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Abstract

In developing countries, untreated sewage exposes people to alarming water pol-

lution levels, yet there is limited knowledge about the effectiveness of wastewater

treatment investments. I evaluate the impact of wastewater treatment on water

quality and infant mortality in India, exploiting the staggered introduction of ur-

ban sewage treatment plants over the period 2010-2020. I match granular data

on sewage treatment plants, river water quality, as well as child births and deaths

using the hydrological network. I show that after initiating wastewater treatment,

levels of fecal coliforms – a commonly used measure of fecal contamination in water

– decreased by 53% (95% CI: [7; 99]). Mortality under the age of six months – a

critical period for digestive system development – declined by 20% (95% CI: [3; 36])

downstream of the plants, with larger effects observed for boys and children from

the lowest wealth quintiles. The results are consistent across several estimators ro-

bust to heterogeneous treatment effects, are not driven by selective migration, and

are found only downstream of the plants, which rules out confounding effects from

other local policies. Wastewater treatment is cost-effective according to GDP-based

thresholds, with a cost of INR 6 million per life saved and INR 85,000 per DALY

averted for children under six months.
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1 Introduction

In developing countries, the lack of sanitation infrastructure and water facilities exposes

the population to alarming inland water pollution levels. Globally, 80% of wastewater

flows back into the ecosystem without being treated or reused [UN Water, 2017], con-

tributing to a situation where around 1.8 billion people use a source of drinking water

contaminated with faeces, putting them at risk of contracting diseases such as cholera,

dysentery, typhoid and polio [WHO/UNICEF, 2015]. Although access to clean water

is vital, the literature on the impacts of major sanitation infrastructure investments on

downstream ambient water quality in developing countries is generally thin and mixed

[Olmstead and Zheng, 2021]. Implementation and operational challenges – arising from

energy demand, the need for skilled workers, and capital requirements – make the efficacy

of wastewater treatment facilities uncertain. Moreover, due to our limited understanding

of exposure to untreated sewage, the health benefits of mitigating river water pollution

via wastewater treatment remain ambiguous. Assessing the benefits of wastewater treat-

ment investments in developing countries is important, particularly because the public

funds used for sanitation projects could be invested in other infrastructure needed for

human development.

This paper examines the effect of urban sewage treatment on water quality and down-

stream infant mortality in India using granular data of the hydrological network. My

identification strategy relies on a difference-in-difference (DiD) approach and event-study

specifications, exploiting the staggered introduction of sewage treatment plants between

2010 and 2020. Specifically, I compare urban areas that started wastewater treatment

from 2010 onwards to those with only planned or under-construction plants as of 2020. Fe-

cal coliform levels serve as my primary indicator of water pollution due to their widespread

use as a measure of fecal contamination. I focus on mortality under the age of six months,

a critical period when infants’ digestive systems are still developing, consequently height-

ening the risk of gastrointestinal infections.

The Indian context is particularly relevant for three reasons. First, India is one of the

most polluted countries in the world, where untreated sewage remains the main source of

water pollution. This pollution has direct implications for public health, as waterborne

diseases linked to fecal pathogens are major contributors to mortality rates, especially

among infants. Second, a lot of public investments have recently been directed toward
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building sewage treatment plants (STPs).1 According to the governement, around 30%

of urban wastewater is treated in 2020. Yet, many plants do not function at maximum

capacity and others do not meet the prescribed environmental standards. The unreliabil-

ity of access to electricity (due to frequent power shortages), the lack of qualified labor,

and the lack of funding in maintenance and operation activities raise concerns about the

functioning of current plants [CPCB, 2007]. Third, while wastewater treatment is initially

planned for and by urban areas, assessing its effects on downstream areas, where most

of the population is marginalized, offers insight into the potential mitigation of social

inequalities regarding pollution.

I compile one of the most comprehensive database on wastewater treatment and water

quality in India at the urban level. I use the national inventory of sewage treatment plants

conducted in 2020-21 and attribute plants to nearby urban areas. In this dataset, 273

urban areas started wastewater treatment from 2010 onwards whereas 185 urban areas

had a wastewater treatment plant still at the project stage or under construction in 2020.

Combining different data sources on water quality, I build a panel of 313 monitoring

stations located on river segments within and downstream up to 100km of these urban

areas over the period 1991-2020. Using an Indian representative birth history panel, I

geolocalize around 90,000 children born over the period 1991-2019 in sub-basins encom-

passing river segments within 100km downstream of river segments crossing the urban

areas.

The study has two primary results. First, I find that treating wastewater in an

urban area decreased average fecal coliform levels within and downstream of this area

by 53% (95% CI: [7; 99]). This result is consistent across several estimators robust to

heterogeneous effects when treatment varies over time, namely Gardner [2022] estimator,

Sun and Abraham [2021]’s estimator and the stacked regression approachs. Event-study

regressions suggest that the decrease in the levels of fecal coliforms intensifies over time,

which may be explained by the opening of new treatment plants or increased compliance

with environmental standards. Wastewater treatment also decreases water pollution as

measured by two other organic pollution measures, biological oxygen demand (BOD) and

dissolved oxygen (DO).

Second, I find that wastewater treatment decreased the mortality under the age of six

1Sewage treatment plants are designed to intercept and treat sewage through piping infrastructure
and treatment plants before its discharge into lakes, rivers, and streams.
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months in downstream sub-basins. Mortality decreases by 8.1 children per 1,000 (95%

CI: [-1.2; -15.0]) after operating sewerage treatment according to the Gardner [2022]’s

estimator, which corresponds to a 20% (95% CI: [3; 36]) decrease with respect to the

average mortality under six months over the period 1991-2019. These results control for

child-, mother-, household- and weather-level determinants of health, as well as place of

birth and year fixed effects. Findings are robust to the use of other staggered treatment

estimators and to a specification including mother fixed effects, controlling for unobserved

family characteristics that could be correlated with both water quality and infant mor-

tality. Heterogeneity analysis shows that boys and children in the lowest wealth quintiles

benefited the most from wastewater treatment, especially those born in households prac-

ticing open defecation. Children born closer to a river (below the median distance of 3

km) and farther from urban areas (above the median distance of 27 km), where access to

healthcare facilities is more limited, benefit the most from treatment.

Finally, robustness tests support these findings, ruling out alternative explanations

such as selective migration of mothers into treated sub-basins or differences in household

behaviors related to water treatment, open defecation or exclusive breastfeeding practices.

I further show that mortality decreased downstream but not upstream of the urban areas

treating wastewater, which supports the assumption that no other policy has taken place

locally at the same time. Falsification tests on air pollution provides supportive evidence

that other environmental policies are not systematic confounders of wastewater treatment

and that health impacts found in this study are attributable to water pollution.

Applying my results to a back-of-the-envelope calculation, over 40,000 deaths would

have been prevented if wastewater treatment had been implemented since 2010 in urban

areas where the treatment was still not operational in 2020. The cost per life saved is

INR 6 million ($93k in 2015). The cost per disability-adjusted life year (DALY) averted

is INR 85k ($1,330 in 2015), which is lower than the GDP per capita in India, rendering

wastewater treatment cost-effective based on this threshold long used by the WHO to

identify highly cost-effective interventions. However, wastewater treatment appears to

be one of the least cost-effective interventions for improving child health compared to

WHO-CHOICE estimates in South-East Asia [Stenberg et al., 2021]. Since the benefit is

calculated only on mortality for children under six months and does not take into account

other factors such as morbidity, productivity, human capital, or the impact on ecosystems
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and related activities, a further avenue for research lies in investigating the benefits of

wastewater treatment on these other factors.

The paper contributes to three strands of the literature. First, to the best of my knowl-

edge, this study provides the first national estimates of how sewerage treatment plants

affect ambient water pollution concentrations in a developing country. In the USA, Keiser

and Shapiro [2019] find that grants distributed to municipal wastewater treatment plants

from the 1972 Clean Water Act (CWA) reduced most water pollution types and Flynn

and Marcus [2021] observe that these reductions occured only downstream from facilities

required to upgrade their technology. While recent literature evaluates industrial water

pollution control in China [Zhang et al., 2019, He et al., 2020] and in India [Do et al., 2018,

Duflo et al., 2018, Joshi and Shambaugh, 2018], assessment of domestic pollution control

remains scarce in low- and middle-income countries. In India, Greenstone and Hanna

[2014] find that water regulations, over the period 1986-2005, had on average no effect

on water pollution in cities covered by the National River Conservation Plan (NRCP)

because of low public demand for ambient water quality improvements and weak insti-

tutional support for water policies. I make progress by studying wastewater treatment

investments based on the national inventory of sewage treatment plants conducted by the

Indian government in 2020 instead of using a binary indicator for exposure to the NRCP,

which does not reflect the actual implementation of wastewater treatment. My findings

show that recent sewage treatment plants have significantly improved water quality in

India, with the effects intensifying over time. The study suggests that there is a strong

potential for wastewater treatment in developing countries, which face much higher levels

of pollution than developed countries.

While I am unaware of any study assessing public policies to control water pollution at

the city-level in India since the analysis of Greenstone and Hanna [2014], two recent papers

examine the effect of public policies on surface water quality and infant mortality at the

district level. Motohashi [2023] explores the effect of toilet construction on river pollution

and diarrheal mortality, using an instrumental variable approach and a difference-in-

differences design with baseline latrine coverage as a continuous treatment. I differ from

this study in the type of data measuring mortality – I use a representative birth history

panel instead of aggregated indicators calculated using survey data. More importantly,

my identification strategy at the urban area level allows me to compare treated outcomes
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to not-yet treated outcomes in a staggered difference-in-differences design, with many

estimators robust to heterogeneous effects when treatment varies over time. Bhupatiraju

et al. [2023] investigate the impacts of judicial policies on surface water toxicity and infant

mortality, based on an instrumental approach relying on judges’ random assignment and

writing styles. Unlike my paper focused on domestic pollution control, most court cases

analysed in their paper involve firms and industrial pollution.

To the best of my knowledge, this paper also provides the first estimate of how ur-

ban wastewater treatment affects health outcomes in India. In Peru, Bancalari [2020]

estimates that unfinished sewerage infrastructure increased early-life mortality. Recent

evidence suggests that sewerage infrastructures highly contributed to the decline of mor-

tality in the advanced economies during the late nineteenth century [Kesztenbaum and

Rosenthal, 2017, Alsan and Goldin, 2019, Chapman, 2019, Harris and Helgertz, 2019,

Gallardo-Albarrán, 2020].2 My paper differs from these studies by investigating health

effects in areas downstream of sewage treatment plants, thus isolating wastewater treat-

ment from other covariates like sewage disposal access. This study is closely related to the

study by Flynn and Marcus [2021] on the impact of the Clean Water Act on birth weight

in the USA. In a context where water pollution is much lower,3 and clean water and

healthcare provision are much higher than in India, Flynn and Marcus [2021] show that

CWA grants to municipal wastewater treatment plants increased average birth weight by

8 grams in counties downstream of the plants. By examining urban sewage treatment in

India, my empirical findings highlight the considerable benefits of treating wastewater in

developing countries, many of which experiencing high mortality damages from pollution

exposure [Landrigan et al., 2018].

Finally, this study builds on the literature emphasizing the health costs of ambient

microbiological water pollution. In Indonesia, Garg et al. [2018] estimate that the use

of upstream rivers for bathing and sanitation practices accounts for up to 7.5% of all

diarrhoea-related deaths downstream each year. In Bangladesh, Buchmann et al. [2022]

estimate that households, who suddenly abandonned water infrastructure contaminated

by arsenic, saw 28% greater child mortality driven by diarrheal disease. In South Asia,

diseases related to ambient microbiological water pollution represent a significant cause of

2However, Anderson et al. [2022] find little evidence that sewage treatment explains the decline in
infant and diarrheal mortality observed during the period 1900–1940 in 25 major American cities.

3Figure A1 compares the levels of fecal coliforms over the period 1985-2001 in India versus in the
USA. On average, pollution in India is more than 10 times higher than in the United States.

6



child mortality. The findings of my study advocate for targeted investments in wastewater

treatment to improve public health. These benefits are close to those obtained by local

chlorination campaigns, as the recent Kremer et al. [2023]’s meta-analysis estimates the

effect of water treatment on child mortality to be a reduction of about 30% in the odds

of all-cause under-5 mortality in low- or middle-income countries. The cost per DALY

averted estimated in the context of sewage treatment in India is, however, lower, with

the caveat that wastewater treatment not only affects human health but also ecosystems

and related activities.

The paper proceeds as follows. Section 2 documents the mechanisms through which

untreated sewage affects health as well as the Indian context regarding water pollution

regulation and sewerage infrastructures. Section 3 describes the data. Section 4 presents

the empirical approach and the identification strategy. Section 5 shows the main results

relating to the impact of wastewater treatment on water pollution and downstream infant

health. Section 6 presents robustness checks. Section 7 discusses the implications of the

effects on infant mortality, and section 8 concludes.

2 Background and institutional context

2.1 Effects of domestic wastewater pollution on health out-

comes

The discharge of untreated sewage in rivers poses significant public health concerns as it

contaminates water supplies and recreational areas.

Fecal pathogens (bacteria, parasites or viruses) present in wastewater are directly

harmful to human health. Pathogens transmission from water to humans can occur

through different channels: drinking contaminated water or eating unsafe food,4 contact

with polluted water when bathing or recreational use, and transmission by insects that

breed in the water.

Contamination by fecal microorganisms is responsible for the high disease burden in

children, particularly acute diarrheal mortality [Liu et al., 2016],5 morbidity [Wolf et al.,

4Unsafe food is food mixed or washed with contaminated water or food from the river that is not
cooked such as shellfish – for example mussels or oysters – which concentrate the microorganisms in their
flesh.

5Diarrhea is the second leading cause of death in children 1-59 months of age [Liu et al., 2016].
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2018] and chronic stunting [Guerrant et al., 2013]. Because of this high disease burden

and these risks, the World Health Organization (WHO) recommends and sets regulatory

guidelines at 0 per 100 mL for fecal coliforms in drinking water [WHO, 2017]. Though not

generally pathogenic, fecal coliforms – bacteria found in the intestines of warm-blooded

animals – serve globally as an indicator of potential fecal contamination in water.

Given these concerns about water quality, the dietary choices for infants, such as

breasfeeding, play a crucial role for infant health. For this reason, the WHO recommends

six months of exclusive breastfeeding partly because children who are exclusively breastfed

have a lower risk for gastrointestinal infections and mortality. Before six months, infants’

digestive systems are still developing and there is an increased risk of gastrointestinal

infections if solids or other non-breastmilk foods are introduced. Around six months,

many babies’ digestive systems are developed enough to process solid foods, including

potential allergens. However, while the importance of breastfeeding in low-income and

middle-income countries is well recognised, only 37% of children younger than six months

of age are exclusively breastfed in these countries [Victora et al., 2016].

In India, millions of people lack access to clean water, meaning that they use either an

unimproved water source or an improved source that is contaminated with fecal matter

(World Health Organization).6 Even where piped water systems are available, they fre-

quently do not meet WHO’s recommended standards [Rayasam et al., 2019], and water

supply is intermittent [Amrose et al., 2015]. While water purifiers have become popular

in urban households with recent technological advances and increased affordability, many

rural areas still face challenges in accessing disinfected water.

Despite the high risk of fecal pathogen infection through drinking water, the practice

of exclusive breastfeeding has not been fully adopted across India. Data from the Na-

tional Family Health Survey (NFHS-IV, 2015–2016) show that 55% of Indian mothers

exclusively breastfeed their infant under age six months. Many children in that age group

consume other liquids, such as plain water, in addition to breastmilk. Indian infants un-

der six months of age, a period crucial for digestive system development, face an increased

risk of infections from contaminated water if they are not exclusively breastfed.

6According to the WHO, unimproved water sources include unprotected wells, unprotected springs,
surface water (e.g. river, dam or lake), vendor-provided water, bottled water (unless water for other
uses is available from an improved source) and tanker truck-provided water. Improved water sources
include household connections, public standpipes, boreholes, protected dug wells, protected springs and
rainwater collection. See https://www.who.int/news-room/fact-sheets/detail/drinking-water.
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2.2 Water pollution regulations and monitoring

Indian environmental regulations on water quality have been implemented since 1974

by the Water (Prevention and Control of Pollution) Act. The Indian government has

created central and state agencies of the Ministry of Environment, Forest and Climate

Change (MoEFCC) to prevent, control and abate environmental pollution. These agen-

cies, the Central Pollution Control Board (CPCB) and the State Pollution Control Boards

(SPCBs), are responsible for developing the India National Water Plan.

The CPCB establishes water usage criteria across five categories (Figure D1). The

first three categories correspond to drinking water and outdoor bathing, and they depend

on four water quality indicators: total coliform count, pH level, Biological Oxygen De-

mand (BOD), and Dissolved Oxygen (DO) content. Total coliform count encompasses

fecal coliform numbers. Fecal coliforms are specifically monitored to indicate fecal con-

tamination in water. Both BOD and DO gauge organic pollution levels. BOD measures

the quantity of oxygen required by the decomposition of organic waste in water. High

values (mg/L) are indicative of heavy pollution. DO is similar to BOD except that it is

inversely proportional to pollution. These indicators are consistently monitored within

India’s water quality monitoring network to detect public health risks for those exposed

to surface waters.

