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Abstract

We analyze the stability and effi ciency of international environmental
agreements where negotiations take place bilaterally and simultaneously
with one climate secretariat being the leader of the negotiations. Coun-
tries have the choice to bargain alone or in a pool with the leader. Our
results show that depending the shape of the benefit and cost function
and the type of beliefs in case of disagreement, several configurations in
terms of abatement efforts and size of stable coalition can emerge. Our
approach encompasses the standard IEA game.

1 Introduction

International environmental agreements (IEA) dealing with issues like the ozone
layer, long-range pollutants or climate change are often the outcome of a ne-
gotiation process which is never, or rarely, made explicit (Finus and Caparrós,
2015). In the case of climate change negotiations, which is our leading refer-
ence example, one can observe a gap between the practical and legal setting of
the negotiations and their associated theoretical modeling. On the one hand,
the legal framework for negotiations refers to the United Nations Framework
Convention on Climate Change, where countries or parties negotiate reduc-
tion agreements under the aegis of a secretariat responsible for organizing and
progressing these multilateral negotiations. On the other hand the theoretical
representation of these negotiations is based on a IEA game consisting in an
emission reduction competition model between countries and not a negotiation
model (Carraro and Siniscalco, 1993; Barrett, 1994). The main message of this
IEA game which had a huge influence in climate negotiations is that only small
coalitions (agreements) are stable and "self-enforcing". The aim of this article
is to show how this message remains the same when the IEA game is reshaped
within a negotiation theoretical framework.
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The structure of Carraro and Siniscalco (1993) and Barrett (1994) models
consists in a one-shot two-stage game. Countries decide in a first stage whether
to join the agreement and in a second stage decide their abatement efforts jointly
if they are signatories of the IEA and independently if not. This second stage
refers to a Nash-Cournot scenario or a stackelberg one (Finus et al, 2021). The
size of the coalition in the first stage is obtained by using the internal and exter-
nal stability conditions derived from the cartel formation game of d’Aspremont
et al (1983). These conditions state that members of the pool do not want to
leave it (internal stability) while non-members of the pool do not want to join
it (external stability). This article aims at introducing negotiation introduced
into this framework1 by replacing the Nash-Cournot assumption of the second
stage of the IEA game2 with the Nash-in-Nash protocol consisting in a Nash
equilibrium of Nash Bargaining Solutions (Collard-Wexler et al. 2019)3 . To
be more precise, in the second stage countries negotiate with the climate sec-
retariat emission reductions and associated transfers. This secretariat has no
reduction target and is not able to enforce formal sanctions as fees in case of
non compliance. As it sets the agenda and manages bilateral and simultaneous
negotiations, we call it the leader. In the first stage countries have the choice
between negotiating alone with the leader as singletons or to pool their meeting
with the leader. The size of the pool (or the coalition4) is then obtained using
the stability conditions as in the IEA game. However our vision of an agree-
ment is somewhat broader than the existing IEA literature which restricts the
agreement to the members of the stable coalition. In our negotiation framework,
the multilateral IEA will concern both the negotiated agreement between the
leader and the pool and also all bilateral negotiated agreements between the
leader and the singletons countries.

Our negotiation approach involves two new features to the existing litera-
ture. Firstly, it highlights the role of the disagreement payoffs in the case of
failure of negotiations. Even if negotiations always result in an agreement, their
outcome depends on what might happen if they fail. Contrary to the IEA game,
the disagreement payoffs may be different from the non-cooperative situation
obtained in the Nash-Cournot case, where each country maximizes his own wel-
fare. More precisely, in a negotiation setting the final outcome depends on the
type of beliefs of the players about the behaviors of the other players in all the
negotiations they are involved or not which can failed. In our framework we
consider passive beliefs as defined by McAfee and Schwartz (1994). It implies
that in case of disagreement in one negotiation, all countries belief that all other
bargaining meetings reach the equilibrium agreement. Secondly, it provides a

1Explicit dynamic bargaining IEA game have been analysed by Caparrós and Pereau
(2017), Okada (2022, 2023) to allow a gradual coalition formation process.

2Finus et al (2021) compare the Nash-Cournot scenario with the Stackelberg one.
3 In footnote 6, Barrett (1994) refers to the Nash bargaining solution as the solution of a

cooperative game to justify that if all signatories are identical, each country will undertake
the same level of abatement. But the NBS is not used as we do in this paper.

4We use these two terms as synonyms.
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complete characterization of utility transfers between countries at the equilib-
rium. By negotiating reduction agreements, countries create a surplus and the
transfer payments implemented by the leader show how countries share the ben-
efits of their cooperation. This model will be solved assuming general concave
benefit and convex cost functions. However in order to characterize explicit so-
lutions concerning the abatement made by countries inside the pool or outside
as singletons and their associated transfers, we will consider two general polar
cases and intermediate ones. The first case refers to a constant marginal benefit
and a homogeneous cost function of degree greater than one while the second
consists in a constant marginal cost and a homogeneous benefit function of de-
gree lower than one. Intermediate cases refers to some specific values for the
degree of homogeneity of the cost and benefit functions. In all cases we are able
to determine what will be the abatement countries implement and the size of
the pool. Our benchmark model will be subject to two extensions. First we will
consider another type of beliefs with symmetric beliefs when all countries belief
that the other meetings result in a disagreement as well. Secondly we consider
Stackelberg bargaining configurations where the leader can decide to bargain
either first with the coalition and second with the singletons or vice versa.
This article aims at answering the following questions:

• How the shape of the benefit and cost functions impact the size of a stable
coalition from the empty to the grand coalition?

• What are the different strategies of the players in terms of abatements
including the possibility of doing nothing in a negotiation framework with
different beliefs?

• What can be the role of the leader as an agenda setter?

The organization of this paper is structured as follows. Section 2 introduces
the IEA bargaining model with passive beliefs. Section 3 provides the results
assuming different shapes of the benefit and cost functions. Section 4 considers
two extensions of the model with symmetric beliefs and Stackelberg configura-
tions. Finally, Section 5 offers concluding remarks. All proofs are displayed in
appendix.

2 The IEA bargaining model

Assume n + 1 players with a leader 0 plus n identical players indexed by i =
1, ..., n. Each player i = 1, ..., n contributes an emission reduction qi, bearing
a private cost C(qi) and enjoys a benefit from the total emission reduction
(enjoyed by all players including the leader) given by B(Q) with Q =

∑n
i=1 qi.

