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Abstract

The main criticism of the standard, pointwise approaches to constructing the central

estimates and inference in DSGE models is that such approaches make the assumption that

responses of macroeconomic variables are independent across time and variables. This paper

addresses this by extending the literature on joint Bayesian inference to DSGE models,

as well as proposing a way to construct a good measure of the central tendency that is

consistent with the model equations. To do so, a Bayes Estimator with Euclidean norm

loss is used for the objects of interest. The vector that minimises this loss is shown to be a

good measure of the central tendency, while preserving the model structure, and the joint

credible set is constructed as the lowest posterior risk region under this loss. An algorithm

allowing for joint Bayesian inference of impulse responses and the Forecast Error Variance

Decomposition in a DSGE setting is introduced, and the drawbacks of existing approaches

are demonstrated using the Smets and Wouters (2007) framework. In addition, some of the

practical concerns that researchers may have with using the Bayes Estimator under popular

loss functions are discussed, with potential solutions provided.

Keywords: DSGE, Impulse Response Function, Forecast Error Variance Decomposi-

tion, Joint Inference, Bayesian.

JEL: C01, C11, C32, E00, E12.

∗I would like to thank Alessio Volpicella, Valentina Corradi, Jordi Llorens-Terrazas, Alistair Macaulay and
Ricardo Nunes for helpful comments and suggestions.

†University of Surrey, Elizabeth Fry Building (AD), Guildford GU2 7XH, UK. Email: j.marlow@surrey.ac.uk

1



1 Introduction and Related Literature

Dynamic Stochastic General Equilibrium (DSGE) models are now the workhorse model in

macroeconomics, both in academia and policy-making. Increasingly, these models are estimated

using data, with most researchers opting for a Bayesian approach due to the relative simplic-

ity of exploring the posterior distribution compared to the likelihood (Fernández-Villaverde,

2009)1. The posterior distribution for the parameters are then used to construct estimates and

inference for the ultimate objects of interest; usually impulse responses and the forecast error

variance decomposition. The most popular approach involves constructing the central estimate,

as well as the corresponding inference, using pointwise approaches2. Pointwise approaches for

constructing the central estimate involve simulating the posterior distribution of the impulse

responses and taking the mean (or median) of the distribution at each horizon, for each variable

and shock, treating each point independently. For example, central estimates of the impulse

responses in Smets and Wouters (2007) and Del Negro, Schorfheide, Smets, and Wouters (2007)

are constructed using the posterior mean impulse response, while Justiniano, Primiceri, and

Tambalotti (2010) and Mukoyama et al. (2021) use the posterior median, which coincides with

standard practice in the VAR literature. However, it is unlikely that the parameter values used

to construct the mean response are the same for every variable, horizon and shock. As a result,

such measures of central tendency are likely to be inconsistent with the model structure and

force practicioners to make the implicit, and unrealistic, assumption that the impulse responses

are independent across horizons and variables. Such assumptions are problematic when making

statements about co-movement between variables or how responses evolve over time, as it is

unclear how much of the changes are being driven by the model structure.

The independent treatment of each point also presents issues for inference, as noted by

Sims and Zha (1999). By ignoring the dependence across time and variables, the degree of

estimation uncertainty is often understated by the pointwise credible sets that are reported in

many applications. These considerations are of high importance to practitioners using DSGE

1Bayesian approaches are less exposed to the difficulties of exploring the likelihood of DSGE models which
arise due to the high dimensionality of the problem. See, for example, Chernozhukov and Hong (2003).

2Dynare 6.1 provides the posterior mean and median impulse response for each variable and horizon, with
the credibility regions also calculated for each variable and horizon independently.
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models, so an alternative method of constructing impulse responses and the Forecast Error

Variance Decomposition (FEVD) that is immune to these criticisms is desirable.

An alternative approach that is widely used and preserves economic interpretability in-

volves collapsing the posterior distribution of the parameters into point estimates, and using

these to generate the objects of interest (e.g. Iacoviello and Neri (2010); Christiano, Motto,

and Rostagno (2014); Bratsiotis and Pathirage (2024)). While this approach ensures that the

objects of interest are generated by the same parameter vector, it does not guarantee a good

representation of the central tendency for the impulse responses due to the lack of invariance

of such measures of central tendency under non-linear transformations. In addition, by col-

lapsing the posterior distribution of the parameters into a point estimate, researchers ignore

the estimation uncertainty involved in the construction of the impulse responses, making the

construction of credible sets impossible.

The main contribution of this paper is to address the above concerns in the context of

DSGE models. I construct a Bayes Estimator that coincides with a constrained version of the

spatial median. I show that the resulting minimiser is the closest point to the true spatial me-

dian that preserves the economic structure imposed by the researcher. As a result, the Bayes

Estimator allows the researcher to obtain a good measure of the central tendency of the joint

distribution of the impulse response functions, while maintaining the economic interpretability

that comes from the use of a single structural parameterisation. The treatment of each point

independently is also a concern when constructing inference. The joint credible set described

in this paper is able to more accurately characterise the estimation uncertainty that is present

in the estimates for the ultimate objects of interest.

Bayesian statistics relies on two main approaches when summarising posterior distributions:

the Bayes Estimator and the Maximum a Posteriori (MAP), which is also commonly referred to

as the posterior mode. Both approaches are capable of achieving the objective of maintaining

economic interpretability while taking into account the dependence structure across time and

between variables. However, the Bayes Estimator is the more computationally appealing of
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the two. This is because the MAP estimate requires the researcher to integrate over the joint

posterior distribution. In DSGE models this is generally not derived from a known distribution,

so would rely on computationally costly numerical algorithms. The Bayes Estimator, on the

other hand, is obtained by minimising the expected posterior loss, where the loss function is

selected by the researcher. By constructing the loss function to take into account the full vec-

tor, rather than just the individual point, we are able to provide a measure of central tendency

that maintains economic interpretability. Computationally, this is more straightforward than

obtaining the MAP estimator, so is more appealing in this setting.

