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Abstract

This paper examines the multigenerational effects of maternal grandmothers’ expo-
sure to drought during pregnancy, using a unique cohort study of Peruvian children
and their families. I find that drought exposure has a persistent negative impact on
the health stock of their daughter and grandchildren. Grandchildren have a lower
height-for-age, first becoming apparent in early childhood and persisting through
adolescence, with the height gap widening as they enter puberty. Additionally,
grandchildren display lower early-life weight-for-age, however this effect diminishes
as children age. These effects are strongest for grandsons, and are isolated to grand-
mothers living in rural areas during exposure, with exposure during early pregnancy
having the largest impact. The first generation are also affected, with mothers be-
ing shorter in stature in adulthood. Mediation analysis indicates that effects are
transmitted across generations through a biological channel rather than an economic
channel, with mothers’ long-term physical health acting as the primary mediator.
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1 Introduction

There is a well established literature addressing the effect of prenatal shocks on life-long

health and human capital outcomes (See Almond & Currie, 2011; Almond et al., 2018;

Currie & Vogl, 2013, for reviews of the literature). It builds on the “foetal origins”

hypothesis (Barker, 1990), which posits that the intrauterine environment is critical for

long-term development, with shocks and investments experienced during this period hav-

ing effects which persist long after birth, through “programming” the expression of parts

of the genome crucial for healthy growth and cognitive function (Petronis, 2010). Fur-

thermore, there is a growing cross-discipline literature that posits that these effects are

not limited to the generation exposed to these insults, but can echo down to subsequent

generations (Recent reviews are provided by Aiken & Ozanne, 2014; Doyle & Jernström,

2023; Drake & Liu, 2010; East & Page, 2020).

Although there is an established body evidence derived from lab-based animal stud-

ies that this developmental programming can affect subsequent non-exposed generations

(Aiken & Ozanne, 2014) as well as ample evidence of strong correlations in health, educa-

tional attainment and socio-economic outcomes across generations (Almond et al., 2012;

Behrman & Rosenzweig, 2002; Bevis & Barrett, 2015; Bhalotra & Rawlings, 2013; Currie

& Moretti, 2003, 2007; Emanuel et al., 1992), causal evidence of multigenerational of ef-

fects within humans is very limited. While this is in-part due to practical data limitations

(Almond et al., 2018), it is also due to the difficulty of disentangling a causal effect from

other confounding factors across generations (East & Page, 2020).

Understanding the potential for multigenerational effects has important policy im-

plications. If a negative effect of a shock experienced by one generation has a lasting

impact on the next generation, even in the absence of further shocks, it is likely that

policy-makers do not fully account for these consequences for later generations, underes-

timating the true cost of shocks, as well as the cost-benefit ratio of any subsequent policy

interventions aimed at mitigation (Doyle & Jernström, 2023). It is therefore of benefit to

quantify the presence and magnitude of cross-generational effects, as well as identify the

likely underlying channels of transmission, to inform future mitigation strategies.

Using novel data from the Peruvian sample of the Young lives study on the birth

location and date of the mother of respondents, I match external climate data to identify

their prenatal exposure to drought. I find that the exposure of a gestating grandmother

to a drought shock has a negative impact on the long-term health of her daughter, who is

0.75cm shorter on average in adulthood than non-exposed individuals. This effect is also

transmitted to her grandchildren, who are also less healthy. Considering the dynamic

effects, exposure is associated with grandchildren having a lower height-for-age z-score

(HAZ), an effect that is persistent from early childhood into late adolescence (between

-0.076 and -0.173 S.D. across ages 5-15). While the grandchildren of exposed grandmoth-
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ers also display a lower weight-for-age z-score (WAZ) in early childhood (-0.179 S.D. and

-0.109 S.D. at age 1 and 5, respectively), this effect diminishes by age 8. Furthermore,

effects are realised at the extensive margin, with shock exposure being associated with a

higher incidence of stunting in mid-childhood and adolescence, and a higher probability of

being classed as underweight in early childhood. Given weight is more sensitive to current

health inputs, while height better captures the long-term health stock of an individual,

this indicates that prenatal drought exposure can have a lasting intergenerational impact

beyond the initial health endowment. This suggests the effects on subsequent generations

may not be easily addressed by post-exposure investments, highlighting the importance

of mitigating the initial shock exposure. In contrast to health outcomes, I find little evi-

dence of a multigenerational effect of drought exposure on cognitive ability or educational

attainment.

This paper contributes to the nascent literature documenting causal multigenerational

effects in three key ways. First, it exploits exogenous spatial and temporal variation in

exposure to drought-like conditions experienced by the grandmother (zero generation)

while pregnant, to establish the multigenerational effect of prenatal drought exposure

on the health and cognitive outcomes of i) their child, who was exposed in-utero (first

generation) and ii) of their grandchildren (second generation), the offspring of the exposed

individual.1 Second, this study examines the dynamics of how these multigenerational

effects manifest in the second generation from birth into adolescence, as well as exploring

the potential for heterogeneity in the transmission of effects. Third, through formal

mediation analysis, I provide evidence that effects are predominantly transmitted through

a biological pathway, impacting the long-term health of the exposed first generation,

however results suggest that either a direct effect (via an effect on the second generation

germ-line) or the role of other unobserved environmental/economic pathways cannot be

fully discounted.

These multigenerational effects on health outcomes are driven by the impact of expo-

sure for first generation mothers who are born in rural areas, with a large and significant

negative effect on the HAZ of their offspring, first appearing at age 5 and remaining into

late adolescence, compared to a null and insignificant effect for mothers born in urban

areas. Early impacts on WAZ are also isolated to the offspring of rural-born mothers.

This suggests that the direct effect of exposure is larger in rural areas, where a higher

proportion of households would be reliant on local food sources and agriculture-related

income, likely directly impacting resources available for the first generation in-utero or

1This follows commonly used notation from the epidemiology literature, set out by Skinner (2008),
which describes a gestating female (F0 or zero generation) being exposed to an environmental insult,
resulting in the embryo (F1 or first generation) and germ-line/reproductive cells (F2 or second generation)
being exposed in-utero. Following Skinner (2008) and Drake and Liu (2010), I refer to effects on the F1
and F2 generation as “multigenerational”, rather than “transgenerational”, which is reserved for the
impacts on the F3 generation (i.e. the great-grandchild of the F0 generation) and beyond.
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immediately after birth. Additionally, I assess if the effects of exposure during the grand-

mothers’ pregnancy differ when shock exposure is disaggregated by trimester. Results

indicate that both the effects on grandchildren HAZ and early years WAZ are strongest

for exposure to a shock during the first trimester, consistent with evidence that exposure

earlier in the pregnancy has the largest effect on second generation outcomes (Khan, 2021;

Stein & Lumey, 2000).

Considering heterogeneity amongst the second generation, I look at potential sex-

specific differences in the transmission of effects between boys and girls, finding that the

second generation effects are primarily exhibited in grandsons of exposed grandmothers,

compared with small, insignificant effects for granddaughters. This is consistent with

previous second generation findings where effects on HAZ and WAZ are isolated to the

grandsons of shock-exposed maternal grandmothers (Fung & Ha, 2010). Additionally,

using self-reported data on indicators of puberty, I assess how shock exposure interacts

with entering in to pubertal growth in adolescent years. Results suggest that the gap in

height-for-age between the grandchildren of unexposed and exposed grandmothers widens

once in the pubertal stage of growth, with a large negative effect on HAZ estimated for

those reporting signs of puberty at age 12, compared with a smaller insignificant impact

for those not reporting signs of pubertal growth.

Finally, I conduct formal mediation analysis, estimating the average controlled direct

effect (Acharya et al., 2016; Joffe & Greene, 2009; VanderWeele, 2009) of shock exposure,

net of the effect of the shock operating indirectly through some mediator. Results suggest

that measures of the household environment experienced by the second generation seem

to account for very little of the effect of shock exposure, while the long-term health of

the first generation accounts for the whole of the baseline effect for outcomes at almost

all ages, supporting a biological transmission of health across generations as the primary

mechanism.

The rest of this study is as follows: Section 2 provides a summary of the evidence

for multigenerational effects of prenatal shocks, as well examining the likely biological

and environmental mechanisms which account for these effects. Section 3 summarises

the data sources, defining the key variables and providing sample descriptive statistics,

with the empirical strategy described in Section 4. Results, including additional analyses

of heterogeneous effects, sensitivity, and robustness checks, are provided in Section 5.

Finally, results from the mediation analysis are presented in Section 6, and Section 7

concludes.
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2 Background

2.1 Literature Review

An extensive literature of “first generation” studies links prenatal and early life shocks

with later life outcomes within a single generation (See Almond & Currie, 2011; Almond

et al., 2018; Currie & Vogl, 2013, for comprehensive reviews). Given evidence from

animal studies that the impacts of early life shocks can echo across generations (Aiken

& Ozanne, 2014), there is a clear incentive to assess the potential for this phenomenon

in human studies, leading to the emergence of a “second generation” literature. Recent

reviews of this burgeoning literature are provided by East and Page (2020) and Doyle

and Jernström (2023) for the impacts on health and education/labour market outcomes

respectively, therefore I will summarise only those most relevant to this analysis.

While a large body of cross-disciplinary evidence correlates maternal birth-weight and

disease exposure with offspring birth-weight and educational outcomes (Almond et al.,

2012; Bhalotra & Rawlings, 2013; Bhalotra & Rawlings, 2011; Currie & Moretti, 2007;

Drake & Walker, 2004; Emanuel et al., 1992), these likely reflect a wide range of causal

mechanisms, and cannot separate environmental or epigenetic effects from cross-child

variation in growth due to inherited genetic endowments. Additionally, some studies

exploit twins or adoptees to control for genetic inheritance and isolate the impact of early

life shocks (Royer, 2009; Thompson, 2014), however it is likely that these studies may have

limited external validity, and are difficult to conducted outside of high-income, data-rich

contexts.

Alternatively, several works attempt to identify a causal relationship between condi-

tions experienced by the first generation in-utero (that is, during the grandmother’s preg-

nancy) and their children’s outcomes.2 Early contributions exploit differences between

cohorts exposed to famine and starvation in-utero and surrounding cohorts who were not

exposed. Lumey (1992) studies the inter-generational effects of the Dutch hunger winter

using hospital records, finding the children of mothers exposed to war-induced famine in-

utero in the first and second trimester were more likely to be low birth-weight (LBW), with

mothers exposed also experiencing a low birth-weight at birth. However, a subsequent

study using the same data-set found the no significant relationship between Maternal

birth-weight and offspring birth-weight after adjusting for confounders, compared with

a positive relationship for non-exposed mothers (Stein & Lumey, 2000). Painter et al.

(2008) also study the Dutch hunger winter, finding women exposed in-utero become moth-

ers at a younger age, give birth to more offspring, and have more twins than those not

exposed. In contrast, male reproductivity was unaffected.

2A broader literature studies the causal relationship between parent and child income and educational
attainment (See Black & Devereux, 2011), however this study focuses only on the effect of shocks or
investments experienced post-birth, in early childhood.
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Similarly, a body of work assesses the impact of in-utero experience of the 1959-

1961 great Chinese famine. Almond et al. (2007), while mainly focused on the cohort

exposed to famine, find that women exposed to the famine in early years and whose

parents subsequently migrated to Hong Kong in 1962 had a higher ratio of female to

male births than unexposed native-born mothers. Distinguishing exposure for mothers

and fathers, Fung and Ha (2010) find that the children of mothers exposed in-utero have

lower weight- and height-for-age (HAZ and WAZ), with no significant effect of fathers’ in-

utero exposure. Kim et al. (2014) also find a gendered effect of exposure, with the children

of mothers exposed in-utero 5-7 percentage points less likely to enter middle school. These

results may indicate that maternal shock exposure is more important than that of the

father, however, given the extent of the famine, maternal and paternal exposure is highly

correlated, making it difficult to disentangle effects.3 Fung and Ha (2010) also find sex-

specific differences for second generation outcomes, with the effect on HAZ and WAZ of

mother’s in-utero exposure limited to boys, compared with a null effect for girls. A major

limitation with the studies above are that famines are extreme events.4 The estimated

effects are therefore likely to suffer from selection bias, often with only survivors of extreme

malnutrition, starvation, or sickness observed (Royer & Witman, 2014). Additionally, the

estimates obtained by the above studies of the Dutch winter famine may be confounded

by other effects of the Second World War and its aftermath.

More relevant for this study is a strand of literature exploring the impact of short-run

unexpected deviations in climate conditions, including drought, experienced by the grand-

mother while pregnant or in the early years of the parents’ life. In an early contribution

Venkataramani (2011) assesses the inter-generational transmission of health in Vietnam,

as measured by height, including using an instrumental variable approach, using early

life rainfall, grandparent socioeconomic status and regional fixed effects to capture non-

genetic components of parent height variation. They find a strong relationship between

maternal height variation and child height, while the association with paternal height is

near zero under the instrumental variables approach.5

Using the India Household Development Survey, Khan (2021) assesses the impact of

a rainfall deficit during the grandmother’s pregnancy on her grandchildren’s health and

cognitive outcomes. They find that the grandchildren of exposed grandmothers have a

lower HAZ amongst a pooled sample aged 0-5. Similarly, Hyland and Russ (2019) match

DHS data in 19 Sub-Saharan countries to historical temperature and precipitation data,

finding that the children of mothers exposed in-utero to extreme drought are more likely

3Indeed, considering intensity of exposure for both parents, Li and An (2015) find negative effects of
more intensive exposure to the famine on childrens’ HAZ, regardless of which parent is exposed.

4The great Chinese famine for example, is estimated to have caused between 16.5-30 million deaths
(Li & Yang, 2005).

5However, this study suffers from a weak multiple instruments problem, while it is also unclear if
several instruments satisfy the exclusion restrictions required for causal interpretation.
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to be born with low birth weight. A shortcoming of all previously mentioned studies is

that they only give a snapshot of the effects, either using at-birth outcomes or by pooling

respondents across a wide range of ages. This likely hides the potential for transmitted

effects to alter as offspring age, either due to biological growth faltering or catch-up, or

perhaps due to subsequent investments during their lifetime.