We assume B(0) = 0 and C(0) = 0. The benefit function is assumed to be
increasing in total abatement at a decreasing rate (B′(.) > 0 and B′′(.) < 0).
Costs are assumed to be a strictly convex function of individual abatement
(C ′(.) > 0 and C ′′(.) > 0). We also assumed B′(0) > C ′(0) stating that the
first unit of abatement is profitable (Muthoo, 1999).
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Player 0 meets with each of the other players i = 1, ..., n to agree on the
emission reduction qi and a transfer ti (from the leader to i). The leader hence
pays a total transfer T =

∑n
i=1 ti to the other players in exchange of emission

reductions. All the negotiations are assumed to be bilateral and simultaneous
with singleton players or with a coalition over two variables, the amount of
abatement and the transfers. As explained in the introduction, the leader has
no emission reduction target and is the agenda setter. Payoffs to players are
π0 = B(Q) − T for the leader and πi = B(Q) − C(qi) + ti for i in case of an
agreement consisting on emission reductions qi for all i and transfers ti from the
leader to each of the other players i.

Players i can organize into a coalition of size J to bargain with the leader 0.
We consider the case when there is at most one coalition of size J > 1. Players
i not in the coalition bargain with the leader on their own.
We consider a two-stage game. In stage 1 countries decide whether they

prefer to negotiate with the leader alone or in a pool using the internal and
external stability conditions. In stage 2, the abatement levels are solution of
the bargaining Nash-in-Nash protocol.

2.1 The abatement stage

Two configurations are examined, depending on whether the leader is negotiat-
ing facing singletons or a coalition.

2.1.1 The leader against singletons

If there is no coalition of size J > 1 then all players are bargaining with the
leader on their own. At each bilateral negotiation between i and 0 the Nash-in-
Nash solves

max
(qi≥0,ti≥0)

NP0,i =
(
π0 − πd0,−i

) (
πi − πdi,−i

)
, (1)

where πd0,−i and πdi,−i denote, respectively, the leader’s payoff and the other
player i’s payoffat disagreement. These disagreement payoffs depend on players’
beliefs about what will happen if a disagreement is reached. We consider that
the leader 0 and the other player i have passive beliefs (McAfee and Schwartz,
1994), meaning that in case of disagreement between 0 and i, those players
believe that all other bargaining meetings reach the equilibrium agreement. The
Nash Bargaining Solution (NBS) is given by the following proposition.

Proposition 1 The NBS of the maximization problem (1) between the leader
and the singletons give:

ti =
1

2

(
C(qi)− C(qBRi (Q−i))

)
, (2)

and
C ′(qi) = 2B′(Q), (3)
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where qBRi (Q−i) stands for the best reply emission reduction by player i in case
of disagreement, given by

B′(qBRi (Q−i) +Q−i) = C ′(qBRi (Q−i)). (4)

The proof of Proposition 1 can be found in the appendix.

2.1.2 A coalition forms to bargain with the leader

We consider now the case of a coalition of size J , with 1 < J < n pooling their
meeting with the leader and the rest of non leader players n−J bargaining with
the leader on their own. We note the set of players in the coalition J and the
set of players outside the coalition as N\J . Note that |J | = J . At the bilateral
negotiation between the coalition J and 0 the Nash-in-Nash solves

max
(qj≥0,tj≥0)

NP0,J =
(
π0 − πd0,−J

) ∏
j∈J

(
πj − πdj,−J

)
, (5)

where πd0,−J and π
d
j,−J denote, respectively, the leader’s payoff and player j’s

payoff, j ∈ J , at disagreement.
At each bilateral negotiation between players k outside the coalition J and

0 the Nash-in-Nash solves

max
(qk≥0,tk≥0)

NP0,k =
(
π0 − πd0,−k

) (
πk − πdk,−k

)
, (6)

where πd0,−k and π
d
k,−k denote, respectively, the leader’s payoff and player k’s

payoff, k /∈ J , at disagreement.
Note that in case of disagreement when the coalition bargains with the leader

all players in the coalition disagree (the coalition must reach unanimity). As
argued before, the disagreement payoffs depend on players’beliefs about what
will happen if a disagreement is reached. The leader 0 and the other players
j ∈ J having passive beliefs means that in case of disagreement between 0 and
the coalition J , those players believe that all other bargaining meetings (in
this case all 0 with k, k /∈ J ) reach the equilibrium agreement. Furthermore,
we assume that in case of disagreement, players j ∈ J simultaneously choose
their emission qj taking the decision of the other players in J as given (as in
a Cournot competition). Given that cost functions are identical, the resulting
equilibrium emission in case of disagreement is the same for each player j ∈ J
and will be denoted qBRj (Q−J ). Concerning the bargaining problem between
the leader 0 and each of the other players k /∈ J , we consider under passive
beliefs that players 0 and k believe that all other bargaining meetings reach the
equilibrium agreement. We obtain the following proposition.

Proposition 2 When a coalition forms to bargain with the leader:

1. The NBS of the maximization problem (5) between the leader and the
coalition gives:

tj(J) =
1

J + 1

(
C(qj)− C(qBRj (Q−J ))

)
, (7)
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and
C ′(qj) = (J + 1)B′(Q), (8)

where qBRj (Q−J ) stands for the emission reduction by player j in case of
disagreement, given by

B′(JqBRj (Q−J ) +Q−J ) = C ′(qBRj (Q−J )). (9)

2. The NBS of the maximization problem (6) between the leader and the
singletons give:

tk =
1

2

(
C(qk)− C(qBRk (Q−k))

)
, (10)

and
C ′(qk) = 2B′(Q), (11)

where qBRj (Q−J ) stands for the emission reduction by player j in case of
disagreement, given by

B′(qBRk (Q−k) +Q−k) = C ′(qBRk (Q−k)). (12)

The proof of Proposition 2 can be found in the appendix.

At the end of this bargaining protocol the leader pays a total transfer∑
j∈J tj +

∑
k/∈J tk and obtains

π0 = B(Jqj+(n−J)qk)− J

J + 1

(
C(qj)− C(qBRj (Q−J ))

)
−n− J

2

(
C(qk)− C(qBRk (Q−k))

)
.

