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Expectations and loss aversion in contests: Theory and evidence 

Abstract 

Loss aversion is a fundamental feature in economic behavior, yet there is no agreement in the literature 

on its mechanisms in competitive settings. In this paper, we investigate how expectation-based loss 

aversion and the salience of a reference point affect players’ efforts in contests. We first demonstrate in 

a simple theoretical model that loss-averse players with positive expectations about their performance 

exert higher efforts and have a higher probability of winning compared to loss-averse players with 

negative expectations, but only if the reference point is salient. We then test this prediction by analyzing 

real competitions among high-profile professionals. In some competitions, where the reference point is 

blurred, the players’ expectations do not match their previous performances. In other competitions, the 

salience of the reference point creates more realistic expectations. Taking advantage of a quasi-random 

allocation around the reference point, our regression discontinuity analyses show that only when the 

reference point is salient, contestants with positive expectations have a higher probability of success 

than those with negative expectations. This finding demonstrates the importance of the interaction 

between expectations and the salience of a reference point for the loss aversion mechanism in effort 

provision. 

Keywords: loss aversion, expectations, reference points, salience, performance, contests, all-pay 

1 Introduction 

Reference-dependent loss aversion is a fundamental feature in economic behavior, whose main idea 

is that losses are more painful than gains are enjoyable (Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1992).1 Thus, loss aversion has an important influence on effort provision in a way that 

individuals increase their effort more to avoid losses than to realize equally sized gains. However, 

despite a large body of literature on loss aversion and its effect on effort provision, there seem to be 

conflicting results regarding its mechanism in contests (Teeselink et al., 2023). Intuitively, contestants 

who are slightly behind their goal (reference point) should exert more effort than those who are slightly 

above it (Berger and Pope, 2011; Pope and Schweitzer, 2011).2  

However, if we assume an ongoing zero-sum game, where one contestant is slightly ahead (gain 

domain) and another is slightly behind (loss domain), it is theoretically not clear why the leading 

contestant would exert less effort than the one who is lagging. We can apply the loss aversion argument 

 
1 See Brown et al. (2024) for a comprehensive meta-analysis on the loss aversion effect in a variety of settings. 
2 Pope and Schweitzer (2011) found that professional golf players performed significantly better when attempting 

for par (a typical number of shots that it takes to complete a hole) than when attempting for birdie (one shot less 

than par) that is valued more. Berger and Pope (2011) found that basketball teams who were narrowly losing at 

the half-time had a significantly higher probability to win the match. However, Teeselink et al. (2023) could not 

replicate this finding in a variety of alternative settings. 
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in the following way: The leading contestant has more to lose, since he is already leading, whereas the 

lagging one has only more to win, since he is losing anyway. Thus, the leading player tries to avoid the 

loss and therefore has more incentives to increase his effort than the lagging player, who has more to 

win. One may see an analogy to the endowment effect (Kahneman et al., 1990; Thaler, 1980) where the 

owner (a player in the lead) values the good (being in the lead) more than the one who considers 

purchasing it (the lagging player).  

In addition, contestants may have expectations regarding their performance, which may play a crucial 

role in the loss aversion mechanism in effort provision. Kőszegi and Rabin (2006) put forward the idea 

that reference points may rather evolve endogenously from individual rational expectations. Thus, 

disregarding expectations may lead to incorrect predictions regarding effort provision in general (Abeler 

et al., 2011) and in contests in particular (Gill & Prowse, 2012; Gill & Stone, 2010). Take for example 

a contest between two symmetric players where one has an a-priori positive expectation regarding his 

win, whereas the other one’s expectation is negative. On the one hand, the player with negative 

expectations may be the one that tries to avoid his loss and should therefore exert more effort than his 

more positive opponent. On the other hand, the player with positive expectations has more to lose than 

the player with negative expectations has to gain. Thus, in line with the basic principle of loss aversion, 

the prediction would be that the player with positive expectations ends up with higher effort. This 

prediction is theoretically supported by Fu et al. (2022), who showed that in case of relatively equal 

players, the existence of expectation-based loss aversion reduces effort for a player with a lower 

probability of winning whereas a player with a higher probability of winning increases effort to avoid 

losing unexpectedly.  

Another important feature in the loss aversion mechanism in effort provision is the salience of a 

reference point (Bordalo et al., 2022; Shafir et al., 1997). For example, it is possible that there are several 

reference points, thus the salience of a reference point is crucial for its impact on behavior. As evidence, 

Pope and Schweitzer (2011) discuss the relevance of the par as the reference point in golf, which 

becomes less relevant towards the end of the contest and as a result losses half of its effect.  

In this paper, we investigate the effect of expectation-based loss aversion on effort provision in 

contests by varying the salience of the reference point. For that, first we study theoretically a contest 

between two symmetric players who compete against each other in an all-pay contest.3 We describe 

effort provision of players who exhibit reference-dependent loss aversion based on expected outcomes. 

 
3 The main idea of the all-pay contest is that a player with the highest effort wins and that all the players bear some 

costs regardless of whether they won or lost. All-pay structure is widely used to model contests. For example, 

Krumer et al. (2017) used the all-pay contest to study round-robin tournaments with three players. Their theoretical 

predictions on the first mover advantage were empirically confirmed by Krumer and Lechner (2017) who used 

data from Olympic wrestling tournaments. Furthermore, the empirical paper showed that in six out of seven 

possible cases, the all-pay model correctly predicted the identity of a wrestler with a higher probability of winning. 
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We show that a player with positive expectations regarding his potential win exerts a higher effort and 

therefore has a higher probability of winning the contest, but only if the reference point is salient. 

Then, we test this theoretical prediction in a real competitive environment. Nature rarely creates 

opportunities to observe the effect of expectation-based loss aversion and the salience of a reference 

point on effort provision. However, we exploit a unique setting that allows us to investigate this effect 

among highly professional individuals who perform in a real competitive environment with high 

monetary prizes, i.e., professional ski jumping.4 In these competitions, 50 jumpers qualify for the main 

event based on their pre-event ranks. These athletes compete in the first event round, from which the 

top 30 advance to the second (final) event round. Only these 30 athletes compete for World Cup points 

and monetary prizes. We focus on pre-event rank 30 as a potential reference point because it becomes 

the relevant elimination cutoff after the first round of the main event. It may thus raise performance 

expectations about the likelihood of advancing to the final round. We assume that athletes with a pre-

event rank of 30 or better have higher (i.e., positive) expectations of proceeding to the final round, while 

athletes with pre-event ranks below 31 have lower (i.e., negative) expectations. 

Most importantly, up to the 2017–18 season, the top 10 athletes were automatically pre-qualified and 

did not have to compete in the qualification round to be among the 50 jumpers in the main event. 

However, starting from the 2018–19 season, all athletes were required to compete in the qualification. 

This means that before the change, those who were effectively ranked 30 were nominally ranked 20 in 

the qualification. After the change, those who were effectively ranked 30 were also nominally ranked 

30 in the qualification. While the nominal and effective values of pre-event ranks are well known to all 

athletes in both periods, the nominal value of qualification ranks before the rule change might have 

created the illusion of being too far from the cutoff. According to Shafir et al. (1997), nominal values 

are the simpler and more natural representation of information. This is why people give them more 

weight and thus tend to think in nominal terms, giving rise to nominal value illusion.5 Thus, the 

difference between the nominal and the effective ranks may reduce the salience of this reference point 

(pre-event rank 30), which in turn may affect the loss aversion mechanism in effort provision. 

In our empirical analysis, we use data on 4,790 performances from ordinary World Cup competitions 

between the 2014–15 and 2019–20 seasons. Our empirical strategy relies on the assumption of quasi-

random allocation around pre-event rank 30 since it is practically impossible for athletes to influence 

whether they are ranked just above or below this rank. By employing a regression discontinuity (RD) 

 
4 Using data from professional sports for economic research has many advantages. These include the fact that the 

participants compete under fixed and known rules with strong incentives to win and that the outcomes and the 

identities of the participants are fully observable (Bar-Eli et al., 2020; Palacios-Huerta, 2023). 
5 Salient nominal anchors that are used as a reference points for evaluations are, for example, the original 

purchasing price for property owners in case of reselling (Genesove & Mayer, 2001), nominal performance 

measures of CEOs (Jenter & Kanaan, 2015), or nominal prices of stocks (Birru & Wang, 2016). 