To my knowledge only two studies provide age-disaggregated results. Tafere (2017)

uses the 1983-1985 Ethiopian famine as a natural experiment in a sub-sample of house-

holds located in famine-affected clusters of the Young Lives study. using panel data

methods, they find that mothers exposed to the famine either in-utero or within the first

three years of life are shorter on average and complete less schooling. Their children are

also more likely to be likely to be shorter (5% less than average), with the intensity of

exposure also being important. Additionally, pooled OLS results using a triple interaction

between a famine-cohort dummy, number of months of early life exposure, and the survey

round for each child height observation, show a U-shaped relationship between famine

exposure duration and height as children age, although only statistically significant at

ages 1 and 12.

Most closely related to this analysis, Bevis and Villa (2022) use an instrumental vari-

able approach to estimate the potential transmission of health between mothers and chil-

dren on Cebu island in the Philippines. They instrument variation in health with an array

of early-life weather conditions, using a novel dimensionality reduction technique to derive

a single value instrument for early-life weather variation. They find an early-life weather-

induced 1cm increase in mother’s adult height is associated with a persistent effect on

their child’s health stock (the long-term cumulative health of an individual), measured

by HAZ across childhood from age 1 until age 15. They also find an effect on birthweight

and early age WAZ, their measure of health flow (which remains more sensitive to current

inputs, such as maternal health), however this effect diminishes and disappears by age 8.

This study expands the evidence base for multigenerational impacts of early life shock

exposure in three key ways. First, I provide evidence of the multigenerational impacts

of early life shocks experienced specifically in the place of birth of the mother. A key

limitation of those studies most relevant to this analysis is that their identification strat-

egy relies on defining shock exposure using place of residence of the household during

interview, often assuming zero migration between the zero and second generation, or re-

stricting analysis to never-migrating households.6 In the context of Peru, where significant

rural-urban migration has occurred in the later half of the 20th century, this would likely

6For example, both Tafere (2017) and Khan (2021) assume no migration in Ethiopia and India,
respectively. This is unlikely to hold, particularly in India, where a large proportion of women migrate
for marriage (Rosenzweig & Stark, 1989). Hyland and Russ (2019) restrict their analysis to only never-
migrated households, which represents less than half of their full pooled sample. Alternatively, Bevis and
Villa (2022) do not have information on where mothers are born within Cebu island, therefore weather
shocks are defined for the entire study area, limiting spatial variation in shock exposure.
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introduce significant measurement error.7 Combined with data on the month and year of

birth of the mother, I am able to accurately identify shock exposure of mothers in-utero,

and provide further analysis of heterogeneities across urban and rural-born mothers.

Second, I will expand the limited evidence on the potential dynamic effects of trans-

mission. Using data from a rich longitudinal cohort study, I am able to identify how the

transmission of effects to the second generation presents at specific ages, rather than at a

single snapshot (Hyland & Russ, 2019; Lumey, 1992), or using a pooled sample of respon-

dents of different ages (Fung & Ha, 2010; Khan, 2021; Venkataramani, 2011). This allows

me to assess how exposure impacts postnatal growth trajectories and if effects grow or

diminish as offspring age. Third, I exploit rich longitudinal data to conduct an in-depth

analysis of potential mediator variables (Acharya et al., 2016), providing evidence for a

primary mechanism through which effects of shock exposure are transmitted from the zero

to second generation. These potential mechanisms are discussed further in the following

section.

2.2 Transmission Mechanisms

In estimating the multigenerational effects of early life shock exposure, I also explore

the potential mechanism channels through which these effects are transmitted across

generations. Following Doyle and Jernström (2023), I consider two broad channels for

which shock exposure during pregnancy can transmit to future generations: i) directly

via a “biological” pathway, for example through epigenetic inheritance or by affecting

germ-lines; and ii) indirectly, through an “environmental” pathway, by impacting the

household environment experienced by the second generation.

Within these broad channels, the exact mechanism through which the effects are pri-

marily transmitted may vary. For the environmental channel, it is possible that in-utero

shock exposure impacts the physical and cognitive development of the mother, leading to

lower educational attainment and labour market outcomes (Almond et al., 2018; Black &

Devereux, 2011). This could directly affect the mother’s capacity for child care through

reduced parenting knowledge/ability (Mani et al., 2013), or by limiting the resources avail-

able to invest in her offspring’s development (Cunha & Heckman, 2007; Del Bono et al.,

2016; Todd & Wolpin, 2007). Additionally, if an in-utero shock impacts maternal adult-

hood health, educational attainment, or socio-economic status (SES), then it may impact

the quality of her chosen partner’s human capital (e.g. her partner may also have poorer

health or lower skills/parenting knowledge), further limiting resources available to invest

in subsequent generations. For example, Behrman and Rosenzweig (2002) and Akresh

et al. (2023) attribute a significant portion of the relationship between mother and child

7In Peru rural-to-urban migration is generally associated with a lower prevalence of stunting and
improved HAZ (Escobal & Flores, 2009) but greater overweight prevalence (Rougeaux et al., 2022) for
offspring, however it is unclear how migration interacts with early life shock exposure.
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schooling outcomes to be driven by assortative matching. Furthermore, evidence from the

economics literature shows a clear association between the attainment and SES of parents

and the health and cognitive outcomes of their children (Almond et al., 2012; Behrman

et al., 2017; Bevis & Barrett, 2015; Bhalotra & Rawlings, 2013; Black & Devereux, 2011;

Black et al., 2005; Currie & Moretti, 2003, 2007; Royer, 2009). If these mechanisms

acts as the primary pathway for transmission then it is likely that effects persist across

generations, by perpetuating economic or environmental disadvantage, suggesting that

post-shock interventions are likely an effective way to mitigate intergenerational effects.

For the biological channel, it is possible that an in-utero shock can have a permanent

effect on maternal physiology and metabolism, by altering or “programming” gene ex-

pression (that is, through an epigenetic channel) (Bale, 2015; Skinner, 2014). This could

impact maternal health during pregnancy, by either creating an abnormal intra-uterine

environment and/or altering her ability to transfer vital nutrients to her offspring (Gluck-

man & Hanson, 2004; Godfrey & Barker, 2000). Alternatively, it is possible that exposure

could directly impact the germ cells (the gametes/reproductive cells), present within the

first generation as a foetus while in-utero, and from which the second generation will be

formed (Drake & Liu, 2010; Skinner, 2008).8

In support of this mechanism, a large body of research within epidemiology using ani-

mal studies finds a persistence of in-utero nutritional shocks that last several generations,

even if all subsequent generations are fed a normal diet and the mother is returned to a

normal diet after the birth of her offspring (see Aiken & Ozanne, 2014; Drake & Liu, 2010,

for details). For observational studies of humans, while it is hard to disentangle biological

factors from environmental, an emerging body of work also provides suggestive evidence

that the biological mechanism explains a large proportion of the transmission of health

between generations (Bevis & Villa, 2022; Dabelea et al., 2000; Hyland & Russ, 2019;

Ibáñez et al., 2000; Klebanoff et al., 1999; Van Den Berg & Pinger, 2016; Venkataramani,

2011). Therefore if this mechanism acts as the primary pathway for transmission then it

suggests that post-shock interventions may have a limited ability to mitigate multigener-

ational effects, and that interventions that protect zero and first generation individuals

from the initial exposure to shocks should be prioritised.

3 Data

3.1 Young Lives

I use data from Young Lives (YL), a longitudinal cohort study of around 12,000 children

and their families in four low- and middle-income countries countries (Ethiopia, India,

Peru, and Vietnam) examining the causes and consequences of poverty (Favara et al.,

8See Figure A1 for a visual representation.
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2022). It consists of two cohorts: the younger cohort, born in 2000-2002, and the older

cohort, born in 1994-1996. This analysis focuses on the younger cohort of the Peru

survey, who were first interviewed in 2002 and revisited in 2006, 2009, 2013, and 2016 –

at ages 1, 5, 8, 12, and 15 respectively.9 The Young Lives Peru study employs a multi-

stage, cluster-stratified, random sampling technique, and was evaluated to be suitable for

analysing causal determinants of child welfare and their longitudinal dynamics (Escobal

& Flores, 2008).

The younger cohort consists of 2052 respondent children and their households in the

first round. Attrition is low given extensive tracking: by round 5 (2016) attrition due

to respondent refusal, moving abroad, death, or being untraceable was 9.36%, with 1860

respondents present in round 5. My analytical sample is restricted further as information

on the place of birth and birth month of the mother, required to identify her exposure to

early life drought, was collected in round 4 only if the mother is still alive and part of the

household of the child. The place and date of birth was derived for a total of 1734 moth-

ers. I focus only on the drought exposure of maternal grandmothers, rather than paternal

grandmothers, due to the practical limitation that birth location is only available for a

subsample of fathers present during interview and therefore is missing for significant num-

ber of respondents in a likely non-random pattern, which could produce biased estimates.

However, current evidence from the literature indicates that matrilineal transmission is

generally more important for the effects of early life shock exposure (Caruso, 2015; Fung

& Ha, 2010; Painter et al., 2008; Venkataramani, 2011). A further theoretical argument

is that there are clearer potential transmission channels between maternal and offspring

health than for paternal health if transmission occurs predominantly through a biological

pathway.

Once missing outcomes and covariates are accounted for and singleton observations

are dropped the analytical sample consists of 1670 mother-child pairings present in round

1 (R1). Age 1 sample summary statistics for those included in round 1 and those omitted

are provided in columns (1) and (2) of Table 1. The difference in means are reported

with standard errors from the two-sample t-test in brackets in column (3), and indicates

that those omitted from the R1 sample do not differ significantly in terms of baseline

child, mother or household characteristics, with exception that mothers in my sample are

roughly 1 year older.

Notably, my sample size varies slightly across rounds as some respondents were absent

during one or more interim survey rounds. Additionally, observations are set to missing in

a round if their measure for either height-for-age or weight-for-age are flagged as biologi-

cally implausible following WHO standards (See Briones, 2018, for details). In my sample

9Additionally, 5 rounds of phone surveys were conducted throughout 2020-2021 during the global
COVID-19 pandemic when younger cohort respondents were aged between 18-20 (Favara et al., 2022).
As no physical health measures or cognitive ability tests could be administered, these survey waves are
not considered in this analysis.
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Table 1: Summary Statistics: Comparison of Baseline Characteristics

Omitted Attrition/unbalanced observation

(1) (2) (3) (4) (5) (6)

R1 Sample Omitted
Diff.
(2)-(1) Balanced Omitted

Diff.
(5)-(4)

Child outcomes
HAZ -1.29 -1.34 -0.05 -1.26 -1.76 -0.50***

(1.27) (1.42) [0.07] (1.26) (1.35) [0.12]
Stunted 0.28 0.31 0.04 0.27 0.40 0.13***

(0.45) (0.46) [0.03] (0.44) (0.49) [0.04]
WAZ -0.21 -0.16 0.05 -0.19 -0.51 -0.32***

(1.17) (1.32) [0.07] (1.16) (1.28) [0.11]
Underweight 0.07 0.09 0.02 0.06 0.15 0.09***

(0.25) (0.29) [0.01] (0.24) (0.36) [0.02]
Female 0.49 0.53 0.03 0.49 0.47 -0.02

(0.50) (0.50) [0.03] (0.50) (0.50) [0.05]
Mother outcomes
Height (in cm) 149.96 150.29 0.33 150.01 149.08 -0.94

(5.56) (5.51) [0.37] (5.50) (6.35) [0.57]
Weight (in Kg) 58.70 58.35 -0.36 58.77 57.50 -1.28

(9.94) (9.99) [0.66] (9.99) (9.17) [1.08]
Grade attainment 7.13 7.17 0.04 7.21 6.01 -1.20***

(4.51) (4.73) [0.29] (4.52) (4.29) [0.45]
Age in years 27.02 25.98 -1.04*** 27.08 26.10 -0.98

(6.70) (7.00) [0.39] (6.65) (7.41) [0.67]
HH outcomes
HH size 5.70 5.74 0.05 5.69 5.72 0.02

(2.36) (2.23) [0.13] (2.34) (2.57) [0.23]
Wealth index 0.43 0.41 -0.01 0.43 0.35 -0.08***

(0.24) (0.24) [0.01] (0.23) (0.24) [0.02]

N 1670 382 2052 1560 110 1670

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Columns (1)-(2) and (4)-(5) provide mean values, with standard
deviations in parentheses. (1) Provides baseline summary statistics for the analytical sample at round 1.
column (2) presents values for those observations present in the full cohort that are omitted from the analytical
sample. columns (3) and (6) provide the difference in means from a 2-sample t-test, with standard errors in
square brackets.
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this explains all differences between round 1 and round 4 given data for mother’s birth

location and month are first collected in round 4, as discussed above. therefore further

attrition from our sample occurs only between round 4 and round 5. Column (4) and

(5) provide age 1 summary statistics for those who appear in all rounds (balanced panel)

compared with those observations which are either missing an interim round or attrit

between rounds 4 and 5. Column (6) indicates that there are large difference between

those in the balanced panel and those dropped, in particular respondents are significantly

more likely to be stunted and underweight, with significantly lower height- and weight-for

age. Households have lower wealth scores and mothers have lower educational attainment

(highest grade acheived). While the difference is not statistically different from zero,

mothers are also almost a 1cm shorter, 1.28Kg lighter, and 1 year younger than those in

the balanced panel. If shock exposure is negatively related to second generation outcomes

and to either mothers health or socioeconomic outcomes, which may play an important

role as potential pathways for transmission, this suggests that excluding these observa-

tions from our analysis may downwards bias estimates of the effect of shock exposure on

the outcomes of interest. Therefore for my primary specification I use the full unbalanced

panel in each round. This decision is consistent with other work which provides estimates

of second generation effects at different ages (Bevis & Villa, 2022; Khan, 2021). However,

as shown in subsection 5.4, results remain robust to using the balanced panel.