Inoue and Kilian (2022) propose a similar solution for VARs, which also face the same

concerns regarding pointwise approaches. In their paper, the authors generalise earlier work

to the situation where there are more impulse responses than structural parameters in the

model, as is the case in many applications of interest. In such settings the asymptotic equiv-

alence between the central moment obtained using pointwise and the Bayes estimator breaks

down. Although this paper shares the same spirit as Inoue and Kilian (2022), it differs in

several dimensions. First, this paper provides a toolkit for empirical practitioners interested

in using joint inference in DSGE models, rather than VARs. In particular, I demonstrate that

the asymptotic equivalence between pointwise measures of central tendency are almost always

infeasible in DSGEs due to the large amount of endogenous variables relative to the number

of estimated parameters. This lack of asymptotic equivalence is not always present in VARs,

where the larger number of parameters means that asymptotic equivalence between the two

estimators is still sometimes possible in scenarios that would be of interest to researchers. That

said, the theoretical arguments concerning the choice of loss function and inference are also

applicable to the VAR literature.

Second, I demonstrate that the Euclidean norm loss is a sensible choice in this setting, as

the Bayes Estimator is, in general, the closest feasible point to the Spatial Median, a well-

established measure of central tendency in a multivariate setting. I also demonstrate that

additively separable loss functions often produce estimates that are closest to pointwise central

tendencies, which are typically not representative of the central tendency of the joint distribu-
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tion. Third, I extend the methodology to the Forecast Error Variance Decomposition (FEVD),

which is another key object of interest for macroeconomists, and is particularly important for

business cycle analysis. And fourth, I provide some general advice and suggestions for empir-

ical practitioners using these methods in a time series context, which apply equally to those

using DSGE models or VARs. I discuss how standard loss functions may be influenced by

scaling or the degree of estimation uncertainty, and provide a solution to address such situa-

tions. In addition, I highlight the importance of choosing a policy-relevant horizon length for

the impulse responses as the Bayes Estimator is not invariant to the horizon length selected

for the impulse responses. Although in practice the effects of this are quantitatively small

in the application considered, it may pose a larger concern for researchers using VARs, par-

ticularly if the role of estimation uncertainty is not accounted for. A simple solution to this

problem is proposed, which involves using a loss function that discounts impulse responses at

more distant horizons to prevent a seemingly arbitrary choice of impulse response horizon from

altering the results for the policy-relevant horizons. These two features are important to take

into consideration in a time series setting to ensure an accurate measure of the central tendency.

To highlight the effectiveness of the approach, I apply the methods to the workhorse DSGE

Smets and Wouters (2007) model. I find that ignoring the dependence structure of the im-

pulse responses leads researchers to significantly understate the estimation uncertainty when

estimating impulse responses. In the empirical application, only 1 out of the 1,200 posterior

impulse response vectors considered is fully contained within the 90% pointwise credible region:

the Bayes Estimator under Euclidean norm loss, which lends some support to the idea that the

Bayes Estimator under Euclidean norm loss offers a good measure of central tendency.

The paper is organised as follows. Section 2 discusses the issues with current approaches

used in the literature. Section 3 introduces joint inference in the context of DSGE models, and

sets out the algorithms used in the paper. An application using the Smets and Wouters (2007)

model for comparison is shown in Section 4. Section 5 discusses limitations of using the Bayes

Estimator in a time series setting, and proposes adjustments to the loss function which may

help to mitigate these. Section 6 concludes.
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2 Existing Approaches

After estimating the posterior distributions for the model parameters, researchers use these

to simulate the posterior distributions for the ultimate objects of interest. There are several

existing approaches in the literature for doing so, which can be classified into two subgroups.

The first are referred to as pointwise approaches, as they treat each individual point of the

impulse response vector independently. These typically involve taking the posterior mean

or median of the simulated distribution of the object of interest as the central estimate and

constructing pointwise credibility regions designed to reflect the estimation uncertainty. An

alternative approach is to collapse the posterior distributions of the parameter estimates into

point estimates and then use these fixed parameter values to construct the objects of interest.

The Dynare default for this approach is to use the posterior mean for each parameter, but the

posterior mode of the joint posterior distribution of the parameters is also commonly used. The

following sub-sections outline the issues with both methods, which the approach suggested in

this paper is able to address.

2.1 Pointwise Approaches

Pointwise approaches are the most popular method used in macroeconometrics, with the cen-

tral estimate constructed as the median (or mean) of the posterior impulse responses for each

variable, horizon, and shock. While as a point estimate they provide a useful measure of the

central tendency for impulse responses, in general researchers are interested in the evolution of

the shocks over time, and the co-movement of different economic variables. These latter points

are poorly represented by point wise approaches, as the impulse responses are treated indepen-

dently across time and variables. As a result, the model structure is often not preserved by the

plotted impulse responses, making interpreting them from an economic standpoint problematic.

To illustrate this point, consider a simple AR(1) estimated using Bayesian methods, where

ϕ ∼ N(ϕm,Σϕ), and ut ∼ WN(0, 1)3.

yt = ϕyt−1 + ut (2.1)

3A similar example can be found in Inoue and Kilian (2022).
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Provided that the process is stationary, Equation 2.1 has an MA(∞) representation that

can be used to obtain the impulse responses. Researchers use the draws from the posterior

distribution of ϕ to simulate the posterior distribution of the impulse responses. Conditional

on the draw from the posterior distribution of ϕ, the posterior impulse responses associated with

that parameterisation follow the model structure imposed by the researcher in Equation 2.1.

For example, if ϕm is drawn, the first three impulse responses would be 1, ϕm, ϕ2
m for horizons

0, 1, and 2, respectively. Therefore, for each draw of ϕ, the sequence of posterior impulse

responses is consistent with the model imposed by the researcher, so can be interpretted from

an economic standpoint. The issue with pointwise approaches is that the model-consistency

breaks down when constructing the central estimate.