Overall, Indian rivers are heavily polluted due to the discharge of untreated sewage,

industrial effluents, and agricultural runoff. While human activities are the main sources

of water pollution, weather can also play a role in the concentration of pollutants. Pre-

cipitation can decrease pollution by diluting the concentration of pollutants or increase

water pollution by bringing new pollutants into the river, especially in the case of flood-

ing. Temperature also plays an important role because of its influence on water chemistry,

as the rate of chemical reactions generally increases at higher temperatures. In 2015, 70%

of rivers monitored (275 out of 390) were identified as polluted by the CPCB based on

assessment of BOD monitored during the years 2009-2012. The report identifies the dis-

charge of untreated domestic wastewater from the urban centres as the main source of

pollution.

The CPCB sets the wastewater discharge standards for the entire country.7 At the

7BOD below 30 mg/l without dilution is the standard for discharge of treated sewage from
sewage treatment plants and general standard for effluent discharge from effluent treatment plants to
rivers/streams.
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state level, SPCBs are responsible for monitoring the performance of all wastewater dis-

charging entities (buildings, industries, large and small-scale sanitation systems). How-

ever, there are not in charge of the construction and operation of wastewater treatment

facilities.

2.3 Sewage treatment plants in India

In the Constitution of India, the responsibility of large-scale sanitation is delegated to the

states, under purview of the Ministry of Housing and Urban Affairs (MoHUA - formerly

Ministry of Urban Development) [Reymond et al., 2020]. MoHUA is the largest funder of

the sanitation sector [Wankhade, 2015]. Urban Local Bodies (ULBs) and Water Supply

and Sewerage Boards (WSSBs) are given the responsibility of devising and implementing

sanitation strategies at the city level. Figure D2 summarizes the responsibilities in the

large-scale sanitation sector.

To improve standards of living, a running water-supply has been established in most

of the cities, towns and even in some villages over the past four decades in India. This

has, in turn, led to flush-latrines and much larger use of water in homes for bathing,

washing of clothes and utensils etc, generating significant amount of wastewater. Due

to the lack of resources, sewerage did not get much attention and has lagged far behind

water supply until the turn of the century.

In 2007, India had 234 Sewage Treatment Plants (STPs), of which 84 were inspected

by the Central Pollution Control Board team [CPCB, 2007]. During this period, the

efficacy of the water treatment process raised some concerns. Many of these STPs were

not functioning adequately, primarily due to operational and maintenance shortcomings.

Out of the inspected plants, only 8 received a ’good’ performance rating, while 30 were

rated ’satisfactory.’ Capacity utilization was often inadequate, many plants lacked an

alternative power source, and underqualified labor compromised the performance of the

plants. The CPCB report emphasizes the urgent need to prioritize wastewater treatment

to reduce pollution and preserve water resources.

For over 15 years, ULBs have gradually worked on setting up sewage treatment plants

to address the pollution and public health challenges posed by untreated sewage. Various

international agencies and the central government have provided financial and technical

assistance to ULBs for constructing and upgrading STPs. In addition, the National Green
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Tribunal (NGT), established in 2010 under the National Green Tribunal Act, has played

a pivotal role in pushing for environmental conservation and sustainable development in

India, including in the domain of wastewater management and sewage treatment.

Since 2007, the number of sewage treatment plants has more than quadrupled. From

522 operational STPs in 2015, the count rose to 1,093 by 2020. However, the installed

capacity of municipal wastewater treatment plants represents less than 30% of the esti-

mated urban wastewater generated in 2020 and many plants do not function at maximum

capacity or do not meet the prescribed effluent water quality standards. In the context

of rapid urbanization and population growth, water treatment will become an increas-

ingly important challenge in India competing with meeting other basic needs. Evaluating

the effectiveness of current treatment plants is an opportunity to optimally plan its de-

velopment. Furthermore, while wastewater treatment is initially planned for and by

urban areas, assessing its effects on downstream areas, where most of the population is

marginalized, offers insight into the potential mitigation of social inequalities regarding

pollution.

3 Data

3.1 National inventory of sewage treatment plants

I use the national inventory of sewage treatment plants (STPs) released in March 2021

by the Central Pollution Control Board (CPCB). This inventory was carried out during

2020-21 by the State Pollution Control Boards and the Pollution Control Committees.

This inventory focuses on urban sewage treatment plants that are built under the decision

of Urban Local Bodies (ULBs) and Water Supply and Sewerage Boards (WSSBs). The

inventory lists 1,631 STPs all over India.8

Since the plants are not geocoded, I manually match each of them according to the

administrative descriptors provided in the CPCB inventory (state, town and an accom-

panying string description of location) to a 2001 town or village polygon [Meiyappan

et al., 2018]. I then merge neighboring polygons, that forms a unique urban area (See

Appendix D). This indicates that many urban areas invested (or plan to invest) in one

8Of 1,631 STPs listed in the inventory, 1,093 STPs are operational, 102 are non-operational, 274 are
under construction and 162 STPs are proposed for construction.
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or several water treatment plants. Current work consists in providing exact plant geolo-

cation based on Google Maps identification (Figure 1). So far, I have identified 564 of

the 1631 plants that are correctly located in the urban areas.

3.2 Water quality

I use water pollution readings from four data repositories: the Global Environment Mon-

itoring System for Freshwater database, the India-Water Resource Information System

platform, the published database from Greenstone and Hanna [2014] and the public

database from the Central Pollution Control Board (CPCB). Appendix D.2 describes

details and steps taken to clean these data.

The resulting geolocalized water quality dataset covers 2,505 monitoring stations on

rivers (2,110 stations), lakes (331 stations) and canals (64 stations) over the period 1978-

2020. The monitoring is done on a monthly or quarterly basis in surface waters, however

the most recent database (provided by the CPCB for the post-2015 period) is available

only at the annual scale and provides the maximum and minimum pollution measurements

for the year. Consequently, I aggregate all measurements are at the annual level.

In the analysis, the main indicator of water pollution is the level of fecal coliforms,

which is consistenly measured to monitor the level of fecal contamination in water and

the presence of pathogens harmful to human health (see Section 2). I also examine two

additional indicators of water pollution by organic matter: biochemical oxygen demand

(BOD) and dissolved oxygen (DO) levels. High values of fecal coliforms and BOD are

indicative of heavy pollution, while DO levels are inversely proportional to pollution.

As observed in the USA by Keiser and Shapiro [2019], dissolved oxygen levels follow a

roughly normal distribution, while fecal coliforms and biological oxygen demand are more

skewed (Figure D7).

Over the period 1990-2020, no major change in average pollution is observed for any of

the three organic indicators across the oldest river water monitoring stations. Figure A2

extends the trends of these pollutants studied up to 2005 by Greenstone and Hanna

[2014]. Over the full period, water pollution measured by fecal coliforms and biological

oxygen demand levels are on average above the thresholds used by the Indian government

to define water fit for bathing. The health of the population exposed to the high pollution

levels is particularly at risk.
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Figure A3 represents the annual means of average fecal coliform level over the full

sample of monitoring stations, according to their location within urban areas reported in

the STP inventory (N=518), downstream up to 100km of an urban area reported in the

STP inventory (N=469) and other monitoring stations (N=1518). India’s rivers flowing

through urban areas – as reported in the sewage treatment plants inventory – and their

downstream couterparts are the most heavily polluted surface water across India.

3.3 Health measures

I use the two latest rounds of the National Family Health Survey (NFHS-4 and NFHS-

5), conducted respectively in 2015-16 and in 2019-21.9 The NFHS is a large, nationally

representative survey that collects data of women aged 15 to 49. Respondents report birth

histories, including deaths and stillbirths. NFHS also includes information on household

assets and provides the geo-coordinates of groupings of households that participated in

the survey, known as NFHS clusters.

The main outcome variable is mortality within the first six months of life. The

rationale is that children aged 0 to 6 months are particularly vulnerable to gastrointestinal

infections since their digestive system is not yet fully developed (See Section 2). According

to the information collected on food consumption among the children under two years old

in the NFHS-4 and NFHS-5 surveys, more than half of the children aged 4 to 6 months

are not exclusively breastfed and received plain water during the day and night before

the survey (Figure 3). This implies that most children, before reaching six months of

age, are at a high risk of infections from drinking water if it is contaminated with fecal

pathogens. In the sensitivity analysis, I explore several alternative variables related to

mortality temporality.

For each birth history panel of NFHS-4 and NFHS-5, I create a binary indicator based

on whether child i born in year y died within the first six months of life.10 Children born

during the COVID-19 pandemic in 2020 and 2021 are excluded from the analysis. For

readability, I scale mortality variables per 1,000 live births.

Health determinants included in the analysis are at the child level, mother level,

and household level. Child determinants include indicators for the child being a female,

9The National Family Health Survey is India’s version of the Demographic and Health Survey (DHS).
10I exclude all children born within 6 months of the interview date.
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being part of a multiple birth, being the first born, being the fourth child or more.

Determinants at the mother level include indicators for the mother being either under

18 years old or over 35 years old at the time of the child’s birth, educational attainment

(primary, secondary education or higher education), religious affiliation (being Muslim,

neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or

other backward caste). Household-level determinants include indicators related to wealth

quintiles.

3.4 Hydrological network HydroSHEDS

I matched each urban area polygon, which contains at least one sewage treatment plant,

to both the river network and hydrological sub-basins boundaries from HydroSHEDS

[Linke et al., 2019]. First, I identify water quality monitoring stations located on river

segments crossing urban areas and located up to 100km downstream.11 Second, I identify

NFHS cluster coordinates located inside sub-basins polygons containing river segments

downstream urban areas. In the following sections, I use the expression "main basin" to

identify the entire river basin to which a river segment or a sub-basin belongs to (see

Figure 2). Appendix E provides details of the matching process.

3.5 Other data

3.5.1 Weather data

I use gridded weather datasets from the Indian Meteorological Department (IMD) that

provides high resolution daily rainfall and temperature (minimum and maximum) datasets

spanning 1951-2020. First, I add up the amount of precipitation that falls within a 20

km radius of each monitoring station and NFHS cluster in a year. Second, I compute

the daily average temperature within a 20 km radius of each site, and then calculate the

annual mean of this average temperature for each monitoring station and NFHS cluster.

11The length of the area affected by microbiological water pollution depends on the river’s discharge and
the disappearance rate of fecal bacteria, the latter resulting from combined actions of various biological
and physico-chemical parameters (e.g. nutrients depletion, sunlight intensity, and temperature decrease)
and from possible deposition to sediments [Servais et al., 2007].
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3.5.2 Demographic growth

To measure population, I use WorldPop gridded population estimates [WorldPop and

Center for International Earth Science Information Network (CIESIN), 2018]. The dataset

offers an estimated total number of people per grid-cell at a resolution of 3 arc (approxi-

mately 100m at the equator) for the years 2000, 2005, 2010, 2015, 2020. I then compute

total population per urban area polygon for each of the available datasets and linearly

interpolate between years.

3.5.3 Air pollution

To quantify air pollution levels, I use annual estimates of ground-level fine particulate

matter (PM 2.5) proposed by Van Donkelaar et al. [2021] and aggregated at the town and

village level by Asher et al. [2021]. The dataset includes minimum, maximum and mean

PM 2.5 concentrations within each village and town polygon, as part of the Socioeconomic

High-resolution Rural-Urban Geographic Platform for India (SHRUG). I calculate the

minimum, maximum and mean PM 2.5 concentrations per urban area polygon based on

the intersection with SHRUG towns and villages polygons.

4 Empirical strategy

The empirical strategy first tests for a decrease in water pollution within and downstream

of urban areas that initiated wastewater treatment from 2010 onwards. Second, it assesses

the subsequent impact on infant health in downstream sub-basins.

4.1 Selection of urban areas

To estimate the causal effect of wastewater treatment on water quality and health out-

comes, I exploit variation from the treatment timing across urban areas. The founda-

tion of my approach is to compare changes in outcomes downstream urban areas where

wastewater treatment started from 2010 onwards relative to changes in outcomes down-

stream urban areas where wastewater treatment is planned or under construction in 2020

(the end of the study period).

I exclude from the sample the urban areas that have started wastewater treatment

before 2010 because they are much bigger than the other both in terms of surface and
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population (Table A3). Urban areas that started wastewater treatment from 2010 on-

wards are also a bit bigger than the ones where wastewater treatment is under construc-

tion in 2020 but Figure A4 illustrates the similarity in annual population density (both

mean and median) between the two groups of urban areas. As generated wastewater

is proportional to the population, it suggests that domestic water pollution trends and

downstream water-related infant mortality trends should respectively be parallel in both

groups of urban areas.12 The parallel trend assumption is further validated by compar-

ing the annual mean of the main outcomes and examining event-study specifications in

subsequent analyses.

I have identified 273 urban areas that began wastewater treatment from 2010 onwards

(Figure 4) and 185 urban areas where wastewater treatment is in project in 2020. In

the following sections, "treated" observations will refer to pollution and health outcomes

related to urban areas that have started wastewater treatment from 2010 onward, and

"control" observations will refer to pollution and health outcomes related to urban areas

where wastewater treatment is in project in 2020. For infant mortality outcomes, it is

crucial that the child was born and spent its initial months in the NFHS cluster where the

mother was interviewed. I then exclude all children who are born from visiting mothers

or who are born at a time when the mother did not live in the residence corresponding to

the NFHS cluster. Table A1 and Table A2 provide descriptive statistics for respectively

water pollution and infant mortality panels.

Both the water pollution and infant mortality panels are unbalanced and do not

precisely overlap in their coverage of urban areas. Some monitoring stations are in urban

areas without a corresponding downstream NFHS cluster, such as when the urban area

is near the sea, and some of the births occurred downstream urban areas where water

quality is not monitored. To enhance the accuracy of the treatment effect estimate and

mitigate selection bias,13 I apply two restrictions to the full sample before analysis: (i) if

there is an outcome data (water pollution measure or birth) from a monitoring station

or NFHS cluster related to an urban area after it has started wastewater treatment,

then that monitoring station or NFHS cluster is only included if it has at least one

12The largest urban areas, such as Delhi, Bangalore, Chennai, Hyderabad, and Pune, began wastewater
treatment before 2010. I assume that the trends in outcomes downstream of these areas differ from those
downstream of urban areas where treatment is still under construction or proposed as of 2020.

13For instance, there might be a selection bias if urban areas begin monitoring water quality only after
initiating wastewater treatment.
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data point before the urban area starting wastewater treatment; (ii) if the urban area

does not treat wastewater in 2020, then the monitoring station or the NFHS cluster is

only included if it has at least two outcome data points. A monitoring station or a

NFHS cluster is only included in the subsequent regressions if it has outcome data for

the specific dependent variable of that given regression. Table 1 summarizes the number

of urban areas, monitoring stations, NFHS clusters and births of the regression samples

by year. The water regressions sample covers 67 treated urban areas (135 operational

sewage treatment plants) and 75 control urban areas. The infant mortality regressions

sample covers 134 treated urban areas (214 operational sewage treatment plants) and 138

control urban areas. Appendix F maps state by state all the urban areas, monitoring

stations and NFHS clusters included in the main regressions.

The difference-in-differences methodology relies on the assumption of parallel trends

between the treatment and control groups. A simple comparison of the evolution of

the annual mean of the two main outcomes variables, the logarithmic transformation of

fecal coliforms levels and the mortality under six months, between the treatment and

control groups already encouragingly shows signs of parallel pre-trends (Figure A5 and

Figure A6).

4.2 Water pollution specifications

Difference-in-differences

Recent literature has shown that standard two-way fixed effect regression estimates are

subject to bias when effects are heterogeneous across units and time. Such estimates can

be severely biased – and may even be incorrectly signed – when treatment effects change

over time within treated units [De Chaisemartin and d’Haultfoeuille, 2020, Goodman-

Bacon, 2021].

To solve this issue, I use the estimator proposed by Gardner [2022] that is robust

to heterogeneous effects in the case of a staggered difference-in-differences design where

treatment effects vary over time. The estimator is determined by fitting a regression of

the outcome on group and time fixed effects in the sample of untreated observations. This

regression then predicts the counterfactual outcome for treated observations. Provided

there is common support for group and period fixed effects, implying the existence of
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treatment and comparison units in each group and period, we can identify fixed effects

using solely the untreated groups and periods. The treatment effect estimates are then

simply derived by subtracting the counterfactual from the actual outcome of those ob-

servations. This approach is equivalent to the ones proposed by Borusyak et al. [2021]

and Wooldridge [2021] and offers flexibility in allowing for group-specific linear trends

[De Chaisemartin and D’Haultfoeuille, 2022] and in accommodating unbalanced panel

data [Bellégo et al., 2024].

I estimate the regressions:14

Not (yet) treated: ln(Fcoli)iaby = Xiyγ + δi + ηby + ϵiaby

Full sample: ln(Fcoli)iaby − δ̂i − η̂by = βTay + Xiyγ + µiaby

(1)

where ln(Fcoli)iaby is the log of fecal coliforms at monitoring station i located within

or downstream urban area a in main basin b and year y. Tay is a binary indicator

variable that switches on and stays on for all subsequent years when sewerage treat-

ment started in the urban area a.15 Xiy includes the logarithmic transformation of the

sum of precipitation that fell within a 20 km radius of the monitoring station i in year

y. Monitoring station fixed effects (δi) control for time-invariant characteristics of each

monitoring station and the surrounding location. To account for any time-varying trends

in water quality across years, which may vary across main river basins (b), I include main

basin-year fixed effects ηby. Lastly, standard errors are clustered at the urban area level.

