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1 Introduction

Innovation and technological progress are key drivers of economic growth, yet their distribution across
space remains highly uneven. Since at least the publication of Vannevar Bush’s report, "Science, the
Endless Frontier," in 1945, countries have promoted policies to increase innovation. Recent policies and
recommendations, such as the CHIPS Act in the United States (U.S. Congress (2022)) and the Draghi
Report in the European Union (Draghi (2024)), make a strong emphasis on fostering regional innovation
with the goal of reducing regional disparities. A growing body of research highlights the importance
of face-to-face interactions in driving innovation thorugh knowledge spillovers (Catalini (2018), Atkin,
Chen and Popov (2022)), and that this knowledge spillovers are strongly affected by distance (Jaffe, Tra-
jtenberg and Henderson (1993), Belenzon and Schankerman (2013)). Recent studies show improvements
in highway infrastructure (Agrawal, Galasso and Oettl (2017)) and reductions in air travel time (Pauly
and Stipanicic (2022)) have facilitated knowledge spillovers, potentially affecting regional innovation.
However, little is known about the role of high speed railways (HSR) in shaping the geography of inno-
vation, particularly in Europe.

This paper studies the impact of reductions in travel time due to the expansion of high-speed railways
(HSR) in France on patent collaborations, called copatents. The introduction of HSR led to a substantial
decrease in travel time, facilitating long-distance face-to-face interactions among inventors. We construct
a new dataset of train travel times from 1980 to 2020 and match it geo-referenced patent data from the
European Patent Office (1980–2010) aggregated to the department level (NUTS3 region). We estimate
a gravity model and find that the median decrease in travel time of 25% led to 5% increase in patent
collaborations across departments. However, we find that the increase is stronger for department pairs
in which both departments are more developed, likely increasing the innovation gap with departments
less developed. Additionally, we find that the increased patent collaborations is driven by new inventor-
pair collaborations and by collaborations across firms, rather than within.

Our identification strategy exploits the staggered rollout of HSR, which introduced variation in travel
times across department pairs. The identification assumption is that the timing of adoption of HSR is
exogenous, which is reasonable given the uncertainty around completion times. We include department-
pair, origin-time and destination-time fixed effects in the regression, which absorb time invariant charac-
teristics at the department-pair level, and time varying shocks at the origin and destination departments.
One potential endogeneity threat would be the existence of time-varying shocks at the department-pair
level that affect collaboration patents and are systematically correlated with the timing of HSR rollout.
We addres this concern by re-estimating the baseline model in a subsample of department pairs that do
not have HSR station, and hence benefit from the roll out of HSR only indirectly through connecting
stations. We find results that go in the same direction as in the full sample.

The roll out of HSR in France started with the inaguration of the first line in 1981, connecting Paris
and Lyon, which are located approximately 400 kilometers apart. This development reduced train travel
time from 3 hours and 40 minutes to 1 hour and 40 minutes, making it viable for individuals to complete
a return trip within a single day. Over the years multiple other cities became connected to Paris: Le Mans
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(1989), Tours (1990), Lille (1993), Marseille (2001), Montpellier (2001), Strasbourg (2007-2016), Bordeaux
(2017), and Rennes (2017). By the end of 2017, the high-speed rail network covered more than 1,500
kilometers.

We construct a new dataset of train travel time in France. To do so we develop a new method to
estimate the unobserved counterfactual travel time before the arrival of HSR. Our method is general and
can be applied to reconstruct unobserved travel time in other set ups when the econometrician counts
with partial information on the transportation technology. We document in a sample of city-pairs that
our method replicates between 58% and 87% of the observed changes in travel time. With our estimated
travel times, we document that between 1980 and 2010 the average reduction in train travel time was
14%, while the median and the 75th quantile were 25% and 35%, respectively.

We assemble a dataset of collaborative patents in France granted by the European Patent Office. We
take patents with two or more inventors with high-quality geolocation based on Morrison, Riccaboni
and Pammolli (2017) and aggregate it to the department-pair year level. Between 1980 and 2010, the
share of collaborative patents increased from 36% to 62%, with the share of inter-regional collaborations
growing at twice the rate of intra-regional collaborations. By 2010, the share of inter-regional patents
accounted for around half of all copatents in France.