IRFs h = 0 h = 1 h = 2

Model-consistent 1 ϕ ϕ2

Posterior Mean 1 ϕm ϕ2
m +Σϕ

Table 1: Pointwise vs. Model-Consistent IRFs

As before, to be able to interpret the central estimate from an economic standpoint, we

require the impulse responses to be consistent with the model that we impose, i.e. they should

follow the path outlined in the first row of Table 1 for the AR(1) model. However, the posterior

mean of the impulse responses is inconsistent with the AR(1) structure imposed for h > 1. On

impact, the simulated posterior distribution for the IRFs is degenerate, as ϕ0 = 1 ∀ϕ. At

horizon 1, the posterior mean is given by E[ϕ] = ϕm. For the posterior mean to be consistent

with the AR(1) structure, the impulse response at horizon 2 would need to be ϕ2
m. This

is not the case provided that the posterior distribution of ϕ is not degenerate. Rearranging

V ar(ϕ) = E[ϕ2]− E[ϕ]2 gives:

E[ϕ2] = V ar(ϕ) + E[ϕ]2 = Σϕ + ϕ2
m (2.2)

Where E[ϕ2] is the posterior mean impulse response at horizon 2. Unless Σϕ = 0, there

is no ϕ that can generate the impulse responses generated by the posterior mean impulse re-

sponse vector. As a result, the measure of central tendency obtained by taking the mean of
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the posterior impulse response at each horizon is not consistent with the model imposed by the

researcher, so cannot be used to make statements about the path of the endogenous variable

over time following an exogenous shock. This is because it is unclear when interpretting the

movements in the response how much of the change is driven by the model equations (the

AR(1) structure), and how much is driven by changing the parameter values. For researchers

to be able to interpret the impulse responses from an economic perspective, movements in the

central tendency for the impulse responses should be entirely driven by the model equations

specified by the researcher.

The cause of this discrepancy is the implicit assumption that is made when constructing

the posterior mean (or median) impulse responses. By treating each point independently, the

researcher assumes that the vector of central estimates for the impulse responses can be ob-

tained from Rn, where n corresponds to the number of impulse responses computed. This

allows for the selection of impulse responses that are not consistent with the model structure,

as we do not require the central estimate of the impulse response at horizon h to be a function

of the central estimates of the impulse responses at horizons 0, ..., h− 1. The question becomes

whether, in more complex settings, pointwise approaches are ever able to construct a central es-

timate for the vector of impulse responses that can be obtained from a single parameterisation,

thus preserving economic interpretability. Inoue and Kilian (2022) noted that this only occurs

asymptotically in the situation where the number of parameters is greater than or equal to the

number of impulse responses to be estimated. In practice, this is highly restrictive in many

economic situations and this asymptotic equivalence almost never holds in a DSGE setting.

The reason for this is explained below.

The vector of structural parameters is given by ϕ ∈ Φ, where Φ ⊂ Rnp , and np is the

number of parameters. Similarly, the vector of impulse responses (or the Forecast Error Vari-

ance Decomposition) is given by θ ∈ Θ, where Θ ⊂ Rnobj , and nobj is the amount of impulse

responses of interest to the researcher. In practice, nobj = n ∗ h ∗ s, where n is the number of

endogenous variables, h is the number of horizons to consider (including the impact horizon)

and s is the number of shocks. The mapping between the structural parameters and the impulse
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responses is given by g(.). This mapping is surjective on the co-domain, Θ = g(Φ), but not

on its complement. Intuitively, this means that the set Θ contains only the impulse response

vectors that are consistent with a single vector of parameters. As a result, the mapping does

not necessarily span the full space Rnobj . Indeed, as Inoue and Kilian (2022) highlighted, when

np < nobj , the set of impulse responses, Θ, is of measure zero in the space Rnobj , as the mapping

cannot span Rnobj . While this does occur in the limit when np ≥ nobj , this is almost never the

case in DSGE models, so I ignore this scenario.

The reason for this is that DSGE models typically contain many endogenous variables, and

the number of structural parameters is not forced to grow as quickly as in a VAR, which has

a square structure. For example, adding an additional endogenous variable in a VAR requires

the addition of (2n− 1) ∗ (p+ 1) structural parameters (for a VAR without a constant term).

This is not the case in DSGE models, where there are significantly fewer parameters. For ex-

ample, in the Smets and Wouters (2007) DSGE model, there are 40 endogenous variables, and

41 parameters. Of these, 36 are estimated. Whether or not Θ is able to span Rnobj depends

on the dimension of the parameter vector. However, given that in DSGE settings some of the

parameters are calibrated, np corresponds to the number of estimated parameters, rather than

the total number of parameters. To include as many endogenous variables in a VAR, even only

accounting for one lag, would require over 3,000 structural parameters. The number of impulse

responses to be estimated is nobj = n ∗ h ∗ s. In the Smets and Wouters (2007) model, nobj

is always greater than np. Even if the researcher is only interested in the impact response to

a single shock, nobj = 40 > np. As a result, the central tendency obtained using pointwise

methods is never equivalent to the Bayes Estimator, even as the number of posterior draws

approaches infinity. More generally, the structure of DSGE models means that the space of

impulse responses is almost always of measure zero in the space Rnobj .

Taking the posterior mean (or median) impulse responses makes the implicit assumption

that Θ spans the space Rnobj , so pointwise approaches also consider combinations of impulse

responses that are impossible to obtain from a single structural parameterisation, as was the

case in the AR(1) example described above. In a DSGE setting, the set of impulse responses
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that can be obtained from a single structural parameterisation are of measure zero in Rnobj , so

it is never the case that the central estimates obtained using pointwise approaches are obtained

from a single parameter vector. As a result, the ability to attach economic interpretation to the

resulting impulse responses is restricted, as it is unclear how much of the movement in the IRFs

is driven by the model equations, rather than by changing the parameter values. For example,

to construct the full set of impulse responses in the Smets and Wouters (2007) framework using

the posterior median impulse response, 1,064 different structural parametisations of the model

are used, out of the 1,200 posterior impulse responses that are considered.