Each agent j ∈ J and each agent k /∈ J respectively obtain a payoff that
depends on the size of the coalition J . Because benefit and cost functions are
identical across players, we have

πj(J) = B(Jqj + (n− J)qk)− 1

J + 1

(
JC(qj) + C(qBRj (Q−J ))

)
, (13)

πk(J) = B(Jqj + (n− J)qk)− 1

2

(
C(qk) + C(qBRk (Q−k))

)
. (14)

2.2 The participation stage

After obtaining the abatement levels for players in the second stage of the game
and their associated profits, the size of the stable coalition is determined in the
first stage by using the internal and external conditions. Denoting πj(J) the
payoff of a player belonging to a pool of size J and πk(J) the payoff of a player
negotiating alone for an existing pool of size J , a stable coalition J∗ must satisfy
the two following internal and external stability conditions

πj(J
∗)− πk(J∗ − 1) ≥ 0, (15)

πk(J∗)− πj(J∗ + 1) ≥ 0. (16)

Condition (15) states that a member of the pool of size J∗ has no incentive
to leave the pool, which will be reduced by one unit, J∗ − 1, to negotiate alone
with the leader. Condition (16) states that a player not belonging to the pool
of size J∗ has no incentive to join it and move up to size J∗ + 1.
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3 The results

We consider cost and benefit functions such that C(q) = qαCC(1) homogeneous
of degree αC > 1 and B(Q) = QαBB(1) homogeneous of degree αB < 1 where
C(1) is the abatement cost of one unit and B(1) the abatement benefit of one
unit. We first focus on two polar cases a constant marginal benefit equal to
b with a general cost function and a constant marginal cost equal to c with a
general benefit function. Then we consider an intermediate case where αC +
αB = 2.5

3.1 Constant marginal benefit

We consider first the case of a homogeneous cost function C(q) = qαCC(1) of
degree αC > 1 and a benefit function B(Q) = bQ (homogeneous of degree 1).
When the players meet with the leader individually (or as singletons) we obtain
for each i6

qi = 2
1

αC−1 qBRi , ti =
1

2

(
2

αC
αC−1 − 1

)
C(qBRi ),

with

qBRi (Q−i) = qBR =

(
b

αCC(1)

) 1
αC−1

.

As a result, the total emission reduction is equal to Q = 2
1

αC−1nqBR.
When a coalition of size J forms to bargain with the leader, we obtain for

each k not in the coalition:

qk = 2
1

αC−1 qBR, qBRk (Q−k) = qBR, tk =
1

2

(
2

αC
αC−1 − 1

)
C(qBR),

while for each j inside the coalition:

qj(J) = (J+1)
1

αC−1 qBR, qBRj (Q−J ) = qBR, tj(J) =
1

J + 1

(
(J + 1)

αC
αC−1 − 1

)
C(qBR).

As a result, the total emission reduction is equal to Q(J) = Jqj(J)+(n−J)qk =(
J(J + 1)

1
αC−1 + (n− J)2

1
αC−1

)
qBR.

With these values, we obtain the following proposition.

Proposition 3 Assume that individual cost functions are homogeneous of de-
gree αC > 1 and the benefit function is homogeneous of degree 1. Then:

1. When players bargain individually with the leader (singletons), the payoff
of the leader is lower than the other players’payoff when n ≥ 3 or when
n = 2 and αC < ln 3

ln 3−ln 2 .

5With both linear cost and benefit functions, there is no interior solution and the problem
consists in a threshold public game.

6The detailed computations can be found in the appendix.
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2. When a coalition of size J forms to bargain with the leader, the payoff of
the singletons is higher than that of the leader and of the players inside
the coalition. The payoff of the leader is lower than that of the players
inside the coalition when n−J ≥ 2 or when J = n− 1 and αC < ln 3

ln 3−ln 2 .
If the grand coalition forms, i.e., J = n then the payoff of the leader is
higher than that of all the other players.

3. The leader’s preferred coalition size is J = n (the grand coalition) while he
always prefers a negotiation with a pool of size J ≥ 2 than a negotiation
with singletons.

4. The stable size is J = 2 for reasonable values of αC , namely αC ∈
[1.215, 4.059]. The leader’s preferred coalition size (i.e., the grand coali-
tion) can be stable for αC suffi ciently close to 1. For αC > 4.059 no
coalition size is internally stable and all non-leader players prefer to ne-
gotiate as singletons with the leader.

The proof of Proposition 3 can be found in the appendix.
With constant marginal benefit, when the leader negotiates against a coali-

tion of size J ≥ 2 and against the remaining players as singletons, Proposition 3
implies that even though the members of the pool receive more transfers, their
payoff is lower because they abate more than the singletons. Furthermore, the
leader being the agenda setter always prefers to negotiate with players having
the possibility to form a pool, and his preferred pool size is n. The size of the
stable coalition depends on the degree of convexity of the cost function. With
a quadratic cost function which is usually assumed in the literature, it implies
that the stable coalition will be of size 2, as in Barrett’s canonical model. How-
ever a higher coalition size being stable requires a degree of homogeneity closer
to 1 (i.e., a less convex cost function).
Our negotiation model recovers this result of partial cooperation. The mem-

bers of the pool abate more and even if they received more transfers, their
payoffs are lower than the singletons. However they are all better off with re-
spect to the case in which the leader negotiates separately and simultaneously
with all the players.
It is interesting to compare our results with Barret (1994). The Barrett

(1994) model with n symmetric players having a linear benefit function B(Q) =
bQ and a quadratic cost function C(q) = c

2q
2 corresponds in our case to a value

αC = 2 and C(1) = c/2. When the leader bargains against singletons, we obtain
qBR = b

c , C(qBR) = 1
2
b2

c and ti = 3
4
b2

c . Payoffs are πi = 1
4 (8n− 5) b

2

c and π0 =
1
4 (5n) b

2

c . Total abatement is Q = 2n bc and total welfare is W = 2n2 b
2

c . The
leader obtains a lower payoff than the players as far as n > 5/3 (true for n > 2).
With respect to the non-cooperative case defined as if each country maximizes
its own welfare, we obtain qnci = b

c and π
nc =

(
n− 1

2

)
b2

c . It can be shown that
π0 > πnc for n > 0 and πi > πnc for n > 1. When a pool forms to bargain
with the leader , the size of the stable pool can be either J∗ = 2 or J∗ = 3. For
J∗ = 2, the abatement of an insider is qi = 3 bc and it is qk = 2 bc for an outsider.
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The global amount of reduction is equal to Q = 2 (n+ 1) bc . We can determine

the amount of utility transfers always for J∗ = 2 with tj = 4
3
b2

c and tk = 3
4
b2

c

implying tj > tk. The total amount of transfer is T (J∗ = 2) = 1
12
b2

c (9n+ 14).
In terms of payoffs we obtain πk(J∗ = 2) > πj(J

∗ = 2) > π0(J
∗ = 2) with

πj(J
∗ = 2) = 1

6 (12n− 7) b
2

c , πk(J∗ = 2) = 1
4 (8n+ 3) b

2

c and π0(J∗ = 2) =
5
12 (3n+ 2) b

2

c . Welfare is W (J∗ = 2) =
(
2n2 + 2n− 3

)
b2

c . We can check that
this situation is profitable for all players with respect the situation where all
players are singletons, πj(J∗ = 2) − πi = 1

12
b2

c , πk(J∗ = 2) − πi = 2 b
2

c and

for the leader π0(J∗ = 2) − πs0 = 5
6
b2

c . We have that π(J∗ = 2) > π for all
players. Total Abatement and welfare are greater with Q(J∗ = 2) − Q = 2 bc
and W (J∗ = 2)−W = (2n− 3) b

2

c .