3.2 Outcomes

3.2.1 Second Generation

The impact of exposure of mothers (first generation) to drought while in-utero during the

grandmother’s (zero generation) pregnancy is measured on the outcomes of the second

generation children in two dimensions of human capital: health and cognitive ability.

Health is measured using anthropometric outcomes related to an individual’s height

and weight. Health stock is measured using child height-for-age z-scores (HAZ).10 Child

growth is seen as a high-quality indicator of child health, capturing the cumulative effect

of health shocks/investments, nutrition, and environmental factors (Case & Paxson, 2008;

De Onis, 2017; Martorell & Habicht, 1986). Child health flow in early years is captured

by weight-for-age (WAZ), which is more susceptible to current health inputs (Bevis &

Villa, 2022; WHO, 1995) than health stock. WHO reference tables for weight-for-age are

provided only up to age 10, as it is considered inadequate for monitoring growth beyond

childhood (De Onis et al., 2007). As such, Young Lives provide weight-for-age scores only

up to round 3, when children were aged 7.5-8.5 years old (Briones, 2018). For rounds

4-5 (roughly ages 12 and 15 respectively) health flow is therefore measured as BMI-for-

age z-scores (BMIAZ), although this is an imperfect measure as it is constructed using

10For age 1 this is measured as length-for-age using a board.
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both weight and height, and therefore may mask changes in weight if accompanied by

changes in height in the same direction. Z-scores for child growth are preferred to using

raw measures as they provide an indication of how a child’s growth compares with that

of a healthy individual of the same age and gender. Observations which are flagged as

biologically implausible based on WHO standards are dropped.

Mean height-for-age (age 1-15), weight-for-age (1-8), and BMI-for-age (available for

ages 1-15) are presented in Table 2. Indicator variables are also defined for a child being

classed as stunted, underweight, or wasted if their age-specific z-score is ≤ -2 S.D. from

the mean for HAZ, WAZ, and BMIAZ respectively, based on WHO reference tables (De

Onis, 2017; De Onis & Habicht, 1996). The sample is relatively short, with a mean

score of less than -1 S.D. below the reference average height for a child of the same

age and gender at all ages. The incidence of stunting (HAZ ≤ -2 S.D.) in early years

is relatively high, with approximately 28% stunted at age 1. Stunting peaks at age

5 at 33%, before falling to 16% by age 15. In contrast, the incidence of underweight

(WAZ ≤ -2 S.D.) is relatively low, at only 7% at age 1, decreasing slightly to 5% for

ages 5 and 8, with average WAZ remaining around -0.20 to -0.53 S.D. from reference

values. Interestingly, the rate of wasting is very low between 0.3-2%, with the average

BMI-for-age being positive. This likely reflects the well documented “double burden”

of malnutrition in Peru (and amongst many other middle-income countries), a recent

trend which has seen the simultaneous coexistence of high levels of childhood stunting,

or under-nutrition (although these have fallen significantly since the late 20th century)

and an increasingly high prevalence of child and teenage overweight/obesity, particularly

amongst girls and women in rural, poor areas (Perez-Escamilla et al., 2018; Santos et al.,

2021; WHO, 2017). As such, adolescents with short stature and relatively high weight

will display relatively higher BMI scores (calculated as weight in kilograms divided by

height in metres squared), however may still exhibit poor health, highlighting a potential

limitation of using anthropometrics, particularly BMI, as a measure of overall health.

Cognitive ability is measured across two sub-dimensions. First, using the Spanish

version of the revised Peabody Picture Vocubulary Test (PPVT) (Dunn et al., 1986), a

widely-used and well-validated assessment of vocabulary acquisition.11 The test is admin-

istered orally, is un-timed and norm-referenced. While the 125 items in the test are the

same for all ages, not all are administered, with only a subset of questions administered

after a basal item and ceiling item are established depending on the number of consecutive

correct/incorrect responses (Espinoza Revollo & Scott, 2022; Leon, 2020). This measure

is first made available in round 2, when younger cohort respondents were aged 5, and was

administered until round 5 when respondents are aged 15.

11Test de Vocabulario en Imagenes Peabody (TVIP) in Spanish. This test is adapted and validated
for use in Latin America. Additionally, it has been further translated and validated by the Young Lives
team to make it available for children whose primary language is Quechua.
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Table 2: Summary Statistics: Time-Varying Child Outcomes

Age 1 Age 5 Age 8 Age 12 Age15

Anthropometrics
Height-for-age -1.28 -1.53 -1.15 -1.02 -1.15

(1.27) (1.11) (1.04) (1.10) (0.88)
Stunted 0.28 0.33 0.20 0.18 0.16

(0.45) (0.47) (0.40) (0.39) (0.37)
Weight-for-age -0.20 -0.53 -0.33

(1.18) (1.01) (1.17)
Underweight 0.07 0.05 0.05

(0.25) (0.22) (0.23)
BMI-for-age 0.73 0.66 0.51 0.55 0.42

(1.18) (0.95) (1.04) (1.07) (0.97)
Wasted 0.02 0.00 0.01 0.01 0.01

(0.15) (0.05) (0.09) (0.10) (0.09)
Cogntive scores
Vocabulary z-score 0.01 0.03 0.01 0.01

(1.00) (0.99) (1.00) (1.00)
Mathematics z-score 0.03 0.03 0.03 0.02

(0.99) (1.00) (0.99) (1.00)

Notes: Sample mean values, with standard deviations in parentheses.

Second, respondents quantitative skills are assessed. In round 2, the Cognitive De-

velopment Assessment (CDA), developed by the International Evaluation Association to

study the effect of preschool attendance on cognitive development in children was ad-

ministered to the younger cohort. Given the long administration time, only the quantity

subscale (15 items) was administered (Espinoza Revollo & Scott, 2022). Beginning in

round 3, mathematics tests were administered to respondents, based on previously vali-

dated items from the Trends in International Mathematics and Science Study (TIMSS)

and the Programme for International Student Assessment (PISA). The contents of maths

tests differ slightly across rounds, and differ from the CDA administered in round 2.

Therefore to provide a more relevant measure, raw scores are age-standardised, to pro-

vide a measure of relative performance within cohort.12 For further details, see Espinoza

Revollo and Scott (2022) and Leon (2020).

3.2.2 First Generation

While the primary focus of this study is the impact on grandchildren’s outcomes, I also

assess the relevancy of the shock on the adult age outcomes of mothers who are exposed

while in-utero. In doing so, this may provide an insight in to the potential channels

12Leon (2020) derive cross-round comparable scores for PPVT and Math tests (not including the CDA
subscale) based on item response theory (IRT) – Results remain unchanged when using IRT scores rather
than age-standardised scores.
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through which effects are transmitted to the second generation, however it does not pro-

vide information on the relevance or importance of this variable as a mediator for the

multigenerational effect, and I cannot rule out that there are unobserved variables which

determine both mother and grandchild outcomes. Therefore, I attempt to address the

potential mechanism channels formally, conducting a mediation analysis, in section 6.

Following from subsection 2.2, I hypothesis two potential channels, the biological and

environmental mechanism. If effects are predominantly transmitted to grandchildren

through the biological channel, then it could be expected that mother’s exposed to a

shock in-utero would display signs of poorer adult health. I use height (in cm) and weight

(kg) as proxies of mothers’ health stock and flow, respectively. Alternatively, if effects

are transmitted through the environmental channel by directly impacting maternal cog-

nitive development, then it could be expected that shock exposure has some impact on

measures of adult human capital accumulation or socioeconomic status. I use mother’s

educational attainment, as well as her household wealth index to capture these dimen-

sions.13 Finally, if effects are transmitted indirectly through the environmental channel

by impacting mother’s mating/marriage prospects, then it is expected that mothers may

match with lower quality partners. To capture this potential indirect effect, I also regress

the educational attainment and height of the father of the child, where available, on

mother’s shock exposure.

3.3 Standardised Precipitation-Evapotranspiration Index

The mothers (first generation) were born between 1950 and 1988 in 381 districts across

Peru, with median year of birth being 1976, and the youngest mother being aged 13 at the

birth of the YL child (second generation).14 To identify the exposure of the grandmother

(zero generation) to drought shocks during her pregnancy, I match data on historical

drought exposure from the Standardised Precipitation-Evapotranspiration Index (SPEI)

(Begueria et al., 2010; Vicente-Serrano et al., 2010). It provides a multi-scalar drought

measure, which accounts for the effects of temperature and potential-evapotranspiration

(PET, i.e. the amount of water that is used by plants, or evaporates from the surface,

under local normal conditions) on the intensity and duration of droughts. It has been

shown to perform better in predicting changes in crop yields and local weather conditions

over other common drought indices (Vicente-Serrano et al., 2012), while retaining the

simplicity of calculation and multi-temporal nature of probabilistic measures such as the

Standardised Precipitation Index (McKee et al., 1993). It has seen increased use in recent

economics literature, most notably Harari and Ferrara (2018).

13This is a country-specific composite measure of household socioeconomic status, measuring house-
holds’ access to services such as water and sanitation, their ownership of consumer durables, and the
quality of materials used in their dwelling. See Briones (2017) for details.

14See Figure A2.
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I use monthly global gridded (0.5◦ resolution) data derived from a 12-month rolling

window time-scale from the SPEIbase (v2.9) database (Begueria et al., 2023), which covers

the period 1901-2022. Cell values are aggregated to the district level (3rd level admin-

istrative area) as the area-weighted mean value of all overlapping grid cells to provide a

monthly district-level time series. The index is normalised with mean zero and standard

deviation (S.D.) one. I define a drought shock experienced during the grandmother’s

pregnancy:

Droughtm,d,t = SPEId,t ≤ −1S.D. (1)

Where SPEId,t is the SPEI value for the 12 months preceding the month of birth t

of mother m, in the district of birth d, such that Droughtm,d,t takes a value of one when

conditions are equal to or greater than one standard deviation worse than the long-run

location specific mean conditions, and zero otherwise.15

4 Empirical Strategy

4.1 Second Generation Effects

To examine the multigenerational effect of exposure of the grandmother while pregnant

to drought on the outcomes of her grandchildren, I estimate the following equation using

OLS:

Y a
c,m,v = β0 + βa

1Droughtm,d,t + β2femalec,m + γm,t + δm,p + ρc,t + σv + εp (2)

Where Y a
c,m,v are the outcomes of child c, of mother m, at each age a. Health outcomes

are estimated for each age a ∈ {1, 5, 8, 12, 15} separately. As discussed above, health stock

is proxied by height-for-age z-scores from ages 1-15. Similarly, health flow is measured

using weight-for-age and BMI-for-age z-scores for ages 1-8 and 12-15, respectively. Ad-

ditionally, I assess the effects on cognitive ability, estimating for ages a ∈ {5, 8, 12, 15}
the impact on age-standardised PPVT and maths scores (age 5 maths is measured us-

ing the CDA quantity subscale, while age 8-15 is measured using YL mathematics tests

(Espinoza Revollo & Scott, 2022)).

An indicator that the child c is female is included, as well as fixed effects for child

cluster of residence v at age a (for a = 1, this is their cluster of birth) and month of

birth cohort t. Fixed effects for mothers’ year-of-birth y and province-of-birth p are also

included. Standard errors are clustered at the level of mother’s province of birth, to

15That is, if the mother was born in July 1979, the SPEI value refers to the deviation in conditions
between August 1978 and July 1979 from the long-term average.
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account for localised spatial correlation in shock exposure, which varies at the district

level.16

4.2 Heterogeneous Treatment Effects

A common finding within the literature is that the effects of early life investments or shocks

can be sex-specific (Almond & Currie, 2011; Almond et al., 2018), and previous evidence

suggests this may extend to multigenerational effects (Fung & Ha, 2010; Venkataramani,

2011). To explore whether the multigenerational effect is different for male and female

grandchildren, I expand on Equation 2, including an interaction between grandmothers

exposure to drought during pregnancy with if their grandchild is female.17

Additionally, it is unclear a priori if effects found in childhood and early adolescence

represent a permanent impact on growth, or simply represent slow growth during child-

hood, with a subsequent catch-up once children enter into puberty. Therefore I assess

how the effects of grandmother’s exposure to drought interact with respondents entering

into pubertal growth, as measured using reported physical indicators of puberty, discussed

further below.

It is expected that drought shocks impact the zero and first generation either directly,

through impacting local crop yields or food prices, impacting food availability, or by im-

pacting agricultural income and hence resources or nutrition available to the grandmother

during pregnancy or for the mother immediately after her birth. As such it is expected

that the effect is either driven exclusively by, or is at least strongest in, rural areas,

where a higher proportion of households are likely to be reliant on local food sources and

agriculture-related income. Therefore, I also interact the drought exposure indicator with

an indicator of if a mother was born in an urban or rural district. Finally, it is common

within the early life shocks literature that in-utero shock exposure in a specific trimester

may have a stronger effect than in other periods. Indeed, within the second generation

literature Khan (2021) and Stein and Lumey (2000) find exposure earlier in the pregnancy

during the first and second trimester has the largest effect on second generation outcomes.

I therefore assess if effects of drought exposure differ by exposure in specific trimesters of

pregnancy.

16Results are also robust to clustering standard errors at the cluster of birth, which is the sampling
level. Results are presented in Table A1.

17While previous work has noted effects of extreme famine on sex ratios of the second generation
(Almond et al., 2012), which would suggest the sex of the grandchild may be endogenous, it is unclear if
this effect extends to this context, where drought exposure is less intense and is less likely to present issues
of selective mortality. While not directly testable in this context, drought exposure does not predict the
sex of grandchildren within the sample, as shown in column 6 of Table A12.
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4.3 First Generation Effects

I also assess the direct impact of in-utero shock exposure on the adult age outcomes for

the first generation (the mother), estimating the following equation:

Mm = α0 + α1Droughtm,d,t + ζm,t + κm,p + νp (3)

Where Mm are the health and human capital outcomes for the mother m, measured by

her adult height and weight, educational attainment, and household socioeconomic status

(as measured by the wealth index (Briones, 2017)). Additionally, to capture potential ef-

fects on mother’s mating/marriage market prospects, I regress the height and educational

attainment of the father of the child on mother’s shock exposure. while this exercise may

provide suggestive evidence of potential mechanisms, it does not provide information on

the relevance or importance of this variable as a mediator for the multigenerational effect

on grandchildren, therefore I conduct a formal mediation analysis in section 6.