2.1.1 Pointwise Credible Sets

After computing the central tendency, the uncertainty surrounding the impulse responses is

usually displayed by constructing a (1− α)% credible region:

p(θi ∈ Θ1−α,i |y) =
∫
Θ1−α,i

p(θi | y)dθi = 1− α (2.3)

Where θi is the ith element of the impulse response vector and Θ1−α,i is chosen such that

p(θi | y) ≥ cα. There are many credible sets that satisfy the above condition. The most popular

approach is to construct the Highest Posterior Density Interval (HPDI) which involves selecting

cα to be as large as possible while still satisfying Equation 2.3. As with the central tendency, the

key issue is that each element in the vector of impulse responses is considered individually. As a

consequence, pointwise approaches to inference, such as the HPDI interval, often misrepresent

the degree of estimation uncertainty (Sims and Zha, 1999). This is because treating each point

independently does not guarantee that the impulse responses used to construct the HPDI at

each point are drawn from the same set of parameter vectors. To construct a credible set that

takes these dependence structures into account, the goal should be to obtain a credible set that

contains (1− α)% of the entire impulse response vectors.

2.2 Using a Point Estimate for the Parameters

An alternative approach that is commonly used in the literature is to estimate the parameters,

and then collapse the posterior distributions for each parameter into a point estimate for use in
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constructing the objects of interest. Indeed, this is how Smets and Wouters (2007) construct

the Forecast Error Variance Decomposition (FEVD), and it has also been used in popular ap-

plications such as Iacoviello and Neri (2010) and Christiano et al. (2014). The advantage of this

approach is that the resulting objects of interest are derived from a single parameterisation, so

maintain interpretability, unlike in the pointwise approaches described above.

However, the method is not without flaws. First, by collapsing the posterior distributions

down to point estimates, researchers are unable to demonstrate the degree of estimation uncer-

tainty. Second, the central moment of the posterior distribution is not invariant to nonlinear

transformations, so does not guarantee that the impulse responses generated by using the cen-

tral moment of the parameters are a good representation of the central moment of the impulse

responses or forecast error variance decompostions themselves. The default for this approach

in Dynare is to use the mean of the marginal posterior distribution for each parameter, while

the mode of the joint posterior distribution is more frequently used to correspond with the

Bayesian statistics literature, where it is commonly referred to as the Maximum a Posteriori

(MAP). However, it is well known that both the mean and the MAP are not invariant to non-

linear transformations4. As the mapping between the structural parameters and the impulse

responses is highly nonlinear, taking the mean (or mode) of each structural parameter will not,

in general, generate the mean (or mode) of the posterior distribution for the impulse responses.

As a result, there is no reason to believe a priori that such an approach will provide a good

estimate of the central estimate for the ultimate object of interest.

3 Bayes Estimator and Joint Inference for DSGE models

Standard practice when plotting impulse response functions for DSGE models is to use the pos-

terior mean (or median) impulse response for each variable, horizon, and shock, and conduct

pointwise inference (e.g Smets and Wouters (2007)). This requires the researcher to implicitly

assume that each response is obtained independently of previous responses, the responses of

other variables to the same shock, and the response of the variable to other structural shocks.

4For the mean, this is easily demonstrated by invoking the same arguments used in Jensen’s inequality. For
the MAP, see, for example, Druilhet and Marin (2007).
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Clearly this is an undesirable assumption to make in the vast majority of macroeconomic situ-

ations. A further consequence of this assumption is that the responses are likely to be obtained

from different structural parametisations of the DSGE model, which also limits the economic

interpretability of the results. This concern has been raised by Fry and Pagan (2011), among

others, in a VAR context, but is equally problematic in a DSGE framework. In fact, as demon-

strated in Section 2.1, pointwise IRFS in DSGE models are always derived from a combination

of different structural models in any realistic application. The fact that pointwise approaches

do not take into account the dependence between variables and time periods is one of the main

criticisms of using such methods, as doing so leads us to misrepresent the estimation uncer-

tainty associated with the object of interest (Sims and Zha, 1999).

There is a growing literature attempting to construct methods for estimation and inference

that take this dependence into account for impulse responses estimated using VARs. Inoue

and Kilian (2013) select the vector of impulse responses that maximises the joint density of the

admissible structural VAR models as the central tendency, and then construct a joint credible

set by ranking the admissible models based on the value of their joint density. The drawback

of their algorithm is that it is possible only when there is a one-to-one mapping between the

structural parameters and the impulse responses, which limits its use in empirical settings. To

address this, Inoue and Kilian (2022) suggest a Bayes estimator, with inference obtained by

constructing lowest posterior risk regions as advocated by Bernardo (2010) in a generic set-

ting. Montiel Olea and Plagborg-Møller (2019) propose a sup-t confidence band that has exact

finite-sample simultaneous credibility, but do not comment on how to construct an estimate for

the central tendency. In a frequentist setting various methodologies have been considered to

obtain inference that is able to capture the dependence across variables and time. For example,

Lütkepohl et al. (2015) consider approaches that use the Bonferroni principle and the Wald

statistic, Inoue and Kilian (2016) use the inverted joint Wald statistic, while Lütkepohl et al.

(2018) and Bruder and Wolf (2018) use bootstrap methods.

However, these concerns have not yet been addressed in a DSGE setting, which is the main

contribution of this paper. This paper provides an algorithm to construct a Bayes Estimator
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for the impulse responses and the forecast error variance decomposition in DSGE models,

which takes these concerns into account by construction, ensuring that the central estimates

are generated by the same structural parameterisation of the model and that the inference

properly takes into account the dependence structures that are prevalent in macroeconomic

data. Namely the response to a shock at horizon h will necessarily depend on the response

to the same variable at horizon h-1. Likewise, the responses of the macroeconomic variables

are also linked through the parametisation of the model, allowing the researcher to make

statements about the co-movement of economic variables in response to particular shocks. The

Bayes Estimator is selected by choosing the vector of impulse responses that minimise a given

expected posterior loss function:

θ̃ = argmin
θ̃∈Θ

Eθ

[
L(θ, θ̃)

]
(3.1)

Where L(θ, θ̃) represents a generic loss function and θ the object of interest. In practice,

there is usually not an analytical solution to Equation 3.1, so it must be solved numerically:

θ̃M = argmin
θ̃∈ΘM

1

M

M∑
i=1

L(θ(i), θ̃) (3.2)

Where M represents the total number of draws from the posterior distribution and θ(i) is

the vector of impulse responses obtained using the ith draw from the posterior distribution.