3.2 Constant marginal cost

We consider now the case of a homogeneous benefit function B(Q) = QαBB(1)
of degree αB < 1 and the cost function C(q) = cq (homogeneous of degree 1).
When the players meet with the leader individually (or as singletons) we obtain
for each i7

qi =
1

n

(
2B(1)αB

c

) 1
1−αB

= qs, ti =
c

2
qs,

with
qBRi (Q−i) = 0.

As a result, the total emission reduction is equal to Qs = nqs.
When a coalition of size J forms to bargain with the leader, we obtain for

each k not in the coalition:

qk = qBRk = 0, tk = 0,

while for each j inside the coalition:

qj(J) =
n

J

(
J + 1

2

) 1
1−αB

qs, qBRj (J) =
n

J

(
1

2

) 1
1−αB

qs,

tj(J) =
c n

J(J + 1)
qs

(J + 1)
1

1−αB − 1

2
1

1−αB

.

As a result, the total emission reduction is equal to Q(J) = nqs
(
J+1
2

) 1
1−αB .

With these values, we obtain the following proposition.

Proposition 4 Assume that the benefit function is homogeneous of degree αB <
1 and that the cost function is homogeneous of degree 1. Then:

1. When players bargain individually with the leader (singletons), the payoff
of the leader is lower than the other players’payoff .

7The detailed computations can be found in the appendix.
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2. When a coalition of size J forms to bargain with the leader, the payoff of
the singletons is higher than that of the leader and of the players inside
the coalition. The payoff of the leader is higher than that of the players
inside the coalition.

3. The leader’s preferred coalition size is J = n (the grand coalition) while he
always prefers a negotiation with a pool of size J ≥ 2 than a negotiation
with singletons.

4. The stable size is J = 2 for αB ∈ [0.711563, 0.880902]. The leader’s
preferred coalition size (i.e., the grand coalition) can be stable for αB suf-
ficiently close to 1. For αB < 0.711563 no coalition size is internally stable
and all non-leader players prefer to negotiate as singletons with the leader.

The proof of Proposition 4 can be found in the appendix.
With constant marginal cost, when the leader negotiates against a coalition

of size J ≥ 2 and against the remaining players as singletons, only the members
of the pool abate while the singletons fully free-ride and get higher payoffs.
Note that the leader being the agenda setter will always prefer to negotiate
with players having the possibility to form a pool, as was the case with the
constant marginal benefit.
All coalition sizes are stable, from an empty coalition to a grand coalition,

depending on the degree of concavity of the benefit function. A higher coalition
size being stable requires a degree of homogeneity closer to 1 (i.e., a less concave
benefit function). However if we assume a square-root benefit function αB = 0.5,
ie B(Q) = bQ0.5 with B(1) = b, there will be no stable coalition meaning all
players will prefer to bargain individually with the leader to avoid the strong
free-riding outside the coalition. In that case the amount of reduction of the
singletons will be qi = 1

n

(
b
c

)2
and qs0 = 0 for the leader. The transfer obtained

by a singleton is ti = 1
2n

b2

c leading to the payoffs πi = 2n−1
2n

b2

c and π0 = 1
2
b2

c .
Now assume a higher value for αB with αB = 4

5 , ie B(Q) = bQ
4
5 which

ensures that a stable coalition exists with J∗ = 2. In that case only the insiders
reduce their emissions by an amount qj = 1

2

(
12
5

)5 ( b
c

)5
while the outsiders are

doing nothing. The transfer received by the insiders is tj = 121
3

(
4
5

)5 b5
c4 implying

the following payoffs πj(J∗ = 2) = 241
15

(
4
5

)4 b5
c4 , πk(J∗ = 2) = 34

(
4
5

)4 b5
c4 and

π0(J
∗ = 2) = 976

15

(
4
5

)4 b5
c4 with πk > π0 > πj . With respect to the singleton

case, we obtain qi = 1
n

(
8
5

)5 ( b
c

)5
, ti = 1

2
1
n

(
8
5

)5 b5
c4 , πi = 1

n
b5

c4 24
(
4
5

)4 (
n− 4

5

)
and

π0 = 1
5
b5

c4 24
(
4
5

)4
. It can be show that π0(J∗ = 2) > π0.

3.3 Intermediate case

We consider now the case of a homogeneous benefit function B(Q) = QαBB(1)
of degree αB < 1 and a homogeneous cost function C(q) = qαCB(1) of degree
αC = 2− αB > 1 to keep the computation tractable.
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When the players meet with the leader individually, we obtain for each i

qi =

(
2αB

2− αB
B(1)

C(1)

) 1
2(1−αB)

n−
1
2 , Q = nqi.

The best reply qBRi is given by

qBRi =
1

2


√√√√((n− 1√

n

)2
+ 2

2αB−1
αB−1

)
n− (n− 1)

 qi < qi.