5 Results

5.1 First Generation Effects: Mother Outcomes

Before addressing the impacts of grandmother’s exposure to drought while pregnant on

the outcomes of her grandchildren, I first assess the evidence of effects being present in

the first generation, who were in-utero during the shock exposure. Panel A of Table 3

provides estimates of the impact of an in-utero exposure to drought on their individual

adult age outcomes, while Panel B provides estimates on the potential indirect effect of

shock exposure on household and partner outcomes, as described in subsubsection 3.2.2.

The only dimension for which a significant effect is estimated is in mother’s adult height,

my measure of long-run health stock. Exposure to drought in-utero is associated with

a -0.752cm lower height in adulthood (-0.5% decrease compared to the sample mean).

There are no significant effects found for measures of educational attainment, household

socio-economic status, or on the outcomes of their partner. Additionally, there is no sig-

nificant effect found on adult age health flow, which is more susceptible to current inputs.

This is suggestive that shock exposure may have an effect on mother’s long-run physical

health, and with no evidence of an effect on household socio-economic status, attainment,

or selective pair-bonding, could indicate that any transmitted effects may operate pre-

dominantly through a biological channel. However, while much of the variation in adult

height in developing countries is thought to be due to negative shocks experienced in early

life, rather than genetic potential (Beard & Blaser, 2002; Silventoinen, 2003; WHO, 1995),

adult height is an imperfect measure. It is likely the result of all unobserved cumulative

health shocks and investments experienced in childhood and early adulthood, which may
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be positively or negatively correlated with the prenatal shock of interest, potentially bias-

ing estimates of the effect. As such, with this method, I cannot rule out that there is some

unobserved mediator which acts as an intermediate confounder between in-utero shock

exposure, maternal height, and grandchildren’s outcomes. Therefore inferences about the

causal mechanisms for the zero to second generation effects are restricted to those found

using formal mediation analysis, in section 6.

Table 3: Effect of Shock Exposure on First Generation Outcomes

Height Weight Education
Panel A: Mother outcomes
In-utero shock -0.752 -0.590 0.201

(0.324)** (0.580) (0.247)

Mean 149.97 58.78 7.15
N 1656 1632 1671

Father Household

Height Education Wealth
Panel B: Father/Household outcomes
In-utero shock 0.325 -0.067 -0.000

(0.315) (0.294) (0.010)

Mean 162.18 8.25 0.43
N 1168 1425 1671

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Cluster robust
standard errors in parentheses. Fixed effects for mother year-
and province- of birth are suppressed. Sample mean values for
dependent variables are reported in the foot of each panel.

5.2 Second Generation Effects: Grandchild Outcomes

This section presents the estimated multigenerational effects of grandmother’s exposure

to a drought shock while pregnant on the outcomes of her grandchildren. I first present

the impact on anthropometric outcomes, followed by cognitive outcomes.

5.2.1 Anthropometry

Panel A of Table 4 and Figure 1 present estimates of the impact of grandmother’s drought

exposure on health stock, measured as height-for-age z-scores for ages 1-15. Panel B of

Table 4 and Figure 2 provides estimates of the impact of exposure on health flow, measured

as weight-for-age for ages 1-8, BMI-for-age for ages 12-15.

A persistent negative effect is estimated for HAZ at each age (-0.079, -0.076, -0.100,

-0.173, and -0.090 S.D., for ages 1-15). While I cannot reject the null hypothesis H0 :

β̂a=1
2 = 0, for age 1 HAZ, estimated effects beginning age 5 and persisting into adolescence

until age 15 are statistically significant at conventional levels, with the largest difference
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Table 4: Effect of Shock Exposure on Second Generation Outcomes: Anthropometric
Z-scores

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Height-for-age
In-utero shock -0.079 -0.076 -0.100 -0.173 -0.090

(0.064) (0.045)* (0.048)** (0.055)*** (0.045)**
Controls Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620
Weight-for-age BMI-for-age

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Weight-/BMI-for-age
In-utero shock -0.179 -0.109 -0.059 0.045 -0.021

(0.063)*** (0.047)** (0.056) (0.049) (0.059)
Controls Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard deviations
from the age- and gender-specific mean value. Cluster robust standard errors in parentheses.
Controls include an indicator of if the child is female. Fixed effects for child cluster-of-
residence, year-month birth cohort, and mother year- and province-of-birth are suppressed.

Figure 1: Effect of Shock Exposure on Second Generation Outcomes: HAZ
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-0.10**

-0.17***
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-.1
0

.1

Age 1 Age 5 Age 8 Age 12 Age 15

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. 90% Confidence intervals. Coefficients reported in Table 4.
P-values calculated using cluster robust standard errors. Controls include an indicator for if the child
is female and fixed effects for child cluster-of-residence, year-month birth cohort, and mother year- and
province-of-birth are suppressed.
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Figure 2: Effect of Shock Exposure on Second Generation Outcomes: WAZ/BMIAZ
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Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. 90% Confidence intervals. Coefficients reported in Table 4.
P-values calculated using cluster robust standard errors. Controls include an indicator for if the child
is female and fixed effects for child cluster-of-residence, year-month birth cohort, and mother year- and
province-of-birth are suppressed.

measured at age 12. Although there is a peak at age 12, given the overlapping confidence

intervals of estimates, it is unclear if this effect is increasing in age until early adolescence,

or simply persistent.18 The result of a persistent effect on child height are consistent with

the findings of Bevis and Villa (2022) who find a lasting relationship between a 1cm

increase in mother’s height due to early life weather shocks (using an novel instrumen-

tal variable approach) and child height-for-age measured across their whole childhood.

However, this contrasts with the findings of Khan (2021) in India, who finds that while

in-utero shock exposure is associated with a negative impact on HAZ for a pooled sample

aged 0-5, there is no significant effect on HAZ in the age 8-11 sample.

A large negative effect is estimated for weight-for-age at ages 1 and 5 (-0.179 and -0.109

S.D.), significant at the 1% and 5% level respectively. At older ages the estimated effect

size diminishes towards zero, with no significant effect estimated for weight-for-age at age

8, or for BMI-for-age at ages 12 and 15. This finding, and the effect on maternal health

stock noted above, complements the literature indicating the strong association between

maternal health and children’s weight in early years (Currie & Moretti, 2007; Hyland &

Russ, 2019). However, if the impact of shock is transmitted between mother and child

through its effect on the biological channel, then it also provides a similar conclusion to

18Additionally, confidence intervals are widest for age 1 HAZ, for which measurement was conducted
using a length board rather than height scale. This may indicate greater measurement error, as is common
with length measurements where it can be difficult and stressful to ensure a struggling/crying infant is
laying fully stretched out for measurement (WHO, 2006).
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that of Bevis and Villa (2022) that, while (early-life shock-induced) variation in mother’s

health is important for child health flow in early years, the significance and magnitude

diminishes as children age. This is intuitive, given that health flow is more variable

with current period inputs, the importance of maternal health endowment becomes less

important as children age. Alternatively, the estimated impact on health stock suggests

that the transmitted effect of the shock seems to have a more permanent effect on long-

term, cumulative health. I explore this possibility further as part of a mediation analysis

in section 6.

The average effect sizes are relatively small (-0.076 to -0.179 S.D.) compared to the

large deficits that categorise stunting and wasting (z-scores ≤ -2 S.D.), however as pre-

viously documented in Table 2, the sample mean is generally below average height and

weight at each age (with the exception of having a slightly positive BMI in adolescent

years). Given the importance of these categories for global health targets and policy

decisions (De Onis, 2017), I consider the multigenerational effect of shock exposure on

these extensive margins of growth. Estimating a linear probability model by OLS, Ta-

ble 5 provides estimates of the effect of grandmother’s shock exposure on probability of

stunting (HAZ ≤ -2 S.D.) in Panel A, and underweight/wasting (WAZ and BMIAZ ≤
-2 S.D., respectively) in Panel B. Coefficients are reported in percentage points (p.p.).

While some estimates are not significant (notably age 12 stunting and age 1 underweight)

the pattern remains similar to that seen in the intensive margin, with a positive impact

of the shock on the probability of stunting of 6.4 p.p. (a 32.0% increase relative to the

sample mean) and 5.5 p.p. (34.4% relative increase) for ages 8 and 15, respectively. For

health flow, shock exposure is associated with a 3.4 p.p. (68%) increase in probability of

being underweight at age 5, all significant at the 5% level. This suggests that while the

magnitude of the effect on the intensive margin appears relatively small, the multigener-

ational effect of drought exposure has a notable effect on commonly used health targets,

adding relevance to these findings for future health policy. I now turn to the results for

child cognitive outcomes.

5.2.2 Cognitive Ability

Considering the implications of shock exposure on grandchild cognitive ability, Table 6

shows the estimated effect of exposure on age-standardised scores for receptive vocabulary

(Panel A) and quantitative skills (Panel B). Receptive vocabulary is measured using the

Spanish-version of the PPVT (Dunn et al., 1986) for all ages, while quantitative skills are

measured by the CDA quantity sub-scale for age 5 and using Young Lives mathematics

tests for ages 8-15. All scores are age standardised. There is little evidence of an effect on

cognitive ability as measured by these indicators, with exception of a negative impact of

shock exposure on performance in the CDA quantity sub-scale at age 5, however this effect

is only marginally significant at 10%. Given limited evidence of an effect on cognitive
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Table 5: Effect of Shock Exposure on Second Generation Outcomes: Stunting & Wasting

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Stunted
In-utero shock 0.031 0.014 0.064 0.033 0.055

(0.028) (0.023) (0.026)** (0.027) (0.023)**
Controls Yes Yes Yes Yes Yes

Mean 0.28 0.33 0.20 0.18 0.16
N 1670 1657 1665 1671 1620

Underweight Wasted

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Underweight/Wasted
In-utero shock 0.004 0.034 0.026 -0.001 0.001

(0.016) (0.015)** (0.016) (0.006) (0.007)
Controls Yes Yes Yes Yes Yes

Mean 0.07 0.05 0.05 0.01 0.01
N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in percentage
points. Cluster robust standard errors in parentheses. Controls include an indicator
of if the child is female. Fixed effects for child cluster-of-residence, year-month birth
cohort, and mother year- and province-of-birth are suppressed. Sample mean values
for dependent variables are reported at the foot of each panel.

outcomes, the remainder of this paper will focus on the multigenerational impacts on

health. Next I assess the potential for heterogeneous effects across grandchild sex or by

the rural/urban birthplace of the mother.

5.3 Heterogeneous Effects

5.3.1 Sex Specific Differences

Panel A of Table 7 and Figure 3 show the estimated average marginal effects of grand-

mother’s shock exposure on HAZ of male and female grandchildren. Coefficients plotted

are the average marginal effects for a discrete change in the indicator of grandchild sex.

Regression coefficients for the level and interaction terms are reported in Table A2. Re-

sults suggest that the majority of the impact of shock exposure on HAZ is driven by

its effect on boys. This is consistent with Venkataramani (2011), who finds that shock-

induced variation in maternal height is most strongly associated with boys height against

a null effect for girls, and Fung and Ha (2010), who find that the second generation ef-

fects on HAZ and WAZ of maternal in-utero exposure to the great Chinese famine is

isolated to boys. Additionally for age 1 length-for-age, there is a large negative effect

of shock exposure for boys, compared with a small insignificant positive effect on girls.

This could suggest that, at least for boys, the effect on height could be present across

their whole childhood from age 1, however this effect remains imprecisely estimated with
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Table 6: Effect of Shock Exposure on Second Generation Outcomes: Cognitive Scores

Age 5 Age 8 Age 12 Age 15
Panel A: Vocabulary score
In-utero shock -0.041 0.027 -0.011 -0.017

(0.046) (0.057) (0.060) (0.057)
Controls Yes Yes Yes Yes

N 1620 1562 1624 1580
CDA Young Lives tests

Age 5 Age 8 Age 12 Age 15
Panel B: Maths score
In-utero shock -0.115 -0.045 0.015 0.006

(0.058)* (0.050) (0.062) (0.051)
Controls Yes Yes Yes Yes

N 1620 1562 1624 1580

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are re-
ported in standard deviations from the age-standardised sample
mean. Cluster robust standard errors in parentheses. Controls
include an indicator of if the child is female. Fixed effects for
child cluster-of-residence, year-month birth cohort, and mother
year- and province-of-birth are suppressed.

wide confidence intervals, and is only significant at the 10% level.19 That the effect of

shock exposure on health stock is isolated to boys means that it is not clear whether

the multigenerational shock could persist beyond the second generation. Given limited

information on the birth location of fathers in my sample, and that I do not currently ob-

serve the third generation in this dataset, I am not able to assess how effects may persists

patrilineally, however evidence from the wider literature provides limited evidence that

matrilineal transmission is more important for second generation effects (Caruso, 2015;

Fung & Ha, 2010; Painter et al., 2008; Venkataramani, 2011).

Panel B of Table 7 and Figure 4 show estimates for WAZ and BMIAZ. While effects

are consistently more negative for boys, in contrast to HAZ infant WAZ is significantly

different from zero for both boys and girls of mothers exposed in-utero. Overall results

indicate that there is a sex-specific difference in multigenerational effects, with the largest

effects found for boys.