5 

 

design, we compare athletes who are very similar in ability but differ in performance expectations 

according to their pre-event ranks; that is, they are either just below or just above the pre-event rank 30. 

We find that athletes with pre-event rank 30 or slightly above (i.e. 29) perform significantly better in 

the first round of the main event than those ranked slightly below (i.e. 31-32). Importantly, however, we 

observe this performance discontinuity only in the period after the rule change when the nominal and 

the effective ranks were identical. Therefore, we conclude that the cutoff at pre-event rank 30 acts as a 

reference point only when the nominal ranks correspond to the effective ones. We find no such effect in 

the period before the rule change when the difference between the nominal and effective pre-event ranks 

could blur the salience of the reference point. Such a blurred salience makes the reference point less 

relevant for the formation of athletes’ performance expectations – mitigating (or even eliminating) any 

incentive effect of loss aversion for athletes with pre-event ranks just above the elimination cutoff. 

Our paper contributes to the literature on salience and expectation-based reference points in contests. 

While each of these features has been studied, we are the first to investigate them all together in one real 

competitive setting. Our findings suggest that even highly professional individuals are prone to “nominal 

value illusion”, which can distort the salience of an expectation-based reference point. In our setting, it 

eliminates the incentive effect of loss aversion for effort provision. This finding is in line with research 

showing that bottom-up attention to salient information drives the impact of reference points on 

economic behavior (Bordalo et al., 2022). Moreover, our paper relates to the literature on the relevance 

of expectation-based reference points for effort and performance in real tournament settings (Allen et 

al., 2017; Bartling et al., 2015; Markle et al., 2018; Pope & Schweitzer, 2011).6 In this regard, we show 

that a well-known critical cutoff can raise expectations among competitors – but only if it is made salient. 

This paper proceeds as follows. In Section 2, we provide a formal model of expectation-based 

reference points and loss aversion in contests. In Section 3, we first describe the design of ski jumping 

competitions and then explain how pre-event rank information might raise expectations and why the 

elimination cutoff is used as reference point. We also describe how the introduction of a new rule 

changed the nominal values of pre-event ranks. In Section 4, we present the data and variables. This is 

followed by the empirical strategy in Section 5. In Section 6, we report the main results, as well as 

robustness checks and falsification tests. Lastly, we provide concluding remarks in Section 7. 

2 Formal description of expectation-based reference points and loss 

aversion in contests 

We consider an all-pay contest with two players denoted by 𝑖 = 1, 2. Player si'  value of winning the 

contest is 𝑊𝑖, which is common knowledge. We assume symmetry between players, i.e. 𝑊1 = 𝑊2 = 𝑊. 

 
6 It is important to note that in contrast to the listed evidence from the field, several experimental studies do not 

support the important role of expectations as reference points (e.g., Baillon et al., 2020; Heffetz & List, 2014).   
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Each player exerts an effort of 𝑥𝑖. These efforts are submitted simultaneously, and the player with the 

higher effort wins the contest. Each player has a linear cost function 𝐶(𝑥𝑖) = 𝑥𝑖. 

We also assume that the players have different expectations of winning the contest, which are based 

on salient reference points that evolve endogenously from rational expectations about future 

performance outcomes. Such expectations typically relate to players’ recent performances. If the 

reference point is salient enough, then suppose the following: 

Player 1 has positive expectations based on information about his recent performance, which was just 

above a certain reference point that would allow winning the contest. Player 2 has negative expectations 

based on his own recent performance that was just below the same reference point. Following the idea 

of loss aversion, according to which losing is more painful than winning is enjoyable, there are additional 

values of winning and losing as a function of previous expectations. Thus, if player 1, who has positive 

expectations about winning the contest, eventually loses, he will suffer a reduction of 𝑑 units from his 

payoff. However, the reference point has to be salient so the players could have expectations around this 

point. Thus, we introduce the salience parameter 𝑠 which is equal to one if the salience is strong enough, 

and zero otherwise. Accordingly, the reduction in utility as a result of a loss after having positive 

expectations can be presented as 𝑑 ∙ 𝑠. 

On the other hand, if player 2, who has negative expectations about winning the contest, eventually 

wins, he will gain additional u units to his payoff. As previously, this happens if the salience of the 

reference point is strong. Therefore, the increase in utility as a result of a win after having negative 

expectations of winning can be presented as 𝑢 ∙ 𝑠. In line with loss aversion principle, we assume that 

|𝑑| > |𝑢|. In other words, a reduction in utility from losing with positive expectations is larger than an 

increase in utility from winning with negative expectations.  

Taken together, if player 1 wins, his payoff is 𝑊. However, if he loses, his payoff is −𝑑 ∙ 𝑠. On the 

other hand, if player 2 wins, his payoff is 𝑊 + 𝑢 ∙ 𝑠. If he loses, his payoff is zero. Since 𝑊 + 𝑑 ∙ 𝑠 >

𝑊 + 𝑢 ∙ 𝑠 and following Hillman and Riley (1989) and Baye et al. (1996), there is always a mixed-

strategy equilibrium in which players randomize on the interval [0, 𝑊 + 𝑢 ∙ 𝑠] to maximize their 

expected payoffs (𝐸𝑖) according to their effort cumulative distribution functions 𝐹𝑖 , 𝑖 = 1, 2 that are 

implicitly given by: 

𝐸1 = 𝑊 ∙ 𝐹2(𝑥1) − 𝑑 ∙ 𝑠(1 − 𝐹2(𝑥1)) − 𝑥1 = (𝑊 + 𝑑 ∙ 𝑠) ∙ 𝐹2(𝑥1) − 𝑑 ∙ 𝑠 − 𝑥1 

𝐸2 = (𝑊 + 𝑢 ∙ 𝑠) ∙ 𝐹1(𝑥2) − 𝑥2 

In this mixed-strategy equilibrium, players’ expected efforts are equal to: 

𝑥1 =
(𝑊 + 𝑑 ∙ 𝑠)2 ∙ (𝑊 + 𝑢 ∙ 𝑠)

(2𝑊 + 𝑑 ∙ 𝑠 + 𝑢 ∙ 𝑠)
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𝑥2 =
(𝑊 + 𝑢 ∙ 𝑠)2 ∙ (𝑊 + 𝑑 ∙ 𝑠)

(2𝑊 + 𝑑 ∙ 𝑠 + 𝑢 ∙ 𝑠)
 

And, since 𝑑 > 𝑢, player 1’s probability of winning is given by: 

𝑝1 = 1 −
𝑊 + 𝑢 ∙ 𝑠

2 ∙ (𝑊 + 𝑑 ∙ 𝑠)
 

whereas player 2’s probability of winning is: 

𝑝2 =
𝑊 + 𝑢 ∙ 𝑠

2 ∙ (𝑊 + 𝑑 ∙ 𝑠)
 

The following proposition summarizes the effects of the salience of the reference point and 

expectation-based loss aversion. Obviously, in the absence of a salient reference point (s=0), the 

difference in players’ expectation-based loss aversion is not relevant for the players’ effort provision and 

their probabilities of winning. 

Proposition If the reference point is salient (𝑠 = 1), the difference in players’ expectation-based loss 

aversion, where 𝑑 > 𝑢, affects players’ efforts and their probabilities of winning such that the player 

with a positive expectation (player 1) exerts a higher effort and, thus, has a higher probability of winning 

(𝑝1 > 0.5). 

To further illustrate this in a simple version of Prospect Theory framework (Kahneman & Tversky, 

1979), Figure 1 provides a visualization of the value functions with positive and negative expectations 

(for simplicity, without diminishing sensitivity). In both graphs, we obviously see that the line is steeper 

in the loss domain than in the gain domain. In the graph on the left, we see that a player with positive 

expectations suffers from a loss more than without expectations, as illustrated by the steeper value 

function. There is no such difference in the gain domain, where the value functions overlap. In the graph 

on the right, we see that a player with negative expectations values a gain more than without 

expectations, while there is no difference in the loss domain. Lastly, comparing the value functions from 

both graphs, we see that a player with positive expectations experiences a larger difference in valuation 

between the gain and the loss domains than a player with negative expectations. This suggests that a 

player with positive expectations has higher incentives to exert effort to avoid a loss than a player with 

negative expectations to achieve a win. 
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Figure 1. Loss aversion with and without positive and negative expectations. 