The resulting Bayes Estimator is the vector of impulse responses that minimises the expected

posterior loss, conditional on the impulse responses being generated by the same set of structural

parameters, thus ensuring economic interpretability. The requirement that a researcher must

select a loss function may appear to be a drawback of the approach, as the measure of central

tendency will, in general, differ under different loss functions. However, pointwise approaches

are also sensitive to the choice of loss function, so this should not be thought of as a significant

drawback of using the Bayes Estimator. In a pointwise setting, the impulse response functions

selected are the ones that minimise the following generic expected posterior loss:

EθPW
[L(θ, θ̃)] =

∫
L1

(
θ1, θ̃1

)
f(θ1|x)dθ1+· · ·

∫
Lnobj

(
θnobj

, θ̃nirf

)
f(θnobj

|x)dθnobj
(3.3)
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Where θi represents the ith element of the vector of impulse responses, f(θi|x) denotes the

posterior distribution of θi, and θ̃ is the vector of impulse responses selected that minimise the

expected posterior loss. As a result, each of the individual components of the expected posterior

loss in Equation 3.3 is minimised without taking into account the other impulse responses. If

the researcher is interested in the posterior median impulse response, this is equivalent to

minimising Equation 3.3 using the absolute loss function, Li(θi, θ̃i) = |θi − θ̃i|, whereas for the

posterior mean, the quadratic loss function, Li(θi, θ̃i) = (θi − θ̃i)
2, would be used instead. To

illustrate this point for the absolute loss, define the loss function over a single element of θ as:

Li(θi, θ̃i) =


(θi − θ̃i) for θi ≥ θ̃i

(θ̃i − θi) for θ̃i > θi

(3.4)

The expected posterior loss at each point can be written as:

∫
Li

(
θi, θ̄i

)
f(θi|x)dθi =

∫ θ̃i

−∞
(θ̃i − θi)f(θi|x)dθi +

∫ ∞

θ̃i

(θi − θ̃i)f(θi|x)dθi (3.5)

The Bayes Estimator is the θ̃i that minimises the expected posterior loss. As the loss

function considered is convex, the minimiser can be obtained by differentiating with respect to

θ̃i and setting the result equal to zero.

∫ θ̃i

−∞
f(θi|x)dθi −

∫ ∞

θ̃i

f(θi|x)dθi = 0 (3.6)

At the loss-minimising point,
∫ θ̃i
−∞ f(θi|x)dθi =

∫∞
θ̃i

f(θi|x)dθi, which implies:

2

∫ θ̃i

−∞
f(θi|x)dθi =

∫ ∞

−∞
f(θi|x)dθi = 1 (3.7)

Therefore:

∫ θ̃i

−∞
f(θi|x)dθi =

1

2
(3.8)

As a result, the Bayes Estimator under the absolute loss function in a scalar setting is the
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posterior median. Equation 3.3 is then minimised by taking the posterior median of each im-

pulse response separately. Therefore, the key difference between pointwise and joint approaches

is not the inclusion of a loss function, but rather the dimension of the object being minimised.

While pointwise approaches minimise over a scalar, the Bayes Estimator instead minimises the

loss over the whole vector of impulse responses. More formally, the Bayes Estimator used in

this paper chooses the vector of impulse responses that minimises Eθ

[
||θ − θ̃||2|x

]
, pointwise

methods would instead choose θ̃ to minimise Eθ1

[
|θ1 − θ̃1||x

]
+ ...+Eθnobj

[
|θnobj

− θ̃nobs
||x

]
if

the researcher opts for the pointwise median impulse response function. Characterising the loss

in vector form ensures that the collection of impulse responses that minimise the expected loss

function of choice are compatible with the same structural model, and so retain the economic

interpretability that is of paramount importance to most researchers utilising DSGE models.

The following subsection outlines how to achieve this.

3.1 Central Tendency

The question of what forms a good measure of central tendency for a multi-dimensional object

is still debated among researchers. One popular approach is the Spatial Median, as proposed

by Haldane (1948). The Spatial Median is the multivariate extension of the univariate median,

and is defined as the vector that minimises the sum of the Euclidean distances to all of the

other points within the set of interest. For a given set of draws from the posterior distribution,

θ(1)... θ(M), where θ(i) ∈ ΘM , the spatial median is defined as the vector that solves:

θ̃sm
M = argmin

θ̃∈Rnobj

M∑
i=1

||θ(i) − θ̃||2 (3.9)

The multivariate mean can be similarly obtained by selecting the vector that minimises the

squared Euclidean distance. In practice, the Spatial Median is obtained using numerical meth-

ods 5. While the Spatial Median is able to solve one of the issues with the pointwise posterior

median, namely that the vector of medians is not a good measure of the central tendency of

the multivariate object (Small, 1990), it does not solve the issue of model inconsistency. The

5The most popular method, Weiszfeld’s algorithm, was introduced by Weiszfeld (1937). A translation of the
original paper into English was provided by Weiszfeld and Plastria (2009). Cohen et al. (2016) recently proposed
a more computationally efficient algorithm for approximating the Spatial Median.
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Spatial Median is infeasible if we wish to maintain model consistency for our central estimate

for similar reasons to those outlined in the argument against using the pointwise posterior

median. To address this, I define the Bayes Estimator to minimise the sum of the Euclidean

distances to the other posterior draws, constraining the minimiser to lie within ΘM :

θ̃BE
M = argmin

θ̃∈ΘM

M∑
i=1

||θ(i) − θ̃||2 (3.10)

The Bayes Estimator obtained in Equation 3.10 is consistent with the model equations and

can be described as a constrained version of the Spatial Median. This ensures that the resulting

vector of impulse responses is a good measure of the central tendency of the impulse response

vector, while only considering the vectors that are possible to obtain from a single parame-

terisation of the model. The two coincide in the case where θ̃sm
M ∈ ΘM . When θ̃sm

M /∈ ΘM ,

simulation evidence suggests that the Bayes estimator is the vector in ΘM that minimises the

Euclidean distance to the unconstrained spatial median.