We estimate a regression of copatents on travel time. The empirical strategy exploits only changes in
travel time and copatents that are differential across department pairs, absorbing any aggregate changes
in travel time or copatents. Following Silva and Tenreyro (2006) we estimate the regression by Poission
Pseudo Maximum Likelihood (PPML) which allows for zeros in the left hand size variable, and gives an
unbiased estimate in the case of heteroskedasticity of the underlying multiplicative model. We estimate
that the elasticity of copatents to travel time is -0.2, with the effect mostly coming for department-pairs
at 100km-400km distance. This result is plausible, as inventors may choose to travel by car for short
distances, and by airplane for longer distances.1 We split departments by whether they are mostly urban
or rural according to Eurostat, which we label Core and Periphery, and find that the elasticity is only
negative and significant for Core-Core collaborations. We find a similar result based on under/over
median population density. As consequence, HSR leads to increased collaborations between department
that are likely to be already the more developed ones.

Additionally, while we find similar point estimates for the elasticity for copatents of inventor-pairs
that previously collaborated and new inventor-pairs, it is only statistically different from zero for new
inventor-pairs. We also find that the elasticity is larger in absolute value and statistically significant for
across-firm collaborations, while it is not statistically different from zero for within-firm collaborations.
We also find that the effect remains when weighting copatents by amount of claims and technology
classes, suggesting that the increased copatenting does not have reduced scope nor breadth. We find
that the elasticity becomes positive when weighting copatents by their citations received in a 5-year
window, though we are cautious interpreting this result as most patents receive zero citations and hence
the effective sample may be substantially different. Moreover, we find that the increase in collaborative

1In 2010, the average train travel time for distances over 400km in the effective sample was 5 hours and 10 minutes.
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patents happens between inventors that have both similar and different knowledge bases, as captured
by the technology classes of their previous patents.

Literature. This paper contributes to the literature on transportation infrastructure and innovation
by providing new evidence on the effect of HSR on patent collaborations. While previous research has
shown that highways (Agrawal, Galasso and Oettl (2017)) and air travel (Pauly and Stipanicic (2022);
Bahar et al. (2023)) facilitate knowledge spillovers, less is known about the role of HSR.2 A distinct
characteristic of HSR is that it is a means of transportation for people rather than goods, making face to
face interactions the relevant mechanism at play. Our results show that reductions in train travel time
increase inter-regional patenting, particularly at intermediate distances where neither car nor air travel
is the dominant mode of mobility.

Second, we contribute to the literature on spatial inequality and regional innovation (Moretti (2012);
Duranton et al. (2009); Carlino and Kerr (2015); Gross and Sampat (2023)). While recent policies em-
phasize fostering innovation in less developed areas (U.S. Congress (2022); Draghi (2024)), our findings
suggest that HSR primarily strengthens collaborations between already developed regions. By showing
that increased collaboration is driven by new inventor-pair collaborations and across-firm interactions,
we also shed light on how reduced travel time shapes the organization of innovation.

Finally, we make a methodological contribution by developing a new approach to estimate histor-
ical travel times in the absence of comprehensive records. Our method replicates a large share of the
variance in observed changes in travel time and can be applied to other settings where transportation in-
frastructure has evolved. This provides a useful tool for studying the long-term effects of transportation
improvements on economic outcomes.

2 Train travel time data

We construct a new train travel time dataset between departments of continental France at the yearly
frequency between 1980 and 2020. This period includes the roll out of high speed railways, which are
around twice as fast as the previous train technology. We document that during this period the median
and 3rd quartile reduction in travel time are 20% and 32%, respectively. This reduction in travel time
affected only passenger transport, as high speed railways are not used to transport goods. While the
plans for construction of high speed railways were publicly advertised, the date of opening of new routes
was uncertain, introducing randomness in the timing of travel time reductions. Appendix B provides
more details on each of the following subsections.