 

3 Description of ski jumping World Cup competitions 

3.1 Contest design 

In ski jumping, athletes perform jumps from a ski slope, which is on a hill. The slope consists of a 

steep track to generate speed and a take-off ramp. The hill is used for landing the jumps. The athletes’ 

aim is to maximize their jumping distance and style points. Both performance determinants are mutually 

dependent because ski jumping is a highly technical discipline, which requires strength, speed, and 

coordination to perform complex movement sequences in a short moment of time. 

Jumping distance is measured in meters with intervals of 0.5 and converted to a jumping distance 

point score that relates to the hill size. To calculate the distance points, each hill has a predetermined 

construction point, called the K-point, in the landing area. At the most common competitions, athletes 

receive 60 points for landing on the K-point and 1.8 or 2.0 points are added (deducted) for each 

additional meter beyond (below) the K-point at large or normal hills, respectively. Style points are based 

on predefined judging criteria and are awarded by a judging panel, which consists of five judges, each 

of whom can award between zero and 20 points for a jump with intervals of 0.5 points. The lowest and 

highest scores are truncated, and the remaining three scores are summed up, yielding a maximum style 

point score of 60 for a perfectly styled jump. To increase safety and fairness, wind and gate points are 

added to the total score of each jump. Wind points capture (dis-)advantages in wind conditions, whereas 

gate points capture changes in the starting gate of the ski slope, and thus (dis-)advantages in generating 

speed. 
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The international governing body, Fédération Internationale de Ski (FIS), has organized international 

World Cup (WC) seasons for men during each Northern Hemisphere winter period since 1979. Ordinary 

WC competitions have an all-against-all contest design that consists of a qualification round in the pre-

event phase and two rounds in the main event phase, as shown in Figure 2 for both periods before and 

after the rule change.7 Athletes always perform one jump per round. The top 50 athletes in the 

qualification round advance to the main event and compete in Round 1 (as illustrated by the dashed line 

below rank 50 in Figure 2). The top 30 athletes from Round 1 then proceed to Round 2 and compete for 

the win (as illustrated by the dashed line below rank 30 in Figure 2). In this regard, the point scores and 

rankings in qualification are no longer relevant for competition in the main event, whereas the total point 

scores from Rounds 1 and 2 are equally important in determining the final ranks of the top 30 athletes 

in the main event. This is an important feature of the ski jumping setting because, in principle, all athletes 

have equally strong incentives to provide maximum effort in both rounds, which eliminates any strategic 

component or loafing in effort provision between rounds. Moreover, the top 30 athletes receive prize 

money8 and WC points, which are added to the season’s WC standings. 

Before rule change After rule change 

Pre-event phase Main event phase Pre-event phase Main event phase 

Quali 

rank 

Pre-

event 

rank 

Event 

round 1 

rank 

Event 

round 2 

final rank 

Quali 

rank 

Pre-

event 

rank 

Event 

round 1 

rank 

Event 

round 2 

final rank 

Top 10 in 

World Cup 

standings 

1 1 1 1 1 1 1 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

10 10 10 10 10 10 10 

1 11 11 11 11 11 11 11 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

20 30 30 30 30 30 30 30 

21 31 31 keep ranks 

from 

round 1  

31 31 31 keep ranks 

from 

round 1 

…
 

…
 

…
 

…
 

…
 

…
 

40 50 50 50 50 50 

41 and 

worse 
>=51 

eliminated from 

main event 
>=51 >=51 

eliminated from 

main event 

Figure 2. Description of the ski jumping World Cups’ contest design and the qualification procedures 

before and after the rule change. 

Notes. Elimination cutoffs after qualification and first round are marked with dashed lines. 

 

 
7 Non-ordinary World Cups are flying hill competitions and the Four Hills Tournament, both of which have a 

different contest design and are thus excluded from our study. 
8 In our sample period, prize money ranges from CHF 100 for rank 30 to CHF 10,000 for the WC event winner. 
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3.2 Relevance of setting: Reference point and rules change  

In this setting, being ranked 30 or better is practically irrelevant in the qualification because all top 50 

athletes qualify for the main event. However, it becomes very important in Round 1 because, as 

described above, only the top 30 advance to Round 2. These top 30 athletes get the chance to win the 

event, receive prize money, and improve in the overall WC standings. Although the qualification results 

no longer matter for the competition in the main event, it is plausible to assume that pre-event 

performances raise strong expectations about subsequent performances among athletes. This would 

imply that athletes with a pre-event rank of 30 or better expect to perform similarly in Round 1 and 

consequently have positive expectations to make it to Round 2. In this regard, however, those athletes 

who are ranked exactly 30th in the qualification or just slightly better must fear elimination after Round 

1 because athletes with a pre-event rank of 31 or slightly worse are only slightly behind in terms of their 

performances. In such a competitive setting, we assume that athletes are sensitive to deviations from 

their expectations, where losses relative to expectations loom larger than equally sized gains, as 

emphasized by Kőszegi and Rabin (2006) and described in our theoretical model (𝑑 > 𝑢). Hence, we 

focus on this elimination cutoff after Round 1 as an expectation-based and salient reference point for 

athletes’ effort provision and performance before they actually compete in this round (as illustrated by 

the wavy lines below rank 30 in Figure 2). 

Besides the potential relevance of performance expectations and pre-event rank 30 as a reference 

point, there was a rule change in the qualification procedure before the 2017/18 season that changed the 

nominal values of ranking information in the qualification phase (as illustrated by the quali ranks-

columns before and after the rule change in Figure 2). Before the change, the 10 highest ranked athletes 

in the ongoing WC standings were automatically prequalified, whereas, according to the new rule, all 

the athletes are required to compete in the qualification. As described in Figure 2, this means that before 

the rule change, an athlete who was ranked 20 in the qualification round was effectively ranked 30 in 

the underlying pre-event performance ranking. Importantly, the nominal and effective values of pre-

event ranks are well known to all athletes in both periods. As such, any difference between them is easy 

to understand and obvious to all athletes when forming performance expectations. However, the 

difference between nominal qualification rank and effective real pre-event rank may increase the 

perceived distance to the cutoff so that it appears less relevant. As such, the difference in nominal and 

effective values of pre-event ranks may blur the perceived salience of the reference point and thus the 

incentive effect of loss aversion for effort provision (Shafir et al., 1997). After the rule change, the 

qualification ranks align with the pre-event ranks, such that the nominal ranks correspond to the effective 

ranks. This means that athletes know in both situations whether they are at the cutoff point of being 

eliminated after Round 1, but this information becomes more salient after the rule change. 
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4 Data and variables 

4.1 Data collection and sample 

We collected data from the World Cup seasons 2015 to 2020, including three seasons before and three 

seasons after the rule change to generate a balanced dataset.9 The last 2020 season ended slightly earlier 

due to the COVID-19 pandemic. The data were retrieved from the official result protocols provided on 

the FIS website. We only use data from ordinary WC competitions on normal and large hills because 

their contest design allows for performance comparisons. We further restrict the data by only including 

events where a qualification round and both rounds in the main event were held. We also exclude athletes 

who were disqualified, did not start, or did not finish in a given event. 

As summarized in Table 2, the sample period before the rule change covers 53 WC events where 164 

different athletes performed 2,629 jumps in Round 1. The sample period after the rule change covers 44 

WC events where 140 athletes performed 2,161 jumps in Round 1. The lower number of events after 

the rule change is due to a reduced schedule in the WC season in 2018 because of the Winter Olympics 

in Pyeongchang and the beginning of the COVID-19 pandemic crisis in March 2020. Overall, our dataset 

includes a total of 4,790 performance observations in Round 1 of WC events. 