Event-study

The underlying assumption for Equation 1 to be causal is the parallel trends assumption.

To empirically test the parallel trends assumption and explore dynamic effects, I conduct

an event-study analysis in which I replace the treatment indicator in Equation 1 with

yearly lead and lag treatment indicators. Sun and Abraham [2021] show that, in settings

with variation in treatment timing across units, the coefficient on a given lead or lag can be

contaminated by effects from other periods, and apparent pretrends can arise solely from

treatment effects heterogeneity. As for the static difference-in-differences specification, I

14I use the R package from Butts and Gardner [2021].
15Year of starting treatment in urban area a corresponds to the first year in which a sewage treatment

plant is commissioned in a.
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use the Gardner [2022] estimator to estimate the regression:

Not (yet) treated: ln(Fcoli)iaby = Xiyγ + δi + ηby + ϵiaby

Full sample: ln(Fcoli)iaby − δ̂i − η̂by =
∑

−10≤τ≤6

τ ̸=−1

βτ 1[Ta,y−τ = 1] + Xiyγ + µiaby
(2)

Here τ indexes years since urban area a started sewerage treatment. I use a window

of 10 years before and six years after starting treatment and bin all other observations

outside the event-study window into the window endpoints. The year before treatment

(τ = −1) is the reference year. For τ ≥ 0, βτ estimates the cumulative effect of τ + 1

years within or downstream an urban area that started sewerage treatment. For τ < 0,

βτ is a placebo relative to period prior sewerage treatment.

4.3 Infant Health specifications

Difference-in-differences

To assess the effect of upstream wastewater treatment on infant mortality, I employ the

same wastewater treatment timing as mentioned above. This specification, however, em-

phasizes downstream outcomes, aiming to separate the health effects of wastewater treat-

ment from other factors like sewage disposal access. I employ a difference-in-differences

methodology, drawing upon the Gardner [2022]’s estimator, as described in the following

specification:

Not (yet) treated: Mortalityicamy = Xiyγ + δc + ηy + θm + ϵicamy

Full sample: Mortalityicamy − δ̂c − η̂y − θ̂m = βTay + Xiyγ + µicamy

(3)

Mortalityicamy is a binary indicator set to one if child i, born in month m of year y,

and whose mother participated in the NFHS cluster c survey within 100km downstream

of urban area a, died within the first six months of life. Tay is a binary indicator variable

that switches on and stays on for all subsequent years when sewerage treatment started

in the urban area a. Xiy includes controls for child-level, mother-level, household-level

and weather determinants of health. Child controls include indicators for the child being

19



a female, being part of a multiple birth, being the first born, being the fourth child or

more. Controls at the mother level include indicators for the mother being either under

18 years old or over 35 years old at the time of the child’s birth, educational attainment

(primary, secondary education or higher education), religious affiliation (being Muslim,

neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or

other backward caste). Household controls include indicators for first, second, fourth and

fifth wealth quintiles. Weather controls include the logarithmic transformation of the sum

of precipitation that fell in the year within a 20km radius of the cluster coordinates and

the daily mean temperature over the year within a 20km radius of the cluster coordinates.

δc controls for all NFHS cluster time-invariant characteristics while θm and ζy capture

respectively birth month and birth year fixed effects. Standards errors are clustered at

the urban area level.

Event-study

Mirroring the water pollution approach, I empirically test the parallel trends assumption

and explore dynamic effects using the subsequent event-study specification :

Not (yet) treated: Mortalityicamy = Xiyγ + δc + ηy + θm + ϵicamy

Mortalityicamy − δ̂c − η̂y − θ̂m =
∑

−6≤τ≤6

τ ̸=−1

βτ 1[Ta,y−τ = 1] + Xiyγ + µicamy
(4)

4.4 Robustness specifications

For robustness checks, I use the estimator proposed by and Sun and Abraham [2021],

as well as the stacked regression approach. Both methods are robust to heterogeneous

treatment effects in cases where treatment is binary and staggered.

According to the methodology of Sun and Abraham [2021], groups are aggregated

into cohorts that start receiving the treatment at the same period. This form is similar

than the one proposed by Callaway and Sant’Anna [2021]. I use the never-treated groups

as controls.

With the stacked regression approach, each treated unit is matched to "clean" (i.e.

not-yet-treated) controls and there are separate fixed effects for each set of treated units

and its control, as in Cengiz et al. [2019] among others. Gardner [2022] shows that
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this approach estimates a convex weighted average of the average treatment effect on

the treated (ATT) under parallel trends and no anticipation, although the weights are

determined by the number of treated units and variance of treatment within each stacked

event, rather than by economic considerations [Roth et al., 2023].

The key difference between the Gardner [2022] and Sun and Abraham [2021] estima-

tors lies in the parallel trends assumption: the Gardner [2022] approach imposes parallel

trends for all groups and time periods, whereas the Sun and Abraham [2021] approach

only relies on post-treatment parallel trends. Thus, there is a trade-off between effi-

ciency and the strength of the identifying assumption. On the one hand, averaging over

multiple pre-treatment periods can increase precision. On the other hand, relying on

parallel trends over a longer time horizon may lead to larger biases if the parallel trends

assumption holds only approximately [Roth et al., 2023].

While I am confident in parallel trends across all periods, I choose the Gardner [2022]

estimator in the main specification for its efficiency and flexibility in allowing for group-

specific linear trends [De Chaisemartin and D’Haultfoeuille, 2022] and accommodating

unbalanced panel data [Bellégo et al., 2024]. In addition, with the Gardner [2022] ap-

proach, the control group is composed of both never-treated and not-yet-treated obser-

vations.

5 Results

5.1 Wastewater treatment and Water Pollution

I find large decline in most pollutants after operation of wastewater treatment.

5.1.1 Fecal coliforms

The first analysis examines the relationship between wastewater treatment and average

fecal coliforms levels.16

Main results Table 2 presents results on average fecal coliforms levels for a variety

of specifications and the estimators by Gardner [2022], Sun and Abraham [2021], and

16I use the average of the minimum and the maximum of the fecal coliforms measures. Since 2015, the
CPCB doesn’t provide annual mean measurements (only the minima and maxima are available). The
correlation between mean values and average values of fecal coliform up to 2014 (up to 0.9914) suggests
that average values are good proxies of mean values.
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classic TWFE estimator. Column 1 compares measures of fecal coliforms in monitoring

stations within or downstream agglomerations that started wastewater treatment from

2010 onwards to urban areas where wastewater treatment was proposed or under con-

struction in 2020 by estimating Equation 1. Column 2 adds weather controls to this

specification. The log-transformed results imply that operating sewage treatment plants

decreased fecal coliforms levels within and downstream urban areas by around 53%, a

result that is significant at the 5% level. However, the 95% confidence interval is wide,

suggesting a decrease between 7% and 99%.

The results are robust to regressions using urban area fixed effects. Columns 3 and 4

of Table 2 present results from estimating the specification using urban area fixed effects

while controlling for the distance along the river network between the monitoring station

and the urban area. The Stacked Difference-in-Differences (Stacked DD) methodology

estimates are on a similar order of magnitude (Table B1). The estimate of Column 2

implies a decrease by 50% significant at the 10% level.

Figure 5 summarizes the results across all the specifications and estimators. The

estimators robust to heterogeneous treatment effects when treatment varies over time

provide consistent results. Only the classic TWFE estimate is of a slightly smaller order

of magnitude and non-significant at the 10% level. Negative weights are part of the rea-

son for the difference as Figure B2 shows that 7% of treated observations receive negative

weights in the TWFE regression reported in Column (2) of Table 2. As expected the neg-

ative weights arise for early-treated units in periods late in the sample. Across all robust

estimators and specifications using monitoring station fixed effects or urban area fixed

effects, the decrease of fecal coliforms levels after wastewater treatment is as high as 50%.

Dynamic specification Figure 6 presents dynamic effects of wastewater treatment

on ambient water pollution according to the Gardner [2022] methodology. The event

study, as described in Equation 4 aids in diagnosing potential endogeneity in the timing

of the rollout by examining pre-existing trends in water pollution. Prior to the commence-

ment of sewage treatment in an urban area, there appears to be no discernible trend in

pollution, supporting the parallel trends assumption. In the post-treatment period, the

coefficients are negative and decrease over time which suggests that the decrease in fecal

coliforms levels intensifies over time. The opening of new treatment stations or increased
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compliance with environmental standards could explain this finding.

Alternative estimators based on the Sun and Abraham [2021] methodology and the

simple two-way fixed effects provide similar results (Figure B1).

5.1.2 Other measures of organic water pollution

I examine here the other two water pollutants, biochemical oxygen demand (BOD) and

dissolved oxygen (DO), which indicate organic matter pollution and are consistently

reported by the Indian water agencies. Contrary to fecal coliforms and BOD levels, DO

levels are inversely proportional to pollution. Maximum measures of fecal coliforms and

BOD levels, as well as minimum measures of DO levels, indicate the highest organic water

pollution exposure over the year, while minimum of fecal coliforms and BOD levels and

maximum of DO levels correspond to the lowest organic water pollution exposure.

Table 3 presents results using Equation 1 for each minimum and maximum measure

of the three organic pollutants over the year. Columns (1) and (2) show that maximum

fecal coliforms and maximum BOD levels decreased significantly after the operation of

wastewater treatment and Column (3) that minimum DO level increased. According to

the Gardner [2022] estimate, the maximum of BOD decreased by 23% and the minimum

of DO increased by 0.35mg/L, which represents around 6% of the mean over the period.

Since sewage is not the only source of BOD and DO pollution, the presence of other

sources of pollution near urban areas, which are untreated by wastewater treatment

plants, might account for the less pronounced decrease in these pollutants compared to

fecal coliforms. Another possible explanation for the disparity in reduction magnitudes

is that wastewater treatment plants are more effective in reducing fecal coliform levels

than the other pollutants.

Moreover, while the operation of wastewater treatment significantly affected the max-

imum organic pollution levels, it seemingly had no impact on the minimum pollution

levels throughout the year, as shown in Columns 4 to 6. This suggests that water quality

during periods of minimal pollution might already be at a threshold where any further

improvement from wastewater treatment would be minor or negligible.
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5.2 Wastewater treatment and Infant Health

5.2.1 Mortality Results

Main results Table 4 displays the effects on mortality for children under six months

of age, with results robust across various specifications. Column 1 compares children

born in NFHS clusters located downstream urban areas that started wastewater treat-

ment from 2010 onwards to children born in NFHS clusters located downstream of urban

areas where wastewater treatment was proposed or under construction in 2020 by esti-

mating Equation 3. Column 2 adds child, mother, household and weather controls to

this specification.

Based on Gardner [2022]’s estimate in Column 2, mortality decreases by 8.1 children

per 1,000 following the initiation of upstream wastewater treatment, which corresponds

to a 20% reduction relative to the mortality rate over the period 1991-2019. As observed

in the water pollution results, the 95% confidence interval is wide, suggesting a decrease

between 1.2 and 15 children per 1,000, resulting in a reduction of between 3% and 36%

in the mortality rate for children under six months.

Columns 3 and 4 of Table 4 present results from estimating the specification using

urban area fixed effects while controlling for the distance along the river network between

the NFHS cluster and the urban area. The estimates are consistent with the results of the

baseline specification. Table B2 presents consistent results with the Stacked Difference-

in-Differences (Stacked DD) estimator.

Figure 7 summarizes the results across the specifications with NFHS clusters or urban

area fixed effects and the four estimators. Unlike the water pollution regressions, the

classic TWFE estimator is not biased by negative weights, as less than 0.5% of treated

observations are affected (Figure B3). The higher magnitude of standard errors based

on Sun and Abraham [2021]’s estimator may be explained by the fact that when there

are many treated periods and/or cohorts, each average treatment effect on the treated

(ATT) estimate may be imprecisely estimated, leading to larger standard errors in the

weighted average of the ATT. However, in both water pollution and mortality regressions,

the various heterogeneity-robust DiD estimators typically produce similar estimates, as

has been practically observed by Roth et al. [2023].

Table B3 presents results that employ mother fixed effects, controlling for unobserved
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family characteristics that could be correlated with both water quality and infant mor-

tality. In each regression, the sample is restricted to mothers downstream treated urban

areas who gave birth at least to one child before treatment and one child post-treatment

and mothers downstream control urban areas who gave birth to at least two children.

Overall the coefficients are less precise, partly reflecting a reduction in statistical power as

a result of the fewer observations, however the magnitude of the estimates do not change

in comparison with Table 4.

Dynamic specification Figure 8 presents the dynamic effects of wastewater treat-

ment on mortality. I observe no significant pre-trends in the pre-treatment period. Al-

ternative estimators based on the Sun and Abraham [2021] methodology and the simple

two-way fixed effects provide similar results (Figure B4).

Heterogeneity I continue the mortality analysis by examining subgroup responses.

I repeatedly split the sample into two using respectively child sex and the wealth quintile

distribution of households, wherein I study children into the first two quintiles and the

last three quintiles separately. Table A4 presents heterogeneity results according to child

gender and household wealth for Equation 3. The decrease in mortality is larger among

boys and children from low wealth (first and second) quintiles. The higher reduction for

boys is consistent with the medical observation that boys, on average, are more vulnerable

to infections than girls. Since children from low wealth quintiles have lower access to clean

water sources, the effect on lower wealth quintiles suggests that wastewater treatment is

effective in mitigating social inequalities regarding water pollution exposure.

Given the cross-sectional nature of NFHS interviews, the information related to water

treatment, main source of drinking water, and toilet access is recorded based on behavior

at the date of the interview and not at the child’s birth date. Knowing that this informa-

tion may have changed over time, I split the sample into two according to whether the

household reports treating water before drinking, whether the main source of drinking

water at the household level is groundwater or another source, and whether the household

practices open defecation. Table A4 presents heterogeneity results according to drinking

water and sanitation variables. Since only 30% of children are born into households that

treat water before drinking it and 33% of children are born into households that practice
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open defecation at the time of interview, the sample sizes according to these variables

are not comparable. Nevertheless, we observe a mortality decreases of 8.5 children per

1,000 in the sample of children born in households that do not treat water. This estimate

is higher in magnitude than the estimate for the entire sample and supports the sewage

treatment plants effect. Furthermore, the estimate on mortality in households practicing

open defecation is significantly high, corresponding to 43% of the mortality in the sub-

sample (21.6 children per 1,000). In India, open defecation is frequently practiced near

water bodies such as lakes, rivers, and streams. Consequently, wastewater treatment may

provide greater benefits to these households. Heterogeneity in effects according to the

main source of water suggests that the effect for children born in households drinking

sources other than groundwater is slightly higher than for those drinking groundwater.

To explore the heterogeneity of the results based on proximity to a river and an ur-

ban area, I split the sample according to the median distance between NFHS clusters

and the upstream urban area (27 km) and the closest river within the sub-basin (3 km)

downstream of the urban area, respectively. Figure D8 presents the density distributions

of distances between NFHS clusters and, respectively, the closest river and the upstream

urban area. It is important to keep in mind that NFHS randomly displaces the coordi-

nates of the clusters by up to 2 km in urban areas and up to 5 km in rural areas, with an

additional 1% of rural clusters displaced by up to 10 km. This displacement introduces

classical measurement error. However, there is no reason to believe that the error would

be disproportionately greater in the treatment group compared to the control group, so

it is not a significant cause for concern in the difference-in-differences setting. Table A6

presents the estimates based on the distance thresholds. The decrease in mortality for

children born in the immediate vicinity of a river is greater than for those born further

away. The results according to proximity to the urban area are less clear, as one might

expect a greater decrease in mortality for those closer to urban areas. However, fac-

tors such as access to healthcare and other unobserved characteristics may explain why

households further away benefit more from the reduction in pollution.

Finally, Figure B5 compares the estimates of equation 3 for mortality rates from

neonatal mortality (child died before one month) to infant mortality (child died before

one year) at the monthly level. While results are consistent for the different variables,

mortality under four and six months are most significantly affected. This result is likely
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due to children aged 4 to 6 months being more susceptible to gastrointestinal infections,

given their still-developing digestive systems (See Section 2). Additionally, from 4 months

onwards, many mothers no longer exclusively breastfeed and introduce complementary

foods to their children, which increases the risk of contamination (Figure 3).

5.2.2 Other health outcomes

During each NFHS interview, anthropometric measurements, blood tests, and informa-

tion on the health of children under 5 years are collected, either performed by the NFHS

interviewer or reported by the mother. However, as NFHS surveys are cross-sectional,

few health variables, apart from mortality, can be studied in a panel at the NFHS cluster

level. Using NFHS cluster fixed effects is important because it controls for unobserved

birthplace characteristics such as access to healthcare services, road infrastructure, and

the neighborhood. Variables related to other health outcomes do not permit the detailed

study of the effect of wastewater treatment on health with the same precision as mortality

variables (See Appendix C).

