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Abstract

We propose a straightforward procedure to test the identifying assumptions of local

treatment effect (LATE) estimation conditional on covariates. Using conditional distri-

bution regressions, we identify group-specific distributions while controlling for the

overall effect of covariates on the outcome. We derive bounds for unobserved mean

potential outcomes from mixing outcome distributions to detect deviations from the

mean-based testable implications of the LATE assumptions derived by Huber and

Mellace (2015). We contribute to the literature by proposing an easy-to-implement

procedure suitable for settings where conditioning on various covariates is essential.

Furthermore, we validate the test performance in a brief simulation study and as-

sess the method in two empirical labor market applications to illustrate its practical

usefulness.
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1 Introduction

Instrumental variables (IV) research designs are essential for causal inference and can
reveal important heterogeneities of economic agents (Mogstad and Torgovitsky, 2024). The
prerequisites for valid IVs are well-known: They need to be exogenous, only affect the
outcome through the treatment, and the treatment monotonically only in one direction.
Yet, despite available tests for the validity of IVs, they are rarely conducted in practice.
Besides the computational complexity of available non- or semiparametric estimation
approaches and their often quite technical exposition, the main reason for this underuse is
the difficulties of these approaches in dealing with covariates.

This paper aims to fill this gap by building on the testable implications of Huber and
Mellace (2015) and combining them with conditional distribution regressions – a method
that serves as the basis for IV quantile treatment effects (Chernozhukov and Hansen, 2005;
Frandsen et al., 2012) or Lee (2009) bounds for IV (Dong, 2019; Westphal et al., 2022).
Combining the testable implications and distributional regression allows for deriving
bounds on effects for non-complying groups that cannot be affected by the IV assumptions
– by conveniently employing covariates.

The inability to control for a larger number of covariates in most of the proposed tests,
while remaining computationally feasible, further limits their applicability in practice,
particularly in settings where the exogeneity assumption holds only conditionally on
various covariates (e.g., models with fixed effects). Two different test bases exist. The
mean-based testable implications by Huber and Mellace (2015) and the density-based
conditions derived by Kitagawa (2015). For mean effects like the local average treatement
effect (LATE), Huber and Mellace’s (2015) test is optimal to refute IV validity, as shown
by Laffers and Mellace (2017). However, all tests have in common that validity cannot
be confirmed explicitly (only invalidity). Further literature mainly builds on the density-
based approach. Mourifié and Wan (2017) reformulate the testable conditions and propose
another testing procedure, Sun (2023) improves the Kitagawa (2015) test procedure and
allows the treatment to be multi-valued, and Arai et al. (2022) extends the density-based
approach to fuzzy regression discontinuity designs. An alternative approach to test the
density-based conditions is provided by Farbmacher et al. (2022), who uses causal forests to
detect local violations of the LATE assumptions. Carr and Kitagawa (2023) contribute to the
literature by extending Kitagawas (2015) test to the marginal treatment effect framework
and proposing the first IV validity test, which can accommodate a moderate number of
covariates.1

1There are other papers in the literature that concentrate on violations of one or two of the validity
assumptions, e.g. Angrist and Imbens (1995), Mogstad et al. (2021), Machado et al. (2019), De Chaisemartin
(2017) and Kédagni and Mourifié (2020).
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Our testing approach is most closely related to the one of Huber and Mellace (2015) but
differs in two main ways. First, we reduce the number of conditions tested from 4 to 2
already when defining the parameters for testing to leave out any non-binding conditions.
Second, even though the testing conditions are based on mean potential outcomes, we
make use of group-specific conditional density functions for which the covariates are
held fixed at the mean. This allows us to point identify mean potential outcomes for pure
groups and partially identify bounds for the unobserved mean potential outcomes of mixed
groups conditional on covariates. Conditioning on covariates with the approach of Huber
and Mellace (2015) is limited as it requires running the procedure in covariate-specific
subsamples.

We conduct a simulation study to evaluate the test performance in different settings that
directly relate to the random assignment assumption and the exclusion restriction. We
consider processes where the instrument assignment does not depend on covariates and
processes where it does. Thus, in the latter case, the instrument is only randomly assigned
when conditioning on covariates. For each case, we further distinguish processes where
the exclusion restriction holds and where the instrument directly affects the outcome. The
simulation results reveal a good test performance in terms of size and power in finite
samples. We complement the simulation results with results for two empirical applications
from the literature. First, we apply our procedure to test the validity of the draft eligibility
instrument from Angrist (1991) to analyze the effect of military service on civil earnings.
The second application is from Card (1993), which studies monetary returns to education
using college proximity as an instrument. In line with previous tests, we cannot reject
IV validity for the draft eligibility instrument. For the college proximity instrument, our
results indicate that the instrument is not valid without the inclusion of covariates. In
contrast, a model including the covariates used by Card (1993) does not allow for refuting
IV validity.

This paper proceeds as follows. Section 2 introduces the general econometric setup, and
presents the LATE assumptions and their testable implications. The testing procedure is
explained in detail in Section 3. Section 4 presents the simulation results, before the results
for the two empirical applications are shown in Section 5. Section 6 concludes.

