2 and

by reducing the value of trained workers in period 3. The negative effect is stronger for

occupations with higher exposure (ε) and in firms where the automation impact factor

φ(s,g) is larger.

Effect of automation timing (λ) on training:

∂NPV
∂λ

= δα2qtεx ·φ(s,g) > 0 (9)

Later automation timing (higher λ) increases training incentives by preserving appren-
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tice productivity for a longer portion of period 2. This positive effect is proportional to the

automation exposure (ε) and share of tasks automated (x), suggesting that timing becomes

more critical as automation intensity increases.

Second-order effect of automation share (x) and exposure (ε):

∂2NPV
∂x∂ε

= −δα2qt(1−λ)φ(s,g)− δ2φ(s,g)qt(1−µ) < 0 (10)

This cross-derivative shows that the negative effect of automation is amplified in occu-

pations with higher exposure. Empirically, we would expect to observe larger reductions

in apprenticeship provision for highly exposed occupations as automation increases.

Second-order effect of automation timing (λ) and exposure (ε):

∂2NPV
∂λ∂ε

= δα2qtx ·φ(s,g) > 0 (11)

This positive cross-derivative indicates that later automation timing is particularly

beneficial for occupations with high exposure to automation. In empirical settings, we

would expect the timing of automation adoption to have stronger effects on training

decisions for highly exposed occupations.

5 Estimation Strategy

Our theoretical model predicts that automation reduces firms’ incentives to provide ap-

prenticeship training by lowering the NPV of such investments. This reduction in training

incentives should manifest empirically as a decrease in apprenticeship provision. Specif-

ically, we expect that firms faced with a higher share of automated tasks (higher x) and

earlier automation (lower λ) will reduce their apprenticeship offerings more substantially,

with these effects moderated by occupational exposure (ε) and firm characteristics (φ).
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To empirically investigate firms’ training decisions in response to different automation

scenarios, we conducted a vignette experiment among recruiters in 2840 firms in Switzer-

land that provide apprenticeships. More specifically, our experiment was incorporated

into the so-called Nahtstellenbarometer, a bi-annual survey among a representative sample

of firms conducted on behalf of the Swiss State Secretariat for Education, Research and

Innovation. The survey containing our experiment was conducted in April 2024 and

realized a response rate of 63%. In our vignette experiment, we present firms with three

randomly selected hypothetical scenarios in which they receive the result of a hypothetical

internal analysis about future task automation. Each scenario specifies that in λ years (2,

4, or 6), x% (20, 40, or 60) of tasks in their trained occupation will be automated due to

advances in AI and robots. We then ask how this would affect their decision about the

number of apprentices they will start training in the upcoming training year.

To test our model’s predictions, we estimate the following equation relating automation

to the reduction in apprentices trained:

rf i = β0 + β1λi + β2xi + β3(λi × εj) + β4(xi × εj)+

β5(λi ×φ(s,g)) + β6(xi ×φ(s,g)) + σf +uf i

(12)

Where rf i represents the reduction in apprentices reported by firm f in scenario i. The

variables λi and xi capture the automation timing and share that characterize scenario

i. The occupational exposure εj refers to the exposure of occupation j to automation,

while φ(s,g) represents the firm-specific automation modification factor based on size

s and sector g. Based on our theoretical model, we expect β2 > 0 (higher automation

share increases apprenticeship reduction) and β1 < 0 (later automation timing decreases

apprenticeship reduction). The interaction coefficients β4 and β3 test our predictions

regarding occupational exposure: β4 > 0 would confirm that automation’s negative effect is

amplified in highly exposed occupations, while β3 < 0 would indicate that later automation
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timing is particularly beneficial for highly exposed occupations. Similarly, β5 and β6

capture how firm characteristics modify these relationships. Firm fixed effects σf control

for unobserved firm-specific factors that might affect training decisions.

To examine how occupational exposure influences firms’ apprenticeship training deci-

sions under different automation scenarios, we employ multiple exposure measures. First,

drawing on research on task-biased technological change (e.g., Acemoglu and Autor, 2011),

we classify training occupations as either routine or non-routine and as either manual or

cognitive, using task measures from Mihaylov and Tijdens (2019) and the classification

framework proposed by Gschwendt (2022).1 Second, we match AI exposure measures

developed by Felten et al. (2021) to training occupations to assess how exposure to AI

technologies affects firms’ training decisions.2

6 Results

6.1 Occupational Exposure

Table 2 presents compelling evidence that both automation intensity and timing signifi-

cantly affect firms’ apprenticeship decisions, with important variations across occupational

characteristics. The baseline results in column 1 show that a 10 percentage point increase

in the share of tasks automated leads to a 1.51 percentage point reduction in apprentice-

ship positions on average. Similarly, each additional year until automation implementation

reduces the cutback by 0.52 percentage points on average. Both effects are highly signifi-

cant at the 1% level, indicating that firms strongly adjust their training decisions based on

both the intensity and timing of automation threats.