As a consequence, the method of obtaining the central tendency proposed in this paper

can be considered similar in spirit to the suggestion in Fry and Pagan (2011), which was to

select the structural model closest to the median. However, Fry and Pagan (2011) suggested

selecting the set of feasible IRFs that minimise the squared Euclidean distance to the the vector

of pointwise medians, which is not, in general, representative of the central tendency for the

entire vector. One of the key drawbacks of using an additively separable loss function, such

as the ones proposed in Inoue and Kilian (2022), is that the Bayes Estimator asymptotically

coincides with the vector of pointwise medians when nobj = np, as demonstrated in Appendix

A. The approach in this paper avoids such criticisms, as the Spatial Median is recognised as a

multivariate measure of the central tendency.

A key consideration that needs to be addressed to obtain an accurate measure of the central

tendency is the scaling of the elements contained within θ. Solving the above equation using

the standard impulse response vector can leave the researcher vulnerable to over-weighting

impulse responses for variables measured in smaller scales, or where there is more estimation
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uncertainty present, as the contribution to the overall loss will be greater. This is also a

concern if the researcher wants to use the same parameterisation for all shocks, as the standard

deviation of each shock will necessarily influence the magnitude of the impulse responses and

therefore their contribution to the loss function. As a result, not accounting for these differences

would result in the estimate of the spatial median being skewed toward the objects of interest

corresponding with larger estimated shocks, smaller scales, or a larger degree of estimation

uncertainty. Admittedly, in a log-linearised DSGE framework, the scales are percentage-point

deviations from the steady state, so concerns around the scale of the variable are usually not a

major concern, but this may be more problematic in a VAR. Transforming the data beforehand

allows us to alleviate some of these concerns.

ν
(i)
n,h,s(θ

(i)) =
θ
(i)
n,h,s

σn,h,s
(3.11)

Where σ denotes the standard deviation and n corresponds to the variable, h the horizon,

and s the shock. The transformation ensures that the elements are measured in the same scale,

standard deviation units, so the relative weights will be more equal across variables, horizons,

and shocks. The resulting minimisation problem then becomes:

θ̃BE2
M = argmin

θ̃∈ΘM

1

M

M∑
i=1

||ν(i)(θ(i))− ν̃(θ̃)||2 (3.12)

Applying this adjustment helps to overcome the criticisms leveled at the standard loss

functions by Inoue and Kilian (2022), and offers a more computationally efficient alternative to

the scale-invariant Dirac-Delta loss proposed in their paper. However, it is unable to control for

another important consideration for researchers, which is the horizon of interest for the object

of interest. This particular point is discussed in more detail in Section 5.

3.2 Joint Credible Sets

There is a growing literature on how to construct joint inference in a time series setting. Most

approaches rely on the asymptotic normality of the central estimate and construct the credible

set or confidence bands around this point. The general form of the Bayes Estimator falls under
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the umbrella of M-Estimators, which have been shown to be asymptotically normal under

certain conditions (Huber, 1964; Arcones, 1998). These conditions typically include convexity

of the set of structural impulse responses. While this holds for the spatial median if we allow

the vector of impulse responses to be selected from Rnobj (Möttönen, Nordhausen, and Oja,

2010), it does not hold when we restrict the choice set to Θ, as is the case when we wish

to preserve economic interpretability. As a result, many of the approaches to joint inference

currently available in the literature cannot be applied in this setting. One approach that does

not require normality is the joint credible set proposed by Bernardo (2010) in a general setting,

and by Inoue and Kilian (2022) in a time series setting. The joint credible set for the vector

of impulse responses can be constructed as the lowest posterior risk region. The (1− α)100%

joint credible set can be defined as:

Θ1−α,L =
{
θ̃ ∈ Θ : Eθ(L(θ, θ̃)) ≤ c1−α,L

}
(3.13)

Where Eθ(L(θ, θ̃)) represents a generic loss function to be selected by the researcher. The

critical value, c1−α,L, is set to be the smallest value that is able to achieve a posterior probability

for Θ1−α,L of 1 − α. In this paper, the expected posterior loss is given by Eθ(L(θ, θ̃)) =

Eθ(||ν(θ) − ν̃(θ̃)||2|x). In finite samples, the set can be visually approximated by sorting the

losses given by the numerical approximation of the Bayes Estimator from smallest to largest,

and selecting the sample critical value such that (1− α)100% of the draws are contained.

Θ1−α,L,M =

{
θ̃ ∈ ΘM :

1

M

M∑
i=1

||ν(i)(θ(i))− ν̃(θ̃)||2 ≤ c1−α,L,M

}
(3.14)

As the number of posterior draws approaches infinity, the numerical approximation of the

posterior distribution of the IRFs, ΘM , approaches the true, continuous, posterior distribution

Θ. In addition, the numerical approximation of the expected posterior loss approaches the

expected posterior loss:

sup
θ∈Θ

∣∣∣∣∣ 1M
M∑
i=1

||ν(i)(θ(i))− ν̃(θ̃)||2 − Eθ(L(θ, θ̃)

∣∣∣∣∣ = oas(1) (3.15)

18



In addition, as each draw from the posterior distribution, θ(i) is iid, c1−α,L,M−c1−α,L = oas(1) as

M → ∞. As a result, Equation 3.14 can be viewed as a numeric approximation of the true Joint

Credible Set given by Equation 3.13. One concern with this visual approximation is that the

posterior probability of the set given by Equation 3.14 is zero. This is because the set contains

finitely many elements, while the joint posterior distribution is continuous. However, given that

the numerical approximation of the expected posterior loss will converge to its true value as the

number of posterior draws approaches infinity, the visual approximation of the joint credible set

can be used to assess the degree of estimation uncertainty. An advantage of using this approach

is that the joint credible set takes the form of a shot-gun plot, which allows researchers to see

the individual paths of the impulse responses under different parameterisations.