When a coalition of size J forms to bargain with the leader, we obtain for each
j inside the coalition and each k not in the coalition

qj =

(
J + 1

2

) 1
1−αB

qk, qk =

 n

J
(
J+1
2

) 1
1−αB + n− J

 1
2

qi

The associated best-replies are

qBRj =

√
(n− J)2 + 2

2αB−1
αB−1 J

(
J
(
J+1
2

) 1
1−αB + n− J

)
− (n− J)

2
− αB
1−αB J (J + 1)

1
1−αB

qj

qBRk =
1

2


√(

J
(
J+1
2

) 1
1−αB + n− J − 1

)2
+ 2

2αB−1
αB−1

(
J
(
J+1
2

) 1
1−αB + n− J

)
−
(
J
(
J+1
2

) 1
1−αB + n− J − 1

)
 qk

It can be shown that 0 < qBRj < qj and 0 < qBRk < qk.
After computing the associated payoffs and the internal stability condition

πj(J)− πk(J − 1), we obtain the following proposition

Proposition 5 Assume that the benefit function is homogeneous of degree αB <
1 and that the cost function is homogeneous of degree αC = 2− αB > 1. Then:

1. For αB = 1/2 and αC = 3/2, the coalition is always empty and the leader
negotiates with only singletons

2. For αB = 3/4 and αC = 5/4, only the grand coalition is stable

The proposition shows that high values of αC and low values of αB imply
an empty coalition. Conversely, low values of αC and high values of αB lead to
the grand coalition. Under the constraint αC +αB = 2 necessary for an explicit
calculation of the best replies, we were unable to obtain intermediate cases of
partial coalition as in the two extreme cases.
To compare our results with Barrett (1994), we have considered the following

benefit and cost functions C(q) = c
2 (q)

2 and B(Q) = b
n

(
aQ− 1

2Q
2
)
. The

11



amount of abatement of an insider and an outsider are qj = (J+1)a
J2−J+2n+nγ and

qk = 2a
J2−J+2n+nγ with γ = c/b. Their best replies are qBRj = J2+J+nγ

(J+nγ)(J+1)qj

and qBRk = (2+nγ)
2(nγ+1)qk. After computing the payoffs πj(J) and πk(J), it can be

shown that the function πj(J)− πk(J − 1) is decreasing in J meaning that the
he coalition is always empty and the leader negotiates with only singletons.

4 Extensions

4.1 The IEA bargaining model with symmetric beliefs

The assumption of symmetric beliefs states that in case of disagreement in
one negotiation, players belief that all other bargaining meetings result in a
disagreement as well and not reach the equilibrium agreements as it was the case
with passive beliefs. More precisely, given the emission reduction by the other
players in case of disagreement, denoted by Qd−i =

∑
j 6=i q

d
j , player i optimally

chooses qi. Player i thinks that all the other players j 6= i, will disagree and
anticipates that they will choose optimally and simultaneously their emission
reduction qdj . Hence q

d
i is given by the system of equations

qdi (Qd−i) = argmax
qi≥0

B(qi +Qd−i)− C(qi),

for each i. The first-order condition of this maximization problem (interior
solution) is given by

B′(qdi (Qd−i) +Qd−i) = C ′(qdi (Qd−i)),

while the second-order condition is satisfied by concavity of B and convexity
of C. Given that players have identical benefit and cost functions, qdi = qdj
whenever i and j are non leaders. The first-order condition stated just above
can be rewritten as

B′(nqdi (Qd−i)) = C ′(qdi (Qd−i)). (17)

Propositions 1 and 2 remain the same but with a different disagreement payoff
qdi (Qd−i) instead of q

BR
i (Q−i).

It gives the following proposition.

Proposition 6 Assume that the benefit function is homogeneous of degree αB ≤
1 and that the cost function is homogeneous of αC ≥ 1, we obtain that

1. When αB = 1 the results with symmetric beliefs are the same than with
passive beliefs

2. When αC = 1 an internally stable coalition with passive beliefs implies
internally stable with symmetric beliefs while an externally stable coalition
with symmetric beliefs implies externally stable with passive beliefs

12



3. Depending the values of αB < 1 and αC > 1, the coalition can be empty
or the grand coalition can be achieved.

The proof of Proposition 6 can be found in the appendix.

The first part of the proposition shows that when we assume that a constant
marginal benefit, our results remain the same independently of the beliefs in case
of disagreement since marginal benefit does not depend on what other players
are deciding. However in the other cases, results are different from the passive
beliefs assumption. In comparison with the case of a constant marginal cost, we
can show that when the leader bargains with singletons his payoff is higher with
symmetric beliefs than passive beliefs since he has to pay a higher amount of
transfers to the singletons in the passive beliefs case while the total abatement
is the same in both cases. This situation is the opposite for the singletons. The
interesting feature of the constant marginal cost case is that only the members
of the coalition reduce their emission while the singletons not in the pool fully
free ride. In that case we can show that the range of the coalition sizes can
vary from an empty coalition, to a partial coalition up to the grand coalition
according to the values of αB . The second part of the proposition also show that
if J∗ = n for passive beliefs, then J∗ = n for symmetric beliefs. If no coalition
of at least two countries is stable with symmetric beliefs, then the same is true
with passive beliefs. Moreover in the general case with αB < 1 and αC > 1, the
grand coalition can be achieved for αC = 3/2, αB = 1/2, n = 200 contrary to
the passive beliefs case and also for αC = 5/4, αB = 3/4, n = 200. For αC = 1.9
and αB = 0.8 the coalition is empty and all players prefer to negociate alone
with the leader.

4.2 A Stackelberg bargaining setting

We have to analysed two configurations depending the leader bargains first or
second with the coalition. We consider only passive beliefs.

Proposition 7 When the leader bargains first with the coalition and second
with the singletons,

1. The NBS between the leader and the singleton give

tk =
1

2

(
C(qk)− C(qBRk (QJ ))

)
, (18)

C ′(qk(QJ )) = 2B′(Kqk(QJ ) +QJ ), (19)

with
B′(qBRk (QJ ) + (K − 1)qk(QJ ) +QJ ) = C ′(qBRk (QJ )). (20)

2. The NBS between the leader and the coalition give

tj =
1

J + 1

(
C(qj)− C(qBRj )

)
, (21)

C ′(qj) = (J + 1)B′(Kqk(QJ ) +QJ )

(
1 +K

d qk
d QJ

)
, (22)

13



where
dqk
dQJ

=
2B′′(Kqk(QJ ) +QJ )

C ′′(qk(QJ ))− 2KB′′(Kqk(QJ ) +QJ )
≤ 0,

and

B′(qBRj (Q−J ) +Q−J +Kqk(qj +Q−J )) = C ′(qBRj (Q−J )). (23)

The proof of Proposition 6 can be found in the appendix.

At stage 1 the leader bargains with the coalition. At stage 2 the leader
bargains with the singletons.

