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Abstract

This paper provides novel firm-level estimates of the economic damages caused
by temperature shocks to European firms. I rely on a panel data analysis to
show wide heterogeneities in the impact of temperature shocks, which depend
on firm characteristics. This paper reveals the importance of micro-level data to
reduce the uncertainty in climate damages estimates, as the average relationship
between temperature and economic outcomes masks firms’ different susceptibil-
ities to weather shocks. These create both winners and losers, harming less
productive and smaller firms, particularly those in warmer regions, while ben-
efiting more productive ones. I highlight the distributional effects of climate
change, and offer insights for targeted adaptation policies.
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1 Introduction

Climate change, with its profound socioeconomic impacts (Carleton and Hsiang, 2016), has been de-

scribed as the greatest market failure in history (Stern, 2006). Because climate damages are crucial

to informing climate policies, their accurate quantification is essential for an effective policy interven-

tion.1 However, modelling climate damages has proven to be complex, widely debated (Weitzman,

2009; Pindyck, 2013; Dietz and Stern, 2015; Stern and Stiglitz, 2021), and subject to considerable

uncertainty (National Academies of Sciences, 2017).2

Existing climate damages estimates, derived from historical weather and climate events (Hsiang,

2016), exhibit significant uncertainty and substantial variation across studies (Burke, Hsiang and

Miguel, 2015; Klenow, Nath and Ramey, 2023; Bilal and Känzig, 2024). The majority of these

studies adopt a top-down approach, relying on aggregate data to estimate these impacts. However,

when weather effects vary substantially across regions or economic agents, aggregate analysis can

obscure important heterogeneity. As a result, when opposing effects are present, aggregate studies

may inaccurately suggest that some areas are unaffected by climate change. Additionally, exploring

heterogeneity in weather impacts is essential for understanding the distributional effects of climate

change. If damages disproportionately affect economic activity in economically disadvantaged and

socially vulnerable areas, climate change will exacerbate existing social inequalities.3 Furthermore,

identifying the areas and entities facing the greatest risks from climate change enables policymakers

to design more targeted and effective adaptation strategies.

This paper provides the first firm-level analysis of the effects of weather shocks on the performance of

European firms. The European focus is relevant because macro-level studies often suggest that tem-

perature fluctuations do not significantly affect the European economy (Burke, Hsiang and Miguel,

2015; Acevedo et al., 2020),4 with some even indicating positive impacts in certain areas (Groom,

Linsenmeier and Roth, 2023). This firm-level analysis delves into the within-region distribution of

economic activities, to determine whether aggregate null effects reflect a genuine absence of impacts

of temperature on economic outputs, or if they instead mechanically mask heterogeneous underlying

responses.5 Furthermore, if heterogeneous responses are present, this paper identifies their economic

drivers, thereby clarifying how climate effects diverge across firms. Finally, this paper provides the

first estimates of weather-induced firm exit in Europe.

To address these questions, I first estimate baseline results at the pooled level, capturing the av-

erage effect of temperature across all firms—thereby allowing comparison with aggregate findings

in previous studies. Consistent with previous research, these results reveal an inverted-U-shaped

relationship between temperature and economic outcomes, although the marginal effects are statisti-

cally insignificant. I then introduce interactions between weather variables and firm characteristics,

revealing substantial heterogeneity in climate damages that potentially explains the insignificance

1Climate damages are also a key input to the Social Cost of Carbon (SCC), which guides optimal
carbon pricing (Stern, 2006; Pizer et al., 2014; Nordhaus, 2017; Rennert et al., 2022).

2Given the uncertainty in climate projections (Murphy et al., 2004; Calel et al., 2020), advancing
our understanding of climate damages is essential to reducing the overall uncertainty surrounding
future damages (Auffhammer, 2018; Rising et al., 2022).

3Although between-country heterogeneity is well-documented, within-country evidence is limited.
4Europe’s developed economies and temperate climates are associated with low climate damages.
5Additionally, as discussed in section 2.2, firm-level data enable a closer match between economic

activity and relevant weather data, reducing aggregation bias (Burke and Tanutama, 2019).
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of the pooled results. Low-productive firms consistently experience negative impacts from rising

temperature, albeit with some exceptions. In contrast, high-productive firms generally appear to be

better shielded from weather shocks. Importantly, accounting for TFP heterogeneity reduces the un-

certainty around climate damages, as indicated by narrower confidence intervals, potentially lowering

the overall uncertainty in climate damage projections. This paper highlights that firm’s productivity

is the main source of climate damages heterogeneity, in contrast with previous literature which has

focused on firms’ size and industry. Lastly, survival analysis highlights that the least-productive firms

located in warmer areas exhibit a dramatic drop in survival probability due to higher temperatures.

This work builds on the recent climate econometrics literature, which leverages variation in weather

realisations to identify the causal effect of climate on various economic variables (see Dell, Jones and

Olken (2014) for a review), such as agricultural output (Deschênes and Greenstone, 2007; Schlenker

and Roberts, 2009; Burke and Emerick, 2016), industrial output (Graff Zivin and Kahn, 2016), labour

productivity (Graff Zivin and Neidell, 2014; Somanathan et al., 2021), natural capital (Benmir et al.,

2024), and economic growth (Dell, Jones and Olken, 2012; Burke, Hsiang and Miguel, 2015; Acevedo

et al., 2020).6 This literature relies on reduced form models exploiting exogenous weather variables

and fixed effects (Hsiang, 2016) yielding plausibly exogenous variation of weather over time.7 The

relevant estimates are thus identified through idiosyncratic weather shocks.8 Within this literature,

Dell, Jones and Olken (2012) identify negative linear effects of temperature on aggregate output for

poor countries, while Burke, Hsiang and Miguel (2015) find that the global relationship between

temperature and GDP growth is non-linear and concave, following an inverted-U shape.

However, averaging local temperature at the country level leads to information loss, as different pro-

ductive units are likely exposed to opposing temperature shocks, particularly in large countries with

multiple climatic zones. This introduces uncertainty and changes the true weather effect (Burke and

Tanutama, 2019). Recently, strides have been made by focusing on more granular units of analysis,

such as counties or regions (Burke and Tanutama, 2019; Kalkuhl and Wenz, 2020). Nevertheless,

regional analysis still lacks sufficient granularity to capture critical economic dynamics affecting cli-

mate damages. Moreover, identifying vulnerability heterogeneity at a more granular level provides

policymakers with insights for tailoring more effective adaptation policies.

Since Melitz (2003) emphasised intra-industry heterogeneous firms’ responses to economic shocks,

firm-level analysis has become central in economic research. Climate econometrics has recently

embraced this approach. Results consistent with the aggregate studies are found for medium and

large firms in China (Zhang et al., 2018; Chen and Yang, 2019), in a sample of manufacturing and

service firms from various countries (Nath, 2020), and in Italian firms (Caggese et al., 2023), whereas

no significant effect appears on public firm sales in the US (Addoum, Ng and Ortiz-Bobea, 2020).

Finally, Ponticelli, Xu and Zeume (2023) highlight how temperature impacts vary across firm size

categories in the US. Relatedly, Liu and Xu (2024) provide empirical estimates of the effects of

6Other non-economic outcomes include mortality (Deschênes and Greenstone, 2011; Barreca,
2012; Burgess et al., 2017; Carleton et al., 2022), violence and mental health (Card and Dahl, 2011;
Carleton, 2017; Burke et al., 2018; Obradovich et al., 2018; Cunsolo et al., 2020), conflicts (Miguel,
Satyanath and Sergenti, 2004; Burke et al., 2009; Harari and La Ferrara, 2018).

7Climate is the distribution of possible outcomes, weather is its realization (Hsiang, 2016).
8Studies on economic growth initially relied on cross-sectional identifications (Mendelsohn, Nord-

haus and Shaw, 1994; Nordhaus, 2006; Dell, Jones and Olken, 2009). To avoid bias from spurious
associations of temperature with national characteristics (Acemoglu, Johnson and Robinson, 2002;
Rodrik, Subramanian and Trebbi, 2004), the literature evolved towards panel data approaches.
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firm-level extreme heat exposure on capital misallocation.

This paper contributes to multiple strands of literature. First, this work contributes to climate eco-

nomics by showing considerable firm heterogeneity in climate damages, enhancing our understanding

of micro-level impacts on macro-level outcomes. In doing so, it provides a complementary bottom-

up perspective to the top-down literature, offering a framework through which firm-level responses

can inform analysis of the macroeconomic effects of climate change. Second, it contributes to the

broader discussions on firm dynamism (Decker et al., 2016), firm inequality (De Loecker, Obermeier

and Van Reenen, 2022), and aggregate productivity (Foster, Haltiwanger and Krizan, 2001). Impor-

tantly, higher temperature slows down convergence and exacerbates firm inequality for firms located

in warmer areas. By examining climate impacts across productivity categories, this analysis sheds

light on the possible drivers of the aggregate productivity slowdown in Europe. Third, this paper

contributes to the literature on firm dynamics (Hopenhayn, 1992; Melitz, 2003; Clementi and Palazzo,

2016) by showing how the effects of higher temperatures on firm exit vary across productivity cat-

egories. Fourth, this research contributes to climate econometrics by discussing the two primary

econometric approaches for estimating temperature impacts – temperature polynomials and tem-

perature bins – and addresses, in the firm-level context, methodological drawbacks raised in recent

studies (Newell, Prest and Sexton, 2021; Klenow, Nath and Ramey, 2023).

The rest of this paper is structured as follows: section 2 presents the data, section 3 describes the

identification strategy, section 4 reports and discusses results and section 5 concludes.

2 Data

2.1 Economic Data

I use firm-level data from 1995 to 2020 derived from the administrative micro-level dataset Orbis His-

torical, provided by Bureau Van Dijk Electronic Publishing (BvD). These data have been extensively

used in the literature focusing on firm dynamics (Bloom, Draca and Van Reenen, 2016; Gopinath

et al., 2017; Acharya et al., 2019; Autor et al., 2020). This database provides data on firm balance

sheets and income statements for over 400 million companies worldwide, covering firms in all sectors

of the economy. The main variables of interest in this analysis encompass real gross output (GO),

real value added (VA), capital stock (K), number of employees (L), and total factor productivity

(TFP). I estimate TFP using the Wooldridge (2009) method.9

All financial variables, except for labour, are adjusted to 2010 prices using industry-level deflators

from OECD STAN.10 The most recent available deflators correspond to either 2019 or 2018. As the

latest year in my sample is 2020, I adopt the most recent deflator for subsequent years.11 Further-

more, I calculate the investment and capital stock using the Perpetual Inventory Method (PIM).

Additionally, I adjust the financial variables by the OECD STAN PPP (LCU per US dollar) series to

correct for price-level differences across countries. Finally, I winsorise the financial variables at the

1st and the 99th percentiles to mitigate the influence of outliers (Gopinath et al., 2017).

9Wooldridge (2009) extends the two-step estimation procedures from Olley and Pakes (1996) and
Levinsohn and Petrin (2003), leading to more efficient estimators.

10Industry-level deflators are available at different levels of aggregation for different industries. I
define an algorithm to select the most granular available level of aggregation for each industry.

11I choose this approach for its likely conservatism compared to assuming a consistent growth rate
as in previous years for imputed values.
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Kalemli-Özcan et al. (2024) highlight the main challenges related to using Orbis data for research

purposes. To minimise such issues, I follow and extend12 the Kalemli-Özcan et al. (2024) cleaning

procedure.13 Table 1 reports descriptive statistics for the final dataset. Table 4 reports the total

number of observations with at least one non-missing variable of interest (i.e. the union of observa-

tions with non-missing GO, VA and TFP) after the cleaning procedure (column 1) and the number

of observations with non-missing GO (column 2), VA (column 3) and TFP (column 4).14 It is worth

specifying that the panel is unbalanced. This is primarily due to the well-known enhancement in

data availability and representativeness over time, which is not uniform across countries. This factor

should be considered when analysing Orbis data.

Min Median Max Mean SD N
Number of employees 1 4 599,305 26.794 526.592 37,897,527
Real GO (log) -2.488 12.847 24.654 12.858 2.151 66,624,037
Real VA (log) -0.053 12.195 25.442 12.288 1.700 45,214,411
Number of employees (log) 0.000 1.386 13.304 1.650 1.383 37,897,527
Fixed assets (log) -1.579 11.563 23.300 11.612 2.336 54,045,361
TFP -12.170 10.010 48.412 9.923 1.025 29,580,376
Yearly Average T (°C) -4.337 12.587 20.419 12.431 3.291 65,728,710
Yearly Total P (metres) 0.000 0.759 4.050 0.787 0.397 65,728,710

Table 1: Summary Statistics for different relevant variables. Source: Orbis and ECMRWF.

Country-specific total numbers of observations are reported in table 3. I excluded Ireland and Lux-

embourg from the initial sample due to their favorable fiscal policies, which could introduce biases

in the results. To gain insights into the distribution of firms, I present maps depicting the spatial

distribution of firm-level variables aggregated at the Nuts 3 level. Figures 15 and 16 reveal signif-

icant heterogeneity between regions. While this visualization is informative for understanding firm

characteristics within the sample, caution is needed when making inferences about the broader firm

population due to potential non-random data availability, such as missing firms.15 This should be

considered when discussing the external validity of the estimates presented in this paper.

However, the total number of observations does not necessarily provide the full picture of how repre-

sentative the sample is for the entire economy. Rather, it is good practice to assess representativeness

in terms of coverage. Figure 1 shows that, although the coverage is relatively stable over time within

each country, there are non-negligible differences across countries. Notwithstanding the low coverage

for Germany and the Netherlands, the coverage for the remaining countries is generally good, with

most country-year values above 0.5. European countries generally have better coverage, as firms of

all sizes face the same regulatory requirements to file most of the balance sheet variables included in

the database.

12I extend the cleaning procedure by setting to missing implausible negative values for financial
variables and unrealistic spikes in their growth rates.

13After this procedure, the total number of observations falls from 212,377,647 to 70,346,838.
14The number of observations for TFP is lower than GO and VA because the Wooldridge (2009)

TFP estimation requires non-missing VA, K, L and cost of materials contemporaneously.
15A notable example is Germany, where regions have a low number of firms, leading to relatively

low aggregate gross output and employment. Average values reveals that Germany consistently
features large firms, with an under-representation of small firms.
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Since the focus of this work is on understanding the underlying heterogeneity, table 5 breaks down

observations across broadly defined sectors, aggregating the NACE revision 2 level 2 sectors into the

broader NACE revision 2 level 1 for clarity. Notably, there are significant variations in data avail-

ability among industries. While these differences likely mirror the broader economic landscape, they

should be considered when delving into industry-level heterogeneity, as they can impact standard

errors and statistical significance. Given the modest number of observations for industries “O-Public

administration and defence compulsory social security” and “U-Activities of extraterritorial organi-

sations and bodies”, the analysis excludes firms belonging to these sectors.
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Figure 1: Coverage of the aggregate economy from Orbis data in terms of gross output. The values
report for each country-year the ratio (bounded between 0 and 1) between aggregate gross output
for the firms included in the sample and the economy-wide gross output. The economy-wide gross
output values are only available since 2008. Source: Orbis and EUROSTAT.