4 Empirical Application

To illustrate the advantages of the approaches proposed in this paper compared to the standard

approaches, I use the Smets and Wouters (2007) framework6. First, I construct the Bayes Es-

timator as the measure of central tendency using the loss function described in Equation 3.12.

Ranking the expected posterior losses from smallest to largest allows for the construction of a

visual approximation for the joint credible set. While the construction of the central estimate

requires the same parameterisation to be used for all endogenous variables, only a subset of

the full set responses, corresponding to the observable variables, are displayed in the paper.

6For a full description of the model and the estimation procedures, refer to Smets and Wouters (2007).

19



Figure 1: Bayes Estimator and Joint Credible Set vs. Posterior Median and HPD Region

20



Figure 1 plots the impulse responses for the observable variables in the Smets and Wouters

(2007) model following three different shocks. The red lines correspond to the Bayes Estimators

for the impulse responses obtained by minimising the Euclidean distance, while the solid blue

lines are the posterior median impulse responses and the dashed blue lines represent the 90%

pointwise credible regions. The blue lines are obtained directly from the Smets and Wouters

(2007) replication file. The different approaches are shown to produce different measures of the

central tendency, although in most cases the quantitative differences between the two sets of

impulse responses are relatively small. The Bayes Estimator implies a smaller rise in consump-

tion following a productivity shock, and a smaller decline in consumption following a wage

mark-up shock compared to its pointwise counterpart.

The main difference between the two approaches is the corresponding inference. The point-

wise HPDI, like the central estimate, also treats each point of the impulse response vector

independently. As a result, the degree of estimation uncertainty implied by the HPD region

understates the true estimation uncertainty that is present as it does not take into account

the dependence across variables and horizons, reflecting the criticism of such approaches in

Sims and Zha (1999). This finding is also consistent with the literature on joint inference

in VARs, which found that pointwise approaches to inference often understate the degree of

estimation uncertainty (Lütkepohl et al., 2015). The 90% HPD region underrepresents the

degree of estimation uncertainty compared to the joint credible set. By construction, 90% of

the impulse responses considered are contained within the joint credible set. In the Smets and

Wouters (2007) example considered in this paper, only 1 out of the 1,200 posterior impulse re-

sponse vectors considered is fully contained within the pointwise credible region for all variables

and horizons: the Bayes Estimator. Allowing for a small tolerance to account for numerical

precision7 results in just 1.6% of the 1,200 impulse response vectors being completely con-

tained within the pointwise credible region for all variables, demonstrating that conventional

approaches severely understate the degree of estimation uncertainty.

7The check allows for a tolerance of e−5 to account for rounding errors and machine precision.
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Figure 2: IRFs: Mode of Each Parameter vs. Bayes estimator
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Figure 3 demonstrates the differences between the Bayes Estimator and the impulse re-

sponses generated by fixing the parameters at their posterior mode in the Smets and Wouters

(2007) application. Again, although in general the differences between the Bayes Estimator

and those obtained using the parameter modes are small, there are noticeable differences in the

response of consumption, investment, and wages to a productivity shock, and the responses of

several variables to a wage mark-up shock. However, while both of these estimates are drawn

from a single structural model, so are able to maintain economic interpretability, only the

approach using the Bayes Estimator is able to provide both the reassurance that the impulse

responses generated will provide a good central estimate of the joint distribution and also allow

researchers to characterise the estimation uncertainty that is present.

There are also implications for the Forecast Error Variance Decomposition (FEVD), which

is another important object of interest for researchers when estimating DSGE models, par-

ticularly for business cycle analysis. The Bayes Estimator for the FEVD can be constructed

in the same way as for the impulse responses, changing θ to represent the vector of FEVDs

that are compatible with the same structural parameterisation. Fixing the parameter values at

their mode is the most popular method for computing the FEVD for DSGEs. This is because

pointwise approaches do not guarantee that the FEVD sums to one, as different parameterisa-

tions are combined. As the FEVD is a non-linear function of the impulse responses, it is even

less likely that the FEVD obtained from the parameter modes will provide a good measure of

the central tendency for the FEVD. The Bayes Estimator is also able to contribute here, and

produces noticeable differences compared to the FEVDs obtained using the parameter modes.

In particular, the Bayes Estimator implies that productivity and monetary policy shocks are

more important for explaining the variation in most of the observed variables. However, as

demonstrated by the joint credible set, there is a large degree of estimation uncertainty sur-

rounding these estimates, with a productivity shock explaining somewhere between 10-45% of

the variation in output at a business cycle frequency, and similar degrees of uncertainty in

many other cases. This highlights the advantage of using the approach outlined in this paper

for the FEVD, as the standard approach of fixing the parameters at their posterior modes is

unable to capture the uncertainty present in the estimation of the FEVD.
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Figure 3: FEVD: Mode of Each Parameter vs. Bayes estimator
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5 Non-invariance to Horizon length

The previous sections outlined the advantages of taking the entire vector of impulse responses

into account when constructing the central tendency and inference. However, this more holistic

approach is not without a cost. By definition, the structural model that is selected using the

Bayes Estimator will depend on how many horizons the researcher is interested in comput-

ing impulse responses for, as the expected posterior loss will change when more horizons are

added to the vector of impulse responses. While this is not a concern when using standard

approaches such as the pointwise approaches described in section 2.1, it should not be thought

of as an advantage of using such methods, but rather an artifact of the unrealistic assumptions

(independence of responses across variables and time) that we make when doing so. That said,

the lack of invariance may still be cause for concern if the findings are particularly sensitive to

the choice of horizon. While the focus of this paper is on DSGE models, the point raised in

this section is equally applicable to any application of joint inference in a time series setting,

including VARs.