Table 2. Sample size. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons) 

Number of World Cups 53 44 

Number of athletes 164 140 

Number of jumps 2,629 2,161 

Total no of obs. (jumps) 4,790 

 

4.2 Description of variables 

To analyze ski jumping performances as a function of pre-event ranks, we measure performance by 

using a dummy variable that is equal to one if an athlete advances to Round 2 and zero otherwise.10 For 

reasons of simplicity and consistency across periods, we will use the effective pre-event ranks and not 

the nominal qualification ranks as a variable to measure the differences in pre-event ranks. To measure 

athletes’ abilities, we use the official WC standing points before a competition (Harb-Wu & Krumer, 

2019).11 We also use the previous event rank of athletes achieved in their preceding competition to 

 
9 For simplicity, we refer to the latter year to label each season (i.e., the 2014–2015 WC season is labeled as the 

2015 season). 
10 We also consider the absolute performance measures – that is, jumping distance in points and style points – in 

some further analyses (see Appendix C). 
11 For the first competition of each season, we use the WC points from the final WC standings from the previous 

season. 
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additionally capture their current form.12 To capture home advantage that plays a significant role in ski 

jumping (Krumer et al., 2022), we consider whether athletes compete at an event in their home country. 

Table 3 provides an overview and summary statistics of variables for both subsamples. In line with 

the ski jumping rules, about 60 percent of athletes (top 30 out of 50 participants) advance from Round 

1 to Round 2. Note that the average WC standing points are lower after the rule change due to the lower 

number of events. The mean values of the other variables are comparably similar in both subsamples. 

Table 3. Descriptive statistics of the variables. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons) 

Variable  Mean (SD) Min-Max Mean (SD) Min-Max 

Advance to Round 2 (yes = 1) 0.60 0–1 0.61 0–1 

Pre-event rank 25.47 (14.41) 1–50 25.38 (14.42) 1–50 

WC standing points 181.86 (285.26) 0–2303 168.37 (263.32) 0–2085 

Previous event rank1 24.17 (14.08) 1–51 23.95 (13.97) 1–51 

Home event (yes = 1) 0.12 0–1 0.11 0–1 

No. of obs. 2,629 2,161 

Notes. Standard deviations (SD) are reported in parentheses for metric variables. 1 This variable only includes 2,302 

and 1,865 valid observations for the samples before and after the rule change, respectively. 

 

5 Empirical strategy 

5.1 Comparison of performances before and after the rule change 

We start our analysis by comparing athletes’ performances before and after the rule change to examine 

whether and how the change in nominal values of pre-event ranks is associated with performance. As 

shown in Figure 3, we visually compare the probability of advancing to Round 2 (on the y-axis) as a 

function of pre-event ranks (on the x-axis) between the two sample periods. For a better overview, we 

combined the pre-event ranks into groups of five. As expected, we see a fairly linear decrease in 

performance if we go down the ranking groups in the period before the rule change. We observe a similar 

pattern after the rule change; however, there is a jump in performance for those ranked 26–30 compared 

to the sample period before the rule change. The difference in performance between the two periods for 

these ranks is statistically significant (mean difference = -0.115, p-value = 0.010; see also Table A1 in 

Appendix A) and also evident in performance measured in absolute terms, expressed in total point scores 

(see Figure A1 and Table A2 in Appendix A). These findings serve as a first indication that the cutoff 

between pre-event ranks 30 and 31 might be a relevant reference point after the rule change, when loss 

 
12 This covariate includes missing values for the first competition of each season. Missing values for single cases 

can also occur if athletes did not compete in the main event of a previous World Cup. This reduces the number of 

observations when using this variable in data-driven RD window selection that will be presented in the next 

sections. 
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aversion might affect performances of athletes ranked 30 or slightly better. Alternatively, one could also 

think that athletes who competed in the qualification before the rule change might have neglected the 

existence of the prequalified top 10 athletes and only considered their nominal ranks. In this case, 

athletes with a real pre-event rank of 36–40 but a nominal qualification rank of 26–30 would use the 

cutoff point as their salient reference. In Figure 3, we actually observe a jump in performance of this 

rank group in the period before the rule change in comparison to ranks 41-45. However, when comparing 

ranks 36-40 before and after the change we find no statistically significant difference at conventional 

levels (mean difference = 0.062, p-value = 0.165; see also Table A1 in Appendix A). 

 

However, a general concern with this simple comparison is that we do not compare the same type of 

athletes in terms of ability before and after the rule change. This is because some top athletes who were 

automatically prequalified before the change may exert less effort in the qualification after the change 

than athletes outside the top 10, since they will most likely qualify anyway. Therefore, they might receive 

worse pre-event ranks when they have to compete in the qualification. In fact, while athletes from the 

top 10 are ranked on average fifth before the rule change (because they were automatically prequalified), 

we find that athletes from the top 10 are ranked on average only 12th in the qualifying round after the 

rule change. We further try to examine this potential selection issue by comparing the WC standing 

points of the pre-event rank groups between the two sample periods (see Table A3 in Appendix A). As 

expected, selection predominantly exists in the top rank groups, whereas the WC standing points of the 

relevant rank groups (that is, pre-event ranks 26–30 and 31–35) are not statistically different. We also 

find that 33 athletes (20% of athletes) make 50% of jumps within the group of pre-event ranks 26-35 

before the rule change, and these same athletes still make 42% of jumps of that pre-event rank group 

after the change. Still, however, this simple comparative approach does not make it possible to 

distinguish between selection effects and reference point effects. 

Figure 3. Comparison of performances in Round 1 as a function of ski jumpers’ pre-event ranks. 
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To overcome this issue, our identification strategy is based on the idea of not just comparing pre-event 

ranking effects between the two sample periods, but comparing athletes ranked just below the reference 

point to those ranked just above within the same period. Intuitively, this within-comparison is plausible 

because it is reasonable to assume that athletes with pre-event ranks around the cutoff are very similar 

in ability and thus comparable within each of the two periods.13 Moreover, athletes cannot strategically 

influence their pre-event rank because it depends on the relative performances of all the other athletes 

in the qualification round. Knowing all other performances and then meeting the exact requirements to 

get a particular rank is virtually impossible. We therefore compare performances of athletes with pre-

event ranks close to rank 30 within each period. This allows us to identify whether this cutoff rank acts 

as a reference point separately in each period by employing an RD approach. 

5.2 Regression discontinuity approach 

The RD approach is a method for causal inference in situations where a treatment is quasi-randomly 

assigned based on a cutoff rule that relates to a score. This implies that subjects’ other characteristics are 

not affected by the cutoff and that they cannot strategically and precisely change their score value to be 

assigned to their preferred condition (Cattaneo & Titiunik, 2022). As discussed above, assuming quasi-

random assignment of the treatment is plausible in our setting, specifically for those with a pre-event 

rank close to the elimination cutoff. This makes RD a credible method to identify the impact of this 

cutoff on ski jumping performances. More specifically, it allows us to examine the discontinuous change 

in performances between athletes who are ranked at or just below and above this cutoff. 

In our setting, the score consists of the athletes’ pre-event ranks and denotes the running variable in 

the RD estimations. The athletes’ reference point denotes the cutoff, which is between pre-event ranks 

30 and 31. As discussed above, we assume that athletes with pre-event rank of 30 or better have more 

positive expectations regarding their advancement to the second round than athletes with pre-event rank 

of 31 or worse. Thus, following the idea that |𝑑| > |𝑢|, as presented in the theoretical model, the pain 

of athletes with positive expectations that fail to advance to the second round would be higher than the 

joy of athletes with negative expectations that advance there. In other words, athletes ranked 30 or better 

belong to the treatment group that is expected to experience stronger loss aversion than those ranked 31 

or worse when performing in Round 1 of the main event. We therefore consider the following baseline 

RD model: 

𝑌𝑖𝑒 = 𝑎 + 𝜏𝟏(𝑟𝑎𝑛𝑘𝑖𝑒 < 𝑐) + 𝑓(𝑟𝑎𝑛𝑘𝑖𝑒) + 𝜖𝑖𝑒, 

where 𝑌𝑖𝑒 is the performance outcome of athlete 𝑖 in Round 1 of event 𝑒, 𝟏(𝑟𝑎𝑛𝑘𝑖𝑐 < 𝑐) is an indicator 

function that takes the value 1 for athletes that are below the cutoff 𝑐 (i.e., pre-event ranks ≤ 30) and 

thus treated, and 0 for athletes that are above 𝑐 (i.e., pre-event ranks ≥ 31). Here, 𝑓(𝑟𝑎𝑛𝑘𝑖𝑒) is a discrete 

 
13 We also support this within-comparison approach empirically in Section 6.3. 
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function of pre-event ranks on each side of 𝑐. We estimate the treatment effect 𝜏 separately for both 

sample periods. In addition, we employ a difference-in-discontinuities (Diff-in-Disc) approach to 

estimate the difference in the discontinuity at 𝑐 before and after the rule change. 