Another important aspect is firm size. Past research has highlighted a significant positive correlation

between size and productivity, albeit with variations across countries (Bartelsman, Haltiwanger and

Scarpetta, 2013). Orbis holds a distinct advantage over other firm-level data sources due to its inclu-

sive coverage of Small and Medium Enterprises (SMEs). This is crucial because exclusively focusing

on large firms would result in estimates with low external validity, leading to partial conclusions and

misguided policy implications. The inclusion of SMEs is particularly relevant in this setting given

their significant contributions to and substantial presence in the European economy. Table 6 outlines

the number of observations for three periods in our sample, categorized by firm size.16 Not only does

the presence of SMEs increases over time, but their relative share also grows. In this regard, it is

worth highlighting that Orbis data suffer from underrepresentation of small firms, particularly before

2006 in countries like Germany, the Netherlands, and Ireland (Kalemli-Özcan et al., 2024).

An additional multi-step process ensures the accuracy of reported coordinates.17 I devised a simple

procedure to remove implausible values at the Nuts 3 and city levels. After matching firms with

Nuts 3-level shapefiles, I marked coordinates as missing if falling outside their region. Subsequently, I

generated city-level coordinates and replaced firm coordinates with their city averages if the difference

between the two exceeded 0.25 degrees. An additional procedure imputes the city-street level mode

16Firm size is based on the number of employees according to the European Commission classifi-
cation.

17Coordinates for AT, DE, FI, GR, and SE are unavailable in Orbis Historical, and are geocoded
using OpenCage.
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coordinates when these are missing. If multiple modes were present, I use the average coordinates

unless the difference between the minimum and maximum mode exceeded 0.25 in absolute value.

Testing these values with OpenCage geocoding consistently showed a correlation above 99%. For a

detailed description, refer to Appendix B.

2.2 Weather Data

I retrieve weather data from the Copernicus Climate Change Service (C3S) within the European

Centre for Medium-Range Weather Forecasts (ECMRWF). I utilise hourly average temperature (◦C)

and total monthly precipitation (m) from the ERA5-Land product (Hersbach et al., 2020, 2019)

which represents the fifth generation reanalysis of global climate and weather from 1950 onwards

regridded to a regular latitude-longitude grid of 0.1 degrees (∼ 9 km). Reanalysis combines model

data with worldwide observations, resulting in a globally complete and consistent dataset. Contrarily,

meteorological measurements from station-based weather data are unevenly distributed. Such uneven

distribution may introduce endogeneity in the estimation process, as the availability of meteorological

stations is likely correlated with socioeconomic variables, which, in turn, are correlated with firms’

performance. In contrast, reanalysis data are evenly available both over time and across space.

0

.05

.1

.15

.2

D
en

si
ty

0 5 10 15 20
Yearly Avg T (°C)

(a) Temperature Frequency

(b) Temperature Spatial Distribution

Figure 2: Distribution (a) and Spatial distribution (b) of yearly average temperature across firm-
year observations in Europe. Source: ECMWF.
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Figure 2a plots the distribution of yearly average temperature for the firm-year observations included

in the dataset. The distribution reports large variation in yearly average temperatures, with the

bulk of the observations between (8◦C) and (19◦C). Figure 2b reports the map of the the average

temperature across the firm-year observations within each Nuts 3 region. I match weather and firm-

level data using the coordinates available in the two datasets. I employ an inverse-distance weighted

matching procedure to construct smoothed averages across space for the weather variables. Opting for

inverse-distance weighting over matching based on the closest grid helps avoid potential inaccuracies

in the assigned weather measures. Additionally, this matching approach defines longitude-latitude-

specific measures, introducing more variability than grid-specific measures. Due to computational

limitations, I restrict this matching process to grids within a 10 km radius of the firm location. The

spatial match is conducted based on geodetic distances (Picard, 2019).

A potential concern with this procedure is that firm locations may change over time, the physical and

legal locations may differ, or the firm may have subsidiaries in different areas, potentially introducing

bias to the estimates. The first concern is ruled out as BvD firm identifiers automatically change

when a firm relocates to a different location. In addition, I rely on firm unconsolidated financial

statements to exclude inflows from subsidiaries.18 Moreover, the advantage of Orbis data lies in its

extensive coverage of small and micro-firms, which are less likely to have different physical and legal

locations (Fadic, Garda and Pisu, 2019). While this assumption is reasonable for the scope of this

work, further research should address and possibly rule out this concern.

Figure 3: Bivariate Spatial distribution of yearly average temperature and total gross outpus
across firm-year observations aggregated at the Nuts 3 level in Europe. The legend reports yearly
average temperature on the X-axis and total GO on the Y-axis. Colours from bottom to top of the
legend indicate higher total GO, whereas colours from left to right indicate higher yearly average
temperatures. Source: Orbis and ECMWF.

Figure 3 reports the bivariate map of firm-level yearly average temperature and gross output aggre-

gated at the Nuts 3 level. The figure reveals substantial heterogeneity in the joint spatial distribution

of these two variables across space-19 This is relevant because it allows alleviate selection bias. For

example, southern Europe is warmer and usually considered as less economically developed. How-

ever, the figure shows that in warmer areas both less-developed (south of Italy and Greece) and

more-developed (south of Spain) areas are present.

18Unconsolidated financial statements are identified in Orbis as U1 and U2.
19The low values observed for total gross output and employment in German regions are driven

by a low coverage and low number of firms as discussed in previous section.

8



3 Identification and Model Selection

Understanding the economic responses to climate change through the study of annual weather fluc-

tuations is complex, and it is important to use the terms ‘weather’ and ‘climate’ carefully. ‘Climate’

refers to the distribution of outcomes, such as the range of temperatures experienced in an area,

whereas ‘weather’ represents the realization of this distribution (Hsiang, 2016).20 Throughout this

paper, I rely on weather fluctuations to identify the marginal effect of increasing temperature. These

findings contribute to the broader discussion on climate damages, to the extent that climate change

contributes to the observed increases in temperature reflected in weather fluctuations.

In this paper I rely on variation in firm-specific yearly weather fluctuations to identify the effect of

higher temperature on firm economic performance. Specifically, I estimate the marginal effect of an

additional 1◦C in yearly average temperature using the following general model:

∆Yi,t = g(Ti,t) + f(Pi,t) +
∑
ℓ≥1

h(Ti,t−ℓ) + δi + δ−i + εi,t (1)

Where ∆Yi,t = Yi,t − Yi,t−1 represents the yearly growth rate of any of the economic variables for

firm i in year t. The function g(Ti,t) is a jth order polynomial in temperature Ti,t, capturing the

impact of temperature on firm economic performance. It is defined as the dot-product between the

1× j row vector of marginal effects β′ and the j × 1 column vector of temperature Ti,t

g(Ti,t) = β′

(1×j)

Ti,t
(j×1)

∀ j = 1, . . . , J (2)

f(Pi,t) represents a kth order polynomial capturing the effect of precipitation on firm economic

performance and it is defined similar to g(Ti,t). Additionally,
∑

ℓ>1 h(Ti,t−ℓ) is a j
th order polynomial,

defined as the sum over the ℓ lags of the dot product between the 1× j row vector of marginal effects

γ′ and the j × 1 column vector of temperature for lag ℓ Tℓ

∑
ℓ≥1

h(Ti,t−ℓ) =
∑
ℓ≥1

γ′
ℓ

(1×j)

Ti,t−l
(j×1)

(3)

δi is a firm fixed effect that accounts for firm-specific unobserved constant components, δ−i is a set

of fixed effects complementary to δi, which can be adapted to the specific research design.21 In this

paper, I adopt the restrictive country-industry-year fixed effect λc,n,t that accounts for unobserved

time-varying, and country-specific Nace 2 industry-specific trends or shocks (Wooldridge, 2002).

These could be common trends such as technological innovations or macroeconomic shocks, such as

changes in energy prices or supply-chain shocks which are allowed to differ across countries. I do not

include time-trends since these have no effects on the resulting estimates. Specifically, the results

are robust to the inclusion of NUTS 1 quadratic time trends.22 Finally, εi,t is the idiosyncratic error

component, assumed to be exogenous to the weather covariates after the inclusion of the fixed effects.

Section C discusses the derivation of the marginal effects and their interpretation. As emphasised

20On this regard, Deryugina and Hsiang (2017) demonstrate that the marginal effect of long-
run climate can be identified using only idiosyncratic weather variation, although under the strong
assumption of efficient competitive markets.

21As this analysis is based on singularly-located firm-level observations, spatial fixed effects are
nested under the firm fixed effect and are omitted to avoid multicollinearity.

22For a discussion on time-trends in climate econometrics see Bearpark and Palomba (2024).
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by Newell, Prest and Sexton (2021) and further discussed by Klenow, Nath and Ramey (2023), if

temperature has only a transitory effect on economic performance, the effects of lagged temperature

should reverse the contemporaneous effect. This phenomenon would manifest in the contemporaneous

β′ and lagged
∑L

ℓ>1 γℓ effects having approximately equal magnitude but opposite sign (sign reversal).

The underlying identification assumption is that weather shocks, as identified by temperature fluc-

tuations resulting after controlling for a polynomial of precipitation f(Pi,t) and the relevant fixed

effects, are exogenous. If this assumption holds, then the estimates could be interpreted as the unbi-

ased causal effect of an additional 1◦C in yearly average temperature on firm economic performance.

In terms of fixed effect models, this can be expressed as an adapted strict exogeneity assumption:

E[εi,t | g(Ti,t), f(Pi,t), {h(Ti,t−1), . . . , h(Ti,t−L)}, δi, δ−i] = 0 ∀ t = 1, . . . , T (4)

Previous works have relied on specific cases of the general model discussed in this section, with most

analyses adopting the specification outlined in Burke, Hsiang and Miguel (2015). Building on Dell,

Jones and Olken (2012), the authors model economic output as a quadratic function of tempera-

ture, allowing the effect of temperature to vary across the temperature support. This specification

yields plausibly causal estimates of unanticipated short-term weather fluctuations, which incorporate

adaptation responses to longer-term climate (Burke, Hsiang and Miguel, 2015; Auffhammer, 2018).

Since the nonlinearity allows the units means to re-enter the estimation, the marginal effect of temper-

ature is identified through both within-unit time series variation and between-units cross-sectional

variation. The nonlinearity produced in quadratic models with fixed-effects can be disentangled

between a within nonlinearity (WNL) and a global nonlinearity (GNL) (McIntosh and Schlenker,

2006).23 Nonlinear models with fixed-effects accounting for GNL that fail to account for WNL when

these are present are biased. However, Mérel and Gammans (2021) show that such bias becomes neg-

ligible when cross-sectional variation in climate dominates within-units weather fluctuations. WNL

are relevant in small-N long-T country-level contexts (Klenow, Nath and Ramey, 2023), but are likely

modest in a large-N, short-T firm-level context. As shown in table 7, in this analysis cross-sectional

variation dominates time-series variation. Therefore, the estimates are likely to be unbiased.

Furthermore, the resulting inverted-U relationship could potentially be driven by the constraints that

the functional form imposes on the parameters. In this work, I aim to identify the functional form

that most accurately captures the relationship between temperature and firm economic performance.

I employ post-estimation tests to determine the most appropriate order of the polynomial β′Ti,t

and the number of temperature lags to include in the model. I use two model selection criteria, i)

in-sample Information Criteria (IC) and ii) Machine Learning out-of-sample Cross Validation (CV).

Appendix D discusses these approaches and their results.24

The selected model includes a second order polynomial with two lags. A quadratic model provides

adequate model flexibility minimising overfitting risks. Moreover, this model aligns with the estab-

lished literature, facilitating comparisons with previous studies. Consequently, this study adopts a

23The WNL identifies weather deviations from the mean of the fixed-effect group, whereas the
GNL identifies deviations from the mean of the sample as a whole. The GNL implies that the
marginal effect of Ti,t on Yi,t varies across the Ti,t distribution, whereas the WNL implies that the
marginal effect of Ti,t depends only on how Ti,t moves away from the within groups mean Ti.

24Given the amount of computational resources required for these analysis, I limit this analysis to
ℓ = {1, . . . , 5} lags for each of the jth = {1, . . . , 4} order polynomials.
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quadratic model to explore variation in the marginal effects of temperature across the temperature

support, hence accounting for different adaptation levels. The model is defined as follows:

∆Yi,t = β′

(1×2)

Ti,t
(2×1)

+

2∑
ℓ=1

γ′
ℓ

(1×2)

Ti,t−l
(2×1)

+ ψ′

(1×2)

Pi,t
(2×1)

+ δi + λc,n,t + εi,t (5)

In this framework, the error term εi,t is likely serially correlated within a firm over time and spatially

correlated within a region. Such correlations may persist even after including the relevant fixed effects

(Cameron and Miller, 2015). To address these concerns, I cluster standard errors at the regional level.

Since each firm in the sample is only located in one region, firm-level clusters are nested within regions.

To select the optimal level for clustering standard errors, I follow the approach outlined by Cameron

and Miller (2015) and cluster standard errors at the NUTS 3 level.

Another issue highlighted in the literature concerns the potential non-stationarity of the variables’

time series included in the analysis. If such series are non-stationary, the models is spurious as they are

affected by three major issues: first, the regression estimates are inefficient; second, the forecasts based

on these regressions are sub-optimal and; third, the significance tests on the coefficients are invalid

(Granger and Newbold, 1974). When series are non-stationary, they should be first-differenced. This

issue has been raised in climate econometrics by Burke, Hsiang and Miguel (2015).25 Newell, Prest

and Sexton (2021) argue that the Burke, Hsiang and Miguel (2015) specification is still spurious since

it accounts for the non-stationarity in the GDP series but not in the temperature series.

However, there is a distinct difference between country-level and firm-level analysis. The former

typically features longer time series (T) and fewer entities (N), whereas the latter is characterised

by shorter T and longer N. In the short T case, the time-series properties of the data are usually

negligible (Greene, 2003).26 Although this analysis falls into the short T, long N category, I conduct

statistical tests to assess nonstationarity in the series for completeness. The tests strongly reject the

hypothesis of nonstationarity. The results of the tests and a detailed discussion are in section E.

The temperature polynomial model used in this paper, along with the temperature bins model first

developed in Deschênes, Greenstone and Guryan (2009), has become the standard in climate econo-

metrics. The former exploits fluctuations in yearly average temperature, whereas the latter exploits

variation in the number of days in a year with average temperature within a certain interval (bin).

These models are not mutually exclusive, but rather complementary, and the choice between the two

alternatives depends on the specific research question. The temperature bins specification is becoming

particularly popular, possibly due to its straightforward identification and clearer interpretation.