2 Setting and Assumptions

With a binary treatment D and a binary instrument Z, the key estimator for causal inference
on the outcome Y is the so-called Wald estimator

IVWald =
E(Y | Z = 1)− E(Y | Z = 0)
E(D | Z = 1)− E(D | Z = 0)

. (1)
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Note that we suppress covariates X in this simple setup. Angrist and Imbens (1995) show
that with an additional set of assumptions, this ratio of mean differences has a causal
interpretation as the local average treatment effect (LATE):

IVWald = E(Y1 − Y0 | D1 > D0) := LATE (2)

Here, Yd is the potential outcome for treatment state d ∈ {0, 1}. Hence, for every individual,
Y1 − Y0 is their specific treatment effect. The LATE averages this individual treatment
effect for a specific group of individuals – individuals who take the treatment because of
the instrument. To derive this, Angrist and Imbens introduce another potential outcome
dimension for the treatment: Dz, indicating the potential treatment choice with a specific
value of the instrument z ∈ {0, 1}. And correspondingly for the outcome, Ydz.

We will now introduce the assumptions necessary to go from Eq. (1) to (2), which sets the
path for testable implications on these assumptions.

Assumption 1 (Mean independence):
E(Ydz | Z = 1) = E(Ydz|Z = 0) and E(Dz | Z = 1) = E(Dz|Z = 0) ∀d, z{0, 1}

Remark: As we identify mean effects, not quantiles or probability densities, we only
need this mean independence. In contrast, density-based testing approaches follow-
ing Kitagawa (2015), base their tests on the stronger assumption of full independence:
Yd1, Yd0, D1, D0 ⊥⊥ Z.

By the independence assumption, we can write for the numerator of Eq. (1):

E(Y | Z = 1)− E(Y | Z = 0) = E(Yd1 − Yd0),

which simply is the causal effect of Z on Y (also called intent-to-treat or reduced-form
effect). The expression E(Yd1 − Yd0) means that the treatment state d is unrestricted and
may vary from individual to individual in this difference, whereas the instrument state z is
fixed. Analogously, we can rearrange the denominator of Eq. (1) through the independence
assumption as follows:

E(D | Z = 1)− E(D | Z = 0) = E(D1 − D0)

We can then decompose the average causal effect of Z on D based on counterfactual
treatment behavior.

E(D1 − D0) = Pr(D1 = 1)− Pr(D0 = 0)

= Pr(D1 = 1, D0 = 1) + Pr(D1 = 1, D0 = 0)

−
[

Pr(D0 = 0, D1 = 1) + Pr(D0 = 0, D1 = 0)
]
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In principle, we can define and label the four possible types as always-takers (AT, defined
by D1 = D0 = 1), compliers (C, D1 > D0), defiers (DF, D1 < D0 = 1) and never-takers
(NT, D1 = D0 = 0). With this compact notation, we can simplify the equation above as:

πAT + πC −
[
πAT + πDF

]
= πC − πDF

Using these types, we can also decompose the numerator of Eq. (1) as

E(Yd1 − Yd0) = πNTE
(
Y01 − Y00|D1 = D0 = 0

)
+ πATE

(
Y01 − Y00|D1 = D0 = 1

)
+πCE

(
Y01 − Y00|D1 = 1, D0 = 0

)
+ πDFE

(
Y01 − Y10|D1 = 0, D0 = 1

)
Conditional on the type, we only need the value of the instrument to infer treatment
takeup. Thus, we use δz

type to denote the corresponding expected outcome. Then we write
the above equation as:

E(Yd1 −Yd0) = πNT
[
δ1

NT − δ0
NT
]
+ πAT

[
δ1

AT − δ0
AT
]
+ πC

[
δ1

C − δ0
C
]
+ πDF

[
δ1

DF − δ0
DF
]

Now, we use this notion, to rewrite Eq. (2) as:

IVWald =
πNT

[
δ1

NT − δ0
NT
]
+ πAT

[
δ1

AT − δ0
AT
]
+ πC

[
δ1

C − δ0
C
]
+ πDF

[
δ1

DF − δ0
DF
]

πC − πDF
(3)

This expression is more complicated than Eq. (2). To give it the desired interpretation, we
need to make additional assumptions.

Assumption 2 (Mean exclusion restriction):
E(Yd,1) = E(Yd,0) for d ∈ {0, 1}.

Remark: Again we only need the exclusion restriction to hold in expectation for
the identification of mean effects. IV validity conditions of Kitagawa (2015) require
Yd,1 = Yd,0 for d ∈ {0, 1}.