In our main analysis, we employ local randomization RD, which is used if the running variable 

(𝑟𝑎𝑛𝑘𝑖𝑒) is a discrete score and includes relatively few distinct mass points to identify treatment effects 

(Cattaneo & Titiunik, 2022). The local randomization framework requires a well-defined window 𝑊 =

[𝑐 − 𝜔, 𝑐 + 𝜔] around cutoff 𝑐 in which subjects are ‘as good as’ randomly assigned by having the same 

probability of receiving one of the scores. Because this is most likely to hold in the smallest possible 

window 𝑊 = [𝑐 − 1, 𝑐 + 1] around 𝑐, which includes pre-event ranks 30 and 31, we use this window 

[30, 31] to estimate the treatment effect in our main specification. While considering larger windows is 

usually not necessary, exploiting a larger number of effective observations to compare treated and 

control groups in RD can show the sensitivity of results regarding the window choice.14 Besides, the 

incentive effect of loss aversion should also exist for athletes that are ranked slightly better than pre-

event rank 30 as they may also fear elimination after Round 1. Therefore, in alternative specifications, 

we consider the next larger window [29, 32] and employ a data-driven window selection procedure to 

consider the largest possible window in which athletes are comparable. The objective and transparent 

data-driven window selection uses our performance-related variables as predetermined covariates to 

implement covariate balance tests, suggesting a window 𝑊 in which athletes do not systematically differ 

in terms of ability.15 𝑊 is the window furthest away from the cutoff where the minimum p-values of the 

balance tests are >=0.15 for this and all nested windows (Cattaneo et al., 2023a). 

In addition, we estimate the treatment effect with the continuity-based RD approach, which is a 

common alternative to complement local randomization RD estimates if the number of mass points in 

the discrete running variable is moderate. We also use this approach to provide a formal statistical test 

of the difference in the treatment effect before and after the rule change in a Diff-in-Disc design, as first 

proposed by Grembi et al. (2016). We employ nonparametric local polynomial approximation, which 

contains a bandwidth instead of a window in which quasi-random treatment assignment is assumed. The 

treatment effect is estimated by fitting local linear regressions for observations inside the bandwidth 

where observations closer to the cutoff receive more weight than those further away. For estimation and 

inference, we follow Cattaneo et al. (2020), using a triangular kernel function to assign weights, data-

driven common mean squared error (MSE) optimal bandwidth selection with the resulting MSE-optimal 

point estimator, and robust bias-corrected inference.  

 
14 Moreover, athletes with the same number of total points in the qualification also share the same pre-event rank, 

which may slightly distort the rank distribution. 
15 We also used alternative ability measures, such as the WC standing ranks, WC standing points standardized by 

events, and a measure that considers the final event ranks from the last five competitions. They all generated 

similar windows and results. These results are available upon request. 
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Lastly, our RD approach can be further supported by validation and falsification tests, including 

treatment effect tests on the predetermined covariates, assessing the density of the running variable, and 

estimations at placebo cutoffs (Cattaneo & Titiunik, 2022; Cattaneo et al., 2023a). We provide and 

discuss these tests in Appendix B. 

 

6 Results 

We start by visualizing the RD design and results in RD plots. In Figure 4, the upper plots show the 

global polynomial fit, represented by a solid line, and the local sample mean of each pre-event rank, 

represented by dots. The vertical lines mark cutoff 𝑐 and the vertical distances between the two 

conditional expectations at 𝑐 indicate the treatment effects under continuity conditions. In the lower 

plots in Figure 4, the solid lines show the local polynomial fit of degree zero; that is, the constant within 

the largest suggested windows from the data-driven selection procedure (windows [28, 33] and [26, 35] 

for the samples before and after the rule change, respectively). The constant vertical distance between 

the constants below and above 𝑐 indicate the treatment effect under local randomization conditions. 

Without going into the question of statistical difference (that will be done later), all RD plots show that 

the probability to advance to Round 2 changes discontinuously at the cutoff, being higher for treated 

athletes just below the cutoff for the samples before and after the rule change. However, the vertical 

distance at the cutoff is considerably larger after the rule change under both continuity as well as local 

randomization conditions. 
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Figure 4. RD plots. 

Notes. The dots mark the sample means within bins (that is, pre-event ranks) with 95% confidence intervals. 

Vertical lines mark the cutoff between rank 30 and 31 (𝑐 = 30.5). In the upper plots, the lines display the 

polynomial fit of degree 3 on each side of the cutoff. In the lower plots, the lines display the polynomial fit of 

degree 0 (that is, as a constant), within the relevant windows on each side of the cutoff. 

 

6.1 Local randomization RD  

We describe the treatment effect more formally in Table 4, using local randomization analysis with 

the three different windows, as described in Section 4.2. For the sample period before the rule change, 

we find that the probability to advance to Round 2 increases, on average, by 7.5 percentage points for 

treated athletes with pre-event rank 30 compared to those with pre-event rank 31 (see Column 1). 

However, this effect is statistically insignificant, suggesting that the cutoff has no impact on performance 

when the nominal and effective pre-event ranks differ. The effect remains insignificant and similar in 

size when we consider specifications with larger windows (Columns 2 and 3). This suggests that the 

cutoff does not seem to be a salient reference point that considerably affects athletes’ performances via 

the loss aversion mechanism. 

The pattern is much more distinct in the sample period after the rule change. In Column 4, we find 

that the probability to advance to Round 2 increases, on average, by approximately 30 percentage points 

for athletes with pre-event rank 30 compared to those with pre-event rank 31. The effect size becomes 

smaller when we consider larger windows (Columns 5 and 6), which is in line with diminishing 
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sensitivity component of Prospect Theory (Kahneman & Tversky, 1979). Despite a decrease in the size 

of the effect, the estimates remain statistically significant and substantial in size. Thus, the cutoff seems 

to be a prominent reference point such that the relative performance of athletes with pre-event ranks of 

30 or slightly better is superior to that of athletes with pre-event ranks just below the cutoff.  

Table 4. Local randomization RD estimates on advancing to Round 2. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons) 

  (1) (2) (3) (4) (5) (6) 

Point estimate 0.075 0.061 0.100 0.295 0.266 0.187 

P-value 0.516 0.476 0.102 0.008 0.000 0.000 

Window [30, 31] [29, 32] [28, 33] [30, 31] [29, 32] [26, 35] 

Effective no of obs. 

(treated / controls) 
51 / 53 108 / 105 160 / 160 47 / 42 85 / 89 220 / 218 

No of obs. 2,629 2,161 

Notes. The dependent variable is a dummy denoting if a ski jumper advances to Round 2 in the main event. The 

running variable is the pre-event rank and the cutoff is between rank 30 and 31. The windows for RD analyses 

in Columns 3 and 6 derived from optimal window selection based on the predetermined covariates WC standing 

points, previous event rank, and home event. Point estimates report the difference in means and p-values derived 

from Fisherian simulation-based methods. 

 

6.2 Continuity-based RD and difference-in-discontinuities approach 

To complement the previous analysis, we also estimate the treatment effect with the more common 

continuity-based RD approach. In Table 5, we report the MSE optimal point estimates and robust p-

values (Cattaneo et al., 2020).16 The effects are estimated within the MSE-optimal bandwidth that 

includes pre-event ranks 25 to 36 and are thus local but also cover athletes slightly further away from 

the reference point. As previously, before the rule change, we find no significant difference in 

performance between athletes with pre-event ranks slightly above and below the cutoff (Column 1). 

After the rule change, however, we find that athletes with better pre-event ranks had a 27 percentage 

points higher probability to advance to Round 2 than athletes with worse pre-event ranks. The effect is 

statistically significant at the 1% level (Column 4).  