6 Robustness checks

Certain factors could challenge the benefits of wastewater treatment on mortality in chil-

dren under six months, especially when questioning the independence of the treatment’s

timing. Plausible confounders must affect downstream sub-basins differently only after

the urban area starts wastewater treatment.

6.1 Composition and Births

There may be concerns that the composition of mothers somehow changes. In other

words, it is possible that the mothers giving birth after wastewater treatment begins in

upstream urban areas possess different characteristics in ways that could explain some

of the variation in health outcomes. To test if individuals sort into treated communities,

I explore how demographic and maternal characteristics evolve after that wastewater

treatment starts upstream the treated sub-basins.

I investigate how wastewater treatment impacts the controls used in the mortality

regressions. Tables B4, B5 and B6 estimate Equation 3 on respectively child, mother
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and household controls.

The only variable influenced by wastewater treatment is the one indicating that the

mother has received a higher education. This result suggests a potential migration of

mothers with higher education levels to the treatment areas, a logical outcome if the

reduction in pollution becomes noticeable or known. To verify that this migration is

not the reason why mortality decreases after wastewater treatment, I run the regression

following Equation 3 by excluding from the main sample all children born to mothers with

the highest education levels. Table B7 presents the results excluding children born from

mothers with higher education with the Gardner [2022], the Sun and Abraham [2021]

and the classical TWFE methodologies, as well as Table B8 with the stacked regression

approach. Figure B6 summarizes the results. The magnitude of the estimates does not

change. The Gardner [2022]’s estimate suggests a decrease of 7.4 children per 1,000. The

mortality decrease in downstream sub-basins after wastewater treatment begins in urban

areas is not attributable to the potential migration of highly-educated mothers.

These tests provide supporting evidence that the mortality results are unlikely to be

explained by sorting pattern of mothers into treated sub-basins.

6.2 Effect on upstream areas

Another potential concern is that other local policies coincide with wastewater treatment.

From 2014 to 2019, the Government of India initiated the Schachh Bharat Mission (SBM)

or Clean India Mission at the country-level to achieve an "open-defecation free" India

through construction of toilets. If toilet construction coincided with sewage treatment,

improved sanitation could be a potential confounder in the observed decrease in mortality.

Table B9 replicates the regressions from Table 4, focusing on mortality in sub-basins

upstream of urban areas. The estimates are non-significant (and positive), suggesting that

the reduction in mortality occurred only downstream of the urban areas. These findings

suggest that the reduction in infant mortality can be attributed to improvements in water

quality in the sub-basins downstream urban areas that started wastewater treatment.

Figure B7 summarizes the results across the specifications with NFHS clusters or

urban area fixed effects and the four estimators.
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6.3 Comparison of upstream versus downstream mortality

The results are robust to the comparison of treated downstream outcomes to upstream

outcomes with urban area fixed effects (Table B10). In this analysis, statistical power

is lower because the restriction to years when treated urban areas that have both down-

stream and upstream births outcomes halves the sample of treated child births to around

3,700, whereas there are 7,700 in the main specification. It is also a bit less precise be-

cause without birth place fixed effect, we don’t account for local factors such as healthcare

provision or road access.

6.4 Parental behavior

The potential transmission of fecal pathogens is significantly influenced by drinking water

treatment, hygienic practices like open defecation, and exclusive breastfeeding. Fecal col-

iforms, like other bacteria, can typically be inhibited in growth by boiling water, treating

with chlorine, or using UV disinfection. The World Health Organization recommends ex-

clusively breastfeeding infants up to the age of 6 months to protect them from potential

infections (See Section 2).

Given the cross-sectional nature of NFHS interviews, which are used to construct

the birth history panel, there is no control over various parental behaviors related to

water treatment, toilet use, or liquids given during childbirth for the entire panel. These

variables are recorded based only on behavior at the date of the interview.

Table B11 presents summary statistics of water treatment, open defecation practices,

toilet sharing, and liquids given to children under the age of 6 months at the interview

date. Panel A pertains to children born in 2015-2016 (NFHS-4) and Panel B to those born

in 2019 (NFHS-5). Observations are available for approximately 600 children in both the

control and treatment (200 pre-treatment and 400 post-treatment) groups respectively

according to NFHS-4, and for about 360 children in each group per NFHS-5. Due to

low statistical power, no major differences are found between the two groups regarding

parental behavior towards water treatment, open defecation, or exclusive breastfeeding.

These comparisons suggest that the mortality results are not driven by differences in

parental behavior.
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6.5 Falsification test on air pollution

As falsification test, I estimate the effect of starting wastewater treatment on air pollution

measured by the minimum, mean and maximum PM 2.5 annually from 1998-2020. I use

urban area and year fixed effects, while clustering standard errors at the state level.

Table B12 shows that air pollution, measured by minimum, mean and maximum PM

2.5 over the year, did not respond to wastewater treatment within urban areas.

This is supportive evidence that other environmental policies related to air quality

are not systematic confounders of wastewater treatment and that health impacts are

attributable to water pollution and not to a change in air quality.

7 Discussion

7.1 Mortality burden of late treatment

I can calculate the total number of child deaths that could have been prevented if wastew-

ater treatment was implemented since 2010 in control urban areas. From 2010 to 2019,

approximately 5.3 million births took place in control sub-basins.17 Using the Gardner

[2022]’s estimate of 8.1 (95% CI: [-1.2; -15.0]) prevented deaths per 1,000 births in treated

sub-basins (Table 4), a back-of-the-envelope calculation implies that 42,033 deaths (95%

CI: [6,316; 78,950]) could have been prevented if wastewater treatment was implemented

earlier.18

7.2 Cost-Effectiveness over the period 2010-2019

To compare the cost-effectiveness of the construction and operation of sewage treatment

plants with other interventions, I use the commonly used measure of overall disease

burden: the Disability-Adjusted Life Year (DALY). The DALY expresses years of life lost

to premature death and years lived with a disability of specified severity and duration.

One DALY is thus one lost year of healthy life. To calculate DALYs for a given condition in

a population, years of life lost (YLLs) and years lived with disability of known severity and

17I estimate the number of live births per year in each downstream sub-basin by computing the
WordlPop total population in each sub-basin and using the Indian crude birth rate (per 1,000 people)
provided by the World Bank (https://genderdata.worldbank.org/indicators/sp-dyn-cbrt-in/

?geos=IND&view=trend)
185, 263, 387 × 8.1/1, 000 ∼ 42, 633
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duration (YLDs) for that condition must each be estimated, and then the total summed

[Murray and Lopez, 1996]. The Commission on Macroeconomics and Health of the World

Health Organization defines very cost-effective interventions as those which avert each

additional DALY at a cost less than GDP per capita, and cost-effective interventions

as those where each DALY averted costs between one and three times GDP per capita

[WHO, 2002].

My estimates suggest that reductions in pollution lead to an 8.1 (95% CI: [1.2; 15.0])

children per 1,000 decrease in average mortality under-six months in sub-basins down-

stream from urban areas that started wastewater treatment from 2010 onwards. I use

this information to quantify the DALYs loss averted over the period 2010-2019. This es-

timation is conservative because I assume that mortality benefits only accrue to infants,

and that there are no other morbidity benefits. In addition, the mortality benefits focus

on places located downstream of urban areas that treat wastewater, without considering

benefits within the urban areas themselves.

I calculate the total number of child births that took place in the sub-basins down-

stream from the 134 treated urban areas included in the mortality regressions. From 2010

to 2019, approximately 5.6 million births took place in treated sub-basins.19 Using the

estimate of 8.1 (95% CI:[1.2;15.0]) prevented deaths per 1,000 births (Table 4), a back-

of-the-envelope calculation implies that over 45,342 (95% CI: [6,717; 83,967]) deaths have

been prevented through wastewater treatment over the period 2010-2019.20

In the 134 treated urban areas included in the analysis, 214 sewage treatment plants

are operational, accounting in total for 3,000 megaliters treated per day (MLD). Costs

associated with implementation, operation, and maintenance differ significantly based

on the treatment technology used. Specific requirements — including land area, energy

consumption, chemical needs, and skilled labor levels — vary depending on the technol-

ogy. I use the upper bound of the expenditure for both capital cost, and operation and

maintenance cost to estimate the total expense of treating 1 MLD.

I assume that the capital cost for treating 1 MLD averages INR 40 million using

Indian government infrastructure data.21 It encompasses expenses related to sewage

19I estimate the number of live births per year in each downstream sub-basin by computing the
WordlPop total population in each sub-basin and using the Indian crude birth rate (per 1,000 people)
provided by the World Bank (https://genderdata.worldbank.org/indicators/sp-dyn-cbrt-in/

?geos=IND&view=trend)
205, 597, 793 × 8.1/1, 000 ∼ 45, 342
21I gathered data about infrastructure projects implemented by the Government, either through tradi-
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collection, treatment, and disposal systems and exceeds any capital cost detailed for

specific technologies in the CPCB [2013]’s report.

For annual operation and maintenance costs, I rely on the upper-limit values from

the CPCB [2013]’s report. These costs break down to INR 0.5 million/MLD for power,

INR 0.2 million/MLD for repairs, INR 0.9 million/MLD for chemicals, and INR 3.4

million/MLD for manpower, totaling approximately INR 5 million/MLD in overall annual

operation and maintenance expenses. Over 10 years, the total operation and maintenance

cost then equals to around INR 50 million/MLD.

The total cost of constructing and operating the 214 sewage treatment plants from

2010 to 2019 reaches an upper bound of INR 270 billion.22 This yields to a cost per life

saved of INR 6 million (US$93k in 2015).23 The lower bound (6,717) and the upper bound

(83,967) of the number of deaths prevented through wastewater treatment, based on the

95% confidence interval, suggest a cost per life saved ranging between INR 3 million and

40 million (ie, between $50k and 628k in 2015). Assuming that infant deaths result in the

loss of 70 disability-adjusted life years (DALYs), the life expectancy at birth in India (70

years),24 it yields a cost per DALY loss averted of INR 85k ($1,330 in 2015). Uncertainty

based on the 95% confidence interval results in a cost per DALY averted ranging between

INR 46k and 574k (ie, between $718 and 8,972 in 2015).

The mean cost per DALY averted is lower than GDP per capita in India (constant

2015 USD 1,590 in 2015),25 the threshold long used by the WHO to identify highly

cost-effective interventions. However, wastewater treatment is far less cost-effective than

water treatment with chlorine tablets in Kenya, at USD 39 per DALY averted [Kre-

mer et al., 2023], or caretaker training for cleaning wells in Bangladesh, at USD 25 per

DALY averted [Habib et al., 2023]. The WHO-CHOICE’s latest publication on maternal,

newborn, and child health [Stenberg et al., 2021] does not include estimates for water

treatment or Indian interventions for national comparison. It focuses on South-East

tional procurement or Public Private Partnership (PPP), by webscraping the Department of Economic
Affairs website in June 2021: https://www.pppinindia.gov.in/iipdf_projects. I compute the mean
implementation costs of 25 sewage treatment plants funded between 2009-2017.

223, 000 × (40 + 50) × 106 ∼ 270 billion
23270 × 109/45, 342 ∼ 6 × 106

According to the OECD, the exchange rate in 2015 is US$1 = INR 64 (https://data.oecd.org/

conversion/exchange-rates.htm). 270 × 109/45, 342/64 ∼ 93 × 103

24https://www.who.int/data/gho/data/indicators/indicator-details/GHO/

life-expectancy-at-birth-(years)
25https://data.worldbank.org/indicator/NY.GDP.PCAP.KD?end=2015&locations=IN-US&name_

desc=false&start=2015
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Asia (SEA) and Eastern Sub-Saharan Africa (SSA-E). In SEA, overall costs—and thus

cost-effectiveness ratios—are generally higher than in SSA-E. In SEA, half (26) of the

individual interventions and packages have average cost-effectiveness ratios below I$100,

whereas 21 interventions demonstrate ratios between I$100-I$1000, and 3 interventions

fall above I$1000.

Overall, wastewater treatment appears to be one of the least cost-effective interven-

tions. However, the benefit is calculated only on mortality of less than six months and

does not take into account other factors such as morbidity, productivity, or human capi-

tal. Additionally, it can have broader benefits for ecosystems and related activities, such

as fish farming, that are not represented in the analysis. Further avenue for research lies

in investigating the benefits of wastewater treatment on these other factors.

8 Conclusion

This paper examines the role of wastewater treatment in improving water quality and

mitigating the negative health impacts of downstream pollution. I focus on the recent op-

erations of sewage treatment plants in India. Using detailed river water quality datasets,

along with geo-localized data on child births and deaths, the analysis shows that recent

wastewater treatment installations have been cost-effective. Fecal coliform levels within

and downstream urban areas that started sewage treatment from 2010 onwards decreased

by 53% (95% CI: [7; 99]). Mortality under the age of six months decreased by 20% (95%

CI: [3; 36]) in sub-basins downstream urban areas that started wastewater treatment

compared to those located downstream urban areas where plants were not operational as

of 2020. The estimates suggest that the cost per life saved through the construction and

operation of sewage treatment plants over the period 2010-2019 is INR 6 million ($93,000

in 2015). The cost per disability-adjusted life year (DALY) averted is INR 73,308 (USD

1,145 in 2015), which is lower than the GDP per capita in India, rendering wastewater

treatment cost-effective based on this threshold long used by the WHO to identify highly

cost-effective interventions. However, wastewater treatment appears to be one of the least

cost-effective interventions for improving child health compared to WHO-CHOICE esti-

mates in South-East Asia. Since the benefit is calculated only on mortality for children

under six months and does not take into account other factors such as morbidity, pro-
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ductivity, human capital, or the impact on ecosystems and related activities, a further

avenue for research lies in investigating the benefits of wastewater treatment on these

other factors.

Surprisingly, these benefits have occured despite many sewage treatment plants not

operating at maximum capacity and others failing to meet stringent environmental stan-

dards. It suggests that the effects of fully functional and compliant plants could exceed

the current estimates, potentially offering higher health improvements. Thus, the ob-

served reductions in fecal coliforms and infant mortality may represent a conservative

baseline from which to evaluate the full potential of wastewater treatment enhancements.

From a policy standpoint, India still holds potential to realize health benefits through

enhanced wastewater treatment. As of 2020, the capacity of municipal sewage treatment

plants covered less than 30% of the total urban wastewater estimate.

Given that water pollution is not monitored either within nor downstream each urban

area, this paper advocates for the enforcement of water quality monitoring as a means

to better control water pollution. To ensure global access to safe and affordable drinking

water, better information is needed. This can be achieved through enhanced risk-based

monitoring by national agencies and water service providers [Charles and Greggio, 2021].

There is especially an urgent need for reducing widespread exposure to fecal contami-

nation through drinking water services in low- and middle-income countries [Bain et al.,

2021]. To provide a better risk management to reduce fecal contamination, cross-sectional

water quality data can also be collected in household surveys and can be used to examine

risk factors for contamination.

India’s experience offers valuable insights for other developing countries that are facing

alarming inland water pollution levels. In many low-income countries, the infrastructure

for wastewater treatment is often inadequate or does not exist. Additionally, those most

vulnerable to pollution often lack the resources to engage in avoidance behaviors. Oper-

ating sewage treatment plants is a cost-effective tool to help households mitigate health

damages from water pollution. Furthermore, in regions where water scarcity is a pressing

issue, properly treated wastewater can serve as an alternative water source for a variety

of uses. The implementation of effective wastewater treatment infrastructure, therefore,

not only reduces the direct health impacts of water pollution but can also address water

scarcity by augmenting the available water resources. The potential for water reuse can
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be a key factor in choosing technologies for the treatment and disposal of sludge and

residues [Patel et al., 2021, Minier et al., 2023, Foglia et al., 2023].
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9 Figures

Figure 1: Example of geolocation of sewage treatment plants on Google Maps

UASB technology in Lucknow

SBR technology in Dehradun
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Figure 2: Map of main basins according to the HydroSHED basins at Pfafstetter level 12

Notes: In HydroSHED, the main basin is defined by the most downstream sink, i.e. the outlet of the
main river basin. The name of the basin matches the name of the river that has the highest number of
monitoring stations in the water quality dataset.
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Figure 3: Liquids consumed by children in the day or night preceding the NFHS interview
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Figure 4: Histogram of the first year in which urban areas started operating sewage
treatment plants
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Figure 5: DiD water pollution results summary

Notes: Figures plot coefficient estimates and 95% confidence intervals for the difference-in-differences on
the logarithm of fecal coliforms based on different estimators: Gardner [2022], Sun and Abraham [2021],
stacked regression and classic TWFE with and without controls, as well as with monitoring station fixed
effect or urban area fixed effects.
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Figure 6: Pollution Event Study

Notes: This figure shows the coefficients of the estimators according to the Gardner [2022] methodology.
The 95% confidence intervals bands are shown. Data include years 1991-2020. The model includes
monitoring station fixed effects and main basin-by-year fixed effects, as well as controls for precipitation
and temperature. Standard errors are clustered at the urban area level. All observations more than 10
years before treatment are set at 10 years before treatment and all observations more than 6 years after
treatment are set at 6 years after treatment.
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Figure 7: DiD mortality results summary

Notes: Figures plot coefficient estimates and 95% confidence intervals for the difference-in-differences on
the mortality under six months based on different estimators: Gardner [2022], Sun and Abraham [2021],
stacked regression and classic TWFE with and without controls, as well as with NFHS cluster fixed effect
or urban area fixed effects.
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Figure 8: Mortality Event Study

Notes: This figure shows the coefficients of the estimators according to the Gardner [2022] methodology.
The dependent variable is an indicator for death in the first six months of life × 1,000. The 95%
confidence intervals bands are shown. Data include years 1991-2019. The model includes cluster fixed
effects and year fixed effects, as well as controls for child-level, mother-level, household-level and weather
determinants of health. Child controls include indicators for the child being a female, being a multiple
birth, being the first born, being the fourth or more born. Controls at the mother level include indicators
for the mother being either under 18 years old or over 35 years old at the time of the child’s birth,
educational attainment (primary, secondary education or higher education), religious affiliation (being
Muslim, neither Hindu nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other
backward caste). Household controls include indicators for first, second, fourth and fifth wealth quintiles.
Weather controls include the logarithmic transformation of the sum of precipitation felt in one year within
a 20km radius of the cluster coordinates and the daily mean temperature over the year within a 20km
radius of the cluster coordinates. Standard errors are clustered by urban area. All observations more
than 10 years before treatment are set at 10 years before treatment and all observations more than 6
years after treatment are set at 6 years after treatment.