By the exclusion restriction, the instrument only affects Y through D, such that effects for
always-takers and never-takers are nonexistent:

IVWald =
πCE

(
Y01 − Y00|D1 = 1, D0 = 0

)
− πDFE

(
Y10 − Y01|D1 = 0, D0 = 1

)
πC − πDF

(4)

The last step uses

Assumption 3 (Monotonicity): Pr(D1 ≥ D0) = 1
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By monotonicity, πDF = 0, and the above expression simplifies to Eq. (2). Although the
testable implications discussed in this paper may detect joint violations of assumptions
1–3, we will assume that monotonicity holds for the sake of notational clarity and because
a violation of the monotonicity assumptions must be substantial to be detected. We refer
the reader to De Chaisemartin (2017) for more details of such a violation. If we condition
the expectations above additionally on D, not (the remaining) three, only one or two types
contribute to these expectations. This insight, first used by Imbens and Rubin (1997), is the
first step to seeing the consequences when an assumption is violated. For instance, if we
condition on D = 1 and Z = 1, always-takers and compliers enter the expectation:

E(Y | D = 1, Z = 1) =
πC

πC + πAT
δ1

C +
πAT

πC + πAT
δ1

AT (5)

If Z = 0, always-takers exclusively enter the expectation:

E(Y | D = 1, Z = 0) = δ0
AT

For the untreated case with Z = 1, only never-takers must contribute to the expectation:

E(Y | D = 0, Z = 1) = δ1
NT

If Z = 0, the expectation is mixed with never-takers and compliers:

E(Y | D = 0, Z = 0) =
πC

πC + πNT
δ0

C +
πC

πC + πNT
δ0

NT (6)

3 Testable Implications, Testing Procedure, and Estimation

By assumptions 1–3, we take the always-takers’ mean when Z = 0, δ0
AT, and use Eq. (5) to

infer the mean for the treated compliers, δ1
C. This works, because the assumptions imply

δ0
AT = δ1

AT. Analogously, we can use the never-takers’ mean δ1
NT, equate it to δ0

NT, and
infer the mean of the untreated compliers according to Eq. (6).

If either one of the assumptions does not hold, δ1
AT ̸= δ0

AT and/or δ1
NT ̸= δ0

NT. We can test
whether this is likely to be fulfilled by using the type and Z-specific probability distribution
functions, f z

type(Y), together with the fact that the equations do not only need to hold in
expectation but also in distribution. Hence, the two treated expectations become:

f (Y | D = 1, Z = 1) =
πC

πC + πAT
f 1
C(Y) +

πAT

πC + πAT
f 1
AT(Y)

:= f 1
AT,C(Y)
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f (Y | D = 1, Z = 0) = f 0
AT(Y)

The implication of IV validity is f 0
AT(Y) = f 1

AT(Y) for the treated case with D = 1 and
f 1
NT(Y) = f 0

NT(Y) for the untreated case with D = 0, This equivalence has testable
implications for the observed distributions: the joint distributions of f 1

AT,C(Y) and f 0
NT,C(Y)

must nest the normalized single-type distributions πAT
πAT+πC

f 0
AT(Y) and πNT

πNT+πC
f 1
NT(Y),

respectively.

f(Y
)

Y

f1
AT,C πAT/(πC+πAT) f0

AT

(a) No violation

f(Y
)

Y

f1
AT,C πAT/(πC+πAT) f0

AT

(b) Violation

Figure 1: Graphical test of IV validity
Notes: Own illustration.

Figure 1 visualizes the two possible scenarios in Panels (a) and (b). Panel (a) displays a
type-specific density (dashed line) that is compatible with the joint density (solid line).
The two densities do not cross. Panel (b) displays the case where the two densities do
cross. Testing whether the densities cross is the idea of the Kitagawa (2015) test with the
underlying assumption of full conditional independence.

A similar (but not equivalent) implication of an incompatible distribution is that the mean
of f 0

AT (δ0
AT) must lie within the lower and upper bound of extreme-case scenarios. To

keep notation and testing simple, we assume the outcome to be continuous. The lowest
possible mean of the unobserved δ1

AT results from f (Y|D = 1, Z = 1) if the unobserved
always-takers are placed in the lowest possible ranks of the distribution. As we know the
share of always-takers, the lowest possible ranks are the first q = πAT

πAT+πC
quantiles. This

extreme-case scenario assumes the always-takers place from quantile 0 to q in the joint
distribution, resulting in the lowest possible mean δ1,LB

AT . Formally, this reads

δ1,LB
AT =

∫ πAT
πAT+πC

0
y dF(Y = y | D = 1, Z = 1). (7)
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The converse extreme case scenario is when the always-takers are placed in the highest q
quantiles for the upper bound. This yields

δ1,UB
AT =

∫ 1

πAT
πAT+πC

y dF(Y = y | D = 1, Z = 1) (8)

Figure 2 visualizes the lower and upper bounds for the joint treated distribution, which is
the mean produced by the gray part of the distribution.

lower bound

f(Y
)

Y

f1
AT,C

(a) Lower bound

upper bound

f(Y
)

Y

f1
AT,C

(b) Upper bound

Figure 2: Graph of upper and lower bound
Notes: Own illustration. Shaded areas equals the q’s proportion of the integral located in the lower (a) or upper (b) tail of
the distribution. The vertical solid lines indicate the lower and upper bound of E(Y1,1|TZ = AT1, X).

For the untreated distributions, the extreme-case scenarios form if the never-takers place
in the lowest or highest r = πNT

πNT+πC
ranks of the joint f 0

NT,C distribution.