 
16 P-values from conventional inference are similar to the robust bias-corrected method and can be found in the 

supplementary replication material. 
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Table 5. Continuity-based RD estimates on advancing to Round 2. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons) 

  (1) (2) (3) (4) (5) (6) 

Point estimate 0.046 

(0.089) 

0.047 

(0.077) 

0.043 

(0.080) 

0.274 

(0.090) 

0.302 

(0.089) 

0.288 

(0.010) 

P-value 0.669 0.556 0.650 0.003 0.001 0.005 

Bandwidth [25, 36] [24, 37] [22, 39] [25, 36] [25, 36] [26, 35] 

Effective no of obs. 

(treated / controls) 
320 / 316 373 / 370 422 / 404 262 / 259 262 / 259 188 / 184 

No of obs. 2,629 2,161 

Notes. The dependent variable is a dummy denoting if a ski jumper advances to Round 2 in the main event. The 

running variable is the pre-event rank, and the cutoff is between ranks 30 and 31. The continuity-based RD 

analyses estimate local (first-order) polynomial regressions with a triangular kernel function to assign weights 

to the observations and common mean squared error (MSE)-optimal bandwidth selection, reporting the MSE-

optimal point estimates. Standard errors are clustered at the athlete level and presented in parentheses. P-values 

are obtained with the robust bias-correction method. The RD analyses in Columns 2 and 5 use covariate 

adjustment based on the predetermined covariates WC standing points and home event; the RD analyses in 

Columns 3 and 6 additionally include previous event rank as covariate.  

 

To further increase efficiency and precision of statistical inference, we also estimate local linear RD 

with covariate adjustment (Cattaneo et al., 2023b). First, we present the results after including the 

predetermined covariates WC standing points and home event (Columns 2 and 5 in Table 5). We then 

add the previous event rank as an additional covariate. Note that there are missing values for the first 

events of each season, which slightly reduces the number of observations (Columns 3 and 6 in Table 5). 

The point estimates remain similar in magnitude and precision in the samples before and after the rule 

change. Overall, the results in Table 5 are in line with the local randomization RD analysis (Table 4). In 

both cases, we find that athletes only perform significantly better if they are ranked better than the cutoff 

after the rule change. 

In addition to our main RD analysis, we also estimate a Diff-in-Disc specification to compare 

treatment effects before and after the rule change. For that, we pool the samples from the two periods 

and estimate a local linear RD with triangular kernel and MSE-optimal bandwidth selection. We include 

an interaction term with an indicator function that denotes the periods before and after the rule change. 

In Table 6, we report the difference in discontinuities, that is the estimated increase in the treatment 

effect from the period before the rule change to the period after the change. As before, we estimate 

specifications without including predetermined covariates (Colum 1 in Table 6) and with covariate 

controls (Column 2 and 3 in Table 6). The interaction coefficients show that the probability of advancing 

to Round 2 for athletes ranked better than the cutoff increases by 18-22 percentage points after the rule 

change, with p-values between 0.044 and 0.081. 
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Overall, our results suggest that aligning the nominal with the effective pre-event ranks had a 

statistically and economically significant effect on the salience of the reference point and consequently 

the incentive effect of loss aversion.  

Table 6. Difference-in-discontinuities at the elimination cutoff before and after the rule change. 

  (1) (2) (3) 

Point estimate 0.179 

(0.102) 

0.208 

(0.102) 

0.219 

(0.125) 

P-value 0.081 0.044 0.080 

Bandwidth [24, 37] [24, 37] [25, 36] 

Effective no of obs. 

(treated / controls) 
675 / 678 675 / 678 500 / 493 

No of obs. 4,790 4,790 4,167 

Notes. The dependent variable is a dummy denoting if a ski jumper advances to Round 2 in the main event. The 

running variable is the pre-event rank and the cutoff is between ranks 30 and 31. The Diff-in-Disc analyses is 

based on local (first-order) polynomial regressions with a triangular kernel function to assign weights to the 

observations and common mean squared error (MSE)-optimal bandwidth selection. Point estimates report the 

Diff-in-Disc estimate. Standard errors are clustered at the athlete level and presented in parentheses. 

Conventional p-values are reported. The analysis in Column 2 controls for the predetermined covariates WC 

standing points and home event; the analysis in Column 3 additionally controls for previous event rank. All 

coefficients from the full regression models can be found in the supplementary replication material. 

 

6.3 Treatment effects for alternative performance outcomes 

Furthermore, we estimate treatment effects for alternative performance outcomes. We consider the 

absolute performance measures – that is, jumping distance points17 and style points – because the 

probability to advance to the second round is a relative performance outcome, which might be affected 

by only small differences in actual performances. Moreover, an alternative explanation for our initial 

findings could be that differences in relative performance might be driven by performance-expectations 

of the judging panel that are raised by the pre-event ranking information rather than by differences in 

the actual performances of athletes. As such, the cutoff could serve as a reference point in judges’ 

decision making, affecting their style point scores. In fact, several studies have documented that ski 

jumping judges are biased in their evaluations to some extent (e.g., Krumer et al., 2022; Zitzewitz, 2006). 

Therefore, we analyze treatment effects for both performance measures separately. 

As previously, the results on jumping distance points (Table A8 in Appendix C) and style points (Table 

A9 in Appendix C) show no significant treatment effect for both performance measures before the rule 

change. However, after the rule change, we find significant effects for both measures. The results for 

jumping distance after the change appear in Columns 4 to 6 in Table A8 in Appendix C. Inside the largest 

suggested window [26, 35], athletes with pre-event ranks 26-30 achieve on average 4.3 points more than 

athletes with pre-event ranks 31-35. This suggests that performance differences are substantial in 

 
17 In contrast to jumping distance in meters, jumping distance points factor in the hill size of WC events and thus 

allow for a cleaner comparison across competitions at different venues. 
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absolute measures as well. This also suggests that differences in performance are not predominantly 

driven by performance expectations of judges, since unlike style points, which is a subjective evaluation, 

jumping distance is an objective performance. The average style points difference between athletes with 

better and worse pre-event ranks is also substantial after the rule change, but the effect is only significant 

at the 10% level when considering the smallest windows (see Column 4 in Table A9 in Appendix C). 

When taking the larger windows, the size of the effect becomes slightly smaller, but significant at 5% 

and 1% levels respectively (Columns 5 and 6 in Table A9 in Appendix C). Overall, our findings suggest 

that the reference point seems to be salient when the nominal pre-event ranks are identical to the effective 

ones, raising performance expectations among athletes and activating the incentive effect of loss 

aversion. 

7 Conclusion 

Contests are prevalent in a variety of settings such as labor markets, R&D competitions, political 

races, and sports. One main feature of contests is that “independently of success, all contestants bear 

some costs” (Moldovanu & Sela, 2001, p. 542). Thus, contests can be very costly, which emphasizes 

the importance of understanding the incentive mechanisms for effort provision. One of such mechanisms 

is the “chain” between the salience of a reference point, expectations and loss aversion. 

In this paper, we show both theoretically and empirically that positive expectations in contests trigger 

the contestants to perform better than negative expectations. This is because contestants with positive 

expectations already see themselves in the gain domain and thus feel like they have more to lose. On the 

other hand, contestants with negative expectations see themselves in the loss domain and thus feel like 

they have more to win. According to loss aversion theory, the “more to lose” approach incentivizes more 

than the “more to win” approach, because losses are more painful than gains are enjoyable. Therefore, 

contestants with positive expectations will exert more effort to avoid losses. However, our empirical 

findings show that the loss aversion mechanism is only activated if the reference point is salient. 

This paper attempts to shed more light on how the loss aversion mechanism operates for players in 

contest-like settings. To the best of our knowledge, this is also the first paper that investigates the 

interaction between salience and expectation-based reference points in real contests among 

professionals. Our paper emphasizes the significance of the correct framing of the question that allows 

making the correct use of the loss aversion theory. This is because by disregarding the competitive 

structure of zero-sum games, one can predict that a lagging player is always in the loss domain and 

therefore should do better than a player who is leading. We offer theoretical rational and empirical 

evidence of why this prediction is not correct if players rely on performance expectations to decide on 

their effort provision.   

We are cautious about generalizing our findings to other settings. There are several reasons for that. 