When examining occupational exposure to automation, routine-intensive occupations

1To match these measures provided for ISCO-08 occupations to Swiss apprenticeships, we leverage the
Swiss Standard Classification of Occupations CH-ISCO-19.

2To assign these AI exposure measures provided only for O*NET-SOC occupations to 4-digit ISCO-08
occupations we use the crosswalk provided by Hardy et al. (2018).
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Table 2: Tasks

(1) (2) (3) (4) (5)
% of tasks automated * 10 1.506*** 1.230*** 1.610*** 1.580*** 1.222***

(0.130) (0.149) (0.187) (0.146) (0.219)
Time to automation -0.521*** -0.394*** -0.583*** -0.607*** -0.379*

(0.122) (0.140) (0.177) (0.135) (0.214)
Routine tasks * % of tasks automated * 10 0.915*** 0.806*

(0.319) (0.414)
Routine tasks * Time to automation -0.513* -0.183

(0.297) (0.403)
Manual tasks * % of tasks automated * 10 -0.253 0.164

(0.268) (0.378)
Manual tasks * Time to automation 0.089 -0.465

(0.249) (0.344)
Exposure to AI * % of tasks automated * 10 0.327** 0.122

(0.160) (0.275)
Exposure to AI * Time to automation -0.251* -0.371

(0.145) (0.254)
Firm FE ✓ ✓ ✓ ✓ ✓
R-squared 0.863 0.862 0.861 0.861 0.862
N 8531 8066 8066 8066 8066
Mean of Dep. Var. 11.927 11.709 11.709 11.709 11.709

* p < 0.10, ** p < 0.05, *** p < 0.01
Note: The dependent variable is the reduction of apprenticeship positions offered. Standard errors
are clustered on the firm level. Differences in N stem from the unavailability of task and AI
exposure measures for some occupations.

demonstrate particularly strong sensitivity to automation. Column 2 shows that these

occupations face an additional 0.92 percentage point reduction in apprenticeships per

10 percentage point increase in automated tasks (significant at 1%). This aligns with

empirical findings on the impact of earlier automation technologies on routine work,

making firms faced with increasing automation more hesitant to invest in training for

these occupations. The interaction between routine tasks and automation timing is also

significant at the 10% level, suggesting that later automation does provide some relief for

routine-intensive occupations. Notably, while the main coefficients for both timing and

intensity of automation do decrease in values, they remain significant and economically

relevant. Interestingly, manual task intensity does not significantly moderate the effects of

automation share or timing, as column 3 shows. This suggests that, in contrast to earlier

waves of automation, the physical nature of tasks does not determine how firms respond
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to upcoming automation shocks in their training decisions.

Column 4 reveals that occupations exposed to AI show higher sensitivity to automation

shocks, with an additional 0.33 percentage point reduction in apprenticeships offered

per 10 percentage point increase in automated tasks. Similarly, these occupations also

respond more strongly to timing, with each additional year until automation reducing

the cutback by an extra 0.25 percentage points. This pattern suggests that firms consider

automation scenarios more credible for occupations that are more likely to be affected by

AI technologies based on the study by Felten et al. (2021).

The comprehensive model in column 5 confirms the robustness of the routine task effect,

which remains significant even when controlling for other occupational characteristics.

However, the manual and AI exposure interactions lose significance in this full model,

suggesting some overlap between task intensity and AI exposure measures. The corre-

lations between the routine dummy and AI exposure (0.6701) and between the manual

dummy and AI exposure (-0.7172) are indeed substantial, indicating strong relationships

between these occupational characteristics.