5.3.2 Urban/Rural Differences

Panel A of Table 8 and Figure 5 show the marginal effects for HAZ of the second generation

child for mothers who were born in urban areas compared with rural areas. While a large

and significant effect is estimated for the baseline effect (urban-born = 0) for ages 5-

15, the marginal effect for the children of urban-born mothers is insignificant across all

19This imprecision may reflect greater measurement error for infant length-for-age, given reported
difficulties with keeping infants still and stretched out.
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Table 7: Marginal Effect of Shock Exposure on Second Generation Outcomes: By Sex

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Height-for-age
In-utero shock × Female = 0 -0.201 -0.103 -0.154 -0.249 -0.139

(0.103)* (0.088) (0.066)** (0.074)*** (0.069)**
In-utero shock × Female = 1 0.040 -0.049 -0.046 -0.098 -0.042

(0.083) (0.062) (0.061) (0.079) (0.056)

N 1670 1657 1665 1671 1620
Weight-for-age BMI-for-age

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Weight-/BMI-for-age
In-utero shock × Female = 0 -0.230 -0.167 -0.113 0.010 -0.093

(0.083)*** (0.058)*** (0.077) (0.063) (0.075)
In-utero shock × Female = 1 -0.128 -0.050 -0.006 0.080 0.050

(0.071)* (0.067) (0.077) (0.087) (0.092)

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Table reports the marginal effects of shock exposure on second
generation HAZ (Panel A) and WAZ/BMIAZ (Panel B). Relevant regression coefficients are reported in Ta-
ble A2. Cluster robust standard errors in parentheses. Fixed effects for child cluster-of-residence, year-month
birth cohort, and mother year- and province-of-birth are suppressed.

Figure 3: Marginal Effect of Shock Exposure on Second Generation Outcomes: HAZ,
by Sex
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Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. 90% Confidence intervals. Marginal effects reported in
Table 7. P-values calculated using cluster robust standard errors. Fixed effects for child cluster-of-
residence, year-month birth cohort, and mother year- and province-of-birth are suppressed.
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Figure 4: Marginal Effect of Shock Exposure on Second Generation Outcomes:
WAZ/BMIAZ, by Sex
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Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. 90% Confidence intervals. Marginal effects reported in
Table 7. P-values calculated using cluster robust standard errors. Fixed effects for child cluster-of-
residence, year-month birth cohort, and mother year- and province-of-birth are suppressed.

rounds, with inconsistent sign and diminished magnitude. Similarly, Panel B of the same

table and Figure 6 show large and statistically significant effects for age 1-5 WAZ for a

baseline effect, with an insignificant marginal effect estimated for the children of urban-

born mothers. This evidence suggests that the overall effect seems to be driven by the

large and significant effect for the children of mothers born outside of urban areas, with

little or no evidence of an effect for urban born mothers.20

5.3.3 Growth Stage Differences

Notably, the results in Table 4 suggest that second generation effects for height-for-age are

most pronounced between age 8 and 15, with the largest effect at age 12. This peak may

suggest that effects are largest around when grandchildren may be transitioning between

childhood growth and pubertal growth, but it is unclear if the gap between exposed and

unexposed individuals remains stable once they enter into pubertal growth. It is possible

the height differential widens once in puberty, providing at least suggestive evidence that

effects may impact final adulthood growth potential and indicating a persistent multigen-

erational gap that is potentially difficult to remediate. Alternatively, if the gap narrows

in puberty, it could suggest that the multigenerational effect of drought exposure may

impact only on second generation childhood growth velocity, but not necessarily final

20Regression coefficients are provided in Table A3.
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Table 8: Marginal Effect of Shock Exposure on Second Generation Outcomes: By Mother
Birth-Location

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Height-for-age
In-utero shock × Urban-born = 0 -0.072 -0.133 -0.131 -0.246 -0.135

(0.080) (0.051)*** (0.055)** (0.067)*** (0.048)***
In-utero shock × Urban-born = 1 -0.096 0.085 -0.010 0.028 0.030

(0.106) (0.091) (0.108) (0.115) (0.100)

N 1670 1657 1665 1671 1620
Weight-for-age BMI-for-age

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Weight-/BMI-for-age
In-utero shock × Urban-born = 0 -0.213 -0.144 -0.094 0.061 -0.036

(0.067)*** (0.054)*** (0.069) (0.063) (0.064)
In-utero shock × Urban-born = 1 -0.084 -0.010 0.041 0.002 0.023

(0.127) (0.108) (0.116) (0.070) (0.098)

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Table reports the marginal effects of shock exposure on second generation
HAZ (Panel A) and WAZ/BMIAZ (Panel B). Relevant regression coefficients are reported in Table A3. Cluster robust
standard errors in parentheses. Controls include an indicator of if the child is female. Fixed effects for child cluster-
of-residence, year-month birth cohort, and mother year- and province-of-birth are suppressed.

Figure 5: Marginal Effect of Shock Exposure on Second Generation Outcomes: HAZ,
by Mother Birth-Location
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Table 8. P-values calculated using cluster robust standard errors. Indicator for if the child is female and
fixed effects for child cluster-of-residence, year-month birth cohort, and mother year- and province-of-
birth are suppressed.
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Figure 6: Marginal Effect of Shock Exposure on Second Generation Outcomes:
WAZ/BMIAZ, by Mother Birth-Location
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Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. 90% Confidence intervals. Marginal effects reported in
Table 8. P-values calculated using cluster robust standard errors. Indicator for if the child is female and
fixed effects for child cluster-of-residence, year-month birth cohort, and mother year- and province-of-
birth are suppressed.

adult height potential, suggesting a greater opportunity for catch up or remediation with

post-exposure intervention.

To assess potential heterogeneity in the transmission of effects by adolescent or child-

hood growth stage, I use information on the timing of physical signs of pubertal onset

to construct an indicator for likely pubertal growth. beginning in around 4 (age 12) re-

spondents are asked about when they first noticed certain physical traits associated with

puberty. For girls, respondents are asked if they experience menstruation, and at what

age did they experience their first period. Similarly for boys, respondents were asked if

they have noticed hair on their chin, and at what age they first noticed hair growing on

their chin. In round 5 (age 15), girls who had not yet experienced their period and boys

who had not reported/had visible facial hair were asked these questions again.21 Pooling

information between rounds 4 and 5, I construct an indicators of if a respondent has

reported first experiencing their period or having noticed hair on their chin by age 12 or

15. For a small number of observations, this information is missing across both rounds,

due to refusal or non-response.22 A limitation of this data is that it is self reported,

21Notably, this question was incorrectly coded in round 5 for the Peru survey, but was subsequently
collected either by in-person follow up or via an additional phone survey. This data is not currently
available in the public release and must be requested directly from Young Lives.

22A concern is that the age of pubertal onset may be endogenous to shock exposure. I do not observe
the eventual age of onset for respondents who do not report signs, therefore I cannot directly test this
relationship, however shock exposure is not predictive of onset of puberty by age 12.
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however previous research using the Young Lives dataset has shown their reliability as an

indicator, as the most important determinant of growth velocity in adolescence (Duc &

Tam, 2015).23

Table 9 and Figure 7 show the estimated average marginal effects of grandmother’s

shock exposure on HAZ and BMIAZ of grandchildren, interacted with the likely pubertal

growth indicator for ages 12 and 15, respectively. Interestingly, the marginal effects

estimated for HAZ at ages 12 and 15 for those reporting signs of puberty (-0.244 S.D.

and -0.099 S.D.) are larger than those found in the main specification, significant at the

1% and 10% level respectively. While negative effects are estimated for those not yet

reporting signs of puberty, these effects are not statistically different from zero. This

indicates that effects estimated in adolescence are primarily driven by those who have

reported signs of puberty, suggesting that the gap between those exposed and unexposed

may widen as respondents begin pubertal growth. In contrast, there is no significant

effect estimated for BMI-for-age, regardless of growth stage, consistent with my primary

findings. Compared to a large effect estimated for HAZ at age 12, the effect at age 15

is diminished. This could suggest that the effect, while initially wider in early puberty,

narrows as children reach young adulthood, however the effect is imprecisely estimated,

with overlapping confidence intervals, therefore it is not possible to draw clear conclusions

in this aspect.

These effects are in contrast with those found by Bevis and Villa (2022), who pro-

vide suggestive evidence that the transmitted effect of early life weather induced height

variation between first and second generation peaks at the average age of puberty onset

for boys (age 11) and girls (age 8), however they do not find a statistical difference in

transmission effects between those likely in pubertal growth and child growth at the next

round (age 15 and age 11 for boys and girls, respectively).

Relevant regression coefficients are reported in Table A4, with large positive coefficients

estimated for the level term for puberty for both HAZ and BMIAZ as the outcome,

providing suggestive evidence that indicator does seem to explain growth associated with

actual puberty. However, given this indicator is constructed using self-reported data, it

is likely there is significant measurement error arising from recall error and misreporting.

Therefore results are interpreted with caution.

5.3.4 Trimester of Exposure

Finally, I assess if exposure to drought within a specific trimester of the grandmother’s

pregnancy is important for grandchild effects. Estimates for the second generation effects

of exposure to a SPEI shock ≤ −1 S.D. in each of the approximate trimesters of the

23A further limitation is that these measures, in particular for boys are not directly relatable to
well established measures of pubertal growth, such as the Tanner stages/Sexual Maturity Rating scale
(Marshall & Tanner, 1969, 1970).
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Table 9: Marginal Effect of Shock Exposure on Second Generation Outcomes: By
Growth Stage

Height-for-age BMI-for-age

Age 12 Age 15 Age 12 Age 15

pubertal growth = 0 × In-utero shock -0.102 -0.029 0.048 -0.128
(0.075) (0.118) (0.052) (0.118)

pubertal growth = 1 × In-utero shock -0.244 -0.099 0.047 0.018
(0.081)∗∗∗ (0.053)∗ (0.091) (0.072)

N 1665 1617 1665 1617

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Table reports the marginal effects of shock expo-
sure on second generation adolescent HAZ and WAZ/BMIAZ. Relevant regression coefficients
are reported in Table A4. Cluster robust standard errors in parentheses. Controls include an
indicator of if the child is female. Fixed effects for child cluster-of-residence, year-month birth
cohort, and mother year- and province-of-birth are suppressed.

Figure 7: Marginal Effect of Shock Exposure on Second Generation Outcomes: HAZ &
BMIAZ, by Growth Stage
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effects for child cluster-of-residence, year-month birth cohort, and mother year-
and province-of-birth are suppressed.
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grandmother’s pregnancy are shown in Table 10. Results indicate that both the effects

on HAZ and early years WAZ are strongest for exposure to a shock in the first trimester.

A significant effect on second generation HAZ of 1st trimester exposure is estimated

between ages 5 and 12, although the effect found at age 15 for the main analysis is no

longer significant at conventional levels. These results are consistent with those in other

multigenerational studies, which find exposure to negative shocks earlier in the pregnancy

during the first and second trimester has the largest effect on second generation outcomes

(Khan, 2021; Stein & Lumey, 2000). A limitation however, given that birth date is

only available at the month and year level, is that it is not possible to precisely define

if a respondent was exposed to a shock in a specific trimester, or if the defined intervals

include periods prior to conception or post-birth, therefore these results may be subject

to some measurement error.24

Table 10: Effect of Shock Exposure on Second Generation Outcomes: By Trimester

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Height-for-age
1st trimester -0.048 -0.151 -0.103 -0.125 -0.077

(0.065) (0.056)*** (0.046)** (0.054)** (0.047)
2nd trimester -0.027 -0.013 -0.016 -0.008 0.019

(0.067) (0.051) (0.052) (0.057) (0.048)
3rd trimester -0.062 -0.023 -0.001 -0.069 -0.042

(0.063) (0.053) (0.053) (0.060) (0.058)
Controls & FEs Yes Yes Yes Yes Yes

Observations 1670 1657 1665 1671 1620
Weight-for-age BMI-for-age

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Weight-/BMI-for-age
1st trimester -0.145 -0.124 -0.103 -0.056 -0.045

(0.071)** (0.060)** (0.054)* (0.052) (0.051)
2nd trimester -0.070 -0.050 -0.013 -0.013 -0.034

(0.063) (0.058) (0.071) (0.053) (0.074)
3rd trimester -0.068 -0.026 0.009 0.006 0.004

(0.059) (0.057) (0.064) (0.057) (0.058)
Controls & FEs Yes Yes Yes Yes Yes

Observations 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard devi-
ations from the age- and gender-specific mean value. Cluster robust standard errors in
parentheses. Controls include an indicator of if the child is female. Fixed effects for child
cluster-of-residence, year-month birth cohort, and mother year- and province-of-birth are
suppressed.

24Additionally, SPEI shocks for trimesters are defined over a different time period than the main
specification shock, therefore they may not represent the same intensity of drought as a shock defined
over a longer period, which may indicate a more sustained period of below average rainfall.

30



5.4 Robustness Checks

To assess the sensitivity of results to shock definition, in Table A5 and Table A6 I re-

estimate results for height and weight outcomes respectively using alternative exposure

indicators. Panel A uses a lower cutoff point of less than or equal -0.8 S.D. for 12-month

SPEI values proceeding the month of mother’s birth. Panel B defines a drought shock

as an average monthly SPEI value ≤ -1 S.D. throughout the growing season prior to

mother’s month of birth of the primary crop in each department. The primary crop for

each department of Peru is defined based on the annual sown area in hectares, using

data from the Peruvian Ministry of Agriculture (MINAGRI).25 The crop-growing season

for each primary crop is defined based on a global gridded crop calendar data from the

University of Wisconsin-Madison’s Nelson Institute (Sacks et al., 2010), which provides

estimates of planting and harvesting days for 19 crops on a 0.5x0.5◦ global grid, based

on national and sub-national agricultural censuses.26 I aggregate this grid-level data to

the department level to obtain the mean planting and harvesting date, rounded to the

month-of-year level. The pattern of results remains for both specifications.

The sample size varies slightly across rounds due to both attrition and interrupted

observations, as discussed in subsection 3.1. Table A7 re-estimates Equation 2 for anthro-

pometric outcomes on a balanced sample with results remaining robust (small variations

in sample size remain due to singleton observations, which are dropped during estimation).