Temperature bin models assume that the impact of temperature on yearly production is a linear

combination of equally weighted daily temperatures. This is a plausible assumption when studying

the effects of temperature on mortality. However, the assumption is weaker for firm production,

which is usually not constant across days. For example, several types of firms adjust their production

according to exogenous variation in demand, reduce their production during weekends or summer,

and in some cases temporarily interrupt production. Finally, bins defined by absolute temperatures

overlook local climate differences by assuming that the marginal effect of an additional day in any

bin is uniform across regions, thereby neglecting variations in local climate adaptation.

25They highlight that country-level GDP follows a random walk (ρi = 0.999).
26When T increases as the same rate as N these properties become a central focus of the analysis.
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To identify the heterogeneous economic impacts of higher temperature I interact the variables in

equation 5 with different variables identifying firms characteristics

∆Yi,t = β′

(1×2)

Ti,t
(2×1)

+

2∑
ℓ=1

γ′
ℓ

(1×2)

Ti,t−l
(2×1)

+ ( β′

(1×2)

Ti,t
(2×1)

) · Ci,t + (

2∑
ℓ=1

γ′
ℓ

(1×2)

Ti,t−l
(2×1)

) · Ci,t+

ψ′

(1×2)

Pi,t
(2×1)

+ δi + λc,n,t + εi,t (6)

where Ci,t identifies firm i category in year t. The estimates quantify the effect of an additional

1◦C in yearly average temperature across firms in different categories. In the next section I discuss

results from the non-interacted pooled model to estimate the average effect of temperature fluctua-

tions on firm economic performance, then I delve into heterogeneity analysis regarding different firm

characteristics, such as productivity category, size and industry.

Finally, I assess the impact of higher temperature on firms exit using survival analysis. Survival

analysis deals with censoring, thereby avoiding the bias that would otherwise arise in OLS and

nonlinear models such as logit. In this analysis, both right-censoring and left-censoring are present.

The former occurs when entities are not observed throughout their entire life span, and the event

could still happen after the end of the analysis. In this case, firms that have not exited by the end of

the study (2020), may still exit in the future. The latter occurs when the risk of failure (exit) starts

before the study period. In this case, several firms’ births date back to before 1995 and therefore

start experiencing temperature-induced risk of exit before the observation period.

In this paper I estimate firms’ survival using the semiparametric Cox proportional hazard model

(Cox, 1972). This model estimates the probability of firms’ exit conditional on predictors x and the

fact that the firm has not exited through a multivariate regression analysis as in equation 7

h(t | x) = h0(t) exp
(
βx

)
, (7)

H(t) =

∫ t

0

h(u) du, (8)

S(t) = exp
(
−H(t)

)
= exp

(
−
∫ t

0

h(u) du
)
. (9)

where the hazard rate h(t | x) is a function of the baseline hazard h0(t) and a non-negative function of

covariates exp
(
βx

)
. The vector βx includes current and lagged (ℓ = 1, 2) yearly average temperature,

their interaction with the firm’s category, and yearly total precipitation. The cumulative hazard

function H(t) in equation 8 is the sum over time of the hazard rate, which allows us to estimate the

survival function S(t) as in equation 9. The results of this paper are based on the survival function.

4 Results

Empirical evidence has demonstrated that higher temperatures can impact firm economic perfor-

mance through various channels. For example, they can diminish labour supply through higher

absenteeism (Graff Zivin and Neidell, 2014; Somanathan et al., 2021), potentially due to relocation to-
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wards leisure or inability to work. Higher temperatures also impair labour productivity (Graff Zivin,

Hsiang and Neidell, 2018; Somanathan et al., 2021), resulting from reduced cognitive or physical

abilities. These impacts further extend to reduced capital productivity and stock. As highlighted

by Zhang et al. (2018), higher temperatures adversely affect machine productivity through dimin-

ished lubrication capability (Mortier, Orszulik and Fox, 2010), higher failure rates (Collins, 1963),

and reduced processing speed (Lilja, 2005). Unsustainable temperatures can also cause machinery

breakdowns, reducing capital stock.

Damages to production may also arise from reduced material supply due to supply chain shocks.27

Additionally, impacts from higher temperatures can be indirect, involving increased energy or trans-

portation costs. Higher temperatures lead to more use of AC and refrigerators, resulting in higher

energy and fuel consumption. On extremely hot days, local aggregate energy consumption may ex-

ceed the grid’s capacity, potentially causing blackouts and disrupting production. Finally, extreme

weather shocks can directly reduce the stock of materials. These results from previous research can

be used to explain the empirical findings of this paper discussed in the following sections.

4.1 Temperature Average Damage, Timing, and Persistence

In this section I present empirical results for the model discussed in section 3 and the whole set of

dependent variables: GO, VA, TFP, L, K and cost of materials (M). These estimates represent the

average effect across the pooled sample. Table 2 reports the results from the quadratic model defined

in equation 5. According to these estimates, temperature does not seem to have a substantial effect

on firms’ economic performance. The marginal effects of temperature on the growth rate of these

variables are generally not statistically significant. Moreover, even statistically significant estimates

– such as GO and K – are economically negligible.

Although the contemporaneous effects of Ti,t are economically negligible, the similar magnitude of

the GO and K coefficients suggests that K may be the primary channel through which temperature

shocks affect GO. The effect on K can be attributed to reductions in capital stock being more

readily observable by firms, and accounted for in their balance sheets. In contrast, negative labour

shocks, although likely to affect firm performance, are mitigated by rigid labour contracts that are

less responsive to short-term weather fluctuations. However, this interpretation contradicts previous

studies that identify L and TFP as the primary channels through which weather shocks influence

GO. While economic mechanisms may explain these results, differences across estimates can also stem

from the input-specific distributions of temperature impacts. Larger heterogeneity results in a wider

distribution of climate damages, which is likely to reduce the statistical significance of the pooled

estimates. In the case of K, statistical significance may result from a less dispersed distribution of

the underlying estimates. This interpretation is examined further in the remainder of the paper.

As discussed in section 3, if temperature has only a transitory effect, the effects of lagged temperature

would reverse the contemporaneous effect. This would be evident if the contemporaneous β′ and

lagged
∑L

ℓ≥1 γℓ estimates had approximately equal magnitudes but opposite signs. As shown in table

2, the linear estimates for Ti,t−1 are positive for GO and K and negative for VA, TFP, L, and M,

while those for Ti,t−2 are positive for all variables except TFP. Although generally not statistically

27While international supply chains may not be affected, many European firms depend on local
supply chains, shown by local economic agglomerates, hence likely impacted by local weather shocks.
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significant, these results seem to suggest persistent growth effects for GO and K, while VA, TFP,28

L, and M exhibit more transitory effects due to the observed sign-reversal. However, this finding may

be reversed for firms located in warmer areas by the positive quadratic terms. Hence, the remainder

of this section presents the marginal effect across the temperature support.

(1) (2) (3) (4) (5) (6)
∆GO ∆V A ∆TFP ∆L ∆K ∆M

T 0.0098∗∗ 0.0043 0.0015 0.00063 0.0096∗∗∗ 0.0015
(0.0042) (0.0037) (0.0029) (0.0027) (0.0027) (0.0030)

T 2 -0.00040∗∗ -0.00024 -0.00013 -0.000066 -0.00035∗∗∗ -0.00011
(0.00016) (0.00015) (0.00011) (0.00012) (0.00011) (0.00012)

(ℓ1)T 0.00078 -0.0056 -0.0029 -0.0088∗∗∗ 0.0097∗∗∗ -0.0049
(0.0051) (0.0048) (0.0045) (0.0024) (0.0032) (0.0040)

(ℓ1)T 2 -0.00011 0.000031 0.000033 0.00011 -0.00034∗∗∗ 0.00012
(0.00021) (0.00020) (0.00018) (0.00011) (0.00012) (0.00016)

(ℓ2)T 0.0047 0.0012 -0.00090 0.0011 0.011∗∗∗ 0.0049∗

(0.0042) (0.0045) (0.0046) (0.0023) (0.0032) (0.0029)

(ℓ2)T 2 -0.00023 -0.000099 -0.0000044 -0.000024 -0.00037∗∗∗ -0.00015
(0.00020) (0.00021) (0.00020) (0.00010) (0.00013) (0.00014)

P -0.017∗∗∗ -0.014∗∗ -0.013∗∗ -0.0081∗ 0.0023 -0.017∗∗∗

(0.0062) (0.0072) (0.0065) (0.0047) (0.0038) (0.0060)

P 2 0.0057∗∗∗ 0.0049∗∗ 0.0044∗ 0.0018 0.0015 0.0055∗∗∗

(0.0022) (0.0025) (0.0023) (0.0018) (0.0012) (0.0021)

Constant -0.087 0.063 0.052 0.091∗∗ -0.17∗∗∗ 0.013
(0.073) (0.068) (0.060) (0.037) (0.052) (0.052)

Firm FE Yes Yes Yes Yes Yes Yes
Cou-Ind-Year FE Yes Yes Yes Yes Yes Yes
R2 0.16 0.14 0.12 0.14 0.15 0.15
N 43,010,224 32,189,101 18,442,532 25,570,937 38,146,624 31,095,285

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Point estimates and standard errors from the regressions of weather variables on the
growth rates of GO, VA, TFP, L, K, and M. Results for the 2nd order polynomial model with firm
and country-industry-year FE, standard errors clustered at the Nuts 3 level.

Figure 4 presents the contemporaneous prediction 4a and the marginal effect 4b of temperature on the

growth rate of GO.29 Figure 4a presents the predicted outcomes from equation 5, with temperature

varying across its distribution while holding the other covariates constant at their average values. The

figure shows an inverted-U-shaped (concave) relationship between the two variables, consistent with

the existing literature. Firms throughout the temperature distribution are associated with negative

growth rates, with more pronounced negative effects observed in areas with both lower and higher

yearly average temperature.

Figure 4b reports the contemporaneous marginal effect of a 1◦C increase in temperature across the

temperature distribution, which is downward-sloping but generally not statistically or economically

significant. Figure 20 reports the marginal effect functions for the remaining outcome variables. With

28Although the marginal effect of Ti,t−2 is negative for TFP, its magnitude is approximately zero.
29For presentational purposes, I plot the results excluding the top and bottom percentiles of the

temperature distribution, although these firms are present in the estimated sample.
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the exception of K, the effects are close to zero in colder regions. In warmer regions, by contrast,

the effects are negative across all variables. However, while none of the estimates is statistically

significant at the 95% level, the confidence intervals for L and M exhibit greater overlap with zero.

This suggests that a larger portion of the estimates distributions for K and TFP falls in the negative

range, relative to L and M. I return to this point in the next sections, where I examine firm-level

heterogeneity as a potential driver of this pattern.
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(a) 2nd order polynomial prediction
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(b) 2nd order polynomial marginal effect

Figure 4: Contemporaneous prediction (a) and marginal effect (b) of temperature on the growth
rate of GO. Results from the 2nd order polynomial model with firm and country-industry-year FE,
standard errors clustered at the Nuts 3 level.

The marginal effects of Ti,t−1 and Ti,t−2, reported in figures 5a and 5b respectively, are downward-

sloping and statistically insignificant across the entire temperature distribution, with Ti,t−2 generally

larger in magnitude and exhibiting a steeper slope. Despite being statistically insignificant, these

estimates are consistent in sign, providing suggestive evidence for the presence of persistent growth

effects. Figure 21b reports the cumulative marginal effect, which is downward sloping and statistically

insignificant across the entire temperature distribution.

-.
02

-.
01

0
.0

1
.0

2
G

ro
w

th
 r

at
e 

of
 G

O

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
5

P
er

ce
nt

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Avg T (°C)

(a) lag-1 marginal effect
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(b) lag-2 marginal effect

Figure 5: Lag-1 (a) and lag-2 (b) marginal effects of temperature on the growth rate of GO.
Results from the 2nd order polynomial model with firm and country-industry-year FE, standard
errors clustered at the Nuts 3 level.

The absence of significant results in the pooled sample can be interpreted in several ways. First,

it may reflect a genuine absence of climate impacts: due to its developed economy and temperate

climate, Europe may simply be less affected by rising temperatures. Second, European firms may

have already undertaken, and in some cases completed, adaptation strategies. Adaptation can take

various forms, including the adoption of air conditioning (Graff Zivin and Kahn, 2016), a shift
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toward less-impacted sectors, or, in some cases, relocation to less-affected areas (Albert, Bustos and

Ponticelli, 2021).30 Third, the marginal effect of temperature may vary substantially across firms.

Differences in exposure, vulnerability, or adaptive capacity can lead to a wide range of firm-level

responses. When such heterogeneity is present, pooling firms can mask these underlying differences,

producing an average effect that appears null but averages out positive and negative impacts. This

last interpretation is supported by the large standard errors in the pooled estimates and motivates

the firm-level analysis that follows.

Section F.5.1 focuses on cross-country heterogeneity, highlighting differences in the damage function

across countries, while next sections delve into damages heterogeneity in terms of firms characteristics.

4.2 Heterogeneity Analysis

Several factors may contribute to temperature damages varying across firms characteristics. Firms

operating in sectors more exposed to temperature fluctuations, such as agriculture or construction,

are expected to be more sensitive to higher temperature than sectors with a higher likelihood of

indoor activities and a greater penetration of thermal control systems. Within the same industry,

more profitable firms are more likely to undertake the adaptation strategies mentioned above, since

they have both higher opportunity costs of not adapting (in terms of lost profits) and more resources

to invest. Firm size can also influence this dynamic. Larger firms are not only more profitable, but

they also face relatively lower adaptation costs due to economies of scale (i.e. lower per-worker costs).

Productivity levels may also influence firm climate damages. More productive firms are, on average,

more likely to rely on automated processes or cognitive skills-based tasks, which are often conducted

in temperature-controlled environments. Moreover, even within the same sector, these firms possess

greater resources for adaptation as they employ fewer inputs for the same level of output. Finally,

they may have better managers, who are able to mitigate productivity declines (Adhvaryu, Kala and

Nyshadham, 2022), likely to be more attentive, and to undertake investments in adaptation (Norris-

Keiller and Van Reenen, 2024). In the following sections I discuss the effects of weather shocks on

firms’ performance across productivity levels, size, and industry estimated using equation 6.

4.2.1 Productivity Heterogeneity

This section highlights how productivity levels impact firms’ responses to weather shocks. Figure 6

reports the point estimates for the regression of the growth rate of gross output on a second-order

polynomial of temperature interacted with firm TFP category. The TFP categories are defined

according to the firm average TFP percentile, based on the first two years the firm is available in the

sample. These are excluded from the estimation to avoid violating the strict exogeneity assumption

(equation 4). The function of the marginal effect of an additional 1◦C in Ti,t is upward-sloping

in temperature for the three most-productive categories, with positive values at high levels of the

temperature distribution. On the contrary, firms belonging to the 1st decile and the [10th; 25th)

and [25th; 50th) categories are characterised by downward-sloping marginal effect functions, with the

least-productive firms (1st decile) being remarkably negatively affected when located in warmer areas.