49



10 Tables

Table 1: Presentation of the main regression samples

Fecal coliforms levels Infant mortality

All All Treated Treated All All All Treated Treated Treated
urban monitoring urban monitoring urban NFHS births urban NFHS births
areas stations areas stations areas clusters areas clusters

Year (1A) (1B) (1C) (1D) (2A) (2B) (2C) (2D) (2E) (2F)

1991 42 56 0 0 215 878 1250 0 0 0
1992 38 52 0 0 229 1101 1662 0 0 0
1993 49 66 0 0 242 1212 1827 0 0 0
1994 46 62 0 0 244 1335 2112 0 0 0
1995 55 75 0 0 258 1509 2549 0 0 0
1996 61 87 0 0 252 1513 2648 0 0 0
1997 63 91 0 0 247 1622 2966 0 0 0
1998 62 91 0 0 251 1660 3069 0 0 0
1999 56 79 0 0 261 1719 3271 0 0 0
2000 59 85 0 0 257 1807 3588 0 0 0
2001 66 99 0 0 253 1709 3333 0 0 0
2002 78 125 0 0 263 1831 3886 0 0 0
2003 68 102 0 0 257 1802 3751 0 0 0
2004 71 114 0 0 255 1805 3764 0 0 0
2005 60 91 0 0 257 1785 3740 0 0 0
2006 74 118 0 0 254 1819 3793 0 0 0
2007 78 122 0 0 257 1822 3883 0 0 0
2008 90 154 0 0 260 1846 4035 0 0 0
2009 98 178 0 0 255 1852 3912 0 0 0
2010 106 194 3 3 263 1850 3926 15 106 184
2011 101 195 6 17 258 1814 3780 25 191 355
2012 110 209 8 20 261 1835 4035 39 254 493
2013 101 196 17 33 261 1866 4058 53 392 788
2014 106 192 24 46 258 1828 3900 68 510 1061
2015 110 206 29 64 245 1468 2990 83 562 1064
2016 110 214 34 73 230 1030 2089 92 442 905
2017 116 236 44 88 235 1020 2030 101 474 950
2018 127 256 57 119 230 1011 2096 119 524 1087
2019 133 273 64 133 202 759 1330 111 473 856
2020 115 243 55 115

Total 4261 711 89273 7743

Notes: Columns 1A and 2A tabulate the total number of urban areas in each year, while columns 1C
and 2C tabulate the number of urban areas that treat wastewater in each year. Column 1B tabulates the
total number of monitoring stations in each year, while column 1D tabulates the number of monitoring
stations located within or downstream an urban area that treats wastewater in this year. Column
2B tabulates the number of NFHS clusters downstream an urban area in each year, while column 2E
tabulates the number of NFHS clusters downstream an urban area that treats wastewater in this year.
Column 2C tabulates the number of children born downstream an urban area in each year, while column
2F tabulates the number of children born downstream an urban area that treats wastewater in this year.
I subject the full sample to two restrictions before analysis, both of which applied here. (i) If there is an
outcome data (water pollution measure or birth) from a monitoring station or NFHS cluster related to
an urban area after it has started wastewater treatment, then that monitoring station or NFHS cluster
is only included if it has at least one data point before the urban area starting wastewater treatment.
(ii) If the urban area doesn’t treat wastewater in 2020, then the monitoring station or the NFHS cluster
is only included if it has at least two outcome data points. A monitoring station or a NFHS cluster is
only included in the subsequent regressions if it has outcome data for the specific dependent variable of
that given regression.
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Table 2: Effect on Fecal coliforms levels

Dependent Variable: Log(Average Fecal coliforms)
(1) (2) (3) (4)

Estimator : Gardner (2022) -0.5245∗∗ -0.5302∗∗ -0.5492∗∗ -0.5535∗∗

(0.2361) (0.2359) (0.2247) (0.2280)

Estimator : S & A (2021) -0.5041∗∗ -0.4953∗∗ -0.5383∗∗ -0.5310∗∗

(0.2342) (0.2342) (0.2336) (0.2325)

Estimator : TWFE -0.3718 -0.3651 -0.4252 -0.4209
(0.2854) (0.2783) (0.2940) (0.2902)

Weather controls X X
River distance X X
Urban area FE X X
Monitoring station FE X X
Year-Main basin FE X X X X

Observations 4,261 4,261 4,261 4,261
Period 1991-2020 1991-2020 1991-2020 1991-2020
Number of Stations 313 313 313 313
Number of Urban areas 142 142 142 142

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. Dependent variables are annual monitoring stations
measures. In each regression, treated monitoring stations have at least one observation pre-treatment
and one observation post-treatment and control monitoring stations have at least two observations. The
model in columns (1) and (2) includes monitoring station fixed effects and main basin-by-year fixed
effects while the model in columns (3) and (4) includes urban area fixed effects and controls for the
river distance between the monitoring station and the urban area. Columns (2) and (4) add controls for
precipitation and temperature. Standard errors are clustered at the urban area level. Asterisks denote
p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).
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Table 3: Effect on organic pollution measures

Highest pollution Lowest pollution

Dependent Variable: Log(Max Fcoli) Log(Max BOD) Min DO Log(Min Fcoli) Log(Min BOD) Max DO
(1) (2) (3) (4) (5) (6)

Estimator : Gardner (2022) -0.5575∗∗ -0.2362∗∗∗ 0.3580∗∗ -0.1420 0.0013 -0.2085∗

(0.2477) (0.0600) (0.1563) (0.1866) (0.0524) (0.1212)

Estimator : S & A (2021) -0.5024∗∗ -0.1134 0.4637∗∗∗ -0.1205 0.1612∗∗ -0.1637
(0.2445) (0.0721) (0.1635) (0.2110) (0.0780) (0.1365)

Estimator : TWFE -0.3825 -0.1803∗∗∗ 0.4835∗∗∗ -0.0608 0.0318 -0.0685
(0.2945) (0.0593) (0.1454) (0.2073) (0.0767) (0.1507)

Weather controls X X X X X X
Monitoring station FE X X X X X X
Year-Main basin FE X X X X X X

Observations 4,261 5,952 5,820 4,261 5,952 5,820
Period 1991-2020 1991-2020 1991-2020 1991-2020 1991-2020 1991-2020
Number of Stations 313 395 390 313 395 390
Number of Urban areas 142 166 164 142 166 164
Mean of Dep. Variable 5.603 8.085

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and Abraham [2021] and classic TWFE methodologies.
Dependent variables are annual monitoring stations measures. In each regression, treated monitoring stations have at least one observation pre-treatment and
one observation post-treatment and control monitoring stations have at least two observations. Contrary to fecal coliforms and biological oxygen demand (BOD)
levels, dissolved oxygen (DO) levels are inversely proportional to pollution. All specificationq include controls for precipitation and temperature, monitoring
station fixed effects and main basin-by-year fixed effects. Standard errors are clustered at the urban area level. Asterisks denote p-value < 0.10 (*), < 0.05 (**),
or < 0.01 (***).
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Table 4: Effect on Downstream Mortality

Dependent Variable: Child died before the age of six months
(1) (2) (3) (4)

Estimator : Gardner (2022) -7.132∗∗ -8.091∗∗ -5.367 -5.750∗

(3.463) (3.514) (3.416) (3.369)

Estimator : S & A (2021) -8.531 -10.19 -7.374 -8.929
(7.069) (6.977) (7.090) (6.970)

Estimator : TWFE -9.496∗∗∗ -10.49∗∗∗ -6.968∗∗ -7.497∗∗

(3.383) (3.378) (3.360) (3.302)

Extended controls X X
Urban area FE X X
NFHS Cluster FE X X
Birth year FE + Birth month FE X X X X

Observations 89,273 84,916 89,273 84,916
Period 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 2387 2348 2387 2348
Number of Urban areas 272 272 272 272
Mean of Dep. Variable 40.863 41.182 40.863 41.182

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. The model in columns (1) and (2) includes NFHS
cluster fixed effects while the model in columns (3) and (4) includes urban area fixed effects, all models
include birth year and birth month fixed effects. Mortality variables are scaled as described in the
text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child
controls include indicators for the child being a female, being a multiple birth, being the first born,
being the fourth or more born. Controls at the mother level include indicators for the mother being
either under 18 years old or over 35 years old at the time of the child’s birth, educational attainment
(primary, secondary education or higher education), religious affiliation (being Muslim, neither Hindu
nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste). Household
controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include
the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the
cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster
coordinates. Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value
< 0.10 (*), < 0.05 (**), or < 0.01 (***).
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Appendices

A Additional Results

Figure A1: Comparison of fecal coliforms levels over the period 1985-2001 in India versus
in the USA (Author’s computation based on Greenstone and Hanna [2014] (India) and
Keiser and Shapiro [2019] (USA) data)

Notes: Dashed lines correspond to Indian designated best-use water quality criteria under the National
Water Quality Monitoring Programme (Figure D1).
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Figure A2: Measures of pollution from Greenstone and Hanna [2014] extended over the period 2005-2020
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Figure A3: Annual means of average fecal coliforms in the surface water quality dataset
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Figure A4: Average (left) and Median (right) population density annual means by treat-
ment group computed on WorldPop estimates

x

57



Figure A5: Annual means of the logartithmic transformation of fecal coliforms levels by
treatment group

Figure A6: Annual means of mortality in the first six months of life by treatment group

Notes: The mortality variable is an indicator for death in the first six months of life × 1,000.
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Table A1: Water summary statistics

Means Difference p-value N. Obs.

Control Treated (t-test) Control Treated

Panel A. 1991-2009

Log(average fecal coliforms) 5.259 6.046 0.787 0 737 1, 202
Log(min fecal coliforms) 3.375 4.058 0.683 0 737 1, 202
Log(max fecal coliforms) 5.731 6.513 0.782 0 737 1, 202
Log(min BOD) -0.220 0.108 0.328 0 1, 170 1, 721
Log(max BOD) 1.018 1.291 0.273 0 1, 170 1, 721
Min DO (mg/L) 6.183 5.550 -0.633 0 1, 144 1, 808
Max DO (mg/L) 8.576 8.085 -0.491 0 1, 144 1, 808
Log Rainfall 27.956 27.805 -0.151 0 1, 217 1, 851
Air Temperature (°C) 25.548 24.886 -0.662 0 1, 217 1, 851

Panel B. 2010-2019

Log(average fecal coliforms) 5.820 6.343 0.523 0 1, 193 1, 429
Log(min fecal coliforms) 4.245 4.848 0.604 0 1, 193 1, 431
Log(max fecal coliforms) 6.267 6.790 0.523 0 1, 193 1, 429
Log(min BOD) 0.197 0.352 0.154 0 1, 627 1, 767
Log(max BOD) 1.202 1.507 0.305 0 1, 626 1, 767
Min DO (mg/L) 5.690 5.128 -0.562 0 1, 554 1, 716
Max DO (mg/L) 8.144 7.595 -0.549 0 1, 554 1, 717
Log Rainfall 27.993 27.886 -0.108 0 1, 638 1, 797
Air Temperature (°C) 25.199 24.954 -0.245 0.008 1, 638 1, 797

Notes: Panel A compares the summary statistics between monitoring stations within or downstream
urban areas where wastewater treatment started between 2010 and 2020 and monitoring stations within
or downstream urban area where wastewater treatment is in project in 2020 before wastewater treatment
started in the sample (before 2010), while Panel B compares the summary statistics since 2010 when
the first operation of sewage treatment plants were observed in the data. The unit of observations is
the monitoring station level. Contrary to fecal coliforms and biological oxygen demand (BOD) levels,
dissolved oxygen (DO) levels are inversely proportional to pollution.
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Table A2: Mortality summary statistics

Means Difference p-value N. Obs.

Control Treated (t-test) Control Treated

Panel A. 1991-2009

Mortality before 6 months 41.950 45.224 3.275 0.028 35, 781 39, 293
Child female 0.477 0.467 -0.009 0.012 35, 781 39, 293
Child multiple birth 0.013 0.013 -0.0001 0.925 35, 781 39, 293
Child first born 0.327 0.342 0.015 0 35, 781 39, 293
Child birth order sup 4 0.195 0.174 -0.021 0 35, 781 39, 293
Mother under 18 at birth 0.090 0.083 -0.008 0 35, 781 39, 293
Mother older 35 at birth 0.017 0.013 -0.004 0 35, 781 39, 293
Mother no educ 0.569 0.497 -0.072 0 35, 781 39, 293
Mother primary educ 0.156 0.166 0.010 0 35, 781 39, 293
Mother secondary educ 0.252 0.308 0.056 0 35, 781 39, 293
Mother higher educ 0.022 0.029 0.006 0 35, 781 39, 293
Mother hindu 0.737 0.798 0.060 0 35, 781 39, 293
Mother muslim 0.184 0.130 -0.054 0 35, 781 39, 293
Mother scheduled caste (SC) 0.205 0.261 0.056 0 33, 369 38, 371
Mother scheduled tribe (ST) 0.148 0.053 -0.094 0 33, 369 38, 371
Mother other backward caste (OBC) 0.455 0.465 0.010 0.007 33, 369 38, 371
HH wealth lowest quintile 0.272 0.136 -0.136 0 35, 781 39, 293
HH wealth second quintile 0.256 0.237 -0.019 0 35, 781 39, 293
HH wealth fourth quintile 0.157 0.203 0.046 0 35, 781 39, 293
HH wealth highest quintile 0.095 0.184 0.089 0 35, 781 39, 293
Log Rainfall 27.807 27.549 -0.258 0 35, 781 39, 293
Air Temperature (°C) 24.670 24.950 0.280 0 35, 781 39, 293

Panel B. 2010-2019

Mortality before 6 months 36.357 32.347 -4.010 0.038 16, 943 18, 858
Child female 0.479 0.473 -0.007 0.207 16, 943 18, 858
Child multiple birth 0.016 0.016 0.00003 0.981 16, 943 18, 858
Child first born 0.347 0.366 0.019 0 16, 943 18, 858
Child birth order sup 4 0.170 0.150 -0.020 0 16, 943 18, 858
Mother under 18 at birth 0.036 0.027 -0.009 0 16, 943 18, 858
Mother older 35 at birth 0.040 0.035 -0.004 0.029 16, 943 18, 858
Mother no educ 0.352 0.279 -0.074 0 16, 943 18, 858
Mother primary educ 0.148 0.140 -0.009 0.019 16, 943 18, 858
Mother secondary educ 0.433 0.474 0.040 0 16, 943 18, 858
Mother higher educ 0.066 0.108 0.042 0 16, 943 18, 858
Mother hindu 0.725 0.782 0.057 0 16, 943 18, 858
Mother muslim 0.196 0.156 -0.040 0 16, 943 18, 858
Mother scheduled caste (SC) 0.221 0.268 0.046 0 15, 830 18, 435
Mother scheduled tribe (ST) 0.164 0.053 -0.112 0 15, 830 18, 435
Mother other backward caste (OBC) 0.439 0.466 0.027 0 15, 830 18, 435
HH wealth lowest quintile 0.294 0.139 -0.155 0 16, 943 18, 858
HH wealth second quintile 0.248 0.229 -0.019 0 16, 943 18, 858
HH wealth fourth quintile 0.160 0.205 0.045 0 16, 943 18, 858
HH wealth highest quintile 0.093 0.188 0.095 0 16, 943 18, 858
Log Rainfall 27.833 27.576 -0.256 0 16, 943 18, 858
Air Temperature (°C) 24.759 25.130 0.371 0 16, 943 18, 858

Notes: Panel A compares the summary statistics between children born downstream urban areas where
wastewater treatment started between 2010 and 2020 and children born downstream urban area where
wastewater treatment is in project in 2020 before wastewater treatment started in the sample (before
2010), while Panel B compares the summary statistics since 2010 when the first operation of sewage
treatment plants were observed in the data. Mortality before 6 months is the number of deaths among
children less than six months old, scaled per 1,000 births. The unit of observations is the child level.
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Table A3: Comparison of surface area and population of urban areas reporting the first
year of sewage treatment