Proposition 8 When the leader bargains first with the singletons and second
with the coalition,

1. The NBS between the leader and the coalition give

tj =
1

J + 1

(
C(qj)− C(qBRj (QK))

)
, (24)

C ′(qj(QK)) = (J + 1)B′(Jqj(QK) +QK), (25)

with
B′(JqBRj (QK) +QK) = C ′(qBRj (QK)). (26)

2. The NBS between the leader and the singletons give

tk =
1

2

(
C(qk)− C(qBRk )

)
, (27)

C ′(qk) = 2B′(Kqk + Jqj (Kqk))

(
1 + J

dqj
dQK

)
, (28)

where
dqj
dQK

≤ 0,

and

B′(qBRk +
∑

h∈K,h6=k
qh +

∑
j∈J

qj

qk +
∑

h∈K,h6=k
qh

) = C ′(qBRk ).

The proof of Proposition 7 can be found in the appendix.
If we consider the two polar cases according the shape of the benefit and cost

function, it is immediate to see that given that marginal benefit does not depend
on what other players are deciding, all quantities are like in the simultaneous
case and all partial derivatives are zero. Hence we obtain on the other polac
case with the following Proposition

Proposition 9 Assume that the benefit function is homogeneous of degree αB <
1 and that the cost function is homogeneous of degree 1. Then:

14



1. The players involved in the first stage of the Stackelberg protocol con-
tributes nothing but when the coalition bargains in the second stage his
contribution will be larger than the one made by singletons also in the
second stage

2. With passive beliefs the leader is indifferent between the simultaneous pro-
tocol and the stackelberg protocol when coalition bargains in the second
stage

3. With passive beliefs the stability conditions are the same in the simulta-
neous protocol and the stackelberg protocol when coalition bargains in the
second stage

The proof of Proposition 8 can be found in the appendix.

5 Conclusion

The aim of this article was to reshape the IEA game and reinterpret its results
on the optimal size of stable coalition. While the structure of the IEA is based
on an abatement stage and a participation stage, we have replaced the first stage
by an explicit negociation game à la Nash-in-Nash. Countries are supposed to
negotiate simultaneously and bilaterally with a leader who is represented by the
secretariat responsible for redistributing the gains from cooperation through
appropriate transfers in exchange of emission reductions. This leader has no
coercive power. Countries have the choice to negotiate alone or in a pool with
the leader. As this is a negotiation game, it’s important to consider how the
players will behave in the event of a negotiation failure.
Our contribution shows more and new configurations in terms of size of

coalition and abatement effort strategies. The size of the coalition can be from
0 to the grand coalition depending the values of the degree of homogeneity
concerning the benefit and cost functions. With constant benefit and a quadratic
cost function, the size of a stable coalition is equal to 2 as the well-known result
in the IEA literature. However the size of the coalition can increase when
the degree of homogeneity of the cost function is closed to one and/or the
degree of homogeneity of the benefit function is also closed to one. Depending
the respective values of these parameters several size of inetrmediate coalition
can emerge. The bargaining approach also shows that the configuration of
a constant marginal cost and a general benefit function creates the highest
free riding behavior from the singletons which are doing nothing in terms of
abatement. Only the members of the coalition reduce their emissions. This is a
key difference with the IEA game à la Cournot-Nash because by definition all
players are realising a positive effort.
Our results are robust to the type of player beliefs in the event of failed

negotiations. Symmetrical beliefs imply that if one bilateral negotiation fails,
all others will also fail, whereas in the case of passive beliefs, a failure does
not impede all other negotiations from reaching an agreement. We have also
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assumed the case where the leader can decide to negotiate first or second with
the pool, à la Stackelberg. Our results show that it is always in the leader’s
interest to negotiate simultaneously.
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Appendix

Proof of Proposition 1

In case of of disagreement between 0 and i, we assume that player i optimally
chooses qi, given the emission reduction by the other players in equilibrium,
denoted by Q−i =

∑
j 6=i qj . We denote by q

BR
i (Q−i) the best reply emission

reduction by player i. By definition,

qBRi (Q−i) = argmax
qi≥0

B(qi +Q−i)− C(qi).
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The first-order condition of this maximization problem, assuming qBRi (Q−i) >
0, i.e., strictly positive emission reductions in case of disagreement, is given by

B′(qBRi (Q−i) +Q−i) = C ′(qBRi (Q−i)), (29)

while the second-order condition is satisfied by concavity of B and convexity of
C. Furthermore, in case of disagreement ti = 0, so we have

πd0,−i = B(qBRi (Q−i) +Q−i)− T−i,
πdi,−i = B(qBRi (Q−i) +Q−i)− C(qBRi (Q−i)).

The leader keeps on paying a transfer to the other players, but not to the one
with whom negotiations failed. With this in mind, net payoffs are

π0 − πd0,−i = B(Q)−B(qBRi (Q−i) +Q−i)− ti,
πi − πdi,−i = B(Q)−B(qBRi (Q−i) +Q−i) + ti − C(qi) + C(qBRi (Q−i)).

Recall that the Nash bargaining solution is found as the solution to the following
maximization problem:

max
(qi≥0,ti≥0)

NP0,i =
(
π0 − πd0,−i

) (
πi − πdi,−i

)
.

The FOCs of this maximization problem are for each i ∈ N :
∂NPi,0
∂qi

≤ 0 with qi
∂NPi,0
∂qi

= 0,
∂NPi,0
∂ti

≤ 0 with ti
∂NPi,0
∂ti

= 0.

The SOC of this maximization problem is satisfied by concavity of B and convex-
ity of C. Assuming qi > 0 and ti > 0 at the solution, we must have ∂NPi,0

∂qi
= 0

and ∂NPi,0
∂ti

= 0. Note that

∂NPi,0
∂qi

= 0↔ NPi,0

(
B′(Q)

π0 − πd0,−i
+
B′(Q)− C ′(qi)
πi − πdi,−i

)
= 0,

and
∂NPi,0
∂ti

= 0↔ NPi,0

(
−1

π0 − πd0,−i
+

1

πi − πdi,−i

)
= 0.

Recall that NPi,0 > 0 because by assumption π0−πd0,−i > 0 and πi−πdi,−i > 0.

The latter condition, i.e., ∂NPi,0∂ti
= 0 holds if and only if π0−πd0,−i = πi−πdi,−i.