δ0,LB
NT =

∫ πNT
πNT+πC

0
y dF(Y = y | D = 0, Z = 0). (9)

δ0,UB
NT =

∫ 1

πNT
πNT+πC

y dF(Y = y | D = 0, Z = 0) (10)

We now have the two admissible intervals, which we use to compare the pure always-
takers and never-taker means δ0

AT and δ0
NT. The means are either

• compatible if δ0
AT ∈

[
δ1,LB

AT , δ1,UB
AT

]
and δ1

NT ∈
[
δ0,LB

NT , δ0,UB
NT

]
. Then, we cannot reject IV

validity. Or

• incompatible if either δ0
AT /∈

[
δ1,LB

AT , δ1,UB
AT

]
or δ1

NT /∈
[
δ0,LB

NT , δ0,UB
NT

]
. Then, we can reject

IV validity as one of assumptions 1–3 must be violated.
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These testing equations are equivalent to but expressed in a different way than the testable
implications derived by Huber and Mellace (2015). They are optimal to refute IV validity
defined by assumptions 1-3 as long as the outcome is continuous (see Laffers and Mellace,
2017). Yet, as well as the Kitagawa (2015) testing conditions, they cannot verify IV validity.
The probability of detecting a violation increases the narrower the bounds. Greater shares
of always or never-takers compared to complier shares correspond to tighter bounds.
Additionally, conditioning on covariates, especially those explaining most variation in
the treatment selection or outcome, can tighten the bounds (Lee, 2009; Semenova, 2020).
Huber and Mellace (2015) show how mean dominance assumptions can tighten the bounds
or even result in equality constraints. This holds likewise for our approach, as we test
the same identifying assumptions (conditional on covariates), which can help increase
testing power. However, this might not be relevant in many applied settings, where mean
dominance assumptions are less plausible than the IV validity conditions. Only one of the
two conditions can be tested in settings with one-sided non-compliance that rule out the
existence of always or never-takers.

With this notation, we can define the parameters that we test as

θ1 =

δ0
AT − δ1,UB

AT if δ1,LB
AT < δ0

AT

δ1,LB
AT − δ0

AT else.

for the treated case and

θ0 =

δ1
NT − δ0,UB

NT if δ0,LB
NT < δ1

NT

δ0,LB
NT − δ1

NT else.

for the untreated case. If IV validity is violated, θ1 and/or θ0 are strucurally larger than
zero, meaning that the δ0

AT and/or δ1
NT lie outside their corresponding bounds. This

defines our hypothesis as

H0 :

(
θ1

θ0

)
≤
(

0
0

)
, (11)

A positive θ indicates that δ0
AT or δ1

AT lie outside the admissible bounds, i.e., the means are
incompatible with IV validity.

Estimation
Now, for the estimation approach covariates are explicitly expressed, as their implementa-
tion into an easy testing procedure is the key contribution of this paper. To determine θ1
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and θ0, we need to estimate the type shares πAT, πNT and πC. We do so by estimating the
following first-stage equation

Di = πAT + πCZi + X̃′
iδ + UDi (12)

where X̃ indicates the demeaned covariate vector X. Since the covariates are held constant
at their means and both D and Z are binary, the constant can be interpreted as the share
of always-takers (always D = 1), and πC as the share of compliers (D varies with Z).2

Consequently, as the shares sum up to one, the share of never-takers is given by πNT =

1 − πAT − πC.

Furthermore, for the conditional expected values entering θ0 and θ1, we estimate the
conditional densities f 1

AT,C(Y), f 0
AT(Y), f 1

NT(Y), and f 0
NT,C(Y). To derive the conditional

pdfs, we start by estimating the conditional cdfs for each observable group (determined
by possible combinations of D and Z) given covariates with a distribution regression
approach. F(y) = Pr(Y ≤ y|D = d, Z = z, X̃) is a binary choice model with the dependent
variable 1[Y ≤ y] for an arbitrary threshold y.3 Therefore, we run repeated binary choice
models of the form

1[Y ≤ y] = F0
NT,C(y)1[D = 0]1[Z = 0] + F0

AT(y)1[D = 1]1[Z = 0]
+ F1

NT(y)1[D = 1]1[Z = 0] + F1
AT,C(y)1[D = 1]1[Z = 1] + X̃′λ + v

(13)

with different thresholds y in the support of Y. Note that F0
NT,C, F0

AT, F1
NT, and F1

AT,C

are parameters estimated by this regression. They measure the share of observations
conditional on D = d and Z = z below the threshold y, while all X̃ are set to zero (and are,
hence, fixed).4 Repeating this regression for many y on the support of Y approximates the
group-specific conditional cdf. By choosing a finer grid of values for y, one can approve
the chance to describe F(y) accurately. As the pdf is the derivative of the cdf, we estimate
the slope of the conditional cdfs at each value for y. The slopes at every evaluation point
can be estimated with kernel-weighted local polynomial regressions. This requires the
choice of a kernel function and bandwidth. We follow Mourifié and Wan (2017) and use
the rule-of-thumb choice by Fan and Gijbels (1996).5

Calculating the θs based on the estimated density function yields the estimated parameters
θ̂1 and θ̂0. Still, bootstrap-based inference is needed to test the H0 at given significance
levels. Therefore, we generate B bootstrap samples of size N (number of observations)

2This interpretation is valid as long as Assumptions 1 and 3 hold. Without covariates, the (sum of) shares
can easily be calculated with πAT = Pr(D = 1|Z = 0), πAT + πC = Pr(D = 1|Z = 1), πNT = Pr(D =
0|Z = 1, and πNT + πC = Pr(D = 0|Z = 0).