This lack of invariance to the horizon of interest requires researchers using joint inference

approaches to make a conscious decision about the appropriate number of horizons to consider.

In DSGE settings with quarterly data, researchers are usually most interested in the first 20

horizons, corresponding to business cycle frequency. An alternative approach is to reduce the

sensitivity of the results to changes in the horizon of interest by discounting horizons that are

further out. This would help to ensure that the estimate obtained is an accurate measure of

the central tendency for horizons that are most relevant for policymakers. For example, one

could consider an adjustment to Equation 3.11 of the form:

ν
(i)
n,h,s(θ

(i)) = βλ
θ
(i)
n,h,s

σn,h,s
(5.1)

With β ∈ [0, 1] and λ = h−min(h, δ), where δ denotes the period from which discounting

begins. This approach allows some flexibility to ensure that sufficient weight is placed on the

policy relevant horizons, but also nests the cases of no discounting (β = 1) and full discounting

beyond horizon δ (β = 0 and δ > 0). The selection of β and δ then become tuning parameters
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for the analysis that can be tailored to the specific application. As a rule of thumb, they should

be selected to ensure that relevant policymaking horizons carry a non-trivial weight. Setting

β = 0.9 and δ = 20 would imply no discounting for the first 20 periods, and then progressively

discounting the subsequent horizons, resulting in a weight of 0.12 in period 40. Repeating the

analysis in Section 2.1 with a maximum horizon of 40 and the above values for β and δ, we

obtain the results in Figure 4.

The central estimate is shown to vary depending on the horizon of interest. The red solid

line shows the measure of the central tendency corresponding to the adjusted Bayes Estimator

using Equation 5.1 with β = 0.9 and δ = 20, and the joint credible set is also constructed under

this adjustment. The solid black line shows the central tendency if only the first 20 periods

were considered when selecting the parameterisation (β = 0, δ = 20), i.e. the black line uses

the same structural parameters as those used for the central tendency in Figure 1. Finally, the

solid Blue line applies no discounting (β = 1). The figure shows that changing the horizon of

interest from 20 to 40 causes the central tendency to change. However, in this case, progressively

discounting beyond horizon 20 ensures that the selected structural parameterization remains

the same. While researchers could choose to assign zero weight beyond horizon 20, assigning

some weight ensures that more distant horizons still feature in the expected posterior loss, and

so guards against selecting a parameterisation that diverges at more distant horizons. This is

perhaps not a major concern in most DSGE settings, where the responses converge to zero as

the variable moves back to its steady state, but may be more of a concern in VARs, where this

is not always the case.
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Figure 4: Bayes Estimator Under Different Values of β
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6 Conclusion

This paper provides a toolkit to conduct joint inference for DSGE models estimated using

Bayesian methods. Using the Bayes Estimator has two key advantages over the current ap-

proaches used in the literature. First, it provides an accurate measure of the central tendency

for the object of interest that can be obtained from a single structural model. Under the loss

function considered in this paper, the central estimate coincides with a constrained version

of the spatial median, where only economically interpretable impulse responses or forecast er-

ror variance decompositions are considered. Second, it allows researchers to characterise the

uncertainty that is present in the estimation of impulse responses. Current approaches ei-

ther ignore the estimation uncertainty (using the mean/mode of the posterior distribution of

the parameters) or understate it due to the assumption of independence across horizons and

variables. In the empirical example considered in the paper, the Bayes Estimator is the only

vector of impulse responses, out of the 1,200 considered, that is fully contained within the

standard pointwise 90% HPD region for all variables, horizons and shocks. The paper also

suggests adjustments to the loss function that are shown to mitigate some of the concerns that

practicioners may have when using the Bayes Estimator.
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A Appendix A - Alternative Loss Functions

This section compares the loss function of choice in this paper with other alternative loss

functions, such as those proposed by Inoue and Kilian (2022). The main focus is on whether

these loss functions are able to provide a good measure of the central tendency for the set of

posterior draws. To make the arguments more tractable, I focus on the case where nobj = np.

In this case, as the number of posterior draws approaches infinity, the mapping θ = f(ϕ)

spans Rnobj . As a result, the optimisation problem becomes unconstrained, which simplifies

the arguments.

A.1 Additively Separable Loss Functions

The simplest loss functions to implement are additively separable. These loss functions can be

generically defined as those taking on the following form:

θ̃AS = argmin
θ̃∈Θ

nobj∑
j=1

E
[
L
(
θj , θ̃j

)]
(A.1)

This nests two of the loss functions proposed in Inoue and Kilian (2022), the absolute and

quadratic losses. The sample analogues of which are defined as follows:

θ̃AL
M = argmin

θ̃∈ΘM

1

M

M∑
i=1

nobj∑
j=1

∣∣∣θ(i)j − θ̃j

∣∣∣ , (A.2)

θ̃QL
M = argmin

θ̃∈ΘM

1

M

M∑
i=1

nobj∑
j=1

(
θ
(i)
j − θ̃j

)2
, (A.3)

In the setting when M → ∞ and np = nobj , Θ̂M → Rnobj . Focusing on the absolute loss

function, Equation A.2 becomes:

θ̃AL = argmin
θ̃∈Rnobj

nobj∑
j=1

E
[∣∣∣θj − θ̃j

∣∣∣] (A.4)

In this setting, it is clear to see that the minimiser of Equation A.4 is the vector of point-

wise medians. To demonstrate this, note that Equation A.4 is identical to Equation 3.3, the
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minimisation problem to obtain the pointwise posterior medians. It is well known that the

vector of pointwise medians is, in general, not a good measure of the central tendency in a mul-

tivariate setting (Small, 1990). Similar arguments can be applied to any additively separable

loss function, which raises concerns about their usefulness for the task at hand; finding a good

measure of the central tendency for the joint distribution.
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