This equality has two implications. First,

B(Q)−B(qBRi (Q−i)+Q−i)−ti = B(Q)−B(qBRi (Q−i)+Q−i)+ti−C(qi)+C(qBRi (Q−i)),

if and only if ti = 1
2

(
C(qi)− C(qBRi (Q−i))

)
. Second, ∂NPi,0∂qi

= 0 if and only if
2B′(Q)− C ′(qi) = 0.
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Proof of Proposition 2

Given the emission reduction by the players not in J , denoted by Q−J =∑
k/∈J qk, each player j optimally (and simultaneously) chooses qj . For each

possible decision of the other players i 6= j, i ∈ J , player j has a best-response
in terms of emission reductions in case of disagreement, that we denote by
qBRj (

∑
i 6=j,i∈J qi +Q−J ). By definition,

qBRj (
∑

i 6=j,i∈J
qi +Q−J ) = argmax

qj≥0
B(qj +

∑
i6=j,i∈J

qi +Q−J )− C(qj). (30)

The FOC of this maximization problem assuming that qBRj (
∑
i 6=j,i∈J qi+Q−J ) >

0 (interior solution) is given by

B′(qBRj (
∑

i6=j,i∈J
qi+Q−J )+

∑
i 6=j,i∈J

qi+Q−J ) = C ′(qBRj (
∑

i 6=j,i∈J
qi+Q−J )), (31)

while the SOC is satisfied by concavity of B and convexity of C. Given that play-
ers different from the leader have identical benefit and cost functions the equilib-
rium emission at disagreement, denoted qBRj (Q−J ), satisfies that qBRj (Q−J ) =

qBRi (Q−J ) whenever i and j belong to the coalition J . Furthermore, at equi-
librium in case of disagreement all players j ∈ J choose an optimal emission
reduction. Hence, from the first-order condition stated just above (31) and the
symmetry condition just discussed we obtain:

B′(JqBRj (Q−J ) +Q−J )− C ′(qBRj (Q−J )) = 0. (32)

Recall that in case of disagreement tj = 0 for all j ∈ J . We have

πd0,−J = B(JqBRj (Q−J ) +Q−J )− T−J ,
πdj,−J = B(JqBRj (Q−J ) +Q−J )− C(qBRj (Q−J )).

With this in mind, net payoffs are

π0 − πd0,−J = B(Q)−B(JqBRj (Q−J ) +Q−J )−
∑
i∈J

ti,

πj − πdj,−J = B(Q)−B(JqBRj (Q−J ) +Q−J ) + tj − C(qj) + C(qBRj (Q−J )).

Recall that the Nash bargaining solution for the meeting between the leader
and the coalition is found as the solution to the following maximization problem:

max
(qj≥0,tj≥0)

NP0,J =
(
π0 − πd0,−J

) ∏
j∈J

(
πj − πdj,−J

)
,

The FOCs of this maximization problem are for each j ∈ J :
∂NP0,J
∂qj

≤ 0 with qj
∂NP0,J
∂qj

= 0,
∂NP0,J
∂tj

≤ 0 with tj
∂NP0,J
∂tj

= 0.
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The SOC of this maximization problem is satisfied by concavity of B and convex-
ity of C. Assuming qj > 0 and tj > 0 at the solution, we must have ∂NP0,J

∂qj
= 0

and ∂NP0,J
∂tj

= 0. Note that

∂NP0,J
∂qj

= 0↔ NP0,J

B′(Q)

 1

π0 − πd0,−J
+

∑
i 6=j,i∈J

1

πi − πdi,−J

+
B′(Q)− C ′(qj)
πj − πdj,−J

 = 0,

and
∂NP0,J
∂tj

= 0↔ NP0,J

(
−1

π0 − πd0,−J
+

1

πj − πdj,−J

)
= 0.

Given that players all have the same benefit and cost functions, we concen-
trate on the symmetric solution where qj = qi and tj = ti for any i and j in
J . Again recall that NP0,J > 0 because by assumption π0 − πd0,−J > 0 and

πj − πdj,−J > 0 for every j ∈ J . The latter condition, i.e., ∂NP0,J∂tj
= 0 holds if

and only if π0 − πd0,−J = πj − πdj,−J . Given that such condition must hold for
all j ∈ J we find two implications. First,

B(Q)−B(JqBRj (Q−J ) +Q−J )− Jtj = B(Q)−B(JqBRj (Q−J ) +Q−J )

+tj − C(qj) + C(qBRj (Q−J )),

if and only if tj = 1
J+1

(
C(qj)− C(qBRj (Q−J ))

)
. Second, ∂NP0,J∂qj

= 0 if and
only if (J + 1)B′(Q)− C ′(qj) = 0.

Fix k /∈ J . Given the emission reduction by the other players in equilibrium
(i.e., the ones inside the coalition J and the ones outside the coalition except
k), denoted by Q−k =

∑
i 6=k qi, player k optimally chooses qk. We denote by

qBRk (Q−k) the emission reduction by player k in case of disagreement, given by

qBRk (Q−k) = argmax
qk≥0

B(qk +Q−k)− C(qk). (33)

The FOC of this maximization problem assuming that qBRk (Q−k) > 0 (interior
solution) is given by

B′(qBRk (Q−k) +Q−k)− C ′(qBRk (Q−k)) = 0. (34)

while the SOC is satisfied by concavity of B and convexity of C. Again, in case
of disagreement tk = 0. With this in mind, net payoffs are

π0 − πd0,−k = B(Q)−B(qBRk (Q−k) +Q−k)− tk,
πk − πdk,−k = B(Q)−B(qBRk (Q−k) +Q−k) + tk − C(qk) + C(qBRk (Q−k)).

Recall that the Nash bargaining solution for the meeting between the leader
and each of the singletons is found as the solution to the following maximization
problem:

max
(qk≥0,tk≥0)

NP0,k =
(
π0 − πd0,−k

) (
πk − πdk,−k

)
,
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The FOCs of this maximization problem are:

∂NP0,k
∂qk

≤ 0 with qk
∂NP0,k
∂qk

= 0,
∂NP0,k
∂tk

≤ 0 with tk
∂NP0,k
∂tk

= 0.

The SOC of this maximization problem is satisfied by concavity of B and convex-
ity of C. Assuming qk > 0 and tk > 0 at the solution, we must have ∂NP0,k

∂qk
= 0

and ∂NP0,k
∂tk

= 0. Note that

∂NP0,k
∂qk

= 0↔ NP0,k

(
B′(Q)

π0 − πd0,−k
+
B′(Q)− C ′(qk)

πk − πdk,−k

)
= 0,

and
∂NP0,k
∂tk

= 0↔ NP0,k

(
−1

π0 − πd0,−k
+

1

πk − πdk,−k

)
= 0.

Again, NP0,k > 0 because by assumption π0−πd0,−k > 0 and πk−πdk,−k > 0.

The latter condition, i.e., ∂NP0,k∂tk
= 0 holds if and only if π0−πd0,−k = πk−πdk,−k.