The method used for constructing this dataset is general and can be applied for constructing other
data sets in which previous values of a variable are not observed. This method is especially useful
when the analyst knows when the new technology was implemented and either has knowledge of the
efficiency of the previous technology (e.g. what was the speed of trains in those routes before, combined

2Dong, Zheng and Kahn (2020) studies the impact of HSR in China on scientific collaboration and Tsiachtsiras et al. (2022)
do so on local innovation and technological specialization. To the best of our knowledge, no study has examined the impact of
HSR on innovation in a European setting
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with route distance), or the efficiency can be estimated from currently observed values (e.g. the older
train types are still used in other routes). Hence, our method is a more general contribution on how to
construct datasets where past values are not observed, and the current application operates as a proof of
concept for such method.

2.1 Roll out of High Speed Railways in France

High speed railways in France have a maximum speed around 320 km/h, compared to around 160 km/h
for the alternative Intercités train. Starting in 1981 with the connection between Lyon and Saint Florentin,
high speed railways have been rolled out in France, counting more than 1,500km of rail by the end of
2017.

Figure 1 shows the roll out of high speed railways by decade. The new high speed railways connected
Paris with largest cities in a gradual manner. The first segment to Lyon opened in 1981, then Le Mans
(1989), Tours (1990), Lille (1993), Marseille (2001), Montpellier (2001), Strasbourg (2007-2016), Bordeaux
(2017), and Rennes (2017). Given the staggered roll out and the network nature of train travel, one city
pair could have reductions in travel time multiple times. For example, Paris-Marseille travel time went
from 6 hours in 1980, to 4 hours 36 minutes in 1983, to 3 hours in 2001.

The date of opening of high-speed railways was uncertain due to financial constraints, political nego-
tiations, judicial rulings, and environmental concerns.3 For example, the Paris-Lille line was originally
tied to the construction of the Channel Tunnel, but the British government withdrew support in 1975
for financial reasons, leading France to shift its focus to the Paris-Lyon line instead. Political agreements
later revived the Paris-Lille project, and despite a relatively quick construction period, public opposition
in Lille led to security forces being deployed to control protests. Similarly, the Bordeaux-Toulouse line
did not begin construction until three decades after its initial announcement due to legal battles, environ-
mental opposition, and financial disputes, with a court ruling initially halting the project before a later
decision allowed it to proceed. Even projects included in national railway plans, such as the Paris-Le
Havre line, were ultimately abandoned due to concerns over financial viability, further highlighting the
unpredictability of HSR expansions. This uncertainty in completion dates, driven by factors unrelated
to regional innovation, introduces arguably exogenous variation in the timing of travel time reductions,
which we exploit for identification.

2.2 Data construction: train travel times

We construct a data set on train travel times between all continental French departments (NUTS3 region)
at the yearly frequency between 1980 and 2020. We use as input the December 2021 travel times from
the French railway company SCNF and manually gather the opening dates of each high speed railway
segment.4 Based on the 2021 train network, we estimate the travel speed of each train-railway type.

3Details are provided in Appendix A.
4High speed trains (TGV – Trains à Grande Vitesse) operate in both high speed railways and normal railways. Other train

types do not operate on high speed railways.
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Figure 1: Roll of high speed railways in France

With these estimates we simulate the travel time that would have taken place in each of the segments
before the opening of the high speed railway. We validate the travel time against observed travel times
for a sample of city-pair years provided by SNCF and document that the constructed dataset accounts
for between 58% and 87% of the observed changes in travel time.5

We start with all trips by train and railway type during a week of December 2021, adding up to 47,298
trips in 416 routes (origin-destination station pairs). We split each trip, which may include multiple
stops, into segments of non-stop station pairs. For each segment and train-railway type, we take the
minimum travel time across all trips. We then estimate a linear regression of the minimum travel time
on distance for each train-railway type. Appendix Table 3 presents the results for the estimations. For
the relevant train types, high speed railways and Intercités, these simple linear models explain around
95% of the variance showing the predicted values would be a good approximation for observed values.
The estimated travel speed for high speed trains operating in high speed railways is 229 km/h, while it
is 112 km/h for the second fastest train type Intercités.