6.2 Firm Characteristics

Table 3 reveals substantial heterogeneity in how firms of different sizes and sectors respond

to automation threats. Firm size emerges as a critical factor moderating automation re-

sponses. Column 2 shows that while small firms (<10 employees) don’t differ significantly

from medium-sized firms, large firms (>99 employees) demonstrate substantially stronger

responses to both automation share and timing. Large firms reduce apprenticeships by

an additional 1.03 percentage points per 10 percentage point increase in automated tasks

compared to medium-sized firms. They also show heightened sensitivity to timing, with

each additional year until automation reducing the cutback by an extra 0.75 percentage

points. This suggests that larger firms may be more responsive to technological changes
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due to more formalized training and, thus, more flexible schemes.

Sectoral analysis in column 3 also reveals interesting patterns. While most sectors

don’t show significantly different responses to automation share, Construction shows a

marginally significantly lower sensitivity with 0.79 percentage points less reduction per

10 percentage point increase in automated tasks. Regarding timing effects, Professional,

Scientific and Technical services show significantly stronger responses, with each addi-

tional year until automation reducing the cutback by an extra 0.73 percentage points. This

suggests that knowledge-intensive sectors may be particularly sensitive to the timing of

automation.

The comprehensive model in column 4 largely confirms these findings. The large firm

effects remain significant for both automation share and timing. The sectoral timing effect

for Professional services remains marginally significant, while the Construction effect on

automation share becomes non-significant. Overall, these results indicate that firm size is

a more consistent predictor of automation response than sector, with large firms showing

particularly strong adjustments to both automation intensity and timing. This aligns with

the theoretical model’s prediction that firm characteristics significantly moderate how

automation affects training incentives.

7 Conclusions

Our study examines how the expectations of automation shocks affect firms’ apprentice-

ship training decisions through both theoretical modeling and empirical analysis. The

findings reveal important insights into the mechanisms through which automation impacts

training incentives and how these effects vary across occupations and firm characteristics.

Our theoretical model predicts that automation reduces firms’ incentives to provide

apprenticeship training by lowering the net present value of such investments through two
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Table 3: Firm Characteristics

(1) (2) (3) (4)
% of tasks automated * 10 1.506*** 1.377*** 1.768*** 1.581***

(0.130) (0.215) (0.267) (0.324)
Time to automation -0.521*** -0.165 -0.322 0.068

(0.122) (0.193) (0.231) (0.279)
<10 employees * % of tasks automated * 10 -0.116 -0.109

(0.285) (0.288)
<10 employees * Time to automation -0.396 -0.372

(0.263) (0.265)
>99 employees * % of tasks automated * 10 1.027*** 0.943**

(0.384) (0.401)
>99 employees * Time to automation -0.747** -0.845**

(0.351) (0.360)
Manufacturing * % of tasks automated * 10 0.329 0.292

(0.467) (0.462)
Manufacturing * Time to automation -0.308 -0.276

(0.456) (0.454)
Construction * % of tasks automated * 10 -0.787* -0.599

(0.450) (0.457)
Construction * Time to automation -0.382 -0.507

(0.391) (0.393)
Trade & Repair * % of tasks automated * 10 -0.512 -0.341

(0.411) (0.417)
Trade & Repair * Time to automation -0.204 -0.271

(0.397) (0.401)
Professional, Scientific & Technical * % of tasks automated * 10 -0.329 -0.162

(0.437) (0.445)
Professional, Scientific & Technical * Time to automation -0.730* -0.796*

(0.428) (0.432)
Health and Social Work * % of tasks automated * 10 -0.429 -0.441

(0.380) (0.381)
Health and Social Work * Time to automation 0.062 0.099

(0.331) (0.332)
Firm FE ✓ ✓ ✓ ✓
R-squared 0.863 0.864 0.864 0.864
N 8531 8531 8531 8531
Mean of Dep. Var. 11.927 11.927 11.927 11.927

* p < 0.10, ** p < 0.05, *** p < 0.01
Note: The dependent variable is the reduction of apprenticeship positions offered. Standard errors
are clustered on the firm level. Results show differences to a medium-sized firm (10 – 99 employees)
in none of the listed major sectors.
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channels: diminishing apprentice productivity during training and reducing the future

value of trained workers. The model predicts these negative effects are moderated by the

timing and intensity of automation (λ and x) and firm characteristics, and are stronger for

occupations with higher exposure to automation (ε).