First, our results come from competitions among men. However, in most settings, men and women 



22 

 

cooperate (compete) with (between) each other in mixed-gender environment. Second, ski jumping is a 

sport that requires a strong focus and specific abilities, where performances are executed in a few 

seconds. Finally, there are certainly not many other settings where the margin for mistakes is comparably 

small eventually causing severe injuries. Nevertheless, identifying such a significant effect among high-

profile professionals suggest that expectation-based loss aversion (Kőszegi & Rabin, 2006) and the 

salience of a reference point (Bordalo et al., 2022; Shafir et al., 1997) may play a significant role in 

human behavior in general and in highly competitive settings in particular. 

While we refrain from pushing any claims regarding the external validity of our findings, a potential 

implication for competitive environments is to explicitly (rather than implicitly) emphasize information 

on the distance to a reference point. This would make the reference point more salient, which in turn 

may increase effort provision. In addition, it is preferable to have positive expectations of achieving the 

immediate goals. For example, managers who wish that personnel exert more effort should emphasize 

that the exact goal is known and achievable, that there are positive expectations of being successful as 

well as negative consequences of not achieving the goal. 
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Appendix 

 

Appendix A: Comparisons before and after the rule change 

Table A1. Comparison of probabilities to advance to Round 2 for pre-event rank groups. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons)     

 Mean (SD) Mean (SD) 
Difference 

in means 
P-value 

Pre-event rank 1–5 0.977 (0.149) 0.982 (0.134) -0.005 0.726 

Pre-event rank 6–10 0.946 (0.227) 0.884 (0.321) 0.062 0.014 

Pre-event rank 11–15 0.898 (0.304) 0.848 (0.360) 0.050 0.096 

Pre-event rank 16–20 0.772 (0.420) 0.786 (0.411) -0.014 0.719 

Pre-event rank 21–25 0.658 (0.475) 0.645 (0.480) 0.013 0.769 

Pre-event rank 26–30 0.540 (0.499) 0.655 (0.477) -0.115 0.010 

Pre-event rank 31–35 0.412 (0.493) 0.468 (0.500) -0.057 0.222 

Pre-event rank 36–40 0.404 (0.492) 0.343 (0.476) 0.062 0.165 

Pre-event rank 41–45 0.232 (0.423) 0.270 (0.445) -0.038 0.341 

Pre-event rank 46–50 0.195 (0.400) 0.189 (0.392) 0.006 0.873 

No of obs. 4,790  

Notes. The dependent variable is a dummy denoting if a ski jumper advances to Round 2 in the main event. 

Standard deviations (SD) are reported in parentheses. Reported are two-sided p-values of t-tests. 

 

 

Figure A1. Comparison of total point scores in Round 1 as a function of ski jumpers’ pre-event ranks. 
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Table A2. Comparison of total point scores in Round 1 for pre-event rank groups. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons)     

 Mean (SD) Mean (SD) 
Difference 

in means 
P-value 

Pre-event rank 1–5 128.329 (14.805) 128.303 (12.218) 0.026 0.983 

Pre-event rank 6–10 122.843 (14.835) 120.277 (16.248) 2.566 0.073 

Pre-event rank 11–15 119.196 (15.043) 117.631 (16.132) 1.565 0.269 

Pre-event rank 16–20 113.473 (17.959) 116.717 (15.571) -3.245 0.039 

Pre-event rank 21–25 111.107 (14.677) 111.929 (15.474) -0.822 0.553 

Pre-event rank 26–30 107.108 (17.651) 110.989 (15.750) -3.881 0.012 

Pre-event rank 31–35 104.053 (17.037) 106.412 (18.449) -2.358 0.147 

Pre-event rank 36–40 103.026 (17.351) 102.123 (18.869) 0.903 0.585 

Pre-event rank 41–45 98.308 (18.040) 98.380 (18.455) -0.072 0.966 

Pre-event rank 46–50 95.167 (19.559) 96.321 (20.184) -1.154 0.531 

No of obs. 4,790  

Notes. The dependent variable is the total point score in Round 1 of the main event. Standard deviations (SD) 

are reported in parentheses. Reported are two-sided p-values of t-tests. 

 

Table A3. Comparison of WC standing points for pre-event rank groups. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons)     
 Mean (SD) Mean (SD) z-statistic P-value 

Pre-event rank 1–5 731.559 (451.733) 462.597 (405.154) 6.955 0.000 

Pre-event rank 6–10 417.707 (254.890) 309.991 (294.289) 5.195 0.000 

Pre-event rank 11–15 166.599 (148.355) 231.897 (252.598) -1.766 0.077 

Pre-event rank 16–20 121.498 (128.311) 188.324 (253.588) -1.503 0.133 

Pre-event rank 21–25 97.608 (112.605) 137.435 (200.296) -0.082 0.935 

Pre-event rank 26–30 86.117 (115.820) 110.832 (176.245) -1.392 0.164 

Pre-event rank 31–35 67.752 (100.954) 95.573 (173.395) -1.119 0.263 

Pre-event rank 36–40 58.901 (90.961) 61.310 (136.083) 2.010 0.044 

Pre-event rank 41–45 34.544 (74.479) 41.274 (99.553) -0.082 0.935 

Pre-event rank 46–50 34.650 (73.940) 33.689 (125.563) 1.671 0.095 

No of obs. 4,790  

Notes. The dependent variable is the ski jumpers’ points in the WC standings prior to each event. Standard 

deviations (SD) are reported in parentheses. Since only the best 30 ski jumpers from each competition get WC 

points and the distribution of points is inconsistent across the finals ranks, including linear and exponential 

components, the variable is not normally distributed. Therefore, we use a rank-sum test to analyze differences 

in the distribution. Reported are z- and two-sided p-values of Mann-Whitney U tests. 

 

Appendix B: RD validation and falsification tests 

The RD approach can be further supported by validation and falsification tests, including treatment 

effect tests on the predetermined covariates, assessing the density of the running variable, and 

estimations at placebo cutoffs (Cattaneo & Titiunik, 2022; Cattaneo et al., 2023a).  
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As is the case in classical experiments where randomization should produce similar distributions in 

covariate characteristics for treated and controls, one should test whether the RD treatment influences 

predetermined covariates. Based on the underlying assumption of the RD approach, there should be no 

treatment effect on predetermined covariates, and thus there should be no systematic differences 

between treated and control groups. Testing this also justifies our within-comparison as identification 

approach because it provides empirical evidence that athletes below and above the cutoff are indeed 

comparable. To test this, we run RD estimations on our three covariate measures, using local 

randomization RD with the smallest and largest window specifications as well as continuity-based RD 

estimations. The results, presented in Table A4 support our RD approach, showing no significant effects 

on these variables. 

Table A4. RD estimates on predetermined covariates. 

  Before rule change (2015–2017 seasons) 

Variable 
Window W/ 

bandwidth h 
Point estimate P-value Effective no. of obs. 

WC standing points W [30, 31] 10.485 0.694 51 / 53 

 W [28, 33] 16.919 0.198 160 / 160 

 h [25, 36] 6.258 0.788 320 / 316 

Previous event rank W [30, 31] 2.412 0.360 39 / 47 

 W [28, 33] -0.144 0.944 133 / 143 

 h [25, 36] 1.724 0.455 276 / 273 

Home event W [30, 31] 0.063 0.508 51 / 53 

 W [28, 33] 0.013 0.882 160 / 160 

 h [25, 36] 0.031 0.544 320 / 316 

 After rule change (2018–2020 seasons) 

Variable  

Window W/ 

bandwidth 

h 

Point estimate P-value Effective no. of obs. 