This analysis focuses on in-utero shock exposure, however it is possible that the multi-

generational effects of early life shocks are not exclusive to exposure in the prenatal period.

To test this, in Table A8 and Table A9 I estimate the impact of shock exposure in each

year from 3 years prior to birth until 5 years after birth on HAZ and WAZ/BMIAZ, re-

spectively. Shock exposure in any 12 month period outwith the 12 months prior to birth

(that is the in-utero shock) has no significant impact on HAZ at any age. Interestingly

for BMIAZ at age 15, a positive effect is estimated for shock exposure two or three years

before birth, as well as 5 years after birth, although only the effect at 2 years before birth

is significant at the 5% level or above. Otherwise There is no significant impact for any

other outcome outside of the year prior to birth.27

While there is no evidence of an effect on the socioeconomic outcomes of the mother,

a potential threat is if there is non-random selection in to treatment, with poorer families

being more likely to be exposed. To check if there is an endogenous relationship be-

tween socioeconomic status of the grandparents’ household and shock exposure, I regress

in-utero shock exposure on the education level of the grandparents, measured by an in-

25This data is extracted from the cropdatape R package, available: https://github.com/omarbenites/
cropdatape. Crops included are rice, quinoa, potato, sweet potato, tomato and wheat. Tomato was
excluded as it is a perennial crop.

26Available from: https://sage.nelson.wisc.edu/data-and-models/datasets/crop-calendar-dataset/
27Additionally, I estimate all these periods separately, with similar results reported in Table A10 and

Table A11.
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dicator of at least one grandparent completing secondary education, finding no evidence

of grandparent educational attainment as being predictive of shock exposure. However,

data on grandparent education is only available for a sub-sample of households where at

least one grandparent is present in the household roster at any point between round 1

and 5, likely leading to a selection bias. Therefore I use as an alternative measure an

indicator of whether the maternal grandmother’s mother tongue was Spanish, which is

available for the majority of the sample. This is a rough proxy of long-term SES, with

large inequalities present in education and SES between Spanish and indigenous language

speaking households (Leon et al., 2021). I find no significant relationship with shock

exposure. results are reported in Table A12.

Alternatively a further threat to identification is if shock exposure leads to selec-

tion into the sample, for example by influencing the subsequent migration choices of the

mother’s family after her birth. To assess this, I use an indicator of if the mother moved

prior to age 5, estimating an insignificant null effect of exposure to shock on migration

choices, as reported in column 1 of Table A13. Shock exposure is also not predictive

of ever-migrating (prior to birth of the YL child), migration to a departmental capital,

or to Lima/Callao, as shown in columns 2-4. Finally, shock exposure may impact the

health of mothers born if shock exposure has an effect on infant mortality, leading to sur-

vivorship bias amongst exposed mothers. Alternatively, if some grandmothers can react

to shock exposure by choosing to delay having children (perhaps through use of contra-

ception), then shock exposure may also affect the composition of cohorts.28 To attempt

to address the latter, in column 5 of Table A13 I regress shock exposure on the month

of birth (January to December) of the mother, finding no significant relationship.29 For

the former, I am unable to assess the impact of shock exposure on mortality within my

dataset, however if selective mortality occurred, it would be expected that the surviving

mothers are on average healthier, therefore my estimates of the negative effect of shock

exposure on maternal height would likely represent a lower bound of the impact of shock

exposure in-utero on long-term health stock. In the next section I explore the potential

transmission channels for multigenerational effects using mediation analysis.

6 Mechanisms

6.1 Mediation Analysis

To explore the potential mechanism channels I conduct a mediation analysis, estimating

the average controlled direct effect (ACDE)(Joffe & Greene, 2009; VanderWeele, 2009),

28Notably, in the 1986 DHS survey 65.5% of married women aged 15-49 reported having ever used
contraception, although 86.7% of those only reported using traditional methods, e.g. withdrawal and
rhythm (Goldman et al., 1989).

29the distribution of month of birth of the mother is shown in Figure A3.
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which is the effect of changing treatment status with the mediator held at a fixed value

for all units. The ACDE therefore provides an estimate of the direct effect of treatment

that does not operate through the specified mediator (Acharya et al., 2016). If the effect

of treatment is completely mediated by some variable M and a set of other mediator

variables W , then a non-zero ACDE for mediator M implies that the effect of treatment

does not exclusively operate through that channel M , allowing alternative mechanisms to

be ruled out (VanderWeele, 2011). Additionally, if the null hypothesis that the ACDE is

not different from zero cannot be rejected at conventional levels, then that mediator M is

likely the main mechanism through which the treatment causes the outcome (Bellemare

et al., 2021), provided identifying assumptions hold. See Appendix B for greater detail.

To measure socioeconomic status of the household, therefore capturing the home en-

vironment and ability of parents to invest in children (Khan, 2021), I use the Young Lives

wealth index (Briones, 2017). To measure mother’s human capital, I use mother’s educa-

tional attainment (highest grade/level achieved), reflecting her cognitive ability, parenting

skills, and earnings potential, which are important determinants of child health and hu-

man capital (Van Den Berg & Pinger, 2016). Finally, to capture maternal health I use

mother’s adult height (cm). As discussed above, adult height is a measure of cumulative

health and a good proxy of morbidity risk (Case & Paxson, 2008).

If multigenerational impacts are transmitted predominantly through the environmen-

tal channel then it is expected that the ACDE for measures of SES and parent human

capital will be close to zero (Acharya et al., 2016). Alternatively, if effects are transmit-

ted predominantly through the biological channel then it is expected that the ACDE for

environmental mediators are non-zero and do not differ significantly from the baseline

estimate, while the ACDE for mother’s health will be close to zero.

Under strong assumptions, the use of standard regression analysis using a single equa-

tion with the mediator as an additional regressor could be a valid way of testing it as a

mechanism only if there is no omitted variables for the effect of treatment on mediator

and outcome, nor for the effect of mediator on outcome, and importantly, only if all rele-

vant confounders are pre-treatment (Bellemare et al., 2021). However, this is insufficient

if there exists some post-treatment covariate Z, which is influenced by treatment D, in-

fluences the mediator M , and is independently associated with the outcome Y (Robins,

1986). The exclusion of these “intermediate” confounders if they exist could induce a

spurious relationships between treatment and the outcome when including mediators in

the regression equation (Rosenbaum, 1984), while conversely including them as regressors

could introduce intermediate variable bias to the estimate of the direct effect (Acharya

et al., 2016).

An important advantage therefore of the ACDE for mediators is that it can be iden-

tified in the the face of these intermediate confounders when estimated using “sequential

g-estimation” (or reverse sequential two-stage (RS2S) parametric estimation), as set out
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by VanderWeele (2009) and Joffe and Greene (2009). Full details of identifying assump-

tions and implementation are provided in Appendix B. I identify a number of socioeco-

nomic controls and measures of parental investments in the child which are likely related

to the mediator and outcome, and could potentially be caused by the treatment. These

vary across rounds due to relevance for that stage of development, and are listed in Ta-

ble A14. Furthermore, I condition on further “pretreatment” variables, that is variables

which can affect the treatment, outcome or even the mediator, but are not determined by

the treatment and do not come between the mediator and outcome. For this, I include an

indicator for if the child is female, as well as all the fixed effects included in the baseline

specification.30

Finally, Acharya et al. (2016) note that the demediation function generally identifies

the ACDE when the mediator is set to zero, which may be nonsensical in context, and

that in these cases it is suitable to recentre the mediator around a specific value. For my

analysis, a maternal height of 0 cm is not plausible, therefore I recentre the height at the

sample mean, creating a normalised index of mean 0 and standard deviation 1, however

results are robust to use of the raw value in centimetres.

6.2 Mediation Results

Table 11 and Figure 8 provide comparisons of baseline results for HAZ with the ACDE

estimated separately after accounting for three different potential mediators: i) mother’s

attainment (highest grade/qualification achieved) and ii) household wealth index, mea-

sures representing the hypothesised environmental channel, through which the shock im-

pacts the household environment, parenting ability, or resource constraint for investments

in children; and iii) mother’s height, representing the biological channel, wherein expo-

sure to an in-utero shock has permanent effects on maternal physiology, metabolism and

ability to transfer nutrients to her offspring in-utero.

Estimates of the ACDE net of the indirect effect of maternal attainment and household

wealth are of similar magnitude as the baseline estimated effect, and remain significantly

different from zero, with exception of the ACDE for age 5 HAZ net of household wealth, for

which the same effect size is only marginally significant under the baseline specification.

This suggests that a significant effect of shock exposure that is either transmitted directly

or through an alternative set of mediators remains, and that these environmental channel

measures do not seem to play a role in the causal pathway between shock exposure and

grandchildren outcomes.

In contrast, all estimates of the ACDE net of the indirect effect of mother’s health

stock, measured by her adult height, are considerably diminished. The majority of es-

timates are also not significantly different from zero, with exception of the age 12 co-

30Within my sample grandmother’s shock exposure during pregnancy does not predict the sex of her
grandchild, as shown in column 6 of Table A12.
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Table 11: Mediation Analysis: Comparison of Baseline Results with ACDE, HAZ

ACDE

Baseline
Result

Mother
Attainment

HH Wealth
Index

Mother
Height

Panel A: Age 1
In-utero shock -0.079 -0.083 -0.076 -0.025

(0.064) (0.064) (0.065) (0.069)

Observations 1670 1670 1670 1655
Panel B: Age 5
In-utero shock -0.076 -0.085 -0.076 -0.014

(0.045)* (0.049)* (0.048) (0.049)

Observations 1657 1657 1657 1649
Panel C: Age 8
In-utero shock -0.100 -0.117 -0.106 -0.059

(0.048)** (0.053)** (0.052)** (0.042)

Observations 1665 1665 1665 1650
Panel D: Age 12
In-utero shock -0.173 -0.184 -0.172 -0.121

(0.055)*** (0.057)*** (0.058)*** (0.061)**

Observations 1671 1671 1671 1655
Panel E: Age 15
In-utero shock -0.090 -0.100 -0.089 -0.037

(0.045)** (0.048)** (0.053)* (0.043)

Observations 1620 1620 1620 1609

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard
deviations from the age- and gender-specific mean value. Cluster robust standard
errors in parentheses. Pretreatment controls include an indicator of if the child
is female. Intermediate confounders for each age are listed in Table A14. Fixed
effects for child cluster-of-residence, year-month birth cohort, and mother year-
and province-of-birth are suppressed.
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Figure 8: Mediation Analysis: Comparison of Baseline Results with ACDE, HAZ
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Wealth Index Mother Height

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Coefficients reported in Table 11. 90% Confidence intervals.
P-values calculated using cluster robust standard errors. Pretreatment controls include an indicator for
if the child is female. Intermediate confounders for each age are listed in Table A14. Fixed effects include
child cluster-of-residence, year-month birth cohort, and mother year- and province-of-birth. Controls and
fixed effects are suppressed.

efficient, which remains significantly different from zero above the 5% level. A similar

pattern emerges for health flow, as shown in Table 12 and Figure 9, where estimates for

the ACDE net of environmental mediators do not differ from the baseline results. The

direct effect with mother’s height as the mediator is diminished and is not significantly

different from zero at age 5, however while diminished for age 1, the ACDE remains non-

zero (significant at the 5% level), suggesting that mother’s health is not the sole mediator

for the effect on infant WAZ.

While the evidence above suggests that maternal health, as measured by height, is

not the sole mediator for the effect, several issues which may impact the estimated ACDE

must be considered. First, direct effects are likely biased if the mediator is measured with

error, or the measure of a mediator does not capture fully all the effect of the treatment

on all dimensions of the mediating variable (VanderWeele, 2012). To illustrate, consider

an example presented by Huber (2019), where there exists a measure of a mediator that

only captures the extensive margin (e.g. a dummy indicator of employment) but not the

intensive margin (actual hours worked). If the effect of treatment on the mediator induces

change in both the intensive and extensive margins, the estimate of the indirect effect will

only account for the proportion of the actual indirect effect related to treatment-induced

changes at the extensive margin, while the treatment-induced changes to the mediator

at the intensive margin will be wrongly attributed to the direct effect (that is, as not
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Table 12: Mediation Analysis: Comparison of Baseline Results with ACDE, WAZ/
BMIAZ

ACDE

Baseline
Result

Mother
Attainment

HH Wealth
Index

Mother
Height

Panel A: Age 1
In-utero shock -0.179 -0.198 -0.191 -0.165

(0.063)*** (0.071)*** (0.055)*** (0.073)**

Observations 1670 1670 1670 1655
Panel B: Age 5
In-utero shock -0.109 -0.119 -0.111 -0.076

(0.047)** (0.049)** (0.052)** (0.049)

Observations 1657 1657 1657 1649
Panel C: Age 8
In-utero shock -0.059 -0.064 -0.053 -0.018

(0.056) (0.062) (0.062) (0.062)

Observations 1665 1665 1665 1650
Panel D: Age 12
In-utero shock 0.045 0.040 0.046 0.051

(0.049) (0.052) (0.053) (0.052)

Observations 1671 1671 1671 1655
Panel E: Age 15
In-utero shock -0.021 -0.022 -0.019 -0.019

(0.059) (0.061) (0.067) (0.062)

Observations 1620 1620 1620 1609

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard
deviations from the age- and gender-specific mean value. Cluster robust standard
errors in parentheses. Predetermined controls include an indicator of if the child
is female. Intermediate confounders for each age are listed in Table A14. Fixed
effects for child cluster-of-residence, year-month birth cohort, and mother year-
and province-of-birth are suppressed.
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Figure 9: Mediation Analysis: Comparison of Baseline Results with ACDE, WAZ/
BMIAZ
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Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Coefficients reported in Table 12.
90% Confidence intervals. P-values calculated using cluster robust standard
errors. Pretreatment controls include an indicator for if the child is female.
Intermediate confounders for each age are listed in Table A14. Fixed effects
include child cluster-of-residence, year-month birth cohort, and mother year-
and province-of-birth. Controls and fixed effects are suppressed.
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operating through that mediator). Given adult height represents a relatively imperfect

measure of maternal health, which may not capture all the dimensions of health which

are affected by in-utero shock exposure (alterations to maternal physiology which impact

maternal prenatal health but not stature), it is likely that the indirect effect transmitted

through the biological channel is underestimated, biasing the ACDE estimate upwards

from the true population value.