This result is particularly relevant to the discussions on the uncertainty surrounding climate dam-

30While relocation may not constitute adaptation from a local perspective—since it entails GDP
losses for the affected area—it can be a viable strategy from the firm’s standpoint.
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ages. The narrower confidence intervals indicate that accounting for TFP heterogeneity leads to

more precise estimates, substantially reducing uncertainty. Furthermore, these findings imply that

policymakers can better tailor adaptation policies to specific needs—such as providing support to the

least-productive firms or facilitating the reallocation of resources toward more productive firms—to

ensure a smoother climate transition.
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Figure 6: Marginal effect of an extra 1◦C in contemporaneous yearly average temperature on the
growth rate of gross output accounting for productivity heterogeneity (firm grouped according to
average TFP). Results from the quadratic model with firm and country-industry-year FE.

The dynamics between the least and most-productive firms differ substantially across the temperature

distribution. In areas with an average yearly temperature of 4◦C, an additional 1◦C in Ti,t increases

the growth rate of GO by 1 percentage points for firms in the bottom productivity decile, and

reduces it by 0.5 percentage points for firms in the top productivity decile, although this result is not

significant. In areas with an average yearly temperature of 18◦C, an additional 1◦C in Ti,t decreases

the growth rate of GO by −5.8 percentage points for firms in the bottom decile and increases it by

2.1 percentage points for firms in the top decile. Although large climate damages estimates are not

uncommon in the literature (Ricke et al., 2018; Bilal and Känzig, 2024; Kotz, Levermann and Wenz,

2024), it is important to clarify that these estimates reflect the impact of a 1◦C increase, whereas

yearly average temperatures typically fluctuate by only a fraction of a degree.

The results for lagged temperatures Ti,t−1 and Ti,t−2 reported in figure 7 are largely consistent

with those for contemporaneous temperature Ti,t. The marginal effects of Ti,t−1 are predominantly

negative across the temperature distribution for all TFP categories, except for the most-productive

firms located in warmer areas which are positively impacted. The effect of Ti,t−2 is similar to Ti,t−1,

although the estimates are not significant or precisely zero for most firms located in colder areas.

The cumulative effects over the periods t = {0,−1,−2} highlight persistent, although economically

negligible, negative marginal effects for the most-productive firms located in colder areas and for the

least-productive firms across the whole temperature distribution, and positive persistent marginal

effects for most-productive firms located in warmer areas. The difference between the marginal

effects of the least and most-productive firms is substantial.

One concern is that these results could reflect industry composition rather than firms’ relative TFP
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ranking. As TFP distributions vary by industry, TFP categories may correlate with industry-specific

exposure to climate damages, potentially biasing the estimates. Section F.5.4 presents additional

results in which TFP categories are defined within each industry, accounting for average TFP dif-

ferences across industries. The estimates remain largely unchanged, confirming that the results

presented in this section effectively capture climate damage heterogeneity across TFP categories.
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(a) lag-1 marginal effect
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(b) lag-2 marginal effect

Figure 7: Lag-1 (a) and lag-2 (b) marginal effects of temperature on the growth rate of gross output
in the EU across different firm productivity categories. Results from the 2nd order polynomial model
with firm and country-industry-year FE, standard errors clustered at the Nuts 3 level.

Although I am not able to test potential mechanisms due to data limitations, several factors may be

at play. The negative impacts of higher temperatures on the least-productive firms are not surprising.

These firms tend to be more vulnerable to temperature variations because are less likely to invest

in adaptation and react to climate shocks more generally. Conversely, the most-productive firms

generally have better managers who are more likely to undertake adaptation investments or reallocate

production factors to respond effectively to weather shocks. While these arguments could explain why

the most-productive firms do not exhibit negative effects, they do not explain the presence of positive

effects. Positive effects are potentially driven by a temperature-induced reallocation of production

factors and market shares. Consistent with market selection, the least-productive firms experience

significant negative shocks that likely reduce their competitiveness, leading to a reallocation towards

the most-productive firms. In line with the Schumpeterian notion of creative destruction, this effect

may be considered economically efficient. Furthermore, lower factor misallocation leads to higher

aggregate output (Hsieh and Klenow, 2009). However, assessing the aggregate macroeconomic effects

is nontrivial, as equity considerations must also be taken into account.

Having shown that the insignificant pooled marginal effect on GO reflects aggregation bias, I now

investigate, based on the results reported in figure 8, whether the same holds for the other inputs in

Table 2. I focus on firms in warm areas where temperature effects diverge most across productivity

categories. The effect on labour is statistically different from zero only for the top decile, whose higher

turnover may permit headcount adjustments. By contrast, K inputs exhibit clear heterogeneity. The

bottom three categories suffer significant negative impacts, while one of the top three shows a positive

and significant response, suggesting that the negative pooled estimate is driven by low-productive

firms. The estimates distribution for M is evenly spread across categories. Although two-thirds

of the estimates are positive, their dispersion around zero yields an insignificant pooled coefficient.

Finally, TFP displays the greatest divergence in warm areas, with marginal effects ranging from –12.8

percentage points for the least-productive category to 3.0 for the most-productive. This implies that
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the adverse impacts on low-productive firms drive the negative pooled results, while the positive

responses of high-productive firms offset these effects, resulting in statistically insignificant estimates.
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(a) Marginal Effect L
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Figure 8: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of L,
K, M, TFP across different productivity categories. Results from the quadratic model with firm and
country-industry-year FE, standard errors clustered at the Nuts 3 level.

Section F.5.5 delves into the heterogeneity of climate damages associated with firm-level productivity

levels by analysing potential differences across countries. Unlike the other sources of heterogeneity

analysed in this paper, the cross-country results focusing on firm-level productivity heterogeneity

are consistent both with those estimated for the pooled sample and with each other. In almost all

countries, the least-productive firms are negatively impacted by higher temperatures, whereas the

impact on the most-productive firms is either positive or not statistically significant. The consistency

of results across different samples suggests that differences in productivity levels are a credible source

for identifying heterogeneity in firm-level climate damages. In addition to being a reasonable metric

to pinpoint heterogeneous marginal effects from an econometric perspective, the identification of

a single characteristic able to explain differences in economic responses to temperature offers new

opportunities to design tailored climate policies.

4.2.2 Productivity Heterogeneity – Firms’ Exit

This section explores a potential mechanism underpinning the previous results. While the larger

negative marginal effects for low-productivity firms previously discussed align intuitively with ex-

pectations, the observed positive marginal effect for highly productive firms appears puzzling. A

plausible explanation for this result is that the disproportionate adverse economic impacts on less

productive firms cause them to lose market share and potentially exit the market, leading to a real-

location of production factors that ultimately benefits more productive firms. This section examines

this hypothesis by estimating the impact of higher temperatures on firm exit.

Figure 9 reports the point estimates and confidence intervals from the Cox proportional hazard

model. The base category represents the estimates for the least-productive firms. The estimates show
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large heterogeneity across both firms’ productivity categories and temperature lags. The effect of

temperature on firms’ exit hazard rate is not statistically significant for the two categories identifying

the least-productive firms, but it is positive and significant for the remaining categories. However,

due to the large standard errors, the estimates are generally not statistically different from each

other. The estimates from the first lag are generally not statistically significant and consistently

not different from each other, suggesting that temperatures in (t − 1) have little impact on firm’s

exit rates. On the contrary, according to this analysis, temperatures in (t − 2) seem to be having

the largest effect. The effect is 0.3 for the least-productive firms, while the most-productive firms

experience an additional effect of −0.37 as captured by the interaction term.31
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Figure 9: Point estimates from the Cox proportional hazard model (95% CIs.)

Figure 10 plots the survival function S(t) defined in equation 9 for the least-productive and the

most-productive firms located in cold and warm areas. The functions can be interpreted as the share

of firms that have not exited the market at different analysis times, which in this case corresponds

to firm age. As the distribution of firms’ age is right-skewed, with some firms being several centuries

old, I restrict the analysis to firms that are at most 50 years old at the end of the analysis.

The results from figure 10 are striking. Although with some variation across firms, the contempo-

raneous and the 1-lag temperature do not seem to be largely affecting firms’ exit. In both cases,

the survival rate is always above 0.96 after 20 years and above 0.9 after 50 years. On the contrary,

the lag-2 temperature has a substantial negative impact on the survival of the least-productive firms

located in warm areas, with their survival rate being approximately 0.8 after 20 years and falling

below 0.6 after 50 years, whereas the remaining firm categories face survival rates consistently above

0.95 throughout the analysis time-span.

31A 1-unit increase in yearly average temperature increases the hazard rate of exit for the least-
productive firms by 35% (exp(0.3) = 1.35)) and it decreases it for the most-productive firms by 7%
(exp(−0.374 + 0.3) = 0.93.)
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(a) Contemporaneous

(b) Lag 1

(c) Lag 2

Figure 10: Estimated survival functions S(T ) for the least-productive (bottom pro-
ductivity decile) and the most-productive (top productivity decile) firms located in
cold (4◦C) and warm (18◦C) areas.

These findings are consistent with those presented in the previous section. The persistently large

negative impact of higher temperatures on the least-productive firms located in warmer areas ulti-

mately leads a non-negligible share of them to exit the market. This, in turn, partly explains the

positive effect observed for the most-productive firms, insofar as the production factors and market

shares of exiting firms are reallocated to more productive ones.
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4.2.3 Size Heterogeneity

This section extends the discussion on the heterogeneity of the economic effects of temperature

fluctuations to firm size. Size is defined with respect to the number of employees in accordance with

the European Commission classification. Figure 11 shows the marginal effect of an extra 1◦C in

contemporaneous temperature on the growth rate of GO for each of the size categories, at different

levels of the temperature support. These results are generally consistent with the aggregate marginal

effect reported in figure 4, with the exception of the estimates for the small firms located in warm

areas which are negative and statistically significant. However, even when they are significant, the

point estimates are economically small and characterised by relatively large confidence intervals.
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Figure 11: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output accounting for size categories. Results from the quadratic model with firm and country-
industry-year FE, standard errors clustered at the Nuts 3 level.

The results for the marginal effects of lagged temperature align with the average marginal effect

reported in figure 5. The marginal effect function for Ti,t−1 shown in figure 12a is generally flat for

all categories throughout the temperature support. Notably, several point estimates tend to have

large confidence intervals that span both positive and negative values, indicating that even within a

specific size category, there are considerable differences in impacts among firms. The marginal effect

function for Ti,t−2 presented in figure 12b is downward-sloping and mostly not statistically different

from zero. Thus, these findings suggest the existence of persistent negative effects for small firms in

warmer areas and insignificant effects for the remaining firms.
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Figure 12: Lag-1 (a) and lag-2 (b) marginal effects of temperature on the growth rate of gross
output in the EU across different firm size categories. Results from the 2nd order polynomial model
with firm and country-industry-year FE, standard errors clustered at the Nuts 3 level.

The size-specific estimates based on the pooled sample of European firms are noticeably similar to

each other, suggesting a potentially consistent impact of weather fluctuations across different firm

types. Thus, the firm size category does not appear to disentangle the heterogeneous and potentially

opposite effects that higher temperatures may have on firm performance. However, as emphasized in

previous sections, the estimates based on the pooled sample are likely influenced by other dynamics

that tend to vary across countries, thereby attenuating, or potentially counteracting, the real effect

of higher temperatures. This highlights the importance of conducting a more detailed cross-country

analysis to isolate potential heterogeneity driven by country-specific factors. Section F.5.6 reports

country-specific estimates analysing potential size heterogeneity in climate damages.

4.2.4 Industry Heterogeneity

This section extends the discussion on the heterogeneity of the economic effects of temperature

fluctuations, with a focus on industry sectors. It is commonly believed that sectors like agriculture,

mining, and, to a lesser degree, manufacturing are more vulnerable to rising temperatures, while the

service sector is generally considered to be largely insulated from these effects. This is particularly

relevant for developed countries, such as those in my sample, where firms typically have greater

resources to insulate their economic activities against climate shocks. In this section, I present

empirical evidence of industry-specific heterogeneous effects by estimating the marginal effect of

higher temperatures within each industry.32 To enhance the clarity and informativeness of the

analysis, I aggregate the Nace Revision 2 level 1 industry into six broader industries.

These broadly defined sectors are likely characterized by significant heterogeneity in underlying cli-

mate damages, affecting both statistical power and significance. Thus, in this section I only report

the statistically significant (at the 10%) point estimates. Figure 13 illustrates the resulting marginal

effects of contemporaneous temperature Ti,t, where the colours reflect the sign and magnitude of the

point estimates. Figures 29 and 30 provide the whole set of coefficients and the relevant p-values,

respectively. These estimates are generally positive (negative) in cold (warm) areas, and mostly

characterised by downward-sloping industry-specific marginal effect functions over the temperature

support. However, these estimates are only statistically significant for the G-J (Wholesale, Retail,

32This procedure requires substantial computational power, as the estimation requires 200 Gb of
RAM and runs for 167.5 hours.
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Transport, Accommodation & Food, Information & Communication) group, the B-E (Industry – ex-

cluding Construction) group in cold areas and the O-U (Non-market Services) group in warm areas,

and generally economically negligible.

0.006

0.011 0.007 0.003 -0.005

-0.005

A:

B-E: 

F: 

G-J: 

K-N:

O-U: 

4 7.5 11 14.5 18
Avg T (°C)

A: Agriculture, Forestry and Fishing
B-E: Industry - excluding Construction
F: Construction
G-J: Wholesale, Retail, Transport, Acc. & Food, Inf. & Comm.
K-N: Financial & Business Services
O-U: Non-market Services

Figure 13: Marginal effect of an extra 1◦C in contemporaneous yearly average temperature on the
growth rate of gross output (log) accounting for industry heterogeneity (Nace 2 level 1). Results
from the quadratic model with firm and country-industry-year FE.

The industry-specific estimates highlight a delayed negative effect of higher temperature on firm GO

(figure 14), particularly with respect to Ti,t−2 in the warmer part of the temperature distribution. The

marginal effect of an extra 1◦C in temperature is negative and statistically significant for the sectors

B-E and G-J, while it is positive for F (Construction) and A (Agriculture Forestry and Fishing).

The lack of significant effects for the service sectors is unsurprising, as these activities are typically

conducted indoors in temperature-controlled environments. The negative estimates for sectors B-E

and G-J are intuitive and align with expectations. These sectors are characterised, on average, by

a lower penetration of adaptation technologies, such as AC, and are often more dependent on local

supply-chain, which are also vulnerable to the same local weather shocks.

It is worth highlighting, especially for the wholesale and retail sectors within the G-J group, that tem-

perature shocks can affect firm performance not only through supply-side impacts but also through

a reduction in demand. For example, customers may reduce outdoor shopping during periods of

extreme heat. Moreover, a significant portion of the G-J sectors is comprised of industries related

to tourism. The tourism sector is particularly vulnerable to higher temperatures because it predom-

inantly involves outdoor activities, limiting adaptation possibilities. As a result, individuals may

respond to rising temperatures by opting for cooler destinations, further dampening demand.
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Figure 14: Lag-1 (a) and lag-2 (b) marginal effects of temperature on the growth rate of gross
output in the EU across different firm industry categories. Results from the 2nd order polynomial
model with firm and country-industry-year FE, standard errors clustered at the Nuts 3 level.