WC standing points W [30, 31] -14.893 0.882 47 / 42 

 W [26, 35] 15.258 0.356 220 / 218 

 h [24, 37] -39.921 0.165 302 / 308 

Previous event rank W [30, 31] 1.026 0.716 40 / 38 

 W [26, 35] -0.324 0.768 188 / 184 

 h [22, 39] 3.091 0.200 333 / 328 

Home event W [30, 31] -0.079 0.350 47 / 42 

 W [26, 35] 0.026 0.350 220 / 218 

 h [27, 34] -0.078 0.224 174 / 171 

Notes. Dependent variables are the predetermined covariates. The running variable is the pre-event rank and 

the cutoff is between rank 30 and 31. Point estimates report the difference in means (with Fisherian p-values) 

of the local randomization RD analyses (with Fisherian p-values) or the MSE-optimal point estimates (with 

robust p-values) of local linear RD analyses. Before the rule change, the small and large window is between 

pre-event ranks [30, 31] and [28, 33], respectively. After the rule change, the small and large window is between 

pre-event ranks [30, 31] and [26, 35], respectively. The continuity-based RD analyses estimate local linear 

regressions with MSE-optimal bandwidth selection and with triangular kernel. 
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We further assess the density of the running variable by testing whether the numbers of observations 

on both sides of the cutoff are roughly similar (Cattaneo et al., 2023a). In principle, this should be no 

issue because our running variable consists of relative ranks, which makes uneven bunching of score 

values unlikely. This is also a key feature of our ski jumping setting because it hinders athletes from 

influencing their pre-event ranks strategically. To further support this empirically, in Table A5, we 

present the absolute numbers of observations at the closest mass points around the cutoff. While we see 

some variation across pre-event ranks because athletes with the same number of points in the 

qualification get the same pre-event rank, we find no pattern of bunching on either side of the cutoff. 

We further ran binomial tests with a success probability equal to 1/2 as suggested by Cattaneo et al. 

(2023a), which shows no systematic difference in the number of treated and control observations.18 

Table A5. Frequency distribution of mass points of the running variable around the cutoff. 

    

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons) 

 Treatment status No. of obs. No. of obs. 

Pre-event rank 26 treated 53 46 

Pre-event rank 27 treated 52 41 

Pre-event rank 28 treated 52 48 

Pre-event rank 29 treated 57 38 

Pre-event rank 30 treated 51 47 

Pre-event rank 31 controls 53 42 

Pre-event rank 32 controls 52 47 

Pre-event rank 33 controls 55 44 

Pre-event rank 34 controls 50 38 

Pre-event rank 35 controls 52 47 
Notes. Presented are the absolute numbers of observations at closest mass points around the cutoff, which is 

between pre-event rank 30 and 31. 

 

Furthermore, we run RD estimations at placebo cutoffs below and above the actual cutoff to test for 

discontinuous changes in performances away from the reference point, where we would expect no 

treatment effect (Cattaneo & Titiunik, 2022). We choose placebo cutoffs where athletes might 

experience possible elimination after Round 1; that is, cutoffs between the pre-event ranks [20, 21] and 

[40, 41]. Moreover, the cutoff between pre-event ranks 40 and 41 would be the salient reference point 

for athletes before the rule change if athletes neglect the existence of the prequalified top 10 athletes and 

only consider their nominal ranks. Therefore, the RD analysis at cutoff [40, 41] in the sample period 

before the rule change also examines whether there is an effect on performances of athletes with nominal 

ranks that are close to the elimination cutoff as indicated in Figure 3. The RD results for the periods 

 
18 The binomial tests report p-values of 0.922 and 1.000 for the smallest and largest windows before the rule 

change, respectively; and p-values of 0.672 and 0.962 for the smallest and largest windows after the rule change, 

respectively. 
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before and after the rule change are provided in Table A6 and A7, respectively, using the same window 

sizes as in our initial analyses as well as continuity-based RD analyses. We do not find discontinuous 

changes in advancing to Round 2 in the windows closely around the placebo cutoffs (Columns 1, 2, 5, 

and 6 in Tables A6 and A7) or when using local linear RD (Columns 4 and 8 in Tables A6 and A7). Only 

when considering the largest windows in local randomization RD, we find significant differences for 

𝑐 = 40.5 before the rule change (Column 7 in Table A6) and 𝑐 = 20.5 after the rule change (Column 3 

in Table A7). However, in both cases, the treated and untreated observations also differ regarding their 

predetermined covariates. Overall, the findings support the assumption that the probability of advancing 

to Round 2 as a function of pre-event ranks is continuous at ranking positions where the real treatment 

is assumed to be absent. 

Table A6. RD estimates on advancing to Round 2 at placebo cutoffs. 
 Before rule change (2015–2017 seasons) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Point estimate 0.050 0.047 0.082 0.020 

(0.073) 

0.119 0.071 0.135 0.070 

(0.117) 

P-value 0.776 0.544 0.134 0.701 0.310 0.290 0.016 0.532 

Window / bandwidth [20, 21] [19, 22] [18, 23] [14, 27] [40, 41] [39, 42] 
[38, 

43]* 
[38, 43] 

Placebo cutoff 20.5 20.5 20.5 20.5 40.5 40.5 40.5 40.5 

Effective no of obs. 

(treated / controls) 
53/51 106/103 158/155 371/368 58/50 112/98 164/152 164/152 

Notes. The dependent variable is a dummy denoting if a ski jumper advances to Round 2 in the main event. The 

running variable is the pre-event rank. Columns 1–3 and 5–7 report local randomization RD analyses and the 

difference in means as point estimates with Fisherian p-values. Columns 4 and 8 present local linear regressions 

with MSE-optimal bandwidth selection and with triangular kernel. Reported are the MSE-optimal point 

estimates with standard errors clustered at the athlete level presented in parentheses and robust p-values. *This 

window does not pass covariate balance tests. 

 

Table A7. RD estimates on advancing to Round 2 at placebo cutoffs. 
 After rule change (2015-2017 seasons) 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Point estimate 0.136 0.077 0.141 0.123 

(0.075) 

-0.091 -0.067 0.073 -0.164 

(0.146) 

P-value 0.282 0.340 0.002 0.142 0.482 0.410 0.110 0.327 

Window / bandwidth [20, 21] [19, 22] [16, 25]* [14, 27] [40, 41] [39, 42] [36, 45] [38, 43] 

Placebo cutoff 20.5 20.5 20.5 20.5 40.5 40.5 40.5 40.5 

Effective no of obs. 

(treated / controls) 
42/46 84/92 210/214 298/301 44/44 84/85 213/215 123/129 

Notes. The dependent variable is a dummy denoting if a ski jumper advances to Round 2 in the main event. The 

running variable is the pre-event rank. Columns 1–3 and 5–7 report local randomization RD analyses and the 

difference in means as point estimates with Fisherian p-values. Columns 4 and 8 present local linear regressions 

with MSE-optimal bandwidth selection and with triangular kernel. Reported are the MSE-optimal point estimates 

with standard errors clustered at the athlete level presented in parentheses and robust p-values. *This window does 

not pass covariate balance tests. 
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Appendix C: Treatment effects on alternative performance outcomes 

Table A8. Local randomization RD estimates on jumping distance points. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons) 

  (1) (2) (3) (4) (5) (6) 

Point estimate 1.235 0.597 -0.247 7.828 5.603 4.293 

P-value 0.562 0.744 0.862 0.010 0.014 0.002 

Window [30, 31] [29; 32] [28, 33] [30, 31] [29, 32] [26, 35] 

Effective no of obs. 

(treated / controls) 
51 / 53 108 / 105 160 / 160 47 / 42 85 / 89 220 / 218 

No of obs. 2,629 2,161 

Notes. The dependent variable is the jumping distance in points in Round 1 of the main event. The running 

variable is the pre-event rank and the cutoff is between rank 30 and 31. The windows for RD analyses in columns 

3 and 6 derive from optimal window selection based on the predetermined covariates WC standing points, 

previous event rank, and home event. Point estimates report the difference in means and p-values derived from 

Fisherian simulation-based methods. 

 

Table A9. Local randomization RD estimates on style points. 

  

Before rule change 

(2015–2017 seasons) 

After rule change 

(2018–2020 seasons) 

  (1) (2) (3) (4) (5) (6) 

Point estimate 0.094 -0.004 -0.031 0.921 0.856 0.720 

P-value 0.812 0.958 0.888 0.096 0.020 0.002 

Window [30, 31] [29; 32] [28, 33] [30, 31] [29, 32] [26, 35] 

Effective no of obs. 

(treated / controls) 
51 / 53 108 / 105 160 / 160 47 / 42 85 / 89 220 / 218 

No of obs. 2,629 2,161 

Notes. The dependent variable is the style points in Round 1 of the main event. The running variable is the pre-

event rank and the cutoff is between ranks 30 and 31. The windows for RD analyses in Columns 3 and 6 derive 

from optimal window selection based on the predetermined covariates WC standing points, previous event rank, 

and home event. Point estimates report the difference in means and p-values derived from Fisherian simulation-

based methods. 

 