Second, there could exist an alternative biological transmission channel which operates

not through impacting maternal health of the first generation, but is transmitted directly

to the second generation if shock exposure in-utero impacts the germ cells (that is the

gametes/reproductive cells), present within the first generation as a foetus while in-utero,

and from which the second generation will be formed (so-called “gametic epigenetic ef-

fects” (Youngson & Whitelaw, 2008)). However, while this potential channel has been

discussed in epidemiology, the evidence from animal studies is limited and how exactly

this potential channel operates is not well understood. Therefore it is outside the scope

of this study to attempt to address it directly here. For a discussion of the theory and

some evidence from studies of rats, see Drake and Liu (2010).

Overall the results suggest that maternal health seems to play a considerable role in

explaining the mechanism of transmission, providing support to the biological channel as

the primary mechanisms for the multigenerational effects, however I cannot conclusively

rule out the potential role of other mediating variables.

7 Conclusions

In this paper, I contribute to the growing “second generation” literature on early child-

hood shocks. Using high-quality data from the Young Lives Peru study I estimate the

multigenerational effects of prenatal shock exposure on the outcomes of the first and sec-

ond generations. To identify exposure to exogenous variation in drought experienced by a

grandmother while pregnant, I link gridded time series data from SPEIbase (Begueria et

al., 2023) to the date and location of birth of the mother of the Young Lives child. Using

longitudinal data tracking a cohort of children and their family from birth into adulthood

allows for a detailed assessment of how effects in the second generation manifest and vary

as the child grows into adulthood, rather than providing just a snapshot at one age.

This paper provides three contributions to the literature. First, I present evidence

that the exposure of the grandmother to drought while pregnant has a negative multi-

generational effect on the long-term health stock of both her child and her grandchildren,

with the first generation being shorter on average in adulthood, and with significant im-

pacts on the height and weight of the second generation. Exposure to drought in the

first trimester of pregnancy in particular is associated a negative impact on the growth

outcomes of her grandchildren. Furthermore, evidence suggests that effects are isolated to
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those grandmothers located in rural areas, where households may have been more reliant

on local food supply and agricultural income.

Second, exploring the dynamics of this multigenerational effect in the second genera-

tion shows this impact becomes clear early in life, with a negative impact on infant and

early childhood weight-for-age. However while impacts on early life health flow diminish,

a persistent effect on height-for-age is evident from early/mid-childhood and remains sig-

nificant into adolescence, suggesting a permanent effect on long-term health stock. Using

self-reported data on signs of pubertal growth, I find evidence that this height differential

remains significant and appears to widen for those reporting pubertal growth at either

age 12 or 15. Additionally, I find evidence of sex-specific effects, with a disproportionate

impact of grandmother’s exposure on the height-for-age of boys, consistent with other

work in this literature (Fung & Ha, 2010; Venkataramani, 2011). That the effects for

grandchildren are primarily seen in boys makes it unclear whether this multigenerational

effect would persist beyond the second generation, a limitation which cannot be addressed

within this current study. Furthermore, current data limitations means it is not yet pos-

sible with this dataset to fully assess if effects persist into adulthood, affecting final adult

height potential. In contrast to significant impacts on physical growth, there is little ev-

idence of an effect on measures of cognitive ability. Results remain robust to alternative

shock definitions, and I provide evidence that the multigenerational effect of shocks is

limited to in-utero exposure of the first generation only.

Third, results from mediation analysis suggest the primary channel which facilitates

this transmission of health effects across generations is biological, with the majority of the

baseline effect operating indirectly through an impact on the maternal health of the first

generation, while there is little to no indirect effect operating through the environmen-

tal pathway, capturing maternal human capital accumulation and socioeconomic status.

However for some outcomes a non-zero direct effect remains after accounting for maternal

health as well as a range of potential intermediate confounders, suggesting that the causal

effect on the first generation is not fully captured by my measure of mothers’ health, or

alternatively that there potentially exists another unobserved transmission channel, for

example through “gametic epigenetic effects”.

These findings provide some policy implications. First, in-utero exposure to a nega-

tive drought shock has a lasting impact across generations. As such, if policy is designed

without accounting for the potential of multigenerational consequences, it will likely un-

derestimate i) the full cost of exposure of individuals to a shock; and ii) the true cost-

benefit ratio of any policy aimed at mitigation (Doyle & Jernström, 2023). Second, that

effects remain persistent in to adulthood for the second generation and are not mediated

by the human capital accumulation or socioeconomic status of the first generation also

suggests that effects are not easily remediated after exposure. Therefore an emphasis

should be placed on the importance of early intervention for the timing and targeting of
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future policy.
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Appendices

A Additional tables and figures

Figure A1: Multigenerational exposure to an environmental effect in-utero

Source: Own elaboration based on Drake and Liu (2010).
Notes: An environmental insult during pregnancy to a mother
(F0 generation) might affect not only the developing foetus (F1
generation) but also the germ cells which will go on to form the
F2 generation.
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Figure A2: Distribution of mother year of birth
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Notes: Year of birth of mother based on reported age in years in R4 household
roster. Bins are discrete, representing one year.

Figure A3: Distribution of mother month of birth
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Notes: Month of birth of mother as reported in R4 household roster. Bins are
discrete, representing one month-of-year.
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Table A1: Effect of shock exposure on second generation outcomes: Alternative cluster
group

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Height-for-age
In-utero shock -0.079 -0.076 -0.100 -0.173 -0.090

[0.076] [0.040]* [0.047]** [0.058]*** [0.051]*
Controls Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620
Weight-for-age BMI-for-age

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Weight-/BMI-for-age
In-utero shock -0.179 -0.109 -0.059 0.045 -0.021

[0.064]** [0.043]** [0.058] [0.064] [0.059]
Controls Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard
deviations from the age- and gender-specific mean value. Cluster robust standard
errors at the child cluster of birth presented in square brackets. Fixed effects for child
cluster-of-residence, year-month birth cohort, and mother year- and province-of-birth
are suppressed.
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Table A2: Effects of shock exposure on second generation outcomes: By sex, regression
coefficients

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Height-for-age
In-utero shock -0.201 -0.103 -0.154 -0.249 -0.139

(0.103)* (0.088) (0.066)** (0.074)*** (0.069)**
Female 0.131 -0.039 0.020 -0.102 -0.259

(0.091) (0.048) (0.051) (0.061)* (0.070)***
Shock*Female 0.242 0.054 0.108 0.150 0.097

(0.134)* (0.123) (0.084) (0.104) (0.087)

N 1670 1657 1665 1671 1620
Weight-for-age BMI-for-age

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Weight-/BMI-for-age
In-utero shock -0.230 -0.167 -0.113 0.010 -0.093

(0.083)*** (0.058)*** (0.077) (0.063) (0.075)
Female 0.152 -0.195 -0.113 -0.256 0.115

(0.068)** (0.053)*** (0.053)** (0.053)*** (0.068)*
Shock*Female 0.102 0.117 0.107 0.069 0.143

(0.088) (0.081) (0.104) (0.116) (0.117)

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard deviations
from the age- and gender-specific mean value. Cluster robust standard errors in parentheses.
Fixed effects for child cluster-of-residence, year-month birth cohort, and mother year- and
province-of-birth are suppressed.
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Table A3: Effects of shock exposure on second generation outcomes: By mother birth-
location, regression coefficients

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Height-for-age
In-utero shock -0.072 -0.133 -0.131 -0.246 -0.135

(0.080) (0.051)** (0.055)** (0.067)*** (0.048)***
Urban-born -0.102 -0.197 -0.161 -0.301 -0.110

(0.206) (0.147) (0.137) (0.161)* (0.145)
Shock*Urban-born -0.024 0.218 0.120 0.274 0.165

(0.132) (0.115)* (0.125) (0.142)* (0.109)
Controls Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620
Weight-for-age BMI-for-age

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Weight-/BMI-for-age
In-utero shock -0.213 -0.144 -0.094 0.061 -0.036

(0.067)*** (0.054)*** (0.069) (0.063) (0.064)
Urban-born -0.073 -0.165 -0.186 0.076 -0.168

(0.156) (0.124) (0.141) (0.130) (0.119)
Shock*Urban-born 0.129 0.134 0.134 -0.058 0.059

(0.142) (0.130) (0.148) (0.094) (0.107)
Controls Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard deviations from
the age- and gender-specific mean value. Cluster robust standard errors in parentheses. Controls
include an indicator of if the child is female. Fixed effects for child cluster-of-residence, year-month
birth cohort, and mother year- and province-of-birth are suppressed.

Table A4: Effects of shock exposure on second generation outcomes: By growth stage,
regression coefficients

Height-for-age BMI-for-age

Age 12 Age 15 Age 12 Age 15

In-utero shock -0.102 -0.029 0.048 -0.128
(0.075) (0.118) (0.052) (0.118)

Pubertal growth 0.639 0.152 0.396 0.092
(0.065)∗∗∗ (0.069)∗∗ (0.063)∗∗∗ (0.076)

Pubertal growth = 1 × In-utero shock -0.142 -0.069 -0.001 0.145
(0.112) (0.139) (0.105) (0.142)

Controls Yes Yes Yes Yes

N 1665 1617 1665 1617

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard deviations from the
age- and gender-specific mean value. Cluster robust standard errors in parentheses. Controls include
an indicator of if the child is female. Fixed effects for child cluster-of-residence, year-month birth
cohort, and mother year- and province-of-birth are suppressed.
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Table A5: Effects of shock exposure on second generation outcomes: HAZ, Alternative
specifications

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: SPEI ≤ -0.8 S.D.
SPEI ≤ -0.8 S.D. -0.082 -0.039 -0.086 -0.127 -0.066

(0.074) (0.046) (0.048)* (0.057)** (0.045)
Controls & FEs Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620
Panel B: Growing Season SPEI ≤ -1 S.D.
Growing SPEI ≤ -1 S.D. -0.126 -0.143 -0.145 -0.207 -0.156

(0.087) (0.078)* (0.099) (0.098)** (0.088)*
Controls & FEs Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard deviations
from the age- and gender-specific mean value. Cluster robust standard errors in parentheses.
Controls include an indicator of if the child is female. Fixed effects for child cluster-of-residence,
year-month birth cohort, and mother year- and province-of-birth are suppressed.

Table A6: Effects of shock exposure on second generation outcomes: WAZ/BMIAZ,
Alternative specifications

WAZ BMIAZ

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: SPEI ≤ -0.8 S.D.
SPEI ≤ -0.8 S.D. -0.180 -0.091 -0.090 0.080 -0.009

(0.072)** (0.044)** (0.056) (0.053) (0.071)
Controls & FEs Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620
Panel B: Growing Season SPEI ≤ -1 S.D.
Growing SPEI ≤ -1 S.D. -0.126 -0.123 -0.150 -0.007 -0.049

(0.070)* (0.081) (0.081)* (0.068) (0.085)
Controls & FEs Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard deviations
from the age- and gender-specific mean value. Cluster robust standard errors in parentheses.
Controls include an indicator of if the child is female. Fixed effects for child cluster-of-residence,
year-month birth cohort, and mother year- and province-of-birth are suppressed.
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Table A7: Effects of shock exposure on second generation outcomes: Balanced panel
sample

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: Height-for-age
In-utero shock -0.067 -0.057 -0.080 -0.147 -0.077

(0.070) (0.045) (0.045)* (0.053)*** (0.046)*
Controls & FEs Yes Yes Yes Yes Yes

N 1563 1563 1563 1561 1562
Weight-for-age BMI-for-age

Age 1 Age 5 Age 8 Age 12 Age 15
Panel B: Weight-/BMI-for-age
In-utero shock -0.179 -0.099 -0.027 0.094 -0.003

(0.066)*** (0.043)** (0.052) (0.046)** (0.060)
Controls & FEs Yes Yes Yes Yes Yes

N 1568 1568 1568 1565 1568

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard devi-
ations from the age- and gender-specific mean value. Cluster robust standard errors in
parentheses. Controls include an indicator of if the child is female. Fixed effects for child
cluster-of-residence, year-month birth cohort, and mother year- and province-of-birth are
suppressed.
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Table A8: Effects of early-life shock exposure on second generation HAZ: Joint estima-
tion

Age 1 Age 5 Age 8 Age 12 Age 15

3 years before birth -0.002 0.016 0.027 0.012 -0.061
(0.086) (0.080) (0.072) (0.077) (0.060)

2 years before birth 0.066 0.055 0.033 0.028 0.037
(0.057) (0.059) (0.058) (0.066) (0.065)

In-utero shock -0.067 -0.072 -0.095 -0.161 -0.088
(0.062) (0.048) (0.049)∗ (0.055)∗∗∗ (0.046)∗

1 years after birth 0.097 0.080 0.094 0.103 0.035
(0.081) (0.077) (0.062) (0.066) (0.079)

2 years after birth -0.093 -0.025 -0.064 -0.048 -0.038
(0.081) (0.048) (0.052) (0.051) (0.043)

3 years after birth -0.012 -0.021 -0.015 0.019 -0.008
(0.087) (0.067) (0.057) (0.059) (0.061)

4 years after birth -0.011 0.018 -0.040 0.071 0.014
(0.068) (0.056) (0.054) (0.065) (0.065)

5 years after birth 0.016 -0.064 -0.019 -0.002 -0.034
(0.056) (0.055) (0.048) (0.059) (0.046)

Controls & FEs Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard
deviations from the age- and gender-specific mean value. Cluster robust standard
errors in parentheses. Controls include an indicator of if the child is female. Fixed
effects for child cluster-of-residence, year-month birth cohort, and mother year- and
province-of-birth are suppressed.
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Table A9: Effects of early-life shock exposure on second generation WAZ/BMIAZ: Joint
estimation