On the contrary, the Agriculture forestry and fishing (A) and the Construction (F) sectors are un-

expectedly characterised by positive marginal effects. Given their outdoor nature and their limited

adaptation options, these sectors would typically be expected to suffer from higher temperatures.

However, since these firms are located in warmer regions, it is likely they have already implemented

adaptation strategies. Additionally, the positive marginal effects may be driven by increased pro-

ductivity during milder winter temperatures, which could offset the productivity loss during hotter

summer months. This assumption is particularly relevant for agriculture, provided the number of

growing degree days increases more than the the number of killing degree days, or the negative ef-

fects of extreme summer heat can be mitigated, at least partially, through irrigation. This finding

is supported by satellite observations showing vegetation greening in Europe (IPCC, 2019).33 It is

important to note that these results are specific to Europe and may not align with global estimates,

as irrigation capabilities vary significantly between regions.

It is important to notice that many estimates reported in this section are not statistically different

from zero. This is likely due to substantial within-industry variability in the relationship between

temperature and economic performance. Such variability may stem from either the genuine absence

of a significant effect or the limitation that the industry-specific focus may not be the optimal lens to

identify the relevant heterogeneity in climate damages. Thus, further investigations within countries

and industry dynamics, such as those previously presented, become necessary to fully understand

the relationship between temperature and firms’ economic performance. Section F.5.7 delves into

unravelling potential underlying cross-country heterogeneity in industry-specific marginal effects.

5 Conclusions

This paper has presented and discussed estimates of economic damages induced by weather fluctu-

ations based on a novel sample of European firms. The analysis highlighted the heterogeneity of

climate damages that is otherwise overlooked in aggregate analysis. The work explored the hetero-

geneity of climate impacts across various firm characteristics, such as average productivity, industry,

and size. The paper highlights the importance of firms’ productivity heterogeneity, in contrast with

33Causes of greening include combinations of an extended growing season, nitrogen deposition,
Carbon Dioxide (CO2) fertilisation, and land management.
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previous research which has focused on firms’ size and industry. This is the main contribution of this

paper.

Consistent with prevailing literature (Burke, Hsiang and Miguel, 2015; Chen and Yang, 2019; Acevedo

et al., 2020), the empirical findings of this paper reveal an inverted-U-shaped relationship between

temperature and economic outcomes for the pooled European sample. However, these estimates are

statistically insignificant across the temperature distribution, suggesting that Europe, as a whole,

is insulated from the negative impacts of rising temperature. The relationship unfolds divergently

across countries, manifesting as either a U-shaped or an inverted-U-shaped relationship.

The analysis focusing on the heterogeneity across firm productivity levels highlights negative im-

pacts on the least-productive firms, offering consistent findings across economic variables. Account-

ing for TFP heterogeneity produces more precise estimates, significantly reducing climate damages

uncertainty. This result not only yields empirical insights pertinent to the formulation of targeted

adaptation strategies, but also bridges the gap between climate economics and the broader literature

on aggregate productivity and firm dynamics. Firm size seems to be relevant only for small firms

located in warmer areas, which are negatively impacted by higher temperature. This study explores

industry-specific effects, identifying certain sectors as particularly vulnerable to weather shocks, while

others seem to benefit from higher temperature.

Since these results are particularly striking when examining the effects on TFP growth, making a

connection to the firm convergence and inequality literature is natural. From a TFP convergence

perspective, higher temperature fosters convergence and reduces firm inequality for firms located in

colder areas, and at the same time, slows down convergence and exacerbates firm-level inequality for

firms located in warmer areas. The result related to colder areas could initially suggest a positive,

and potentially welfare-enhancing effect, to the extent that lower inequality is usually associated

with higher aggregate productivity growth and, consequently, long-run economic growth (De Loecker,

Obermeier and Van Reenen, 2024).

However, in this case the reduction in firm inequality is not driven by a beneficial ”catching-up”

effect from lagging firms, but rather by a detrimental ”slowing-down” effect determined by leading

firms. Consequently, the net effect on aggregate productivity for firms located in colder areas is on

average negative, and welfare-reducing. Determining whether the marginal effect of temperature at

the high end of the temperature distribution is welfare-enhancing or reducing is more complex. Since

the effect is positive for more-productive firms and negative for low-productive firms, the assessment

of the overall effect on aggregate productivity hinges on the relative shares of these firms within

the economy and across the temperature support. Nevertheless, potential efficiency gains must be

balanced against equity considerations.

This study builds on the Burke, Hsiang and Miguel (2015) specification, discussing its identification

strategy and addressing, in the firm-level context, the drawbacks highlighted in recent literature

(Newell, Prest and Sexton, 2021; Klenow, Nath and Ramey, 2023). Model selection criteria allowed

us to identify the optimal functional form in terms of both polynomial order and number of lags. The

preferred model is a 2nd order polynomial in temperature and precipitation with two lags, ensuring

flexibility while avoiding overfitting.

This analysis is subject to certain limitations. While endogeneity concerns are limited, as weather

shocks — identified via temperature fluctuations after accounting for fixed effects — are plausibly
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exogenous, the external validity is modest. European firms may not be representative of global

firms, as they differ in resources and institutional frameworks for implementing adaptation policies.

Considering the inertia in climate mitigation, climate adaptation becomes paramount for upholding

adequate living standards. In this regard, the estimates presented in this paper pertain to the short-

and medium-term economic damages arising from variations in temperature. As the impacts of rising

temperatures become more pronounced, firms are likely to invest more substantially in adaptation,

thereby attenuating their exposure to the effects of climate change. Moreover, while this paper

studies the effect of average temperature, it does not account for temperature variability, a crucial

factor for climate econometric analysis (Kotz et al., 2021; Linsenmeier, 2023).

The policy implications of this study may be profound. This work challenges prior research sug-

gesting a lack of impact of higher temperature in Europe, thereby questioning the prevailing idea

that the European green transition is purely motivated by between-continent equity reasons. Addi-

tionally, the heterogeneity in climate impacts across firms emphasises the need for tailored climate

policies. Taxation strategies, differentially applied to firms benefiting from or unaffected by higher

temperature, could serve as a mean of redistributing funds to mitigate adverse effects on vulnerable

firms. Furthermore, the paper highlights the importance of productivity-boosting policies. As higher

productivity is associated with a reduction in the negative impacts of weather shocks, such policies

have a dual benefit. Policymakers are urged to consider these findings when formulating strategies for

a smooth and equitable transition, ensuring that climate policies align with the diverse vulnerabilities

of firms in the European economic landscape.

27



References

Acemoglu, Daron, Simon Johnson, and James A Robinson. 2002. “Reversal of fortune:

Geography and institutions in the making of the modern world income distribution.” The Quarterly

journal of economics, 117(4): 1231–1294.

Acevedo, Sebastian, Mico Mrkaic, Natalija Novta, Evgenia Pugacheva, and Petia

Topalova. 2020. “The effects of weather shocks on economic activity: what are the channels

of impact?” Journal of Macroeconomics, 65: 103207.

Acharya, Viral V, Tim Eisert, Christian Eufinger, and Christian Hirsch. 2019. “Whatever

it takes: The real effects of unconventional monetary policy.” The Review of Financial Studies,

32(9): 3366–3411.

Addoum, Jawad M, David T Ng, and Ariel Ortiz-Bobea. 2020. “Temperature shocks and

establishment sales.” The Review of Financial Studies, 33(3): 1331–1366.

Adhvaryu, Achyuta, Namrata Kala, and Anant Nyshadham. 2022. “Management and shocks

to worker productivity.” Journal of Political Economy, 130(1): 1–47.

Akaike, Htrotugu. 1973. “Maximum likelihood identification of Gaussian autoregressive moving

average models.” Biometrika, 60(2): 255–265.

Albert, Christoph, Paula Bustos, and Jacopo Ponticelli. 2021. “The effects of climate change

on labor and capital reallocation.” National Bureau of Economic Research.

Athey, Susan, and Guido W Imbens. 2019. “Machine learning methods that economists should

know about.” Annual Review of Economics, 11: 685–725.

Auffhammer, Maximilian. 2018. “Quantifying Economic Damages from Climate Change.” Jour-

nal of Economic Perspectives, 32(4): 33–52.

Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John

Van Reenen. 2020. “The fall of the labor share and the rise of superstar firms.” The Quar-

terly Journal of Economics, 135(2): 645–709.

Baltagi, Badi H. 2008. Econometric analysis of panel data. Vol. 4, Springer.

Barreca, Alan I. 2012. “Climate change, humidity, and mortality in the United States.” Journal

of Environmental Economics and Management, 63(1): 19–34.

Bartelsman, Eric, John Haltiwanger, and Stefano Scarpetta. 2013. “Cross-country dif-

ferences in productivity: The role of allocation and selection.” American economic review,

103(1): 305–334.

Bearpark, Thomas, and Filippo Palomba. 2024. “Time Trends in Climate Impact Studies.”

Forthcoming.

Benmir, Ghassane, Aditya Mori, Roman Josselin, and Romano Tarsia. 2024. “Beneath the

Trees: The Influence of Natural Capital on Shadow Price Dynamics in a Macroeconomic Model

with Uncertainty.” Working Paper.

Bilal, Adrien, and Diego R Känzig. 2024. “The Macroeconomic Impact of Climate Change:

Global vs. Local Temperature.” National Bureau of Economic Research.

Bloom, Nicholas, Mirko Draca, and John Van Reenen. 2016. “Trade induced technical

change? The impact of Chinese imports on innovation, IT and productivity.” The review of

economic studies, 83(1): 87–117.

Burgess, Robin, Olivier Deschenes, Dave Donaldson, and Michael Greenstone. 2017.

“Weather, climate change and death in India.” University of Chicago, 577–617.

28



Burke, Marshall, and Kyle Emerick. 2016. “Adaptation to climate change: Evidence from US

agriculture.” American Economic Journal: Economic Policy, 8(3): 106–140.

Burke, Marshall, and Vincent Tanutama. 2019. “Climatic constraints on aggregate economic

output.” National Bureau of Economic Research.

Burke, Marshall B, Edward Miguel, Shanker Satyanath, John A Dykema, and David B

Lobell. 2009. “Warming increases the risk of civil war in Africa.” Proceedings of the national

Academy of sciences, 106(49): 20670–20674.

Burke, Marshall, Felipe González, Patrick Baylis, Sam Heft-Neal, Ceren Baysan, Sanjay

Basu, and Solomon Hsiang. 2018. “Higher temperatures increase suicide rates in the United

States and Mexico.” Nature climate change, 8(8): 723–729.

Burke, Marshall, Solomon M Hsiang, and Edward Miguel. 2015. “Global non-linear effect

of temperature on economic production.” Nature, 527(7577): 235–239.

Caggese, Andrea, Andrea Chiavari, Sampreet Goraya, and Carolina Villegas-Sanchez.

2023. “Climate change, firms, and aggregate productivity.” Working Paper.

Calel, Raphael, Sandra C Chapman, David A Stainforth, and Nicholas W Watkins.

2020. “Temperature variability implies greater economic damages from climate change.” Nature

communications, 11(1): 5028.

Cameron, A Colin, and Douglas L Miller. 2015. “A practitioner’s guide to cluster-robust

inference.” Journal of human resources, 50(2): 317–372.

Cameron, A Colin, and Pravin K Trivedi. 2005. Microeconometrics: methods and applications.

Cambridge university press.

Card, David, and Gordon B Dahl. 2011. “Family violence and football: The effect of unexpected

emotional cues on violent behavior.” The quarterly journal of economics, 126(1): 103–143.

Carleton, Tamma A. 2017. “Crop-damaging temperatures increase suicide rates in India.” Pro-

ceedings of the National Academy of Sciences, 114(33): 8746–8751.

Carleton, Tamma A, and Solomon M Hsiang. 2016. “Social and economic impacts of climate.”

Science, 353(6304): aad9837.

Carleton, Tamma, Amir Jina, Michael Delgado, Michael Greenstone, Trevor Houser,

Solomon Hsiang, Andrew Hultgren, Robert E Kopp, Kelly E McCusker, Ishan Nath,

et al. 2022. “Valuing the global mortality consequences of climate change accounting for adapta-

tion costs and benefits.” The Quarterly Journal of Economics, 137(4): 2037–2105.

Chatfield, Chris. 1996. “Model uncertainty and forecast accuracy.” Journal of Forecasting,

15(7): 495–508.

Chen, Xiaoguang, and Lu Yang. 2019. “Temperature and industrial output: Firm-level evidence

from China.” Journal of Environmental Economics and Management, 95: 257–274.

Choi, In. 2001. “Unit root tests for panel data.” Journal of international money and Finance,

20(2): 249–272.

Clementi, Gian Luca, and Berardino Palazzo. 2016. “Entry, exit, firm dynamics, and aggregate

fluctuations.” American Economic Journal: Macroeconomics, 8(3): 1–41.

Collins, JG. 1963. “On the calculation of the temperature variation of the coefficient of thermal

expansion for materials of cubic structure.” Philosophical Magazine, 8(86): 323–332.

Cox, David R. 1972. “Regression models and life-tables.” Journal of the Royal Statistical Society:

Series B (Methodological), 34(2): 187–202.

29



Cunsolo, Ashlee, Sherilee L Harper, Kelton Minor, Katie Hayes, Kimberly G Williams,

and Courtney Howard. 2020. “Ecological grief and anxiety: the start of a healthy response to

climate change?” The Lancet Planetary Health, 4(7): e261–e263.

Decker, Ryan A, John Haltiwanger, Ron S Jarmin, and Javier Miranda. 2016. “De-

clining business dynamism: What we know and the way forward.” American Economic Review,

106(5): 203–207.

Dell, Melissa, Benjamin F Jones, and Benjamin A Olken. 2009. “Temperature and income:

reconciling new cross-sectional and panel estimates.” American Economic Review, 99(2): 198–204.

Dell, Melissa, Benjamin F Jones, and Benjamin A Olken. 2012. “Temperature shocks and

economic growth: Evidence from the last half century.” American Economic Journal: Macroeco-

nomics, 4(3): 66–95.

Dell, Melissa, Benjamin F Jones, and Benjamin A Olken. 2014. “What do we learn from the

weather? The new climate-economy literature.” Journal of Economic literature, 52(3): 740–798.

De Loecker, Jan, Tim Obermeier, and John Van Reenen. 2022. “Firms and inequality.”

Centre for Economic Performance Discussion Paper, London School of Economics and Poiltical

Science.

De Loecker, Jan, Tim Obermeier, and John Van Reenen. 2024. “Firms and inequality.”

Oxford Open Economics, 3(Supplement): i962–i982.