With the estimated speeds, we impute the counterfactual Intercités travel time for each non-stop
station-pair operated with high speed railway in December 2021. We use the counteractual travel time
for each non-stop station-pair in all years previous to the year in which the high speed railway opened in
that segment, switching then to the observed travel time with high speed railway. For all other station-
pairs that are not connected with high speed railways we use the observed travel times from the De-
cember 2021 dataset. Hence, across-time variation in travel time comes only from switching from the
counterfactual Intercités travel time to the observed travel time with high speed railways, everything
else remains constant.

Next, using the travel time between non-stop station pairs for each year, we run the Dijkstra algo-
rithm (Dijkstra (1959)) to obtain the fastest route and travel time between all station pairs in each year.6

5Appendix Table 4 regresses observed travel time on our predicted travel time for the sample of city-pair years. The
regression gives a R2 of 87% when including origin-destination fixed effect. The R2 is 58% when including origin-destination,
origin-time and destination-time fixed effects. Hence, our predicted travel times capture a large share of the observed across-
destination within-origin variation of changes in travel time, which is the variation that we use for identification in the baselines
specification.

6We set a zero-minute penalty for switching trains within a station. We allow for changes of station within a city using the
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Then, we keep only origin-destination stations that belong to the most populated municipality in each
department.7 Finally, we take the minimum travel time across station-pairs within each department-pair
for each year.

2.3 Descriptive statistics: Train travel times

For each department pair, we compute the change in travel time relative to 1980. Figure 2 shows, for
each decade, the change in travel time by department-pair relative to 1980. Figure 2 shows the change in
travel time within department-pair relative to 1980, averaged within 100km distance bins. The change
in travel time is non-uniform, with larger reductions in travel time for department-pairs that are farther
apart. The average reduction in travel time is 14% in 2010 and 19% in 2020. The median, 75th percentile
and 90th percentile reduction in travel time are, respectively, 11%, 25% and 35% in 2010, and 20%, 32%
and 39% in 2020.

Figure 2: Change in travel time relative to 1980

3 Patent data

We assemble a dataset of patents granted by the European Patent Office (EPO) to inventors residing in
France with application year 1980-2010. We obtain geo-referenced patent information from Morrison,
Riccaboni and Pammolli (2017), with time invariant identifiers both for inventors and assignees. This
dataset covers 1978-2014. We restrict the sample to patents applied between 1980-2010 because, first, we
observe a spike in patent applications in 1978, year of creation of the EPO. Second, there is a lag between
patent application and patent granting, which introduces measurement error towards the latest years of

distance across stations and assuming the change happens at 45 km/h.
7We use average municipality population in 1980-2020.
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Figure 3: Share of copatents in all copatents

the sample. We keep only multi-inventor patents that have at least 2 inventors with high-quality geo-
referencing in Morrison, Riccaboni and Pammolli (2017). Our selected sample includes 63,041 patents
done by 77,345 inventors located in 94 departments.8 Then, for each department-pair year, we count the
amount of patents that have inventors in both departments.

3.1 Descriptive statistics: Patent data

Figure 3 shows the share of copatents in the total number of patents, and splits the share by copatents
that have all inventors in the same department (intra-regional) and copatents that have inventors in
multiple departments (inter-regional). The share of copatents increased from 36% in 1980 to 62% in
2010, with increase in both the share of intra-regional and inter-regional copatents. Nonetheless, the
growth rate of inter-regional copatents was twice the one of intra-regional copatents. The increase in the
share of copatents is accompanied by an increase in the distance across inventors within a team. The
average team distance increased by 50%, which was in part due to the shift towards more inter-regional
copatents. Comparing team distance of inter-regional copatents, the average team distance increased by
27%.