Urban areas reporting sewage treatment plants

Under Starting to operate
construction

in 2020 between 2010 and 2020 before 2010

N=185 N=273 N=117

Variable Mean Mean Diff Mean Diff
(1) (2) (2)-(1) (3) (3)-(1)

Surface (km2) 46.3 58.6 12.3∗∗ 94.8 48.5∗∗

WorldPop population
2000 76,529 148,567 72,038∗ 453,028 376,4995∗∗

2010 84,036 164,155 80,119∗ 535,273 451,237∗∗

Notes: Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***) for the t-test.
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Table A4: Effect on Mortality - Heterogeneity analysis (1)

Dependent Variable: Child died before the age of six months

Female Male Low wealth High wealth
quintiles quintiles

(1) (2) (3) (4)

Estimator : Gardner (2022) -6.228 -9.770∗ -12.55∗ -7.578
(4.685) (5.544) (6.766) (4.642)

Estimator : S & A (2021) -7.629 -12.06 -19.13 -7.520
(10.37) (8.062) (12.22) (6.457)

Estimator : TWFE -8.033∗ -13.08∗∗ -13.52∗∗ -11.51∗∗∗

(4.227) (5.287) (6.549) (4.174)

Extended controls X X X X
NFHS Cluster FE X X X X
Birth year FE + Birth month FE X X X X

Observations 40,205 44,711 39,648 45,268
Period 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 2386 2385 1960 2291
Number of Urban areas 272 272 258 272
Mean of Dep. Variable 37.060 44.888 48.704 34.594

Notes:The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. The model in columns (1) and (2) compares mortality
among female and male children, while the model in columns (3) and (4) compares mortality among low
wealth (first or second) quintile and high wealth (third, fourth and fifth) quintile children. All models
include NFHS cluster fixed effects, birth year and birth month fixed effects. Mortality variables are
scaled as described in the text to generate coefficients that indicate impacts on rates × 1,000 (deaths
per 1,000 children). Extended controls are the same as in the baseline regressions, except that the child
female control is excluded in columns (1) and (2). Standard errors are in parentheses and clustered by
urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).
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Table A5: Effect on Mortality - Heterogeneity analysis (2)

Dependent Variable: Child died before the age of six months

Treating Not treating Drinking Drinking Having Not having
water water groundwater other sources a toilet a toilet
(1) (2) (3) (4) (5) (6)

Estimator : Gardner (2022) -6.383 -8.525∗∗ -5.879 -9.323∗ -4.824 -21.63∗∗∗

(6.313) (4.079) (5.524) (4.906) (4.182) (7.687)

Estimator : S & A (2021) -3.279 -11.30 -9.634 -6.658 -8.915 -17.07
(10.30) (8.250) (11.99) (8.564) (7.832) (11.45)

Estimator : TWFE -7.609 -12.03∗∗∗ -11.30∗∗ -11.02∗∗ -8.043∗∗ -21.73∗∗∗

(5.692) (3.954) (5.427) (4.473) (3.886) (7.794)

Extended controls X X X X X X
NFHS Cluster FE X X X X X X
Birth year FE + Birth month FE X X X X X X

Observations 25,370 59,542 44,008 40,908 57,202 27,714
Period 1991-2019 1991-2019 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 1951 2219 1745 1962 2266 1609
Number of Urban areas 268 271 240 272 272 247
Mean of Dep. Variable 33.938 44.271 47.537 34.345 36.939 49.939

Notes:The table presents the coefficients of the estimators according to the Gardner [2022], Sun and Abraham [2021] and classic TWFE methodologies. The
model in columns (1) and (2) compares mortality among children born in households that treat water before drinking versus those that do not treat water before
drinking. The model in columns (3) and (4) compares mortality among children born in households that primarily drink groundwater versus other sources of
water. The model in columns (5) and (6) compares mortality among children born in households that have access to a toilet versus those that practice open
defecation at the time of interview. All models include NFHS cluster fixed effects, birth year and birth month fixed effects. Mortality variables are scaled as
described in the text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Extended controls are the same as in the baseline
regressions, except that the child female control is excluded in columns (1) and (2). Standard errors are in parentheses and clustered by urban area. Asterisks
denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).

63



Table A6: Effect on Mortality - Heterogeneity analysis (3)

Dependent Variable: Child died before the age of six months

Distance to

River Urban area

< 3km >= 3km < 27km >= 27km
(1) (2) (3) (4)

Estimator : Gardner (2022) -10.33∗∗ -5.796 -2.480 -14.92∗∗∗

(4.968) (5.015) (4.782) (5.316)

Estimator : S & A (2021) -5.203 -15.00 -13.45 -8.238
(7.661) (10.58) (10.05) (8.626)

Estimator : TWFE -10.92∗∗ -9.588∗ -5.730 -15.55∗∗∗

(4.787) (4.868) (4.665) (5.049)

Extended controls X X X X
NFHS Cluster FE X X X X
Birth year FE + Birth month FE X X X X

Observations 41,608 43,308 43,514 41,402
Period 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 243 230 250 184
Number of Urban areas 1166 1182 1226 1122
Mean of Dep. Variable 40.713 41.632 39.964 42.462

Notes:The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. The model in columns (1) and (2) compares mortality
among children born in a NFHS cluster geolocated within 5km of a river or further away, while the
model in columns (3) and (4) compares children born in a NFHS cluster geolocated more or less 25km
downstream of the urban area. All models include NFHS cluster fixed effects, birth year and birth month
fixed effects. Mortality variables are scaled as described in the text to generate coefficients that indicate
impacts on rates × 1,000 (deaths per 1,000 children). Extended controls are the same as in the baseline
regressions. Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value <
0.10 (*), < 0.05 (**), or < 0.01 (***).
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B Robustness

Figure B1: Pollution Event Study with Alternative Estimators

Sun and Abraham [2021] estimator TWFE estimator

Notes: This figure shows the coefficients of the estimators according to the Sun and Abraham [2021] (left
column) and the classic two-way fixed effects (right column) methodology. The 95% confidence intervals
bands are shown. Data include years 1991-2020. The model includes monitoring station fixed effects and
main basin-by-year fixed effects, as well as controls for precipitation and temperature. Standard errors
are clustered at the urban area level. All observations more than 10 years before treatment are set at
10 years before treatment and all observations more than 6 years after treatment are set at 6 years after
treatment.
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Figure B2: TWFE negative weights in classic TWFE regression reported in Column (1)
of Table 2: Effect on Fecal coliforms levels

Figure B3: TWFE negative weights in classic TWFE regression reported in Column (1)
of Table 4: Effect on Downstream Mortality

66



Figure B4: Mortality Event Study with Alternative Estimators

Sun and Abraham [2021] estimator TWFE estimator

Notes: This figure shows the coefficients of the estimators according to the Sun and Abraham [2021]
(left column) and the classic two-way fixed effects (right column) methodology. The dependent variable
is an indicator for death in the first six months of life × 1,000. The 95% confidence intervals bands are
shown. Data include years 1991-2019. The model includes cluster fixed effects and year fixed effects, as
well as controls for child-level, mother-level, household-level and weather determinants of health. Child
controls include indicators for the child being a female, being a multiple birth, being the first born,
being the fourth or more born. Controls at the mother level include indicators for the mother being
either under 18 years old or over 35 years old at the time of the child’s birth, educational attainment
(primary, secondary education or higher education), religious affiliation (being Muslim, neither Hindu
nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste). Household
controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include
the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the
cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster
coordinates. Standard errors are clustered by urban area. All observations more than 10 years before
treatment are set at 10 years before treatment and all observations more than 6 years after treatment
are set at 6 years after treatment.

67



Figure B5: Effect on Mortality - Comparison from neonatal mortality to infant mortality
at the monthly level

Notes: The figure presents the coefficients of the estimators according to the Gardner [2022] methodology.
The model includes NFHS cluster fixed effects and year fixed effects as well as child, mother, household
and weather controls. The coeffcient estimate for the mortality under 6 months is the one presented in
column (2) of Table 4. Mortality variables are scaled as described in the text to generate coefficients
that indicate impacts on rates × 1,000 (deaths per 1,000 children). Standard errors are in parentheses
and clustered by urban area.
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Figure B6: DiD mortality results summary excluding children born from mother with
higher education

Notes: Figures plot coefficient estimates and 95% confidence intervals for the difference-in-differences on
the mortality under six months based on different estimators: Gardner [2022], Sun and Abraham [2021],
stacked regression and classic TWFE with and without controls, as well as with NFHS cluster fixed effect
or urban area fixed effects.
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Figure B7: DiD Upstream mortality results summary

Notes: Figures plot coefficient estimates and 95% confidence intervals for the difference-in-differences on
the mortality under six months based on different estimators: Gardner [2022], Sun and Abraham [2021],
stacked regression and classic TWFE with and without controls, as well as with NFHS cluster fixed effect
or urban area fixed effects.

70



Table B1: Effect on Fecal coliforms levels

Dependent Variable: Log(Average Fecal coliforms)
(1) (2) (3) (4)

Stacked regression -0.4963 -0.4954∗ -0.5746∗ -0.5570∗

(0.3015) (0.2963) (0.3076) (0.3037)

Weather controls X X
River distance X X
Urban area FE X X
Monitoring station FE X X
Year-Main basin FE X X X X

Observations 15,950 15,950 15,950 15,950
Period 1991-2020 1991-2020 1991-2020 1991-2020
Number of Stations 307 307 307 307
Number of Urban areas 139 139 139 139

Notes: The table presents the coefficients of the estimators according to the stacked difference-in-
diferences methodology. The model in columns (1) and (2) includes monitoring station fixed effects
and main basin-by-year fixed effects while the model in columns (3) and (4) includes urban area fixed
effects and controls for the river distance between the monitoring station and the urban area. Columns
(2) and (4) add controls for precipitation and temperature. Standard errors are clustered at the urban
area level. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).
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Table B2: Effect on Mortality

Dependent Variable: Child died before the age of six months
(1) (2) (3) (4)

Stacked regression -11.68∗∗∗ -12.79∗∗∗ -8.588∗ -9.779∗∗

(4.383) (4.333) (4.409) (4.265)

Extended controls X X
Urban area FE X X
NFHS Cluster FE X X
Birth year FE + Birth month FE X X X X

Observations 238,065 225,579 238,065 225,579
Period 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 2386 2344 2386 2344
Number of Urban areas 272 272 272 272
Mean of Dep. Variable 36.813 37.167 36.813 37.167

Notes: The table presents the coefficients of the estimators according to the stacked difference-in-
diferences methodology. The model in columns (1) and (2) includes NFHS cluster fixed effects while
the model in columns (3) and (4) includes urban area fixed effects, all models include birth year and
birth month fixed effects. Mortality variables are scaled as described in the text to generate coefficients
that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child controls include indicators for
the child being a female, being a multiple birth, being the first born, being the fourth or more born.
Controls at the mother level include indicators for the mother being either under 18 years old or over
35 years old at the time of the child’s birth, educational attainment (primary, secondary education or
higher education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation
(scheduled caste, scheduled tribe, or other backward caste). Household controls include indicators for
first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic transformation
of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily
mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in
parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01
(***).
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Table B3: Effect on Mortality with mother fixed effects

Dependent Variable: Child died before the age of six months
(1) (2)

Estimator : Gardner (2022) -6.464 -7.646
(7.012) (7.025)

Estimator : S & A (2021) -19.84 -18.53
(12.14) (12.17)

Estimator : TWFE -11.26∗ -11.32∗

(6.332) (6.375)

Extended controls X
Urban area FE X X
Birth year FE + Birth month FE X X

Observations 55,618 55,618
Period 1991-2019 1991-2019
Number of NFHS Clusters 2249 2249
Number of Urban areas 266 266
Mean of Dep. Variable 42.882 42.882

Notes: The table presents the coefficients of the estimators according to the Gardner [2022] methodology
and the canonical TWFE model. The model in columns (1) and (3) includes NFHS cluster fixed effects
while the model in columns (2) and (4) includes urban area fixed effects, all models include birth year
and birth month fixed effects. In each regression, mothers downstream treated urban areas gave birth at
least to one child before treatment and one child post-treatment and mothers downstream control urban
areas gave birth to at least two children. Child controls include indicators for the child being a female,
being a multiple birth, and only for columns (3) and (4) being the first born, being the fourth or more
born. Mother controls include indicators for the mother being under 18 years old when the child is born,
being over 35 years old when the child is born. Weather controls include the logarithmic transformation
of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily
mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in
parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01
(***).
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Table B4: Effect on Child controls

Dependent Variable: Child female Child multiple Child first Child birth
birth born order sup 4

(1) (2) (3) (4)

Estimator : Gardner (2022) 4.674 4.169 13.60 -6.773
(9.809) (3.033) (9.773) (9.147)

Estimator : S & A (2021) 13.70 7.328 10.48 14.44∗

(15.58) (5.126) (18.11) (8.045)

Estimator : TWFE 4.510 3.787 23.44∗∗∗ -10.62
(9.400) (2.769) (8.864) (9.111)

NFHS FE X X X X
Birth month FE X X X X
Birth year FE X X X X

Observations 89,273 89,273 89,273 89,273
Period 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 2387 2387 2387 2387
Number of Urban areas 272 272 272 272
Mean of Dep. Variable 473.60 14.260 341.90 176.66

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. All models include NFHS cluster fixed effects, birth
year and birth month fixed effects. Dependent variables are scaled to generate coefficients that indicate
impacts on rates × 1,000 (number per 1,000 children). Standard errors are in parentheses and clustered
by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).
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Table B5: Effect on Mother controls

Dependent Variable: Mother Mother Mother Mother Mother Mother Mother Mother Mother Mother
underage overage primary secondary higher muslim not hindu schedule schedule OBC

18 35 educ educ educ nor muslim caste tribe
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Estimator : Gardner -1.017 -4.581 -19.86 -18.51 34.88∗∗∗ 3.199 2.759 -7.480 0.6248 3.515
(4.661) (4.143) (12.13) (15.11) (10.02) (5.211) (2.771) (7.852) (5.167) (8.221)

Estimator : S & A 3.650 -0.4641 -10.62 -21.20 17.25∗∗ 13.69∗∗∗ 2.705 -1.078 4.303 0.7417
(5.979) (4.807) (10.86) (13.46) (8.607) (4.914) (4.046) (9.243) (5.115) (12.21)

Estimator : TWFE -0.2059 -3.444 -18.57∗ -11.93 30.96∗∗∗ 0.6318 2.957 -6.145 -0.6210 4.256
(4.383) (4.094) (10.71) (14.39) (9.137) (4.766) (2.704) (7.216) (4.452) (7.743)

NFHS Cluster FE X X X X X X X X X X
Birth month FE X X X X X X X X X X
Birth year FE X X X X X X X X X X

Observations 89,273 89,273 89,273 89,273 89,273 89,273 89,273 84,916 84,916 84,916
Nb NFHS Clusters 2387 2387 2387 2387 2387 2387 2387 2387 2387 2387
Nb Urban areas 272 272 272 272 272 272 272 272 272 272
Mean of Dep. Var. 68.207 21.899 157.38 334.77 45.344 163.77 79.565 236.93 103.61 454.34

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and Abraham [2021] and classic TWFE methodologies. All
models include NFHS cluster fixed effects, birth year and birth month fixed effects. Dependent variables are scaled to generate coefficients that indicate impacts
on rates × 1,000 (number per 1,000 children). Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**),
or < 0.01 (***).
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Table B6: Effect on Household controls

Dependent Variable: HH wealth HH wealth HH wealth HH wealth
lowest second fourth highest

(1) (2) (3) (4)

Estimator : Gardner -6.396 4.134 8.141 -0.9390
(7.074) (8.386) (7.960) (6.789)

Estimator : S & A -1.106 -3.014 22.67∗ -6.993
(7.640) (12.28) (12.00) (7.678)

Estimator : TWFE -6.046 1.441 4.331 -0.8002
(6.689) (7.709) (7.111) (5.936)

NFHS Cluster FE X X X X
Birth month FE X X X X
Birth year FE X X X X

Observations 89,273 89,273 89,273 89,273
Nb NFHS Clusters 2387 2387 2387 2387
Nb Urban areas 272 272 272 272
Mean of Dep. Var. 221.00 243.44 176.03 135.12

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. All models include NFHS cluster fixed effects, birth
year and birth month fixed effects. Dependent variables are scaled to generate coefficients that indicate
impacts on rates × 1,000 (number per 1,000 children). Standard errors are in parentheses and clustered
by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01 (***).
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Table B7: Effect on Downstream Mortality excluding children born from mother with
higher education

Dependent Variable: Child died before the age of six months
(1) (2) (3) (4)

Estimator : Gardner (2022) -6.994∗ -7.405∗ -5.353 -5.379
(3.736) (3.880) (3.560) (3.628)

Estimator : S & A (2021) -8.968 -10.14 -7.968 -9.106
(7.597) (7.577) (7.609) (7.579)

Estimator : TWFE -10.12∗∗∗ -10.71∗∗∗ -7.697∗∗ -7.973∗∗

(3.527) (3.625) (3.397) (3.458)

Extended controls X X
Urban area FE X X
NFHS Cluster FE X X
Birth year FE + Birth month FE X X X X