Deryugina, Tatyana, and Solomon Hsiang. 2017. “The marginal product of climate.” National

Bureau of Economic Research.
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Appendix A Summary Statistics

ISO 2000 2005 2010 2015 2020

AT 493 6,190 9,267 25,246 9,408
BE 72,783 23,138 40,275 35,342 25,896
DE 7,371 69,824 93,314 108,024 32,848
DK 17,583 31,672 26,845 22,393 16,120
ES 347,766 602,730 665,817 689,046 557,835
FI 49,816 76,884 129,014 139,635 107,334
FR 523,286 714,280 978,924 618,686 249,066
GB 235,576 279,813 213,585 167,831 111,439
GR 12,244 19,597 19,907 20,777 9,452
IT 119,876 504,692 791,868 827,547 715,271
NL 3,760 10,991 12,435 9,756 2,020
PT 27,157 223,522 257,219 273,756 284,717
SE 130,363 173,802 222,603 325,375 362,173

Table 3: Total number of observations by Country (ISO geographical areas). The full table can be
found in section A. Source: Orbis.
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year N N Gross Output (log) N Value Added (log) N TFP (log)

1995 656,621 591,665 542,279 279,366
1996 883,005 823,365 722,371 366,875
1997 1,045,997 985,232 843,321 443,899
1998 1,296,358 1,232,357 994,963 559,348
1999 1,485,683 1,412,575 1,103,118 629,826
2000 1,646,362 1,548,074 1,249,236 727,215
2001 1,835,993 1,727,571 1,390,185 828,491
2002 2,081,454 1,937,880 1,519,259 888,050
2003 2,219,480 2,069,497 1,605,060 941,844
2004 2,576,967 2,415,462 1,948,151 1,042,245
2005 2,911,944 2,737,135 2,195,722 1,097,520
2006 3,091,646 2,905,526 2,314,636 1,378,497
2007 3,308,823 3,135,639 2,392,973 1,404,696
2008 3,464,151 3,280,756 2,495,579 1,505,656
2009 3,588,731 3,409,268 2,554,797 1,477,139
2010 3,643,531 3,461,073 2,581,186 1,407,666
2011 3,735,318 3,551,701 2,604,474 1,584,527
2012 3,788,124 3,604,949 2,608,281 1,522,490
2013 3,786,527 3,597,167 2,561,094 1,524,940
2014 3,702,227 3,511,815 2,355,801 1,543,117
2015 3,454,506 3,263,414 2,292,146 1,495,081
2016 3,368,576 3,224,585 2,118,766 1,451,505
2017 3,389,864 3,241,926 2,121,372 1,460,616
2018 3,425,572 3,274,297 2,121,650 1,457,707
2019 3,350,003 3,197,529 2,073,633 1,432,013
2020 2,609,375 2,483,579 1,627,159 1,130,047
Total 70,346,838 66,624,037 48,937,212 29,580,376

Table 4: Total number of observations across all the European countries available in the sample
after the cleaning procedure. Columns 2 to 4 refer to observations with available GO, VA or TFP
expressed in logs. Whereas column 1 is the their union (observations with at least one of these
variables available). Source: Orbis
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NACE2 1-digit 2000 2010 2020

A-Agriculture forestry and fishing 25,129 58,787 54,194
B-Mining and quarrying 4,923 7,174 4,560
C-Manufacturing 233,167 383,233 265,411
D-Electricity gas steam and air conditioning supply 4,129 21,133 23,767
E-Water supply sewerage waste management 5,905 14,921 11,703
F-Construction 201,733 498,560 300,410
G-Wholesale and retail trade repair of motor vehicles 385,209 744,214 485,038
H-Transportation and storage 58,885 124,987 97,082
I-Accommodation and food service activities 75,343 208,508 148,328
J-Information and communication 75,570 146,280 119,609
K-Financial and insurance activities 44,500 104,811 85,355
L-Real estate activities 120,510 335,598 252,419
M-Professional scientific and technical activities 138,312 365,279 295,435
N-Administrative and support service activities 72,921 161,534 115,258
O-Public administration and defence 395 915 632
P-Education 12,856 45,652 39,987
Q-Human health and social work activities 20,826 89,015 85,058
R-Arts entertainment and recreation 20,474 54,947 48,940
S-Other service activities 34,817 79,179 47,122
T-Activities of households as employers 12,418 16,145 3,161
U-Activities of extraterritorial organisations and bodies 52 201 110

Table 5: Total number of observations by industry, defined by the NACE 2 level 1 sectors. Source:
Orbis.

Size 2000 2005 2010 2015 2020

Below 10 527,852 888,874 1,293,442 1,477,137 1,231,760
10 to 19 131,003 166,521 201,246 236,791 198,870
20 to 49 105,164 126,856 135,134 158,540 134,658
50 to 99 35,286 44,491 52,030 58,905 48,642
100 to 249 22,826 30,383 35,841 42,126 33,831
Above 250 13,535 18,950 22,569 26,951 21,316

Table 6: Total number of observations by firm size (European Commission classification). For
presentational purpose, I report a subset of the available years. Source: Orbis.
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(a) Number of firms

(b) Total gross output (billions of LCU)

(c) Total number of employees (thousands)

Figure 15: Descriptive statistics by Nuts 3 areas. Source: Orbis.
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(a) Average gross output (thousands of LCU)

(b) Average number of employees

Figure 16: Descriptive statistics by Nuts 3 areas. Source: Orbis.
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(a) Number of firms (thousands of units

(b) Total gross output (billions of LCU)

(c) Total number of employees (thousands)

Figure 17: Descriptive statistics by Nuts 3 areas. Bivariate map of yearly average temperature on
the X-axis and main variable on the Y-axis. Source: Orbis and ECMWF.
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(a) Average gross output (millions of LCU)

(b) Average number of employees

Figure 18: Descriptive statistics by Nuts 3 areas. Bivariate map of yearly average temperature on
the X-axis and main variable on the Y-axis. Source: Orbis and ECMWF.
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Figure 19: Coverage of the aggregate economy from Orbis data in terms of number
of employees. The values report for each country-year the ratio between the sum of
the number of employees for the firms available in my sample and the economy-wide
number of employees. By construction, values range between 0 (red) and 1 (blue).
Source: EUROSTAT.

Min P1 P25 Median P75 P99 Max Mean SD

Within Dev 0.000 0.000 0.148 0.318 0.552 1.575 3.171 0.398 0.341
Between Dev -16.677 -8.541 -1.885 -0.005 2.493 6.050 8.078 0.000 3.252

Table 7: Distribution of firm-year temperature deviations from the mean of the fixed-effect group
(within) and from the mean of the sample as a whole (between). Source: ECMRWF ERA5-Land.
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Appendix B Coordinates Imputation

In addition to coordinates, Nuts, city, zipcode and street are also available, which I use to impute

the coordinate for the countries with available coordinates. The zipcode should not be used since

the same zipcode sometimes refers to different cities.

Clean and homogenise firm’ coordinate:

1. transform coordinates in degrees from the coordinates in degrees, minutes, seconds (consistent

with the weather data coordinates);

2. homogenise streets addresses by removing numbers;

3. drop all firm with missing city and coordinates as we cannot impute them.

Remove implausible coordinates using a shapefile at the Nuts 3 granularity:

1. using the shapefile at the Nuts 3 level from EUROSTAT, I create min and max latitude and

longitude for each Nuts 3 area;

2. merge the Orbis file with the shape file to obtain min and max coordinate for each Nuts 3

province;

3. for each firm, replace coordinate as missing if the coordinates lie outside of the min and max

coordinates.

Generate average coordinate by city and replace firm’s coordinates with city averages if the former

is farther than 0.25 degrees from the latter. This procedure is quite conservative since it would drop

only observation outside of a radius of approximately 25 km from the average coordinate in the city.

Note that the average coordinate does not refer to the geographical centre of the city, but this step is

intended to remove largely implausible values. At this stage, I impute firm’ coordinates based on the

coordinates of firm located in the same street in the same city. Given the resolution of the weather

data (0.1◦), the imputation based on a city-street level seems to be relatively reasonable:

1. Impute firm coordinates using the mode of the city-street coordinate;

• If multiple modes are present, I create min, max and average mode;

• If the difference | minmode −maxmode |< 0.25, substitute the mode with the average

mode, otherwise. If the difference | minmode−maxmode |> 0.25 firm in the city-street

cluster are not imputed;

2. Substitute the coordinate with the mode if the coordinate is missing.

Finally, I run again the Nuts 3 level cleaning based on the shapefile to drop potential mismatch.
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Appendix C Marginal Effects Derivation

Given the temperature damage function identified in equation 1, the marginal effect of temperature

on firm variables is defined as

∂∆Yi,t

∂Ti,t
=

∂g(Ti,t)

∂Ti,t
(10)

for the contemporaneous effect and

∂∆Yi,t

∂Ti,t−ℓ
=

∂h(Ti,t−ℓ)

∂Ti,t−ℓ
(11)

for the effect of the ℓth lag. Therefore, the total cumulative effect, which identifies whether the effect

of temperature variation is persistent (Dell, Jones and Olken, 2012) is defined as

∂∆Yi,t

∂Ti,t
+
∑
ℓ≥1

∂∆Yi,t

∂Ti,t−ℓ
=

∂g(Ti,t)

∂Ti,t
+

∑
ℓ≥1

∂h(Ti,t−ℓ)

∂Ti,t−ℓ
(12)

In the case of a 2nd order polynomial with 2 lags, the contemporaneous marginal effect is given by:

∂Yi,t

∂Ti,t
= β1 + 2β2Ti,t (13)

where the linear coefficient β1 represents the marginal effect of an additional 1◦C in terms of yearly

average temperature, on the growth rate of firms’ economic variables (in percentage points), for firms

located in areas with an average yearly temperature of 0◦C. The coefficient of the quadratic term β2

represents half of the additional marginal effect for firms located in areas with temperature different

from 0◦. That is, half of the slope of the marginal effect function with respect to Ti,t. The persistence

of the effect of increasing temperature is quantified by adding up the contemporaneous and lagged

coefficients of the quadratic model.
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Appendix D Model Selection

D.1 In-sample Information Criteria

Athey and Imbens (2019) point out that ”In most discussions of linear regression in econometric

textbook, there is little emphasis on model validation”. In econometric model identifications, there

may sometimes be a tendency to overfit the model, assuming that this would better explain the

variation in the underlying data. However, the researcher has to trade off the improved fit to the

current data with the increase in the variance of the forecast error (Greene, 2003). That is, the

ability of the model to fit the in-sample data and produce a good out-of-sample fit. Although this

issue is not of primary importance when estimating the effects of temperature on historical data to

identify past damages, identifying the right model becomes of crucial importance when relying on

the coefficients from such reduced-form models to produce climate damage projections. Additionally,

relying on more parsimonious models is beneficial for its interpretation.

A preliminary guidance in this regard comes from the adjusted R2, which differently from the R2,

penalises the model for the loss of degrees of freedom resulting from the inclusion of the new variables.

However, it is not conclusive whether this penalty is sufficiently large to identify the correct model as

the sample size increases (Greene, 2003). To potentially rule out this issue, Information Criteria (IC)

have been introduced. These are log-likelihood criteria incorporating degrees of freedom adjustments,

essentially balancing model fit measured by the maximised log-likelihood value and model parsimony

incorporated into the degrees of freedom adjustments. The most notable and used IC are the Akaike

Information Criterion (Akaike, 1973) and the Bayesian Information Criterion (Schwarz, 1978). Both

measures reward an increase in the R2 but, everything else constant, penalise more complex models

(James et al., 2013). Hence, they favour models that achieve a certain fit with a lower number of

variables.

Neither criterion has obvious advantages over the other. However, the Bayesian Information Criterion

includes a larger penalty for the loss in degrees of freedom. Hence, would favour a more simple

model.34 This characteristic of the BIC makes it consistent. That is, as the sample size gets large,

the model selection criterion would select the ”true” model (or more likely its best approximation)

with a probability approaching one. Consistency is achieved through penalising the loss of degrees

of freedom. However, although it penalises such a loss, the AIC is not consistent even when the

sample size gets large as the AIC tends to select ”overparametrized” models. On the contrary, the

BIC penalises the loss of degrees of freedom more heavily, and it is consistent. Nevertheless, this is

not a conclusive argument. In fact, the AIC is asymptotically efficient whereas the BIC is not.

Moreover, a model selection method is consistent if it asymptotically selects the correct model from

a set of possible models. On the other hand, a model selection method is conservative if it asymptot-

ically always selects a model that nests the correct model. The minimum-BIC-based model selection

procedure is a consistent model selection procedure, whereas a minimum-AIC-based model selection

procedure is a conservative model selection procedure (Leeb and Pötscher, 2005). In practical work,

both criteria are reported and usually identify the same model. When this is not the case, Diebold

(1998) recommends using the more parsimonious model selected by the BIC.

However, in the climate econometrics discussion Newell, Prest and Sexton (2021) highlight that in-

34For an extensive discussion on information criteria see Greene (2003), Cameron and Trivedi
(2005)
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sample fit information criteria tend to select over-fitted models, especially when higher-order poly-

nomials are included (Chatfield, 1996). Therefore, similar with Newell, Prest and Sexton (2021), I

discuss and rely on model Cross-Validation (CV) as well to assess the accuracy of different models

in fitting out-of-sample data.

D.2 Machine Learning out-of-sample Cross-Validation

Cross-Validation (CV) techniques estimate different models on a sub-sample of the data, defined as

the training set. Their accuracy is then assessed by fitting the same model out-of-sample. That is, in

a different subset of the data excluded from the training set, defined as the test set. This procedure

has advantages compared to in-sample validation methods. It provides a direct estimate of the test

error, and at the same time makes fewer assumptions about the true underlying model (James et al.,

2013). Information Criterion methods were preferred in the past due to the high computational

power needed by CV methods. However, nowadays CV have become more widely accessible and

therefore more attractive in econometric and statistical analysis. In my specific case, although the

number of predictors and/or models is relatively limited compared to other Machine Learning tasks,

the relatively large sample size requires a sufficiently performative machine and long computational

time. Specifically, I used a cloud-based high-performance computer set with 10 cores of CPU and

100 GB of RAM, which ran for 3 days, 3 hours and 38 minutes.

One of the main methods used for CV is the K-fold CV method, introduced by Geisser (1975). The

original sample is randomly split into K equally-sized sub-samples (usually 5 or 10) and the model

is assessed through K iterations. In each iteration i = 1, . . . ,K, the ith sub-sample is used as the

test set, whereas the complementary (K − i) sub-samples are used as the training set. There is no

replacement in the sub-samples, therefore each observation is used (K-1) times in the training sets

and only 1 time in the test set. Every model is estimated on each of the K sets and each iteration

provides a measure of predictive ability (i.e. the predictor quality), usually the Mean Squared Error

(MSE). The lower the MSE, the more precisely the model fits the out-of-sample data. Therefore,

the model with the lowest MSE should be chosen. For each model, the resulting CV measure is the

average of the K MSE:

CVK =
1

K

K∑
j=1

MSE(j) , (14)

with

MSE(j) =
1

N − kj

N−kj∑
i=1

(yi − ŷi)
2
. (15)

Where MSE(j) is the MSE for fold j, based on estimates excluding observations belonging to fold

j. Once the researcher identifies the preferred model through CV, the model is estimated on the full

sample.