Age 1 Age 5 Age 8 Age 12 Age 15

3 years before birth 0.012 -0.028 0.028 0.058 0.099
(0.067) (0.067) (0.081) (0.053) (0.056)∗

2 years before birth 0.022 0.088 0.121 0.080 0.152
(0.083) (0.061) (0.081) (0.077) (0.056)∗∗∗

In-utero shock -0.181 -0.089 -0.039 0.053 0.005
(0.066)∗∗∗ (0.050)∗ (0.063) (0.052) (0.063)

1 years after birth -0.003 0.071 0.095 -0.022 0.049
(0.062) (0.069) (0.073) (0.052) (0.060)

2 years after birth -0.062 -0.070 -0.012 -0.025 -0.037
(0.060) (0.046) (0.051) (0.059) (0.066)

3 years after birth 0.037 0.026 0.029 0.044 0.027
(0.087) (0.056) (0.054) (0.062) (0.063)

4 years after birth 0.100 0.049 -0.000 0.052 0.059
(0.088) (0.060) (0.066) (0.073) (0.082)

5 years after birth -0.042 0.050 0.008 0.025 0.081
(0.050) (0.041) (0.049) (0.052) (0.044)∗

Controls & FEs Yes Yes Yes Yes Yes

N 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard devi-
ations from the age- and gender-specific mean value. Cluster robust standard errors in
parentheses. Controls include an indicator of if the child is female. Fixed effects for child
cluster-of-residence, year-month birth cohort, and mother year- and province-of-birth are
suppressed.
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Table A10: Effects of early-life shock exposure on second generation HAZ: Estimating
separately

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: 3 years before birth
SPEI ≤ -1 S.D. -0.010 0.007 0.020 -0.005 -0.067

(0.082) (0.074) (0.071) (0.075) (0.055)
Panel B: 2 years before birth
SPEI ≤ -1 S.D. 0.063 0.057 0.036 0.027 0.043

(0.059) (0.059) (0.061) (0.068) (0.065)
Panel C: In-utero
In-utero shock -0.079 -0.076 -0.100 -0.173 -0.090

(0.064) (0.045)* (0.048)** (0.055)*** (0.045)**
Panel D: 1 year after birth
SPEI ≤ -1 S.D. 0.110 0.086 0.105 0.121 0.050

(0.078) (0.073) (0.062)* (0.063)* (0.079)
Panel E: 2 years after birth
SPEI ≤ -1 S.D. -0.093 -0.023 -0.061 -0.056 -0.034

(0.075) (0.050) (0.054) (0.049) (0.042)
Panel F: 3 years after birth
SPEI ≤ -1 S.D. -0.002 -0.020 -0.007 0.016 0.004

(0.079) (0.059) (0.056) (0.060) (0.058)
Panel G: 4 years after birth
SPEI ≤ -1 S.D. -0.008 0.027 -0.032 0.077 0.023

(0.074) (0.053) (0.056) (0.064) (0.063)
Panel H: 5 years after birth
SPEI ≤ -1 S.D. 0.027 -0.055 -0.003 0.009 -0.025

(0.056) (0.053) (0.047) (0.057) (0.044)
Controls & FEs Yes Yes Yes Yes Yes

Observations 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard
deviations from the age- and gender-specific mean value. Cluster robust standard errors
in parentheses. Controls include an indicator of if the child is female. Fixed effects for
child cluster-of-residence, year-month birth cohort, and mother year- and province-of-
birth are suppressed.
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Table A11: Effects of early-life shock exposure on second generation WAZ/BMIAZ:
Estimating separately

Age 1 Age 5 Age 8 Age 12 Age 15
Panel A: 3 years before birth
SPEI ≤ -1 S.D. 0.001 -0.043 0.010 0.049 0.082

(0.058) (0.064) (0.083) (0.055) (0.056)
Panel B: 2 years before birth
SPEI ≤ -1 S.D. 0.023 0.084 0.119 0.066 0.135

(0.077) (0.064) (0.081) (0.074) (0.055)**
Panel C: In-utero
In-utero shock -0.179 -0.109 -0.059 0.045 -0.021

(0.063)*** (0.047)** (0.056) (0.049) (0.059)
Panel D: 1 year after birth
SPEI ≤ -1 S.D. 0.017 0.088 0.094 -0.033 0.041

(0.058) (0.065) (0.072) (0.050) (0.064)
Panel E: 2 years after birth
SPEI ≤ -1 S.D. -0.066 -0.074 -0.015 -0.031 -0.041

(0.055) (0.045) (0.053) (0.056) (0.061)
Panel F: 3 years after birth
SPEI ≤ -1 S.D. 0.041 0.029 0.023 0.034 0.008

(0.078) (0.053) (0.056) (0.062) (0.062)
Panel G: 4 years after birth
SPEI ≤ -1 S.D. 0.108 0.043 -0.010 0.037 0.037

(0.085) (0.061) (0.068) (0.071) (0.077)
Panel H: 5 years after birth
SPEI ≤ -1 S.D. -0.036 0.053 0.010 0.010 0.073

(0.047) (0.039) (0.047) (0.048) (0.045)
Controls & FEs Yes Yes Yes Yes Yes

Observations 1670 1657 1665 1671 1620

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Estimates are reported in standard
deviations from the age- and gender-specific mean value. Cluster robust standard
errors in parentheses. Controls include an indicator of if the child is female. Fixed
effects for child cluster-of-residence, year-month birth cohort, and mother year- and
province-of-birth are suppressed.
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Table A12: Effect of zero generation socioeconomic status on probability of shock ex-
posure

In-utero
shock

In-utero
shock

Grandmother speaks Spanish -0.072
(0.046)

Grandparent completed secondary 0.044
(0.063)

Controls No Yes

N 1670 522

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Cluster robust standard
errors in parentheses. Controls include if the grandparent reporting
educational attainment if female, and their age in years. Fixed effects
for mother year- and province-of-birth are suppressed.

Table A13: Effect of shock exposure on zero generation migration/fertility choices

Migration Fertility

Before
age 5

Ever
migrate

Rural-
urban

Lima/
Callao

Mother
birth
month

Grand-
child
gender

In-utero shock -0.004 0.013 0.021 -0.009 -0.410 0.028
(0.008) (0.028) (0.021) (0.016) (0.277) (0.032)

N 1632 1632 1632 1632 1670 1670

Notes: * p< 0.10, ** p< 0.05, *** p< 0.01. Cluster robust standard errors in paren-
theses. Fixed effects for mother year- and province-of-birth are suppressed.

Table A14: Socieoeconomic status controls and parent investments at each survey round

Age Intermediate confounders
1 HH size, family own house, attended antenatal classes, attended birth,

hospital birth, parenting skills index
5 HH size, family own house, p/c food expenditure, child food diver-

sity/frequency, HH food security, health and education expenditure, pre-
school

8 HH size, family own house, p/c food expenditure, child food diver-
sity/frequency, HH food security, health and education expenditure, #
of books in HH, caregiver involvement index

12 HH size, family own house, p/c food expenditure, child food diver-
sity/frequency, HH food security, health and education expenditure, #
of books in HH, caregiver involvement index

15 HH size, family own house, p/c food expenditure, child food diver-
sity/frequency, HH food security, health and education expenditure, #
of books in HH

Notes: The list of intermediate variables varies over rounds as not all questions are asked in
each round. Abbreviations: HH - household; p/c - per capita.
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B Estimating ACDE using sequential g-estimation

B.1 Average controlled direct effect

Let Yi be the observed outcome for unit i and Yi(a) the potential outcome if treatment

was set to a. Following the potential outcomes framework (Rubin, 1974), the causal effect

of treatment is the difference between the two potential outcomes in which unit i switched

from treatment level a′ and a:

τi(a, a
′) = Yi(a)− Yi(a

′).

Given that we only observe one of these potential outcomes, we focus on the average

treatment effect (or total effect), defined as the difference in means between two potential

different outcomes:

ATE(a, a′) ≡ τ(a, a′) = E[Yi(a)− Yi(a)],

where E[·] is the expectation over units in the population of interest. Given some

mediator M for the effect of treatment on the outcome, the controlled direct effect can be

defined as the effect of changing treatment while holding fixed the value of the mediator.

Yi(a,m) is the outcome for unit i for a set level of treatment a and mediator m. The

potential value of the mediator may also be defined similarly to potential outcomes as

Mi(a), the level the mediator takes on given treatment level a. The controlled direct effect

is therefore expressed:

CDEi(a, a
′,m) = Yi(a,m)− Yi(a

′,m).

As above, defining based on the expectation the average controlled direct effect ACDE

is given by:

ACDE(a, a′,m) = E[Yi(a,m)− Yi(a
′,m), ] (B1)

which describes the average direct effect of treatment if the mediator is fixed at value

m for all units in the population. See Acharya et al. (2016), Joffe and Greene (2009), and

VanderWeele (2009) for in-depth discussion.

B.2 Assumptions

Following Acharya et al. (2016) I estimate the average controlled direct effect (ACDE)

using “sequential g-estimation” (or reverse sequential two stage (RS2S) parametric esti-

mation), as set out by VanderWeele (2009) and Joffe and Greene (2009). The ACDE is

identified under the following assumptions: 1) Sequential unconfoundedness; and 2) No
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intermediate interactions.

Assumption 1: Sequential unconfoundedness:

{Yi(a,m),Mi(a)} ⊥⊥ Ai | Xi = x, (B2)

Yi(a,m) ⊥⊥ Mi | Ai = a,Xi = x, Zi = z, (B3)

For which the following conditional probabilities must be non-zero:

P (Ai = a | Xi = x) > 0,

P (Mi = m | Ai = a,Xi = x, Zi = z) > 0,

For all possible treatment values a ∈ A, mediator values m ∈ M, covariates x ∈ X ,

and intermediate confounders z ∈ Z.

Equation B2 states that the potential outcome Yi(a,m) (that unit i takes if treatment

is set at value a and mediator at value m) and potential mediator value Mi(a) (that

the mediator would take under treatment level a) are conditionally independent of the

observed treatment status Ai given covariates Xi = x. That is there is no omitted

relevant variables (Ui1) for the effect of treatment on the outcome or mediator conditional

on pretreatment covariates. This is assumed to hold in this study given exogenous and

random exposure climate shocks in-utero. Equation B3 further states that conditional

on set levels of treatment, covariates and post-treatment (intermediate) confounders, the

potential outcome is independent of observed value of mediator, e.g. there are no omitted

relevant variables (Ui2) for the effect of the mediator on outcomes.

Under strong assumptions, these conditions could justify the use of standard regression

analysis using a single equation, however this unlikely to be sufficient if there exists some

post-treatment covariate Z which is influenced by treatment A, influences the mediator

M , and is independently associated with the outcome Y (Robins, 1986). The ACDE can

still be identified non-parametrically under the above assumption alone in the presence

of these intermediate confounders zi, however this requires this requires the distribution

of these confounders (conditional on Ai and Xi) to be known and correctly specified

(Acharya et al., 2016; Joffe & Greene, 2009), therefore a further assumption is made.

Asumption 2: No intermediate interactions

E[Yi(a,m)−Yi(a,m
′) | Ai = a,Xi = x, Zi = z] = E[Yi(a,m)−Yi(a,m

′) | Ai = a,Xi = x],

(B4)

For all values a ∈ A, m,m′ ∈ M, z ∈ Z, and x ∈ X .

This states that the effect of the mediator on the outcome must be conditionally

independent of any intermediate confounders. This assumption can in fact be false, in

which case the estimated effects will be weighted averages of the ACDE within levels the
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intermediate confounders (Acharya et al., 2016).

B.3 Identification

To derive the ACDE of treatment on outcome, we define a demediation function:

γ(a,m, x) = E[Yi(a,m)− Yi(a, 0) | Xi = x]. (B5)

This function describes the difference between outcomes with mediator set at level

m and zero, and does not depend on the levels of intermediate confounders if Equa-

tion B4 holds. By subtracting the demediation function from the observed outcome

Yi = Yi(Ai,Mi), variation in the outcome due to the mediator is removed:

E[Yi − γ(a,Mi, x) | Ai = a,Xi = x] == E[Yi(a, 0) | Xi], (B6)

provided assumption 1 is met, the effect of the mediator on the outcome is identified.

The ACDE,

E[Yi(a, 0)− Yi(0, 0) | Xi = x],

conditional on pretreatment covariates Xi, is therefore identified as the difference in

means of the demediated outcome:

E[Yi − γ(a,Mi, x) | Ai = a,Xi = x]− E[Yi − γ(0,Mi, x) | Ai = 0, Xi = x]. (B7)

B.4 Estimation

The ACDE is estimated parametrically using sequential g-estimation in a two-stage pro-

cess.

1st stage: Under assumption 1, the demediation function (Equation B5) can be

estimated from the data as the difference in means estimator, conditioning on both the

pretreatment covariates Xi and intermediate confounders Zi. I therefore first regress the

outcome on the treatment, mediator, and all covariates to obtain an estimate of the effect

of the mediator on the outcome, from which I can derive the demediation function. In

the simplest specification:

Yi = α0 + α1Ai + α2Mi + αiXi + αiZi + νi, (B8)

where there is no interaction between the mediator and outcome or covariates (and by

assumption 2 no interaction with intermediate confounders), the coefficient of interest

is α2. The sample version of the demediation function is expressed as:
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γ̂(Ai,Mi, Xi; α̂) = α̂2Mi. (B9)

2nd stage: First, the outcome is adjusted using the estimated demediation function:

Ỹi = Yi − α̂2Mi. (B10)

The demediated outcome is then regressed on the treatment (Ai) and pretreatment

covariates (Xi), as outlined in Equation B7:

Ỹi = β0 + β1Ai + β2Xi + εi, (B11)

where the least squares estimator β̂1 is the consistent estimate of the ACDE. Given

this is a two-step process, standard errors on β̂1 are biased, therefore bootstrap standard

errors are obtained.
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