Observations 84,224 80,040 84,224 80,040
Period 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 2339 2298 2339 2298
Number of Urban areas 270 270 270 270
Mean of Dep. Variable 41.817 42.129 41.817 42.129

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. The model in columns (1) and (2) includes NFHS
cluster fixed effects while the model in columns (3) and (4) includes urban area fixed effects, all models
include birth year and birth month fixed effects. Mortality variables are scaled as described in the text
to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child controls
include indicators for the child being a female, being a multiple birth, being the first born, being the
fourth or more born. Controls at the mother level include indicators for the mother being either under
18 years old or over 35 years old at the time of the child’s birth, educational attainment (primary or
secondary education education), religious affiliation (being Muslim, neither Hindu nor Muslim), and
caste affiliation (scheduled caste, scheduled tribe, or other backward caste). Household controls include
indicators for first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic
transformation of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates
and the daily mean temperature over the year within a 20km radius of the cluster coordinates. Standard
errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**),
or < 0.01 (***).
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Table B8: Effect on Downstream Mortality excluding children born from mother with
higher education

Dependent Variable: Child died before the age of six months
(1) (2) (3) (4)

Stacked regression -12.60∗∗∗ -13.54∗∗∗ -8.905∗ -9.832∗∗

(4.673) (4.701) (4.619) (4.568)

Extended controls X X
Urban area FE X X
NFHS Cluster FE X X
Birth year FE + Birth month FE X X X X

Observations 238,065 225,579 238,065 225,579
Period 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 2336 2292 2336 2292
Number of Urban areas 270 270 270 270
Mean of Dep. Variable 36.813 37.167 36.813 37.167

Notes: The table presents the coefficients of the estimators according to the stacked difference-in-
diferences methodology. The model in columns (1) and (2) includes NFHS cluster fixed effects while
the model in columns (3) and (4) includes urban area fixed effects, all models include birth year and
birth month fixed effects. Mortality variables are scaled as described in the text to generate coefficients
that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child controls include indicators for
the child being a female, being a multiple birth, being the first born, being the fourth or more born.
Controls at the mother level include indicators for the mother being either under 18 years old or over
35 years old at the time of the child’s birth, educational attainment (primary or secondary education
education), religious affiliation (being Muslim, neither Hindu nor Muslim), and caste affiliation (sched-
uled caste, scheduled tribe, or other backward caste). Household controls include indicators for first,
second, fourth and fifth wealth quintiles. Weather controls include the logarithmic transformation of
the sum of precipitation felt in one year within a 20km radius of the cluster coordinates and the daily
mean temperature over the year within a 20km radius of the cluster coordinates. Standard errors are in
parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**), or < 0.01
(***).
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Table B9: Effect on Upstream Mortality

Dependent Variable: Child died before the age of six months
(1) (2) (3) (4)

Estimator : Gardner (2022) 2.841 3.131 3.128 3.983
(2.849) (2.734) (2.535) (2.515)

Estimator : S & A (2021) -1.804 -1.225 -0.2068 0.5038
(5.414) (5.531) (5.056) (5.197)

Estimator : TWFE 1.990 2.518 3.062 3.853
(2.841) (2.789) (2.499) (2.459)

Extended controls X X
Urban area FE X X
NFHS Cluster FE X X
Birth year FE + Birth month FE X X X X

Observations 144,495 140,162 144,495 140,162
Period 1991-2019 1991-2019 1991-2019 1991-2019
Number of NFHS Clusters 3814 3814 3814 3814
Number of Urban areas 177 177 177 177
Mean of Dep. Variable 41.005 41.195 41.005 41.195

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. The model in columns (1) and (2) includes NFHS
cluster fixed effects while the model in columns (3) and (4) includes urban area fixed effects, all models
include birth year and birth month fixed effects. Mortality variables are scaled as described in the
text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child
controls include indicators for the child being a female, being a multiple birth, being the first born,
being the fourth or more born. Controls at the mother level include indicators for the mother being
either under 18 years old or over 35 years old at the time of the child’s birth, educational attainment
(primary, secondary education or higher education), religious affiliation (being Muslim, neither Hindu
nor Muslim), and caste affiliation (scheduled caste, scheduled tribe, or other backward caste). Household
controls include indicators for first, second, fourth and fifth wealth quintiles. Weather controls include
the logarithmic transformation of the sum of precipitation felt in one year within a 20km radius of the
cluster coordinates and the daily mean temperature over the year within a 20km radius of the cluster
coordinates. Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value
< 0.10 (*), < 0.05 (**), or < 0.01 (***).
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Table B10: Comparison of upstream versus downstream mortality

Dependent Variable: Child died before the age of six months
(1) (2)

Estimator : Gardner (2022) -4.335 -5.854
(3.776) (3.750)

Estimator : S & A (2021) -9.600 -9.917
(7.354) (6.160)

Estimator : TWFE -4.663 -6.413∗

(3.580) (3.569)

Extended controls X
Urban area FE X X
Birth year FE + Birth month FE X X

Observations 70,765 68,924
Period 1991-2019 1991-2019
Number of NFHS Clusters 2033 2027
Number of Urban areas 66 66
Mean of Dep. Variable 39.398 39.928

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. The model in columns (1) and (2) includes urban
area fixed effects, birth year and birth month fixed effects. Mortality variables are scaled as described in
the text to generate coefficients that indicate impacts on rates × 1,000 (deaths per 1,000 children). Child
controls include indicators for the child being a female, being a multiple birth, being the first born, being
the fourth or more born. Controls at the mother level include indicators for the mother being either
under 18 years old or over 35 years old at the time of the child’s birth, educational attainment (primary
or secondary education education), religious affiliation (being Muslim, neither Hindu nor Muslim), and
caste affiliation (scheduled caste, scheduled tribe, or other backward caste). Household controls include
indicators for first, second, fourth and fifth wealth quintiles. Weather controls include the logarithmic
transformation of the sum of precipitation felt in one year within a 20km radius of the cluster coordinates
and the daily mean temperature over the year within a 20km radius of the cluster coordinates. Standard
errors are in parentheses and clustered by urban area. Asterisks denote p-value < 0.10 (*), < 0.05 (**),
or < 0.01 (***).
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Table B11: Parental behavior summary statistics - Children aged 0-6 months

Means N. Obs.

Control Pre- Post- Control Pre- Post-
Treated Treated Treated Treated

Panel A. Interviews 2015-2016

Child age in months 3.421 3.279 3.496 604 204 409

Water and sanitation behavior

Water treatment 0.291 0.238 0.215 632 210 427
Open defecation 0.509 0.419 0.445 632 210 427
Shared toilets 0.177 0.139 0.169 310 122 237

Liquids given to the child

Currently breastfed 0.957 0.946 0.958 601 202 407
Plain water 0.441 0.436 0.485 610 202 412
Juice 0.052 0.064 0.063 610 202 412
Milk 0.180 0.203 0.211 610 202 412
Baby formula 0.026 0.064 0.029 610 202 412
Soup 0.051 0.054 0.046 610 202 412
Other liquid 0.048 0.045 0.034 610 202 412

Panel B. Interviews 2019

Child age in months 3.255 4 3.358 365 3 358

Water and sanitation behavior

Water treatment 0.349 0 0.330 378 3 367
Open defecation 0.216 0 0.174 379 3 367
Shared toilets 0.101 0.333 0.129 297 3 303

Liquids given to the child

Currently breastfed 0.947 1 0.960 361 3 353
Plain water 0.400 0 0.292 365 3 356
Juice 0.088 0 0.045 365 3 356
Milk 0.167 0 0.154 365 3 356
Baby formula 0.071 0 0.053 365 3 356
Soup 0.085 0 0.053 365 3 356
Other liquid 0.071 0 0.065 365 3 356

Notes: Panel A compares summary statistics for children aged under 6 months at the time of the NFHS-
4 interviews, while Panel B compares summary statistics for children born in 2019 and aged under 6
months at the time of the NFHS-5 interviews. The unit of observations is the child level.
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Table B12: Effect on Air pollution

Dependent Variable: PM 2.5

Minimum Mean Maximum
(1) (2) (3)

Estimator : Gardner (2022) 0.0332 0.0745 0.0911
(1.114) (1.119) (1.130)

Estimator : S & A (2021) -0.4437 -0.4425 -0.4521
(0.4109) (0.4117) (0.4085)

Estimator : TWFE 0.0921 0.1375 0.1597
(1.055) (1.063) (1.077)

Urban area FE X X X
Year FE X X X

Observations 10,442 10,442 10,442
Period 1998-2020 1998-2020 1998-202O
Number of Urban areas 454 454 454
Mean of Dep. Variable 50.173 51.318 52.410

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. All models include state fixed effects and year fixed
effects. Standard errors are in parentheses and clustered by state. Asterisks denote p-value < 0.10 (*),
< 0.05 (**), or < 0.01 (***).
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C Other Health Outcomes

As NFHS surveys are cross-sectional, few health variables, apart from mortality, can be

studied in a panel at the NFHS cluster level. Using NFHS cluster fixed effect is important

because it controls for unobserved birthplace characteristics such as access to healthcare

services and road infrastructure.

Birth weight and height-for-age z-score, which measures chronic malnutrition, are the

only health variables that can be studied in a panel according to NFHS cluster and birth

year. Table C1 presents the regression samples, which are subject to the same restrictions

as the mortality sample. (i) If there is a birth in a NFHS cluster related to an urban area

after it has started wastewater treatment, then that NFHS cluster is only included if it

has at least one data point before the urban area starting wastewater treatment. (ii) If

the urban area doesn’t treat wastewater in 2020, then the NFHS cluster is only included

if it has at least two outcome data points.

C.1 Birth weight

Literature shows that maternal exposure to fecal pathogens can reduce the quality of

maternal nutrition during gestation, in turn reducing uterine growth and birth weight

[Prendergast et al., 2014, Spears, 2020, Coffey and Spears, 2021]. In the US, Flynn and

Marcus [2021] show that CWA grants to municipal wastewater treatment plants increased

average birth weight by 8 grams in counties downstream of the plants.

In NFHS surveys, birth weight was recorded from either a written record or the

mother’s report. Figure C1 shows that birth weight in the sample is not normally dis-

tributed and presents big peaks at rounded values every 500 grams. This rounding raises

concerns about a loss of precision which may mask substantial differences or trends in

the data.

In columns (3) and (4) of Table C2, I examine birth weight given in grams and the

number of children with low birth weight (inferior to 2.5kg). Following Equation 3, I

use as treatment variable the same binary indicator than in mortality regressions that

is equal to one if the upstream urban area treats the wastewater in the birth year of

the child. According tot he Gardner [2022]’s estimator, I observe no significant result.

Surprisingly, the estimates are negative. Column 3 suggests a 30g reduction in birth
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weight after wastewater treatment. This result is possibly due to the poor precision of

the birth weight report described in the previous paragraph, and is therefore inconclusive.

C.2 Chronic malnutrition

A related pathway from exposure to fecal pathogens to death is poor net nutrition,

which is calories consumed net of calories lost to diarrheal disease and parasites as well

as expended in combating infections. If wastewater treatment is reducing deaths via

infection, malnutrition should also be reduced.

I use height-for-age z-score (HAZ), the number of standard deviations (SD) above or

below the gender- and age-specific median height-for-age to measure chronic malnutri-

tion. Low height-for-age is known as stunting. It is the result of chronic or recurrent

undernutrition. Stunting can be due to repeated fecal contamination that, through an

inflammatory response, increases the small intestine’s permeability to pathogens while

reducing nutrient absorption. Chronic malnutrition holds children back from reaching

their physical and cognitive potential [Black et al., 2013]. A child with an HAZ below

−2 SD is considered to be stunted. Since HAZ and the proportion of stunted children

reflect long-term exposure, I distinguish children born downstream of treated areas be-

tween those who have lived more than half their lives with treatment and those who have

lived less than half their lives with treatment. Figure C2 presents the HAZ distribution

in the sample and suggests that children who have lived more than half their lives with

treatment suffer less from chronic malnutrition than others.

In columns (1) and (2) of Table C2, I examine chronic malnutrition measured respec-

tively by the height-for-age z-score (HAZ) and the number of stunted children with a

binary indicator equal to one if the child has lived more than half his life with upstream

wastewater treatment. The results are inconclusive, possibly due to a reduction in sta-

tistical power.

C.3 Description of other health outcomes

Water pollution by untreated sewage, and in particular contamination by faecal pathogens,

has other health effects that need to be measured to assess the extent of wastewater treat-

ment. NFHS data allow us to study three other morbidity variables, which correspond

84



to short-term symptoms:

Diarrhea : Fecal pathogens cause gastrointestinal diseases of which a major symptom

is diarrhea.

Acute malnutrition : Weight-for-height z-score (WHZ), the number of standard devia-

tions (SD) above or below the gender- and age-specific median weight-for-height, measures

acute malnutrition. Low weight-for-height is known as wasting. It usually indicates re-

cent and severe weight loss, because a person has not had enough food to eat and/or they

have had an infectious disease, such as diarrhoea, which has caused them to lose weight.

A young child who is moderately or severely wasted has an increased risk of death, but

treatment is possible. A child with a WHZ below −2 SD is considered to be wasted.

Hemoglobin level/Anemia : Anemia defined as low levels of blood hemoglobin, can be

caused by diets lacking iron, vitamin B12, and folic acid, all of which are necessary for the

production of red blood cells. Intestinal parasites also contribute to low blood hemoglobin

in developing country settings [Geruso and Spears, 2018] In children, a hemoglobin level

below 11mg/L corresponds to anemia.

Table C3 presents descriptive statistics for children age 0-59 months for whom weight-

for-height and hemoglobin level were measured by the NFHS interviewers and/or diarrhea

in the last two weeks was reported by the mother. This compares children according to

upstream water treatment at the date of the interview and not at the date of birth as

in mortality regressions. The means suggest that children living in NFHS clusters down-

stream of urban areas that treat wastewater suffer less from acute malnutrition. There

is no noteworthy difference in hemoglobin levels or anemia. Means for the incidence of

diarrhea, fever and cough suggest that children in areas downstream of wastewater treat-

ment are sicker than others. However, these results should be treated with caution due to

the problems with survey-reported diarrhea, as highlighted by Geruso and Spears [2018].

In the end, other health variables do not allow us to reliably assess the effect of

wastewater treatment, due to biases associated with the reporting of morbidity variables

and low statistical power.
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C.4 Figures and Tables

Figure C1: Density of birth weight

Figure C2: Density of Height-for-Age Z-score(HAZ)

Notes: A child is considered post-treated if it has lived more than half its life with upstream wastewater
treatment.
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Table C1: Presentation of the height-for-age z-score and birth weight regression samples

Height-for-Age Z-score (HAZ) Birth weight

All All All Treated Treated Treated All All All Treated Treated Treated
urban NFHS births urban NFHS births urban NFHS births urban NFHS births
areas clusters areas clusters areas clusters areas clusters

2010 83 264 440 0 0 0 80 235 358 0 0 0
2011 145 589 1145 1 5 15 150 547 929 6 11 20
2012 153 670 1422 8 44 90 156 633 1216 14 21 39
2013 157 678 1459 15 73 141 157 642 1260 23 74 124
2014 171 812 1589 23 105 208 171 784 1462 33 106 199
2015 181 911 1722 29 98 176 195 956 1775 38 125 225
2016 148 631 1117 24 48 76 172 717 1286 31 72 111
2017 139 505 949 18 48 84 152 580 1115 20 53 101
2018 136 504 981 18 39 63 152 595 1170 41 125 246
2019 129 458 782 24 70 100 146 552 1007 42 144 285

Total 11606 953 11578 1350

Notes: Columns 1A and 2A tabulate the total number of urban areas in each year, while columns 1C and 2C tabulate the number of urban areas that treat
wastewater in each year. Columns 1B and 2B tabulate the number of NFHS clusters downstream an urban area in each year, while columns 1E and 2E tabulate the
number of NFHS clusters downstream an urban area that treats wastewater in this year. Columns 1C and 2C tabulate the number of children born downstream
an urban area in each year, while columns 1F and 2F tabulate the number of children born downstream an urban area that treats wastewater in this year. I
subject the full sample to two restrictions before analysis, both of which applied here. (i) If there is a birth in a NFHS cluster related to an urban area after it
has started wastewater treatment, then that NFHS cluster is only included if it has at least one data point before the urban area starting wastewater treatment.
(ii) If the urban area doesn’t treat wastewater in 2020, then the NFHS cluster is only included if it has at least two outcome data points. A NFHS cluster is only
included in the subsequent regressions if it has outcome data for the specific dependent variable of that given regression.
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Table C2: Effect on Height-for-Age Z-score (HAZ) and Birth Weight

Dependent Variable: HAZ Stunted Birth Low
(HAZ < -2) weight birth weight

(. < 2.5kg)
(1) (2) (3) (4)

Estimator : Gardner (2022) 0.0362 9.755 -30.59 21.75
(0.1025) (34.09) (33.75) (23.54)

Estimator : S & A (2021) 0.2898 -7.539 -48.76∗ 29.15
(853.9) (264,286.5) (29.07) (20.37)

Estimator : TWFE 0.0737 -0.1370 -47.69∗ 28.77
(0.1088) (30.75) (24.32) (17.84)

Extended controls X X X X
NFHS Cluster FE X X X X
Birth year FE + Birth month FE X X X X

Observations 10,913 10,913 10,924 10,924
Period 2010-2019 2010-2019 2010-2019 2010-2019
Number of NFHS Clusters 1542 1542 1634 1634
Number of Urban areas 202 202 222 222
Mean of Dep. Variable -1.5063 397.97 2,772.3 185.74

Notes: The table presents the coefficients of the estimators according to the Gardner [2022], Sun and
Abraham [2021] and classic TWFE methodologies. The model in columns (1) and (2) uses a binary
treatment indicator for whether or not the urban area upstream the NFHS cluster where anthropometric
measures for the child are taken treat wastewater for more than half the child’s life while the model in
columns (3) and (4) uses the binary treatment indicator that indicates whether the urban area upstream
treat wastewater since the birth year of the child. All models include urban area, birth month and birth
year fixed effects. Stunted and Low birth weight variables are scaled to generate coefficients that indicate
impacts on rates × 1,000 (cases per 1,000 children). For birth weight regressions, the controls are the
same than for mortality regressions. For HAZ regressions, the controls are the following. Child controls
include indicators for the child being a female, being the first born and child age in months. Mother
controls include indicators for the mother having primary education, having secondary education, having
higher education, being muslim, being nor hindu neither muslim, belonging to scheduled caste, belonging
to scheduled tribe, belonging to other backward caste. Household controls include indicators for wealth
quintiles. Standard errors are in parentheses and clustered by urban area. Asterisks denote p-value <
0.10 (*), < 0.05 (**), or < 0.01 (***).
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Table C3: Morbidity summary statistics - Children aged 0-59 months

Means N. Obs.