The K-fold CV method is applied by Newell, Prest and Sexton (2021), among forecats and backcats,

in their CV exercise. They find that model performance assessed through this method is largely

invariant to how temperature is modelled or whether it is excluded, with a RMSE varying by less

than 1% across temperature functions. Noticeably, the RMSE is insensitive to whether temperature

lags are included or not and to the inclusion of GDP growth or level effects. Moreover, the RMSE
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in their work is minimised for models including region-year fixed effects and excluding parametric

trends. However, they point out that ”K-fold ignores the time-series nature of the data and yields

an optimistic estimate of the model fit if data are serially correlated. This is a relevant concern

considering that both economic measures and temperature are likely to be serially correlated.

D.3 Model selection criteria results

Information Criteria Cross Validation
Akaike IC Bayesian IC Mean SD

poly 1 lag 0 96,246,866 96,246,929 0.69358186 0.00074038
poly 1 lag 1 96,246,868 96,246,947 0.69357927 0.00074092
poly 1 lag 2 71,755,475 71,755,569 0.61942618 0.00058512
poly 1 lag 3 58,126,088 58,126,196 0.59742817 0.00040273
poly 1 lag 4 47,867,591 47,867,713 0.58367275 0.00049614
poly 1 lag 5 39,709,263 39,709,399 0.57427776 0.00036762
poly 2 lag 0 96,246,596 96,246,675 0.69363934 0.00074288
poly 2 lag 1 96,246,457 96,246,568 0.69376047 0.00074541
poly 2 lag 2 71,755,388 71,755,528 0.61936773 0.00058616
poly 2 lag 3 58,125,968 58,126,138 0.59734969 0.00040642
poly 2 lag 4 47,867,460 47,867,658 0.58355948 0.00050144
poly 2 lag 5 39,709,128 39,709,354 0.57423643 0.00037318
poly 3 lag 0 96,246,506 96,246,601 0.69363498 0.00074250
poly 3 lag 1 96,246,366 96,246,508 0.69373925 0.00074524
poly 3 lag 2 71,755,382 71,755,569 0.61936904 0.00058617
poly 3 lag 3 58,125,947 58,126,178 0.59731763 0.00040354
poly 3 lag 4 47,867,443 47,867,717 0.58345314 0.00050233
poly 3 lag 5 39,709,092 39,709,409 0.57393991 0.00036960
poly 4 lag 0 96,246,500 96,246,610 0.69364369 0.00074306
poly 4 lag 1 96,246,343 96,246,517 0.69378355 0.00074678
poly 4 lag 2 71,755,265 71,755,499 0.61936615 0.00058748
poly 4 lag 3 58,125,798 58,126,091 0.59735727 0.00040871
poly 4 lag 4 47,867,263 47,867,614 0.58356162 0.00050331
poly 4 lag 5 39,708,932 39,709,340 0.57405486 0.00037542

Table 8: Results from the Model Selection Criteria analysis. The first two columns refer to the
Akaike and Bayesian in-sample IC, the remaining two refer to out-of-sample CV, where the 10-fold
MSE mean and standard deviation are reported for each model.

The results from the model selection criteria reported in table 8 are straightforward. Model perfor-

mance is only marginally affected by the inclusion of higher-order polynomials, suggesting that they

do not play a decisive role in improving model performance. In contrast, a more pronounced impact

is observed with the inclusion of lagged temperature. However, selecting an appropriate order and

number of lags presents a challenge, as both the IC and the CV values tend to continuously decrease

without offering a definitive choice, likely influenced by the extensive sample size. Since direct com-

parisons based on absolute figures remains inconclusive, examining relative changes provides more

insightful and rational selection criteria, suggesting a preference for models with two lags.This ap-

proach is similar to the elbow rule used in Machine Learning (e.g. clustering), where models are
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assessed according to their marginal benefit (James et al., 2013).

Within each polynomial order, including a second lag leads to a reduction of AIC and BIC values

by approximately 25%, and CV means by approximately 10%. Further additions of lags result in

diminishing returns, with IC reductions ranging from roughly 19% to 17% and CV averages from

roughly 3.5% to 1.9%. When only models with two lags are considered, all the selection criteria tend

to favour a second-order polynomial, due to the most significant relative mean decrease by 0.00012%,

0.000057%, and 0.00944% for the AIC, BIC, and CV respectively.
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Appendix E Non-stationarity

Although testing for unit-roots in time-series setting is common practice, its application to panel

data is relatively more recent. These tests are analogs of the Augmented Dickey Fueller unit-root

test and, the resulting statistics are averages of the bias-adjusted t statistics for each panel. An

extensive discussion of the different models and their specific issues can be found in Baltagi (2008).

In this paper, I focus on two different tests which are more appropriate for the characteristics of my

data. The Im, Pesaran and Shin (2003) test relaxes some requirements of previous tests by allowing

ρi to be heterogeneous across panels and propose a testing procedure that averages the individual test

statistics. The null hypothesis is that the panel contains a unit root for all i (i.e. H0 : ρi = 1 ∀ i),

whereas the alternative hypothesis is that at least one of the individual series is stationary (i.e.

H1 : ∃ i s.t. ρi < 1).

One limitation of the Im, Pesaran and Shin (2003) test in this context relates to the definition of

the alternative hypothesis. The presence of one stationary panel would lead the test to reject the

null hypothesis, which is limiting with high N. Choi (2001) propose a Fisher-type test that extends

previous tests and relaxes this assumption among others. When N is finite, this test is consistent

against the alternative that at least one panel does not have a unit root. When N is infinite, the

number of panel which do not have a unit root should grow at the same rate as N for the tests to be

consistent. It is evident how this test is more appropriate for the panel of this study. In the remaining

of this section I will present and discuss results from both the Im, Pesaran and Shin (2003) and Choi

(2001) tests.

The main criticism of the Burke, Hsiang and Miguel (2015) model raised by Newell, Prest and Sexton

(2021) refers to overlooking the nonstationarity of the temperature variables. Since, consistent with

Burke, Hsiang and Miguel (2015), I include the dependent economic variables in first differences

(growth rates), these variables do not need to be tested. Therefore, I only test the potential nonsta-

tionarity of temperature. On this regard, although the panels of my analysis are at the firm-level,

testing all these panels would not be feasible in terms of computational power. Hence, I conduct the

tests at the weather variable grid level. This is a reasonable approximation to the extent that the

firm-specific temperature values are a weighted average of the neighbouring grids.

Statistic p-value

Z-ttilde-bar -456.806 0.000
W-t-bar -334.724 0.000
Inverse chi-squared 242315.259 0.000
Inverse normal -247.420 0.000
Inverse logit -256.954 0.000
Modified inv. chi-squared 257.904 0.000

Table 9: Panel unit-root Augmented Dickey Fueller tests results. Test statistics and p-values
reported. Source: Copernicus Climate Change Service (C3S) ERA5-Land.

Table 9 reports the statistics and p-values of the various tests. The first row refers to the Im, Pesaran

and Shin (2003) test, where multiple tests are run to identify the number of lags to include in order

to account for serial correlation, such that the Akaike (1973) information criteria is minimised. The

average number of lags that should be included across the panels is 0.54. The resulting p-value of this
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test is 0.0000, hence the test strongly rejects the null hypothesis of nonstationarity. The remaining

three rows refer to the Choi (2001) test, where, consistent with the previous test, I include one lag

to account for serial correlation. The inverse χ2 is the most relevant statistics in this case, since it

is a transformation that is suitable for when N tends to infinity. Also in this case, all tests have a

p-value of 0.0000, hence rejecting the null hypothesis on nonstationarity.

This section has discussed whether the nonstationarity issue relevant in long T and short N country-

level panels highlighted in Burke, Hsiang and Miguel (2015) and (Newell, Prest and Sexton, 2021) is

relevant in long T and short N firm-level panels. I argued that in this panel nonstationarity should

not be a concern given the limited length of the time series (Greene, 2003). Nevertheless, I formally

tested the validity of this argument using the the Im, Pesaran and Shin (2003) and Choi (2001) tests

that extend the Augmented Dickey Fueller unit root test to panel data. All these tests consistently

have p-values of 0.0000, strongly rejecting the null hypothesis of nonstationarity. Therefore, the

temperature variables could be included in the analysis in levels and not necessarily firs differenced,

unless the specific research setting requires that.
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Appendix F Additional Results

F.1 Contemporaneous Effects, Additional Variables
-.

02
-.

01
0

.0
1

.0
2

G
ro

w
th

 r
at

e 
of

 L

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
5

P
er

ce
nt

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Avg T (°C)

(a) Marginal Effect L
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(b) Marginal Effect K
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(c) Marginal Effect M

-.
02

-.
01

0
.0

1
.0

2
G

ro
w

th
 r

at
e 

of
 T

F
P

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
5

P
er

ce
nt

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Avg T (°C)

(d) Marginal Effect TFP

Figure 20: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
L, K, M, TFP. Results from the quadratic model with firm and industry-year FE, standard errors
clustered at the Nuts 3 level.

F.2 Cumulative Effect
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(a) Cumulative response
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(b) Cumulative marginal effect

Figure 21: Cumulative marginal effects of temperature on the growth rate of GO. Results from the
2nd order polynomial model with firm and industry-year FE, standard errors clustered at the Nuts
3 level.
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F.3 Value Added

As for GO, the effect of Ti,t is generally not significant. The effect of Ti,t−1 is more pronounced,

whereas the marginal effect function of Ti,t−2 has a lower intercept (in absolute value) and a steeper

slope than Ti,t−1. As higher temperature in t − 2 negatively (positively) impact VA in areas with

temperature below (above) 9◦C, the effect of Ti,t−2 reverses the effect of Ti,t−1 in warmer areas and

exacerbates it in colder areas as shown in figure 22d.

-.
05

-.
02

5
0

.0
25

.0
5

G
ro

w
th

 r
at

e 
of

 V
A

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
5

P
er

ce
nt

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Avg T (°C)

(a) Contemporaneous marginal effect
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(b) lag-1 marginal effect
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(c) lag-2 marginal effect
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(d) Cumulative marginal effect

Figure 22: Contemporaneous (a) lag-1 (b) lag-2 (c) and cumulative (d) marginal effects of temper-
ature on the growth rate of gross output in the EU. Results from the 2nd order polynomial model
with firm and industry-year FE, standard errors clustered at the Nuts 3 level.
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F.4 Additional Results TFP and Value Added Sample

(1) (2) (3) (4) (5) (6)
∆GO ∆V A ∆TFP ∆L ∆K ∆M

T -0.0019 -0.0054 0.0071 -0.015∗∗∗ -0.0080∗∗∗ -0.0011
(0.0042) (0.0046) (0.0044) (0.0027) (0.0031) (0.0041)

T 2 0.00043∗∗ 0.00055∗∗∗ -0.000021 0.00068∗∗∗ 0.00044∗∗∗ 0.00044∗∗∗

(0.00018) (0.00019) (0.00016) (0.00012) (0.00011) (0.00017)

(ℓ1)T -0.032∗∗∗ -0.053∗∗∗ -0.033∗∗∗ -0.023∗∗∗ -0.020∗∗∗ -0.025∗∗∗

(0.0029) (0.0048) (0.0039) (0.0020) (0.0024) (0.0029)

(ℓ1)T 2 0.0011∗∗∗ 0.0013∗∗∗ 0.00061∗∗∗ 0.00083∗∗∗ 0.00082∗∗∗ 0.0011∗∗∗

(0.00021) (0.00026) (0.00020) (0.00012) (0.00012) (0.00021)

(ℓ2)T -0.012∗∗ -0.024∗∗∗ -0.011∗∗ -0.014∗∗∗ -0.022∗∗∗ -0.0036
(0.0048) (0.0054) (0.0043) (0.0017) (0.0036) (0.0049)

(ℓ2)T 2 0.00082∗∗∗ 0.0011∗∗∗ 0.00043∗ 0.00085∗∗∗ 0.00087∗∗∗ 0.00053∗∗

(0.00023) (0.00028) (0.00023) (0.000098) (0.00014) (0.00023)

P -0.00059 0.012 0.012 -0.0015 0.0051 -0.0040
(0.011) (0.014) (0.011) (0.0062) (0.0084) (0.011)

P 2 0.0046 0.0022 0.00036 0.0023 0.0032 0.0047
(0.0041) (0.0045) (0.0034) (0.0024) (0.0031) (0.0042)

Firm FE Yes Yes Yes Yes Yes Yes
Ind-Year-FE Yes Yes Yes Yes Yes Yes
R2 0.20 0.15 0.11 0.14 0.17 0.16
N 16,203,021 16,203,021 16,203,021 16,203,021 16,203,021 16,203,021

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: Point estimates and standard errors from the regressions of weather variables on the
growth rates of GO, VA, and TFP. Results refer to the subsample of firms with available TFP. Results
for the 2nd order polynomial model with firm and industry-year FE, standard errors clustered at the
Nuts 3 level.
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(1) (2)
∆GO ∆V A

T (°C) -0.00493 -0.00618
(0.00496) (0.00555)

T 2 (°C) 0.000347∗ 0.000368∗

(0.000191) (0.000219)

(ℓ1)T (°C) -0.0268∗∗∗ -0.0394∗∗∗

(0.00323) (0.00473)

(ℓ1)T 2 (°C) 0.000813∗∗∗ 0.000834∗∗∗

(0.000218) (0.000260)

(ℓ2)T (°C) -0.00501 -0.0192∗∗∗

(0.00498) (0.00517)

(ℓ2)T 2 (°C) 0.000530∗∗ 0.00100∗∗∗

(0.000232) (0.000261)

P -0.0177∗ -0.0176
(0.0102) (0.0121)

P 2 0.00905∗∗ 0.00914∗∗

(0.00370) (0.00410)
Firm FE Yes Yes
Industry-Year-FE Yes Yes
R2 0.180 0.133
N 28,359,459 28,359,459

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: Point estimates and standard errors from the regressions of weather variables on the
growth rates of GO and VA. Results refer to the subsample of firms with available VA. Results for
the 2nd order polynomial model with firm and industry-year FE, standard errors clustered at the
Nuts 3 level. Note that the new sample is constructed as the intersection between firms with available
GO and VA, hence the total number of observations is lower than those with available either GO or
VA in the main regressions.
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F.5 Additional Results Heterogeneity

F.5.1 Cross-Country Heterogeneity

This setion focuses on cross-country heterogeneity. While results for all countries in the sample are

presented, the discussion focuses on France, Italy, Spain and the UK as they constitute the major

and most relevant countries in my sample. I exclude Germany from the main discussion due to

the previously discussed issues related to the poor coverage in Orbis Historical. This applies to all

sections focusing on cross-country heterogeneity in the paper.