3Without further indication, it is implicit that all cdfs are given conditional on covariates.
4One could, instead of linear models, run, e.g., repeated logit models and use predictive margins for

each group.
5This rule-of-thumb bandwidth choice is implemented in several STATA packages; for example, it is the

default of the lpoly package.
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randomly drawn from the original sample with replacement and indicated with b ∈
{1, 2, ..., B}. θ̂1,b and θ̂0,b denote the estimates calculated within every sample. Our p-value-
based test is very similar to the simple bootstrap test with Bonferroni adjustment applied
by Huber and Mellace (2015) except that we reduce the number of constraints already
when defining the test parameters. To obtain p-values we recenter the parameter from
each bootstrap sample, such that θ̃1,b = θ̂1,b − θ̂1 and θ̃0,b = θ̂0,b − θ̂0. This step, suggested
by Hall and Wilson (1991), increases testing power if bootstrap samples are drawn from
populations that do not satisfy H0. To test the constraints of the H0 against an upper-tailed
alternative hypothesis separately, the bootstrap p-values for the treated and untreated
cases are then given by

p
θ̂1
= 1

B ∑B
b=1 1[θ̃1,b > θ̂1]

p
θ̂0
= 1

B ∑B
b=1 1[θ̃0,b > θ̂0].6

(14)

However, we want to perform a joint test on θ1 and θ0. The more conditions are tested, the
higher the probability of obtaining an unusually high test statistic at random. Therefore,
we apply the Šidák or Dunn-Šidák correction where the significance level for each test is set
to α′ = 1 − (1 − α)

1
m with m being the number of tests and α the overall significance level

(Šidák, 1967). For the p-value of the joint test follows that p̂ = 1 − (1 − min(p
θ̂1

, p
θ̂0
))m.

Even though slightly less conservative than the Bonferroni correction, note that the Šidák
correction can still be too conservative when the m is large and the test statistics are posi-
tively correlated (MacKinnon, 2009). With m = 2 in our case, we have the least conditions
tested simultaneously. If the test statistics are not independent, the resulting p-value p̂ is
still an upper bound and min(p

θ̂1
, p

θ̂0
) the lower bound in the extreme case of perfectly

correlated statistics (MacKinnon, 2009). Hence, consulting p
θ̂1

and p
θ̂0

as well as the Šidák
corrected p-value for the joint test p̂ should be enough to judge on the H0 or not in most
settings.

To summarize, we conduct the following step-by-step implementation:

1. Demean covariates to get X̃.

2. Estimate shares of types with first stage regression (Eq. (12)) and calculate q and r.

3. Set a grid for evaluation points within the support of Y (e.g., quantiles of the observed
distribution of Y).7

6This follows from the fact that we want to reject our H0 when the observed value of our test statistic
T̂ is in the upper tail of F(T), the cdf of T under the H0. The distribution of the bootstrap test statistics T̂b
gives the empirical distribution function F̂, i.e., the asymptotic approximation of F. Then, the bootstrap
p-value is p

θ̂
= 1 − F̂(T̂) = 1

B ∑B
b=1 1[T̂b > T̂] (see MacKinnon, 2009). Plugging in T̂b =

√
N (θ̂b − θ̂)/σ

θ̂
and

T̂ =
√

N θ̂/σ
θ̂

yields the simplified version in Eq. (14).
7As quantiles use to bunch in the middle of a unimodal distribution, one might want to use more dense

evaluation points in the tails of the distribution.
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4. Estimate conditional cdfs with repeated regressions of binary choice models (Eq. (13)).

5. Determine the slopes at the evaluation points to get conditional pdfs (e.g., with local
linear regression).

6. Calculate conditional means δ0
AT and δ1

NT as well as lower and upper bounds δ1,LB
AT ,

δ1,UB
AT , δ0,LB

NT and δ0,UB
NT according to equations (7–10).