4 Analysis

4.1 Time varying effect of geography

We begin the analysis by providing evidence that the effect of geography on copatents has been decreas-
ing over time. We do so by estimating in gravity equation with, first, the time varying effect of distance,
and second, the time varying effect of within-department collaboration.

8Given commuting patterns, we aggregate Paris and its surroundings departments Hauts-de-Seine,Seine-Saint-Denis and
Val-de-Marne into one department. Hence, the final dataset has 91 departments, with one of them being Paris and its surround-
ings.
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Figure 4: Time varying effect of distance on copatents
The plot shows the point estimate and 95% confidence interval of αt obtained estimating
copatentsijt = exp(∑t αt log(distanceij) + µij + µit + µjt)× εijt, normalized to 1980. Confi-
dence intervals are obtained with ij clustered standard errors.

Figure 4 shows that, relative to 1980, the negative effect of distance on copatents has "softened" –
became less negative– over time.

Figure 3 shows that around two thirds of copatents had all inventors located within the same de-
partment in 1980, reducing to around one half by 2010. Figure 5 shows that, after controlling for pair,
origin-time and destination-time fixed effects, the effect of within-department collaboration on copatents
has decreased relative to 1980.

4.2 Effect of travel time

To study the effect of travel time on copatents we estimate the following gravity equation:

copatentsijt = exp
[
β log(travel timeijt) + µij + µit + µjt

]
× ε ijt (1)

for origin department i, destination department j and year t. copatentsijt is the number of copatents
and log(travel timeijt) is the log of train travel time.9,10 β is the elasticity of copatents to travel time.

9While copatents are in principle non-directional, we treat them as directional as this allows to estimate the gravity equa-
tion in a similar manner as in international trade models. Hence, both copatentsijt and copatentsjit appear in the data and
copatentsijt = copatentsjit.

10We assume passengers take a round trip, hence we make travel time symmetric, i.e. travel timeijt = ( ˜travel timeijt +

˜travel timejit)/2, where ˜travel timeijt is our constructed travel time.
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Figure 5: Time varying effect of within-department on copatents
The plot shows the point estimate and 95% confidence interval of αt obtained estimating
copatentsijt = exp(∑t αt 1{i = j} + µij + µit + µjt) × εijt, normalized to 1980. Confidence
intervals are obtained with ij clustered standard errors.

Following Silva and Tenreyro (2006) we estimate equation 1 by Poisson Pseudo Maximum Likelihood
(PPML) as this method allows to accomodate zeros in left hand side variable, and is unbiased in the case
of heteroskedasticity of the underlying multiplicative gravity model. We cluster standard errors at the
department-pair level.

The fixed effect µij absorbs time invariant factors at the department-pair level as distance, and cul-
tural proximity. In particular, if there are unobserved time-invariant determinants for which department-
pairs receive a high speed railway that connects them as for example business ties, µij would absorb such
determinants. The fixed effect µit absorbs time varying shocks at the origin department, as changes the
determinants of supply or demand of innovation like changes in population and local policies. Similarly,
the fixed effect µjt absorbs time varying shocks at the destination department.

In equation 1 the identification of β comes from across-time changes in copatents and travel time
within a department-pair, relative to other department-pairs with the same origin department, condi-
tional on time varying shocks to the destination department. Hence, the identification is not driven
by whether a certain department becomes more central in either the copatent or train the network, or
whether it has increases or decreases of population or economic activity. Rather, the identification comes
from how the train connectivity of a department-pair evolves over time relative to other department-
pairs starting from the same origin department.

The identification assumption is that the timing of roll out of high speed railways, and hence reduc-
tions in travel time, is exogenous to the copatent activity at the department pair level. This assumption
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is plausible because there was uncertainty about the opening dates of high speed railways. In robust-
ness analysis we re-estimate equation 1 including only department pairs that do not have a high speed
railway station, meaning that they benefited of high speed railways only indirectly, and find results that
go in the same direction.

Figure 6 presents an event study version of equation 1, where department pairs can be treated mul-
tiple times at different intensity.11 As we can see, there is little anticipation effect before the reduction in
travel time.