Consistent with Burke, Hsiang and Miguel (2015), the results from the quadratic model (equation

5) for Italy and France in figure 24 show an inverted-U relationship. The predicted effect of temper-

ature on the growth rate of gross output is a smooth function which is negative at all levels of the

temperature distribution for Italy and positive for France, with a larger effect in magnitude at the

two tails of the temperature distribution. Firms located in the coldest and warmest areas have on

average a lower growth rate of output than firms located in areas with milder temperature. On the

contrary, the response function for Spain reports a U-shaped and convex relationship, characterised

by positive predicted growth rates at lower temperature and negative rates at temperate and higher

temperature. Also in this case, possible explanations could be related to a higher presence of firms

with specific characteristics or to a higher level of adaptation. Interestingly, the UK is characterised

by a downward-sloping and linear relationship. In this case, the temperature support is particularly

narrow, therefore the UK-specific estimator is negatively impacted by the low variability in the vari-

able of interest. Nevertheless, to understand how much economic production is affected by increasing

temperature, the marginal effects reported in figure 24 below are more informative.
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(b) Prediction FR
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(c) Prediction GB
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(d) Prediction IT

Figure 23: Predicted effect of temperature on the growth rate of gross output in Spain, France,
Italy and Great Britain. Results from the quadratic model with firm and industry-year FE estimated
excluding the bottom and top 1% of the temperature distribution.
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Figure 24 reports the marginal effect of an extra 1◦C against the temperature support. As is evident,

the marginal effect varies largely across Countries, being upward sloping for Italy (figure 24d) and

France (figures 24b), slightly downward sloping for Great Britain (figure 24c) and upward sloping for

Spain (figure 24a). An extra 1◦C in yearly average temperature in Italy increases the growth rate

of gross output by approximately 0.067 log-points (6.9%) for firms located in areas with a yearly

average temperature of 6◦C and decreases the growth rate of gross output by 0.051 log-points (5.2%)

for firms located in areas with a yearly average temperature of 18◦C. These effects may initially

seem excessively large. However, it is unlikely that yearly average temperature will increase by 1◦C

in a year. Rather, they will increase by a fraction of 1◦C, and the marginal impact will also be a

fraction of the reported values. The results for France are generally consistent with, although lower

in magnitude than those for Italy. According to figure 24b the marginal effect of an extra 1◦C in

yearly average temperature is generally not statistically significant. Nevertheless, it is still important

to consider the point estimates as they can provide insights on general trends. An extra 1◦C in yearly

average temperature has a positive impact of 0.004 log-points (0.4%) for firms located in areas with

average yearly temperature of 6◦C and −0.0065 log-points (-0.65%) for firms located in areas with

average yearly temperature of 15.5◦C.
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Figure 24: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in Spain, France, Italy and Great Britain. Results from the quadratic model with firm
and industry-year FE estimated excluding the bottom and top 1% of the temperature distribution.

The results for Spain reported in figure 24a differ substantially from those for Italy and France,

although they are consistent with the pooled-EU marginal effects. The estimated marginal effect of

temperature on the growth rate of gross output panel is increasing over the temperature distribution,

although not statistically significant above 15◦C. The marginal effect of temperature is negative for

firms located at lower temperature and positive for firms located at higher temperature. Specifically,

an extra 1◦C in yearly average temperature has a positive impact of −0.042 log-points (-4.3%) for
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firms located in areas with average yearly temperature of 10◦C and −0.013 log-points (-1.38%) for

firms located in areas with average yearly temperature of 19◦C. Moreover, the UK is a peculiar case

as the marginal effect is consistently negative and statistically significant over the whole temperature

distribution. An extra 1◦C in yearly average temperature has a negative impact of −0.051 log-points

(-5.2%) for firms located in areas with average yearly temperature of 8◦C and −0.057 log-points

(-5.8%) for firms located in areas with average yearly temperature of 11.5◦C.

The figure below report the marginal effects for the remaining countries. Results for these countries

are characterised by large confidence intervals, likely due to a lower number of observations, making

these results not statistically significant for most countries over a large part of the temperature

distribution. The marginal effect function is downward sloping for Belgium, Denmark, Finland,

and the Netherlands. Apart from the Netherlands, the marginal effect is negative over the whole

temperature support. On the contrary, the marginal effect function is upward-sloping for Austria,

Germany, Greece, Portugal, and Sweden. The function is characterised by positive point estimates

for all countries, with the exception of Austria and the colder areas in Sweden.
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Figure 25: Predicted effect of temperature on the growth rate of gross output in other European
countries. Results from the quadratic model with firm and industry-year FE estimated excluding the
bottom and top 1% of the temperature distribution.
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Figure 26: Predicted effect of temperature on the growth rate of gross output in other European
countries. Results from the quadratic model with firm and industry-year FE estimated excluding the
bottom and top 1% of the temperature distribution.
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Figure 27: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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Figure 28: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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F.5.2 Industry heterogeneity
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Figure 29: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output (log) accounting for industry heterogeneity (Nace 2 level 2). Results from the quadratic
model with firm and industry-year FE.
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Figure 30: P-values for coefficients of figure 29 for the marginal effect of an extra 1◦C in yearly
average temperature on the growth rate of gross output (log) accounting for industry heterogeneity
(Nace 2 level 2). The heat map colours refer to the values of the point estimates. Results from the
quadratic model with firm and industry-year FE.
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F.5.3 Productivity heterogeneity (VA and TFP)
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Figure 31: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
value added (a) and TFP (b) accounting for productivity heterogeneity (firm grouped according to
their average TFP). Results from the quadratic model with firm and industry-year FE.
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F.5.4 Productivity heterogeneity by within-industry productivity cate-

gory
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(b) Lag-1 marginal effect

-.06

-.04

-.02

0

.02

M
ar

gi
na

l E
ffe

ct

4 7.5 11 14.5 18
Avg T (°C)

Below 10th [10th; 25th) [25th; 50th)
[50th; 75th) [75th; 90th) Above 90th

(c) Lag-2 marginal effect

Figure 32: Contemporaneous (a), lag-1 (b), and lag-2 (c) marginal effects of an extra 1◦C in yearly
average temperature on the growth rate of gross output accounting for productivity heterogeneity
(within each industry). Results from the quadratic model with firm and industry-year FE.
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F.5.5 Country-level additional results, TFP heterogeneity

The country-specific damages heterogeneity related to the TFP categories reported in figure 33 are

generally consistent with both the country-level pooled analysis and the other sources of damages

heterogeneity highlighted so far, with relevant differences between the analysed countries. Similar

to the pooled results presented in the previous section, the disaggregated country-level estimates

related to TFP categories are unequivocal. On the one hand, most-productive firms seem to be

generally shielded by, or even benefit from, higher temperature across the whole temperature support,

characterised by either positive or non-significant effects. On the other hand, least-productive firms

are consistently negatively impacted across most countries and over a large part of the temperature

support.

-.04

-.02

0

.02

.04

M
ar

gi
na

l E
ffe

ct

10 12 14 16 18

Below 10th [10th; 25th) [25th; 50th)
[50th; 75th) [75th; 90th) Above 90th

(a) Marginal Effect ES

-.02

-.01

0

.01

.02

M
ar

gi
na

l E
ffe

ct

7 9 11 13 15

Below 10th [10th; 25th) [25th; 50th)
[50th; 75th) [75th; 90th) Above 90th

(b) Marginal Effect FR

-.08

-.06

-.04

-.02

0

.02

M
ar

gi
na

l E
ffe

ct

8 9 10 11 12

Below 10th [10th; 25th) [25th; 50th)
[50th; 75th) [75th; 90th) Above 90th

(c) Marginal Effect GB

-.15

-.1

-.05

0

.05

M
ar

gi
na

l E
ffe

ct

8 10.5 13 15.5 18

Below 10th [10th; 25th) [25th; 50th)
[50th; 75th) [75th; 90th) Above 90th

(d) Marginal Effect IT

Figure 33: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output accounting for firm size heterogeneity. Results from the quadratic model with firm and
industry-year and standard errors clustered at the Nuts 3 level, FE plotted over country-specific
temperature supports.

Specifically, in terms of the four countries discussed in the main body, least-productive firms are

significantly negatively impacted by higher temperature across the whole temperature support in

Italy (figure 33d), Spain (figure 33a), and the UK (figure 33c). In France (figure 33b) this effect

is negative only at higher temperature and positive at lower temperature. most-productive firms

instead, seem to be positively affected by higher temperature over the whole distribution in Italy,

and at high temperature in France and Spain. These ”leaders” firms are not significantly affected by

higher temperature in the colder areas of Spain and in generally in the UK. It is worth highlighting

that, although the results in the UK are clear for least-productive firms, they are more uncertain

for the other TFP categories. The results for the remaining countries reported in figures 34 and

35 are also consistent with both the pooled results and the previous country-level analysis. In

63



general, the marginal effect of an additional 1◦C in yearly average temperature is positive or not

statistically significant for most-productive firms and negative, and usually statistically significant

for least-productive firms.
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Figure 34: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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Figure 35: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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F.5.6 Country-level additional results, size heterogeneity

Figure 36 reports the marginal effect of an additional 1◦C on the growth rate of gross output for

the quadratic model in equation 5 for different firm size in selected Countries. Consistent with the

country-level average estimates, there are notable differences across countries. It is worth starting

the discussion with the results for Italy as they are more evident than for other countries and help

to provide the underlying intuition.

The size-specific results for Italy are generally in line with the average marginal effect reported in

figure 24d. The point estimates reported in figure 36d are not significantly different from each other

at lower temperature. Nevertheless, the coefficients become statistically different from each other

at medium and higher temperature. These differences are particularly evident in the two warmest

sections of the temperature support. Moreover, when focusing on the highest part of the temperature

support an important result emerges. Although small and medium firms are negatively impacted by

increasing temperature, we fail to reject the null hypothesis of a marginal effect equal to 0 for larger

firms (more than 50 employees). That is, the marginal effect of higher yearly average temperature is

not statistically different from 0 at the 5% significance level. Specifically, the impact of an additional

1◦C on firm gross output growth rate is −5.3% for the first category (below 10), −3.4% for the second

category (10 to 19) and −2.4% for the third category (20 to 49). The estimates for the three largest

categories are neither economically, nor statistically significant (at the 5% level).
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Figure 36: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output accounting for firm size heterogeneity. Results from the quadratic model with firm and
industry-year FE and standard errors clustered at the Nuts 3 level, plotted over country-specific
temperature supports.

There are several reasons why larger firms may not be affected, on average, by higher temperature.

First of all, larger firms usually tend to have higher revenues and profits, which determine a lower

relative cost of implementing, and a larger opportunity cost of refraining from adaptation strategies.
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Examples of these adaptation strategies are adopting or expanding air conditioning (Graff Zivin

and Kahn, 2016), and improving thermal insulation for the plants where production is carried out.

Moreover, given their larger resources, these firms can undertake more radical adaptation strategies,

such as changing their economic activity towards less impacted sectors or relocate to areas with

milder temperature.

The results for the remaining countries in figure 36 are less clear than, and somehow contrasting

with those for Italy. Consistent with the aggregate results from figure 24a, the size-specific results for

Spain reported in figure 36a show an upward-sloping marginal effect function over the temperature

support across all firm size groups. The point estimates are negative for all groups over the first half

of the support. At higher temperature, they remain negative for smaller firms and become positive for

larger firms. The estimates are generally statistically significant in the lower part of the temperature

distribution and become insignificant at higher temperatures, apart from the largest size group which

seems to be not significantly affected by higher temperature over the whole support. Although with

substantial differences, the results for Spain seem to be coherent with those for Italy to the extent

that smaller firms seem to be negatively impacted by higher temperature, whereas larger firms seem

not to be impacted by, or even benefit from higher temperature.

The results for France and the UK reported in figures 36b and 36c respectively, are characterised by

larger confidence intervals and, therefore, larger uncertainty than those just discussed. Although the

results for France are consistently not significant over the whole temperature support and across all

size categories, the estimates for the UK provide insightful information nonetheless. The negative

estimates, which are not significant for the larger size groups at all levels of the support, become

significant at the 95% level for the smaller groups. Suggesting that, differently from larger firms which

seem not to be affected by higher temperature, the evidence indicates that smaller firms are negatively

affected by higher temperature. Specifically, an additional 1◦C in yearly average temperature reduces

the growth rate of gross output for firms in the first (below 10) and second (10 to 19) categories by

-3% and -2.9% respectively.

The results for the remaining countries reported in figures 37 and 38 are generally consistent with the

finding that smaller firms tend to be more negatively (positively) impacted by higher temperatures

when located in warmer (colder) areas. Although with different level of statistical significance, these

results are particularly relevant because they show that even when located in areas with different ab-

solute temperatures across countries, smaller firms tend to be more vulnerable to higher temperature

when located in relatively warmer areas compared to the specific country-level distribution. This

has again implications for the pooled results since it shows that the average effects estimated when

pooling all firms together, average out different and often opposing effects within the same level of

the temperature distribution. Therefore, relying on the European-level results without acknowledg-

ing the underlying country-level heterogeneity, might lead to incorrectly infer that size heterogeneity

does not play a role in explaining climate damages.
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(d) Marginal Effect DK

Figure 37: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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Figure 38: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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F.5.7 Cross-country heterogeneity, industry-level

The marginal effect for Spain reported in 39a is a negative and upward-sloping function of temper-

ature. The results for France reported in figure 39b are generally not statistically significant and,

within the set of industries where the effects are positive. The United Kingdom is an interesting

case because, as reported in figure 39c, although only a limited amount of industries are significantly

affected by higher temperature, those reporting statistically significant estimates are considerably

impacted. Finally, the results for Italy reported in figure 39d are consistent with the results from the

pooled analysis, as they show the expected downward-sloping marginal effect across all industries.

In addition, in the Italian case, a significant share of the point estimates is statistically significant.
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Figure 39: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output accounting for industry heterogeneity. Results from the quadratic model with firm and
industry-year FE and standard errors clustered at the Nuts 3 level, plotted over country-specific
temperature supports.

The industry-specific estimates for the remaining reported countries are not easy to interpret given

the considerable amount of country-industry-specific point estimates to take into account. The heat

map colours are particularly convenient in this case because they provide a broad overview of the

different signs and magnitudes. The main result arising from the plots in this section is that industry-

specific marginal effects are generally consistently negative across countries, although with significant

differences in magnitude as highlighted by the different colour intensities.
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Figure 40: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output accounting for firm industry heterogeneity – estimates with a statistical significance
of at least 90%. Results from the quadratic model with firm and industry-year FE plotted over
country-specific temperature supports.
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Figure 41: Relevant p-values for the marginal effect of an extra 1◦C in yearly average temperature
on the growth rate of gross output accounting for firm industry heterogeneity. Results from the
quadratic model with firm and industry-year FE plotted over country-specific temperature supports.
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Figure 42: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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(e) Marginal Effect SE

Figure 43: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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Figure 44: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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Figure 45: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of
gross output in other European countries. Results from the quadratic model with firm and industry-
year FE and standard errors clustered at the Nuts 3 level, estimated excluding the bottom and top
1% of the temperature distribution.
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