7. Determine θ1 and θ0 by plugging in results from step 6.

8. Conduct inference on both parameters, i.e., derive bootstrapped inference by repeat-
ing steps 1 to 7 with B bootstrap samples of size N of the original sample (B =number
of bootstrap repetitions, N =number of observations), derive the corresponding
p-values according to Eq. (14) and apply the Šidák method to obtain one p-value for
the joint test

4 Simulation

We perform Monte Carlo exercises to evaluate our testing procedure’s size and power (the
probabilities of falsely and correctly rejecting H0, respectively). We consider the general
data-generating process (DGP) similar to the simulation study in Carr and Kitagawa (2023).
We simulate this DPG S = 1000 times, with potentially different random parameters for
each simulation. We bootstrap-replicate each simulation B = 99 times with the same
parameter value to generate a p-value. The DGP reads

Y = X′βX + βDD + βZZ + U

D = 1[π0 + π1Z + X′πX + UD ≥ 0]

with π0 = Φ−1(0.45) and π1 = Φ−1(0.55)− Φ−1(0.45)
(implying πAT = 0.45, πC = 0.1, and πNT = 0.45)

Z = 1[X′γ + UZ ≥ 0]

X= (X1, X2, X3); Xj ∼ N(0, I)∀j ∈ {1, 2, 3}

UZ ∼ N(0, 1)

U, UD ∼ N(0, Σ) with Σ =

(
1 0.3

0.3 1

)
,

where Φ−1() is the inverse of the standard normal distribution to better control the
(non)complier shares. For each simulation draw, each element of πX (πX,1, πX,2, πX,3)
and βX (βX,1, βX,2, βX,3) is drawn from a uniform distribution on the [−1, 1] interval.
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Monotonicity (Assumption 3) is fulfilled by construction, as α0 and α1 are constant, i.e.,
the same for every i.

Our simulation focuses on potential violations of Assumptions 1 and 2. We distinguish
cases where the independence assumption only holds conditional on X and cases where the
exclusion restriction is violated, meaning that the instrument directly affects Y. Specifically,
we assess the implications of varying γ and βZ:

• Violation of the independence assumption (assumption 1):

– Independence holds unconditionally: γ1 = γ2 = γ3 = 0

– Independence assumption potentially violated when not conditioning on X:
γj ∼ U(−1, 1) ∀j ∈ {1, 2, 3}

• Violation of the exclusion restriction (assumption 2)

– Exclusion restriction holds: βZ = 0

– Exclusion restriction violated: βZ = 1

We apply our test procedure to each simulated or replicated sample with and without
conditioning on covariates X. We summarize results by the rejection rates, which we
compute as

Rejection rate =
1
S ∑

s∈S
1

[
p

θ̂
≤ Nominal size

]
.

We consider different nominal sizes ∈ {0.1, 0.05, 0.01} for S = 30 simulations (which we
currently extend to 1000). Šidák adjusted p-values p

θ̂
are calculated based on B = 99

bootstrap repetitions. We present results for sample sizes of 250 and 1000 in Table 1.

Under IV validity (βZ = 0 and either with covariates or γj = 0), our testing procedure
with covariates yields rejection rates below nominal size independent of the γs already
for the smaller sample size of 250. The rejection rates are lower than nominal sizes
because the DGP defines a setup that is not at the boundary of the testing condition to
hold. Without conditioning on covariates, the test still performs well as long as there
is no effect of X on Z (columns 1-3). For elements of γ being non-zero (columns 4-
6), X and Z are not independent, which (depending on the employed covariates) may
violate mean independence (Assumption 1). These potential violations are reflected in the
higher rejection rates for both sample sizes. They can be interpreted as evidence for the
importance of including covariates in the model and test whenever the assignment of Z is
not unconditionally random, and the potential confounder (here X) is observed. When
the exclusion restriction is violated (βZ = 1), the instrument is invalid, i.e., H0 should
be rejected. Regardless of whether Z is independent of X, rejection rates are well above
the nominal size for both sample sizes. Overall, the results show that the test performs
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Z and X are independent Z depends on X
(γ1 = γ2 = γ3 = 0) (γ1, γ2, γ3 ∼ U(−1, 1))

Nominal size: 0.1 0.05 0.01 0.1 0.05 0.01

Exclusion restriction holds: βZ = 0

w/ covariates
N=250 0.03 0.03 0.00 0.03 0.00 0.00
N=1000 0.00 0.00 0.00 0.00 0.00 0.00

w/o covariates
N=250 0.07 0.03 0.00 0.30 0.07 0.03
N=1000 0.07 0.03 0.03 0.40 0.33 0.27

Exclusion restriction violated: βZ = 1

w/ covariates
N=250 0.90 0.83 0.70 0.80 0.70 0.50
N=1000 1.00 1.00 1.00 1.00 0.97 0.93

w/o covariates
N=250 0.73 0.67 0.60 0.67 0.60 0.40
N=1000 0.97 0.97 0.93 0.87 0.83 0.80

Notes: The rejection rates are based on the Šidák adjusted p-values. When βZ = 0, the
instrument is valid (white cells) except in columns 4-6 without including conditioning
covariates (light gray cells), where X and Z are not independent. When β ̸= 0, the
exclusion restriction does not hold; hence, the instrument is invalid (dark gray cells).
Additionally, X and Z are not independent in columns 4-6 without conditioning on
covariates (row 4).

Table 1: Simulations

well in size and power and is superior to the test without covariates whenever there are
(observed) confounders correlated with Z and Y.

5 Applications

We apply our testing approach to two well-known settings that have also been considered
by Mourifié and Wan (2017), Kitagawa (2015), Sun (2023) and Huber and Mellace (2015)
to show the performance of their testing procedures. The first relies on the Vietnam-era
draft lottery instrument by Angrist (1991), and the second one from Card (1993) exploits
the college proximity as an instrument.