Our empirical findings strongly support these theoretical predictions. Firms signifi-

cantly adjust their apprenticeship offerings in response to automation threats, with a 10

percentage point increase in the share of tasks automated leading to a 1.51 percentage

point reduction in apprenticeship positions, while each additional year until automation

reduces the cutback by 0.52 percentage points. The empirical analysis confirms the pre-

dicted heterogeneous effects, with routine-intensive occupations and those particularly

exposed to AI demonstrating stronger negative responses to automation, and large firms

showing substantially stronger responses to both automation share and timing compared

to medium-sized firms. Interestingly, while we find some sectoral heterogeneity regarding

the response to automation timing, the impact of automation intensity is relatively uniform

across sectors.

Our findings contribute to several strands of literature. First, we extend the literature

on firm-based training by providing a theoretical framework that explicitly models how

automation affects training decisions through both production and investment motives.

While previous research has examined how digital technologies affect continuing training

(Heß et al., 2023; Brunello et al., 2023), our study is the first to systematically analyze

how anticipated automation affects apprenticeship provision specifically. Second, we

contribute to the literature on routine-biased technological change by showing that the

routine nature of tasks is a key determinant of how automation affects training decisions

aligning with and extending previous work on how automation affects labor demand

across different task types (Autor et al., 2003; Goos et al., 2014). Moreover, our findings

might indicate a continuation of ”de-routinization” trends in the Swiss labor force as
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observed by Gschwendt (2022). Third, we add to the emerging literature on generative

AI’s labor market impacts by revealing how firms can be expected to adjust their human

capital investment strategies in anticipation of further automation. While recent studies

have documented negative employment effects of generative AI (Demirci et al., 2025;

Hui et al., 2023), our research shows that these technologies also reshape firms’ training

decisions, potentially affecting the career prospects of young labor market entrants.

Regarding policy implications, our results highlight the importance of aligning educa-

tion and training systems with changing skill demands. As automation shifts occupational

task content, apprenticeship curricula need to evolve accordingly, with greater emphasis

on non-routine cognitive skills and human-machine complementarity. This adaptation

is essential to ensure that apprenticeships continue to provide relevant skills for labor

market entrants in an increasingly automated economy.

While our study provides valuable insights, several limitations should be acknowledged.

Our empirical analysis relies on stated responses to hypothetical scenarios rather than ob-

served behavior, which may not perfectly predict actual training decisions. Future research

could complement our approach with longitudinal studies tracking actual apprenticeship

provision as automation technologies diffuse. Additionally, our theoretical model, while

capturing key mechanisms, necessarily simplifies the complex decision-making processes

within firms. Notably, our study operates under the strong assumption that current and

emerging automation technologies will displace substantial portions of trained workers’

tasks, which may not fully materialize as predicted. Furthermore, we do not examine the

compensatory dynamics of task creation—specifically whether automated tasks might

be replaced by modified or entirely new responsibilities that could potentially mitigate

displacement effects. Future work could extend this framework to incorporate additional

factors such as labor market institutions, competitive dynamics, or uncertainty about

technological developments.
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Finally, our study focuses primarily on the quantity of apprenticeship positions rather

than their quality or content. An important direction for future research is to examine how

automation affects the curriculum, duration, and skill focus of apprenticeship programs,

and how these changes influence apprentices’ labor market outcomes. Despite these

limitations, our study makes a significant contribution to understanding how automation

shapes firms’ training decisions and provides a foundation for developing evidence-based

policies to support apprenticeship systems in an era of rapid technological change.
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A Production Motive

For firms following the production motive (considering only periods 1 and 2):

NPVprod = (α1qt −wa) + δ[α2qt(λ+ (1−λ)(1− εx ·φ(s,g)))−wa]−Ct (13)

Training remains viable under the production motive when:

(α1qs −wa) + δ[α2qt(λ+ (1−λ)(1− εx ·φ(s,g)))−wa] > Ct (14)

A.1 Comparative Statics under Production Motive

Effect of automation share (x) on production-motivated training:

∂NPVprod

∂x
= −δα2qt(1−λ)εφ(s,g) < 0 (15)

Effect of automation timing (λ) on production-motivated training:

∂NPVprod

∂λ
= δα2qt[1− (1− εx ·φ(s,g))] = δα2qsεx ·φ(s,g) > 0 (16)

Second-order effect of automation share (x) and exposure (ε):

∂2NPVprod

∂x∂ε
= −δα2qt(1−λ)φ(s,g) < 0 (17)

Second-order effect of automation timing (λ) and exposure (ε):

∂2NPVprod

∂λ∂ε
= δα2qtx ·φ(s,g) > 0 (18)
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