Figure 6: Event study scaled by change log(travel time)
The plot shows the point estimate and 90% confidence interval of copatentsijt =

exp(∑ βk ∆t,t+klog(travel timeij) + µij + µit + µjt) × εijt, normalized to the year previous
to the change in log(travel time), t=-1. Confidence intervals are obtained with ij clustered
standard errors.

Table 1 presents the results of estimating equation 1. Column 1 shows that the elasticity of copatents
to travel time is −0.20, significant at the 10% level. In column 2 we open up the elasticity by distance
between origin and destination departments. It is likely that travel time by train is not relevant at short
distances, where the relevant measure may be car travel time, or at long distances, where the relevant
measure may be airplane travel time. We find that the elasticity is largest in absolute value at distance
between 100km and 400km, and it is imprecisely estimated distances under 100km or over 400km. While
Figure 2 shows that the decrease in travel time was larger for longer distances, in 2010 the average travel
time for distances over 400km in the effective sample was 5h 10min. Hence, it is likely that total travel

11We adapt the linear version of event study analysis with multiple treatment of different intensities of Schmidheiny and
Siegloch (2023) into a non-linear PPML estimation.

10



time by airplane –after accounting for travel time to/from the airport and security checks– may still be
lower than by train at distances over 400km.

Co-patents
(1) (2)

log(Travel time) -0.199∗

(0.113)
log(Travel time) × distance < 100km 0.032

(0.237)
log(Travel time) × 100km ≤ distance < 400km -0.254∗

(0.133)
log(Travel time) × 400km ≤ distance -0.136

(0.187)

Fixed effects
µij ✓ ✓
µit ✓ ✓
µjt ✓ ✓

Observations 122,714 122,714
Pseudo R2 0.85 0.85
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 1: Effect of travel time on copatents
The table presents the result of estimating by PPML copatentsijt =

exp [β log(travel timeijt) + µij + µit + µjt] × εijt, for departments i and j, and applica-
tion year t. The sample includes application year from 1980 to 2010. Standard errors
clustered at the non-directional department pair are presented in parentheses.

4.3 Effect of travel time: robustness

The identifying assumption for an unbiased estimate of β is that the timing of reductions of travel time at
the department-pair is exogenous. This assumption is plausible given the uncertainty about the date at
which high speed railways would be operative for each department pair. The concern then would be that
there may be unobserved time-varying shocks at the department pair level that may be systematically
correlated with the timing of opening of high speed railways. An example of such concern would be that
an economic group, which is increasing or plans to increase its across-department integration, lobbies in
order to improve the train connectivity.

To alleviate this concern we re-estimate equation 1 including only department pairs that do not have
a high speed railway station. These department pairs see reductions in travel time only due to reductions
in connecting segments, and hence it is unlikely that time-varying shocks to such department pairs are
correlated with the reduction in travel time. The results in Table 2 show that the elasticity of copatents
to travel time is −0.48 for department pairs without a high speed railway station.
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Co-patents
(1) (2)

log(Travel time) -0.199∗ -0.478∗

(0.114) (0.273)

Fixed effects
µij ✓ ✓
µit ✓ ✓
µjt ✓ ✓

Sample selection All No HSR station
Observations 122,714 74,100
Pseudo R2 0.85 0.78
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2: Robustness: department-pairs without HSR station

4.4 Effect of travel time: heterogeneity

In this section we open up copatents and department pairs by different characteristics. Importantly, we
find that the reduction in travel time leads to more collaboration between more developed department
pairs, as proxied by their population density, rather than between those and less developed ones, or
among less developed ones. Additionally, we uncover that the effect is larger for across-firm copatents,
and while the point estimate of reductions of travel time is similar to both new and pre-existing collab-
orations across inventors, it not precisely estimated for pre-existing collaborations. We also find that the
effect persists once we weight patents by amount of claims or technology classes, proxies for patent scope
and patent breadth, implying that the reduction in travel time does not increase copatents by reducing
the scope or breadth of each patent.