5.1 Earning effects of military service – Draft Lottery Instrument

In the first empirical application, we use the draft eligibility instrument from Angrist
(1991) to study the effect of veteran status on earnings. An IV approach is applied here
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because of the self-selection mechanism into military service that is potentially related to
later earnings. The instrument is a binary variable for draft eligibility. As the instrument’s
assignment procedure is a lottery based on the individual’s birth month, the instrument
should be randomly assigned, meaning independence holds. The monotonicity condition
is also very credible in this setting, as the existence of defiers is hard to imagine. However,
the exclusion restriction could be violated. Young men eligible for the draft might have
intended to escape or at least defer military service, e.g., by staying in college longer than
they would have otherwise. More years of education, in turn, might increase wages, which
is why a positive effect of the instrument for the never-takers seems plausible here.

The data we use is from the 1984 Survey of Income and Program Participation (SIPP).8 The
final sample without missings consists of 3,071 individuals. The treatment is D = 1 if the
individual has a veteran status, and the instrument is Z = 1 if the individual was eligible
for the draft. The outcome Y is given as the logarithm of weekly wages. Following Angrist
(1990), who studies the effect of the lottery on lifetime earnings, we add dummies for the
birth cohort and a race indicator as covariates. Graphical results are presented in figure 3
where panel (a) shows the densities and (bounds of) mean potential outcomes without
and panel (b) with covariates. The left graph for each panel belongs to the treated state,
i.e., relevant for θ1, and the right graph to the untreated state, i.e., relevant for testing θ0.
The estimates for the corresponding θs are given in the upper right corner. The graphical
evidence shows that the validity conditions hold, as the dashed vertical lines lie within the
solid vertical lines, indicating the bounds. This holds with and without conditioning on
covariates. Hence, we cannot refute IV validity here. However, comparing panels (a) and
(b), we see that conditioning on covariates narrows the bounds.

The same result can be seen in the left side of table 2, where θ1 and θ0 are negative without
and with conditioning on covariates. The p-values for both θs in both models, as well as
the Šidák corrected p-values, equal 1. Therefore, these results do not allow for a rejection
of IV validity. This aligns with the findings of Kitagawa (2015) and Mourifié and Wan
(2017), who apply their tests to the same setting without conditioning on covariates. The
results for individual subgroups distinguished by race and educational attainment from
Mourifié and Wan (2017) are also not interpreted as evidence against a valid instrument.

5.2 Returns to Education – College Proximity Instrument

The second empirical example we apply our procedure to is from Card (1993), who
analyzed the effect of college education on earnings by exploiting college proximity as
a source of external variation. Unobserved individual characteristics like innate ability

8The data is available in the Review of Economics and Statistics Dataverse as replication data for Mourifié
and Wan (2017).
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Figure 3: Graphs for the draft lottery instrument
Notes: Own illustration based on SIPP data. Pdfs for the mixed groups are given by the solid curves, and for the single
groups, they are given by the dashed curves. The vertical solid lines indicate the lower and upper bounds δ1,LB/UB

AT (left)
and δ0,LB/UB

NT (right), and the vertical dashed lines display the conditional mean δ0
AT (left) and δ1

NT (right). f 0
AT and f 1

NT are
down-weighted by their relative shares. This does not affect the mean potential outcome given by the dashed vertical line.
aDummies for the birth cohort and a dummy for being non-white are used as covariates.

are likely to correlate with educational choice and later wages, yielding an endogeneity
problem. Proximity to a college is employed as an instrumental variable based on the
premise that a nearby college lowers the cost of pursuing college education by enabling
students to live at home. In this setting, compliers are individuals from lower-income
families who would not have attended college without the option to live with their parents.
Unobserved individual abilities are assumed to be independent of their residential location
during teenage age. However, the instrument may be correlated with factors like local
labor market conditions or family background, which could also affect the outcome. By
including several covariates in his model, this has been regarded by Card (1993).

The data is derived from the National Longitudinal Survey of Young Men (NLSYM), which
followed a cohort of men aged 14–24 in 1966 with follow-up surveys through 19819. Based

9The prepared dataset is available in the Review of Economics and Statistics Dataverse as replication
data for Mourifié and Wan (2017)
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Draft lottery College proximity

w/o covariates w/ covariatesa w/o covariates w/ covariatesb

θ1 -0.307 -0.241 -0.211 -0.082
pθ̂1

1.000 1.000 1.000 0.964

θ0 -0.116 -0.095 0.086 0.013
pθ̂0

1.000 1.000 0.000 0.349

Šidák corrected p̂ 1.000 1.000 0.000 0.577
Shares

πC 0.139 0.088 0.069 0.035
πAT 0.265 0.288 0.225 0.248
πNT 0.596 0.623 0.707 0.718

No. evaluation points 256 344
Observations 3027 3010
Notes: Tests are based on 999 bootstrap samples. aDummies for birth cohorts and a dummy for non-white.
bDummy variables indicating race being black, residence in a standard metropolitan area (SMSA) in 1966
and 1976, region of residence in 1966, living in the south in 1976, living with both parents at age 14, and
living with the mother only at age 14. Variables representing parents’ years of education take on the value of
the overall mean if they are missing. Dummies for missing fathers’ and mothers’ education have also been
added.