Control Pre- Post- Control Pre- Post-
Treated Treated Treated Treated

Panel A. Interviews 2015-2016

Child age in months 29.646 29.700 29.747 6, 125 1, 887 3, 758
Weight-for-Height Z-score -1.029 -0.981 -0.957 5, 677 1, 695 3, 517
Child is wasted 218.425 209.440 192.778 5, 677 1, 695 3, 517
Hemoglobin level (g/L) 104.718 104.394 104.755 5, 380 1, 604 3, 303
Child is anemic 615.799 591.646 607.024 5, 380 1, 604 3, 303
Child had diarrhea 89.335 94.480 103.945 6, 123 1, 884 3, 752
Child had fever 128.434 145.280 144.812 5, 824 1, 769 3, 508
Child had cough 111.073 139.205 130.597 5, 771 1, 760 3, 484

Panel B. Interviews 2019

Child age in months 30.022 29.661 30.132 2, 575 109 1, 283
Weight-for-Height Z-score -0.915 -0.976 -0.886 2, 333 99 1, 154
Child is wasted 217.317 181.818 199.307 2, 333 99 1, 154
Hemoglobin level (g/L) 100.850 99.107 101.283 2, 186 84 1, 086
Child is anemic 715.005 666.667 720.074 2, 186 84 1, 086
Child had diarrhea 79.705 110.092 79.501 2, 572 109 1, 283
Child had fever 154.129 200 171.311 2, 446 100 1, 220
Child had cough 121.237 140 151.115 2, 425 100 1, 211

Notes: Panel A compares the summary statistics between children born downstream urban areas where
wastewater treatment started between 2010 and 2020 and children born downstream urban area where
wastewater treatment is in project in 2020 based on interviews conducted in the NFHS-4 survey over the
period 2015-2016, while Panel B compares the summary statistics in 2019 based on NFHS-5 interviews.
The unit of observations is the child level. Wasted, anemic, diarrhea, fever and cough variables indicate
rates × 1,000 (cases per 1,000 children). Treatment is based on the interview year and not on the birth
year considered for infant mortality regression.
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D Data Details

D.1 Sewage Treatment Plants

D.1.1 Description of the national inventory

The 2020 national inventory of sewage treatment plants (STPs) highlights the gap be-

tween sewage generation and treatment capacity, estimating that less than 28% or urban

wastewater is actually treated by the STPs. For each STP, the report tabulates the

installed treatment capacity, the capacity actually used, the capacity complying to dis-

charge norms prescribed by the Central Pollution Control Board (CPCB), as well as

treatment technology and potential reuse of wastewater26

Among the 1,632 STPs listed in the inventory27, I identify 1,097 operational STPs,

103 non-operational STPs, 270 STPs under construction and 150 STPs proposed for

construction28.

The total installed capacity reported in the inventory is 36,710 megaliters per day

(MLD). The operational capacity corresponds to 26,910MLD. Out of the operational

26,314MLD capacity with non-missing used capacity values, 19,252MLD (73%) is actually

utilized.

Among the 1,097 operational STPs, compliance status of 754 STPs is available and

only 553 STPs, having a combined capacity of 12,264 megaliters per day (MLD), are

found complying with the consented norms prescribed by the CPCB. Figure D4 shows

the installed capacity and actual utilization according to the compliance status of the

1,045 operational STPs reported in the inventory with non-missing used capacity.

D.1.2 Merging at the urban area level

I manually matched each sewage treatment plant (STP) according to the administrative

descriptors provided in the CPCB inventory (state, town and an accompanying string

description of location) to the India Village-Level Geospatial Socio-Economic (IVLGSE)

Data Set [Meiyappan et al., 2018]. This dataset provides village/town level boundaries

26Some data is missing, and the reporting of this information is not uniform across all states. Full
code for pdf data extraction and data cleaning for the analysis is replicable on R.

27The inventory reports 1,631 STPs and I identify one row corresponding to two STPs commissioned
in different years with information for installed capacity each year: row 38 of state Karnataka.

28I am not able to determine the operation status of 12 STPs.
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from the official cadastral maps published by the Survey of India for 2001.

Of the 1631 STPs reported in the inventory, I match respectively 1606 STPs to the

boundary of a town or of a village in the IVLGSE dataset. In total, 848 village/town

polygons contain at least one STP.

To account for the evolution of administrative boundaries over time and for the fact

that wastewater from a town may be treated in a nearby area, I aggregated the data by

merging the boundaries of neighbouring polygons containing STPs up to a distance of

2km.29

This final merging results in 684 urban areas. The average area of one of these urban

areas is 56km2, while the median is 15km2.

Of these 684 urban areas determined from the list of 1631 STPs reported in the

national inventory, I exclude 109 urban areas that have at least one operational STP in

2020, but commissioned year is missing for one of them which doesn’t allow to determine

the year in which wastewater treatment began. Keeping only urban areas for which the

year of commission of operational STP is known or urban area without operational STP,

the dataset contains 575 urban areas.

Current work consists in providing exact plant geolocation based on Google Maps

identification (Figure 1). So far, I have identified 564 of the 1631 stations that are

correctely located in the urban areas.

D.2 Water quality

D.2.1 Data sources

This section provides additional information on the data then explains how I extract and

clean it.

I use water pollution readings from four data repositories: the GEMS database 30,

the India-WRIS platform 31, the published database from Greenstone and Hanna [2014]

and the public database from the Central Pollution Control Board (CPCB) 32.

In this section, I describe steps taken to make the four repositories comparable.

29I create a buffer of 1km around each polygon and merge intersecting polygons.
30https://gemstat.org/, accessed in March 2021
31https://indiawris.gov.in/wris/#/RiverMonitoring, accessed in March 2021
32http://www.cpcbenvis.nic.in/water_quality_data.html, accessed first in March 2021 and in

February 2022 for the 2020 data
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Ambient Monitoring in Rivers, Lakes and Canals. The analysis includes only

rivers, lakes and canals. This excludes pond, creek, drain, and coast because these other

surface water types are uncommon in the pollution data.

The GEMS, CPCB and Greenstone and Hanna [2014] data comes from the National

Water Quality Monitoring Network (NWMP), established by the CPCB in collaboration

with State Pollution Control Boards (SPCBs) in the States and Pollution Control Com-

mittees (PCCs) in Union Territories. All the NWMP stations have a unique identifier

consistent across the databases. I then match all the NWMP measures to their stations

geo-coordinates based on the station list provided on the CPCB website.33 I distinguish

streams and lakes in the NWMP station data using the provided monitoring location type

name field in the station list. Of the 4111 monitoring stations maintained in 2020 through

the NWMP, there are 2016 river monitoring stations, 341 lake monitoring stations and

65 canal monitoring stations.

The WRIS data comes from the Central Water Commission monitoring water quality

at 390 locations covering all the major river basins of India.34 Data from WRIS are all

related to rivers.

Measures of Water Pollution and Sample Exclusions.

The GEMS, WRIS and Greenstone and Hanna [2014] databases provide monthly

measures, while the CPCB data are aggregated at the yearly level. For consistency, I

then aggregate all the monitoring station readings at the yearly level.

To limit the influence of outliers, I winsorize data below the 2.5th percentile and above

the 97.5th percentile. It means that for each reading below the 2.5th percentile of the

distribution of readings, I recode the result to equal the 2.5th percentile and for each

reading above the 97.5th percentile of the distribution of readings, I recode the result to

equal the 97.5th percentile.

33https://cpcb.nic.in/wqm/WQMN_list.pdf, accessed in March 2021
34https://indiawris.gov.in/wiki/doku.php?id=river_water_quality_monitoring
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D.2.2 Measurement error

To check if water quality measures were performed correctly, I use methods from the

geochemistry theory.

In first approximation, the use of charge imbalance (CI) is regularly used to check the

quality of water analyses [Federation et al., 2005]. The charge balance is based on the

principle of electrical neutrality, meaning that the equivalent concentration of positively

charged ions, the cations, is equal to the equivalent concentration of negatively charged

ions, the anions. Major anions, such as bicarbonates (HCO−
3 ), carbonates (CO2−

3 ), chlo-

rides (Cl−), fluoride (F −), nitrate (NO3−) and sulfates (SO2−
4 ), as well as major cations,

such as calcium (Ca2+), magnesium (Mg2+), sodium (Na+) and potassium (K+), usu-

ally represent most of the dissolved ions in water, so the sum in milliequivalents of major

cations and anions should be nearly equal.

However, when a large charge imbalance exists, there is no indication whether the

error is caused by a cation or an anion. A second constraint is helpful to identify the

constituent most likely in error. That’s why I use an approximation of the electrical

conductivity method proposed by McCleskey et al. [2011] as a quality control method

for checking water analyses. If measures were performed correctly, both the anion and

cation sums should be approximately 1/100 of the measured electrical conductivity value.

If either of the two sums does not meet this criterion, that sum is suspect.

I can only compare the respective sums of anions and cations to the electrical con-

ductivity for the data from the WRIS platform because the other data do not give the

concentrations of all major anions. As the anions correspond to the elements charac-

terizing the pollution (notably the nitrates), it is specifically important that there is no

significant measurement error on the anion concentrations.

Of the 8907 annual station-level measurements from the WRIS platform, about half

(4312) are complete and allow the calculation of major ion sums. Of these, 70% (2986)

seem to be good quality data as the anion sum is approximately 1/100 of the measured

electrical conductivity value with a tolerance of 20%. However, it means that 30% of the

data could be unreliable.

Spatially, it appears that the measurements in eastern India are not assessable and

those in the south are of particularly good quality (Figure D9).

Temporally, there is no significant difference in the quality of the measurements, which
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is counter-intuitive as one might have expected an improvement in the measurements over

time (Figure D10).

D.3 Health data

The National Family Health Survey, equivalent to the Indian Demographic Health Survey,

uses a stratified two-stage sampling design. First, enumeration areas (EAs) are randomly

selected from census files, stratifying by state and urban/rural residence. Within the

selected EAs, herein referred to as clusters, households are randomly selected for in-

terviewing. Within these households, all women of reproductive age (15–49 years) are

interviewed. Enumerators also collect coordinates of the cluster location allowing me to

link the NFHS data to other geo-coded data at the cluster level. To maintain confidential-

ity of respondents, NFHS randomly displaces the coordinates of the clusters up to 2 km

in urban areas and up to 5 km in rural areas, with a further 1% of rural clusters displaced

up to 10 km. The direction of displacement is randomly chosen, with the caveat that

coordinates are not displaced outside of the state. This displacement introduces classi-

cal measurement error. However, in this study, which uses the difference-in-differences

method, there is no reason for the error to be greater in the treatment group than in the

control group, and it is not a priori a cause for concern.
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D.4 Data figures

Figure D1: India designated best-use water quality criteria under the National Water
Quality Monitoring Programme (NWMP) (Source : Central Pollution Control Board)
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Figure D2: Government agencies responsible for urban wastewater management in India
(in January 2019). (Source: Reymond et al. [2020])

Figure D3: Comparison of responsibilities in the large-scale and small-scale sanitation
sectors; the governmental agencies highlighted in brown fall under MoHUA and the ones
in green under MoEFCC (Source : Reymond et al. [2020])
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Figure D4: Capacity, utilization and compliance status of 1045 operational STPs reported
in the 2020 inventory
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Figure D5: Examples of urban areas
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Figure D6: Map of the 458 urban areas kept in the analysis

Urban area labels are provided only for urban area of 70 km2 or more
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Figure D7: Densities of maximum organic pollution readings

Figure D8: Densities of distances between NFHS clusters and respectively river (on the
left) and urban area (on the right)
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Figure D9: Map of WRIS monitoring stations (left) and assessment of the water quality
measurement error (right)

Figure D10: Histogram of the WRIS measures quality over time based on the anion
imbalance
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E Spatial Matching Across Datasets

Conducting the analysis of this paper requires linking several datasets thanks to the

hydrological network HydroSHEDS [Linke et al., 2019].

E.1 HydroSHEDS

HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at

multiple Scales, Linke et al. [2019]) offers a suite of geo-referenced datasets in raster and

vector format, including stream networks, watershed boundaries, drainage directions, and

ancillary data layers such as flow accumulations, distances, and river topology informa-

tion.

HydroSHEDS version 1 is derived primarily from elevation data of the Shuttle Radar

Topography Mission (SRTM) at 3 arc-second (approximately 90 meters at the equator)

resolution and has been developed by World Wildlife Fund (WWF), in partnership or

collaboration with universities and institutions 35.

I use two HydroSHEDS products to perform the spatial matching of sewage treat-

ment plants to water quality monitoring stations and child births, that are respectively

HydroRIVERS and HydroBASINS.

HydroRIVERS represents a vectorized line network of all global rivers that have a

catchment area of at least 10 km2 or an average river flow of at least 0.1 m3/sec, or

both. I use the phrase "river segment" to describe what HydroSHEDS calls a "HyrivID".

A "HyrivID" is a unique identifier code for a specific line segment in HydroSHEDS. On

average a HyrivID is 4.2 kilometers long.

HydroBASINS represents a series of vectorized polygon layers that depict sub-basin

boundaries at a global scale. I use the highest level of sub-basin breakdown, that cor-

responds to the Pfafstetter level 12. I use the word "sub-basin" to describe what Hy-

droSHEDS calls a "HybasID". A "HybasID" is a unique identifier code for an individual

sub-basin polygon in HydroSHEDS. At the Pfafstetter level 12, a HybasID has an average

area of 130.6 km2. I use the phrase "main basin" to identify the entire river basin that a

35McGill University, Montreal, Canada; the U.S. Geological Survey (USGS); the International Centre
for Tropical Agriculture (CIAT); The Nature Conservancy (TNC); the Australian National University,
Canberra, Australia; and the Center for Environmental Systems Research (CESR), University of Kassel,
Germany
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sub-basin belongs to 36 (see Figure 2).

E.2 Matching datasets

I matched each of the 684 urban area polygon containing sewage treatment plants (STP)

to both the HydroRIVERS and HydroBASINS datasets.

First, I identify all the river segments crossing each urban area polygon boundaries.

Only 25 urban areas out of 684 are not crossed by rivers. In total, 4928 distinct rivers

segments cross urban areas with a mean length of 4.8 kilometers. I construct chains of

downstream rivers segments from an urban area up to 100km.

I match each monitoring station to a river segment. Based on the matching of urban

areas to river segments, I can then identify monitors that located within or downstream

urban areas up to a river distance of 100km2. Figure E1 illustrates for example the

matching of river segments and monitoring stations to urban areas containing STPs in

Uttar Pradesh.

Second, I define the sub-basins downstream an urban area as the ones containing the

corresponding downstream river segments. I then identify NFHS clusters located in sub-

basins downstream urban areas. Figure E2 maps for example the sub-basins containing

STPs in Uttar Pradesh, the related downstream sub-basins and the NFHS clusters within

these sub-basins.

36In HydroSHED, the main basin is identified with the "MainBas" column that provides the HybasID
of the most downstream sink, i.e. the outlet of the main river basin.
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E.3 Matching figures

Figure E1: Map of urban areas containing STPs and downstream-related monitoring sites
and river segments in Uttar Pradesh
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Figure E2: Map of sub-basins containing STPs and downstream-related NFHS clusters
in state Uttar Pradesh
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Figure E3: Map of sub-basins containing STPs and upstream-related NFHS clusters in
state Uttar Pradesh
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F Maps state by state

Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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Notes: The blue polygons represent the hydrological sub-basins that contain NFHS clusters and river
segments located within 100km downstream of segments that cross the urban areas listed in the sewage
treatment plant inventory.
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