Core-Periphery analysis

We classify departments as Core or Periphery based on the Eurostat classification of NUTS3 regions
(departments in the case of France). Eurostat classifies regions as urban (80% of population lives in
urban clusters), intermediate (between 50% and 80% of population lives in urban clusters) and rural (at
least 50% of population lives in rural areas).12 We consider urban and intermediate as Core, and rural as
Periphery. Appendix Figure 2 shows a map of departments colored by Core/Periphery status.

Table 3 shows the results of estimating the elasticity of copatents to travel time by whether both
departments in the pair are Core, Periphery, or one Core and the other Periphery. We find that the
elasticity is only statistically significant for Core-Core pairs. This result shows that reductions in travel
time reductions in travel time led to an increase in patent collaboration only between department pairs

12We use the 2024 classification retrieved from the R package eurostat (Lahti et al. (2017)). See https://ec.europa.eu/
eurostat/statistics-explained/index.php?title=Territorial_typologies_manual_-_urban-rural_typology for more
details on this classification.

12
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in which both departments are more developed. This result shed light into a new potential consequence
of reductions in travel time, while it may lead to an increase in patent collaborations, it may at the same
time led to increased inequality in terms of collaborative innovation, with more developed department
pairs strengthening innovation ties with other developed departments. In Appendix Table 5 we show
the results using 1975 population density to classify departments under/over median density, finding
results that go in the same direction.

Co-patents

log(Travel time) × Core-Core -0.268∗∗

(0.116)
log(Travel time) × Core-Periphery 0.396

(0.305)
log(Travel time) × Periphery-Periphery -0.158

(1.43)

Fixed effects
µij ✓
µit ✓
µjt ✓

Observations 122,726
Pseudo R2 0.85
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 3: Copatents by department-pair type
The table presents the result of estimating by PPML N. co-patentsijt =

exp[β log(Travel timeijt) + ρij + γit + δit] × ηijt, for departments i and j, and applica-
tion year t. Sample includes application year from 1980 to 2010. The regression is estimated
as directional (ij different from ji). Standard errors clustered at the non-directional
department pair are presented in parentheses.

Type of collaboration

Table 4 shows the results of estimating equation 1 where copatents are classified into whether the co-
patent belows to an inventor-pair that did not collaborate in the past (column 2) or it did (column 3),
and whether the patent involves only one firm (column 4) or multiple firms (column 5). We find that
the point estimate elasticity is comparable in new and old collaborations, though it is only statistically
significant for new collaborations. This result suggests that reductions in travel time lead to new collab-
orations, but once the collaboration exist, further reductions in travel time may not be as relevant. We
note, however, that as patenting is a rare event at the inventor level there is likely less statistical power
for estimating the effect on continuing-collaborations. We also find that the elasticity is larger in abso-
lute value and statistically significant for across-firm collaborations, and not statistically significant for
within firm collaborations. This result suggests that face to face interactions are relevant for across firms
collaborations, but that within firm collaborations may be less reliant on repeated interactions that are
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affected by changes in travel time. This result is related to Giroud (2013) who finds that non-stop flight
connections between a subsidiary and its headquarters leads to increased investment in the subsidiary.

Baseline New collab Old collab Within firm Across firms
(1) (2) (3) (4) (5)

log(Travel time) -0.199∗ -0.246∗∗ -0.247 -0.134 -0.403∗

(0.113) (0.108) (0.294) (0.132) (0.230)

Fixed effects
µij ✓ ✓ ✓ ✓ ✓
µit ✓ ✓ ✓ ✓ ✓
µjt ✓ ✓ ✓ ✓ ✓

Observations 122,714 121,742 32,691 108,950 47,813
Pseudo R2 0.85 0.83 0.81 0.85 0.59
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 4: Copatents by type of collaboration

Patent characteristics

We investigate wether the decrease in travel time leads to more patents by leading to patents of different
quality. We estimate a variation of equation 1 weigthing patents by the amount of citations received in a
5-year window, amount of claims in the patent, and amount of technology classes included in the patent.
Table 5 shows the results.