Table 2: Results of the empirical applications

on the respondent’s county of residence in 1966, the dataset includes a binary instrumental
variable on the availability of a four-year college in the local labor market. Information on
educational attainment and wages is used from the 1976 follow-up survey. We deviate from
the original study and follow Kitagawa (2015) by defining a binary treatment D for having
16 or more years of education in 1976, approximating a four-year college degree measure.
The binary instrument Z indicates if the individual grew up near a four-year college. The
logarithm of weekly earnings in 1976 is used as the outcome variable Y. We apply the
test without covariates first, then conditional on race, region, residence in a metropolitan
area, family structure at age 14, and parents’ education to increase the credibility of the
random assignment assumption.10 Thereby, we include all covariates determined prior
to treatment assignment used by Card (1993), himself, besides interactions of parents’
education. The final sample size after dropping observations with missing wages is 3,010.

Figure 4 provides the graphical results for the college proximity instrument. As in figure 3,
panel (a) shows the densities and (bounds of) mean potential outcomes without and panel
(b) with covariates. Again, the estimates for the θs are shown in the right upper corner.
The graphical evidence from the left side shows that the validity condition for the treated
state holds with and without conditioning on covariates. For the untreated case on the
right side, the mean for the never takers with Z = 1, δ1

NT (dashed vertical line), lies outside

10The detailed list of covariates is shown under table 2.
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Figure 4: Graphs for the college proximity instrument
Notes: Own illustration based on NLSYM data. Pdfs for the mixed groups are given by the solid curves, and for the single
groups, they are given by the dashed curves. The vertical solid lines indicate the lower and upper bounds δ1,LB/UB

AT (left)
and δ0,LB/UB

NT (right), and the vertical dashed lines display the conditional mean δ0
AT (left) and δ1

NT (right). f 0
AT and f 1

NT are
down-weighted by their relative shares. This does not affect the mean potential outcome given by the dashed vertical
line. aDummy variables indicating race being black, residence in a standard metropolitan area (SMSA) in 1966 and 1976,
region of residence in 1966, living in the south in 1976, living with both parents at age 14, and living with the mother only
at age 14. Variables representing parents’ years of education take on the value of the overall mean if they are missing.
Additionally, dummies for missing father’s and missing mother’s education are added.

the bounds for the mean for the never takers with Z = 0, δ0,LB
NT and δ0,UB

NT (solid vertical
lines). Hence, we reject IV validity based on graphical evidence. The positive θ0 estimate
here indicates the distance from the dashed vertical line to the closer solid vertical line, i.e.,
the deviation of the testable condition.

Including covariates narrows bounds and also lowers the deviation in the untreated case
from 0.0856 to 0.0129. As the inclusion of covariates should decrease any concerns about
the random assignment of the instrument, a lower deviation is expected. Finally, inference
on the deviation for the untreated state is necessary to conclude whether the H0 can be
rejected. Results from the right side of table 2 show a p-value of 0 for θ0 and the Šidák
correction without conditioning on covariates and, thus, are interpreted as evidence against
the H0 of a valid instrument. Including covariates yields a p-value of 0.349 for θ0 and
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a Šidák corrected p-value of 0.577 for multiple testing. Both values do not allow for a
rejection of the H0. Hence, we conclude that once we control for covariates, we cannot
reject the validity of the college proximity instrument. As the bounds are quite narrow
and H0 is not rejected, it seems very plausible that the instrument is truly valid. Kitagawa
(2015) and Huber and Mellace (2015) draw the same conclusion on their results with and
without controlling for covariates. Whereas Mourifié and Wan (2017) still rejects IV validity
by testing in different subsamples, thereby controlling for three covariates. This result can
be attributed to their limited number of controls, especially not controlling for parents’
education.

6 Conclusion

This paper proposes an easily implementable testing procedure based on distribution
regressions that allows testing the LATE assumptions conditional on covariates without
drastically increasing computation times. We use group-specific conditional distribution
estimates to derive bounds on unobserved mean potential outcomes that we compare
to observed mean potential outcomes for testing the mean-based testable implications
derived by Huber and Mellace (2015). Performing Monte Carlo exercises, we showed that
the testing procedure performs well in finite sample sizes. We applied the test to the draft
eligibility and college proximity instruments from the literature. We could not reject IV
validity for the draft eligibility, even when including covariates. For the college proximity
instrument, instead, we find that the rejection of the instrument’s validity depends on the
inclusion of conditioning covariates.
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Mourifié, I. and Wan, Y. (2017). Testing local average treatment effect assumptions. The

Review of Economics and Statistics, 99(2):305–313.
Semenova, V. (2020). Better lee bounds. arXiv preprint arXiv:2008.12720.
Sun, Z. (2023). Instrument validity for heterogeneous causal effects. Journal of Econometrics,

237(2, Part A):105523.
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