When weighting patents by the amount of citations received, we find that the reduction of travel time,
if any, decreased the amount of citation-weighted copatents. However, given that most patents have
zero citations, the identification of fixed effects drops around two thirds of the department-pair-year
observations of the baseline estimation in Table 1.13 As the underlying effective sample is so different,
one should be cautious when comparing coefficients across regressions.14

Column (2) of Table 5 presents the results with copatents weighted by amount of claims. The amount
of claims in a patent is a way to measure the patent scope – the amount of "things" over which the patent
is claiming intellectual property rights (Lanjouw and Schankerman (2004)). Comparing the coefficient
with the baseline estimation, we find a larger coefficient, suggesting that the reduction in travel time led
to copatents with larger scope. Column (3) presents the results weighting each copatent by the amount
of different technology classes that it has.15 The amount of technology classes in a patent is a way to
measure the patent breadth – the amount of technological domains that it covers (Lerner (1994)). The

13In the effective sample of the baseline regression shown in Table 1, the average observation at the department-pair-year has
1.17 copatents while it has 0.30 citation weighted copatents. In the effective sample, 79% of observations have zero copatents,
while the share increases to 94% when considering citation-weighted copatents.

14Estimating equation 1 in the effective sample of department-pair-year of model (1) in Table 5 gives an elasticity of copatents
to travel time -0.155 with clustered standard error 0.118. Using the same effective sample, the results for claims weighted and
technology class weighted copatents are quantitatively similar to the ones in Table 5.

15We count the amount of different IPC35 technology classes, having a maximum of 35 technology classes.
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reduction in travel time led to a comparable increase in technology-weighted copatents as unweighted
copatents, suggesting that the reduction in travel time did not affect the technological breadh of co-
patents.

Citation weighted Claims weighted Tech. classes weighted
(1) (2) (3)

log(Travel time) 0.452∗ -0.402∗∗∗ -0.241∗∗

(0.241) (0.139) (0.113)

Fixed effects
µij ✓ ✓ ✓
µit ✓ ✓ ✓
µjt ✓ ✓ ✓

Observations 39,477 122,726 122,726
Pseudo R2 0.78 0.90 0.87
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 5: Copatents weighted by patents’ characteristics

Inventor characteristics

We investigate whether the reduction in travel time leads to more copatents among technologically sim-
ilar or different inventors. We compute the technological similarity of inventors based on their previous
patents and then classify copatents by whether the inventor-pair is over or under the median similar-
ity across inventors.16 Table 6 shows that the decrease in travel time led to increased copatents among
inventors under and over the median similarity.

Similarity > median Similarity < median
(1) (2)

log(Travel time) -0.314∗∗ -0.260∗∗

(0.132) (0.128)

Fixed effects
µij ✓ ✓
µit ✓ ✓
µjt ✓ ✓

Observations 74,010 59,427
Pseudo R2 0.83 0.83
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 6: Copatents by inventors’ technological similarity

16We compute the cosine similarity of technologies using the IPC35 technologies of previous patents.
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5 Conclusion

This paper exploits the roll out of High Speed Railways (HSR) as a quasi-natural experiment to provide
new causal evidence of the impact of train travel time on patent collaboration between inventors. To do
so, we constructed a new dataset of train travel time in France between 1980 and 2010, documenting a
median decrease in travel time between department-pairs of 25%. We find that the decrease in travel
time led to an increase in patent collaboration across departments, driven by collaborations between
inventors that have not collaborated before, and by collaborations across firms. At the same time, we
find that the reduction in travel time only leads to an increase in collaborations between department
pairs in which both departments with higher population density, which are likely the more developed
ones. As consequence, the decrease in travel time could increase the collaboration gap between more
developed and less developed departments.

This paper provides evidence on the impact of transportation infrastructure on innovation. Recent
policies and recommendations make a strong emphasis on fostering regional innovation. Our results
suggest that transportation infrastructure can affect regional innovation by facilitating long-distance
face-to-face interactions among inventors. However, the gains from improvements in connectivity may
be unevenly distributed, favoring more developed regions.
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