This condition has two implications. First,

B(Q)−B(qBRk (Q−k)+Q−k)−tk = B(Q)−B(qBRk (Q−k)+Q−k)+tk−C(qk)+C(qBRk (Q−k))

if and only if tk = 1
2

(
C(qk)− C(qBRk (Q−k))

)
. Second, ∂NP0,k∂qk

= 0 if and only
if 2B′(Q)− C ′(qk) = 0.

Proof of Proposition 3

We start by proving part 1 of Proposition 3. From Proposition 1 and the FOC
given by (29) we have

b = C ′(qBRi (Q−i)).

From the cost function C(q) = qαCC(1), it is easy to see using C ′(q) = αCC(q)/q
that for any i

qBRi (Q−i) =

(
b

αCC(1)

) 1
αC−1

.

Let us fix the notation as in the main text qBR =
(

b
αCC(1)

) 1
αC−1 because the

best response does not depend on the decision of the other players when marginal
benefit is constant. When the leader bargains with each of all the other players
we obtain for each i

qi =

(
2b

αCC(1)

) 1
αC−1

= 2
1

αC−1 qBR.

From (2), the transfer paid by the leader to each player is

ti =
1

2

(
C
(

2
1

αC−1 qBR
)
− C(qBR)

)
,
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and as C
(

2
1

αC−1 qBR
)

= 2
αC
αC−1C(qBR) we have

ti =
1

2

(
2

αC
αC−1 − 1

)
C(qBR).

Payoffs are

πi =

(
2

1
αC−1 (nαC − 1)− 1

2

)
C(qBR),

π0 =
(

2
1

αC−1 (nαC − n) +
n

2

)
C(qBR).

It is easy to see that πi > π0 if and only if 2
1

αC−1 (nαC −1)− 1
2 > 2

1
αC−1 (nαC −

n)+ n
2 . After some rearrangements, this last condition gives 2

αC
αC−1 > n+1

n−1 . This

condition can be rewritten as n > 1+2
αC
αC−1

2
αC
αC−1−1

. Note that 1+2
αC
αC−1

2
αC
αC−1−1

< 3 because

2 < 2
αC
αC−1 . So if n ≥ 3 then n > 1+2

αC
αC−1

2
αC
αC−1−1

. If n = 2 then the inequality becomes

2 > 1+2
αC
αC−1

2
αC
αC−1−1

, which is satisfied for 1 < αC < ln 3
ln 3−ln 2 .

To prove part 2 of Proposition 3, we show the computations now for a size of
the coalition equal to J . The marginal benefit being constant makes the result
in case of disagreement to be as in the case when there is no coalition. For each
player j ∈ J (with |J | = J) the bargaining with the leader results in

qj(J) = (J + 1)
1

αC−1 qBR,

tj(J) =

(
(J + 1)

1
αC−1 − 1

J + 1

)
C(qBR).

For each player k /∈ J the bargaining with the leader results in

qk = 2
1

αC−1 qBR, tk =

(
2

1
αC−1 − 1

2

)
C(qBR).

Comparison in abatement and transfers follows from the discussion above. Pay-
offs are

πj(J) = bQ(J)−
(
J(J + 1)

1
αC−1 +

1

J + 1

)
C(qBR),

πk(J) = bQ(J)−
(

2
1

αC−1 +
1

2

)
C(qBR),

with Q(J) = Jqj(J) + (n − J)qk. Condition πk(J) > πj(J) implies J(J +

1)
1

αC−1 + 1
J+1 > 2

1
αC−1 + 1

2 which holds when J ≥ 2. The sum of the transfer
paid by the leader is T = Jtj + (N − J)tk and it gives

π0(J) = bQ(J)−
(
J

(
(J + 1)

1
αC−1 − 1

J + 1

)
+ (n− J)

(
2

1
αC−1 − 1

2

))
C(qBR).
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Condition πj(J) > π0(J) can be rewritten as (n − J)
(

2
1

αC−1 − 1
2

)
> 1.

Note that 2
1

αC−1 − 1
2 >

1
2 because 2

1
αC−1 > 1. As a result, if n − J ≥ 2 then

2
1

αC−1 − 1
2 >

1
n−J . If n− J = 1 then the condition becomes 2

1
αC−1 > 3

2 , which
holds when αC < ln 3

ln 3−ln 2 . Finally, πj(J) < π0(J) when n = J , i.e, when the
grand coalition forms to bargain against the leader.

Condition πk(J) > π0(J) can be rewritten as (n − J − 1)
(

2
1

αC−1 − 1
2

)
+

J
(

(J + 1)
1

αC−1 − 1
J+1

)
> 1. As argued before, 2

1
αC−1 − 1

2 > 1
2 . Similarly,

(J + 1)
1

αC−1 − 1
J+1 >

J
J+1 . We check that (n− J − 1) 12 + J J

J+1 > 1 whenever
n ≥ 3, which would imply that πk(J) > π0(J). Note that n must be at least 3
if J ≥ 2 because when n = J there is no k /∈ J .

Indeed, (n− J − 1) 12 + J J
J+1 > 1 if and only if J2 + (n− 4)J + n− 3 > 0.

It is easy to see that the inequality holds for n ≥ 4. When n = 3 the inequality
becomes J(J − 1) > 0, which is true given that J ≥ 2.
We prove part 3 of Proposition 3. In order to see that the leader’s preferred

coalition size is J = n we check that π0(J) is increasing in J . Recall that

π0(J) = bQ(J)−
(
J

(
(J + 1)

1
αC−1 − 1

J + 1

)
+ (n− J)

(
2

1
αC−1 − 1

2

))
C(qBR),

withQ(J) =
(
J(J + 1)

1
αC−1 + (n− J)2

1
αC−1

)
qBR. Given that bqBR = αCC(qBR),

we have that

π0(J) =

(
(αC − 1)

(
J
(

(J + 1)
1

αC−1 + (n− J)2
1

αC−1
))

+
J

J + 1
+
n− J

2

)
C(qBR).

By checking that its derivative with respect to J is positive, we know that π0(J)
is an increasing function in J . Note that

π′0(J) =

(
(αC − 1)

{
(J + 1)

1
αC−1 − 2

1
αC−1

}
+

2J(J + 1)
αC
αC−1 − J(J + 2) + 1

2(J + 1)2

)
C(qBR),

which is positive given that 2(J + 1)
αC
αC−1 > 2(J + 1) > (J + 2).

In order to check that a pool of size J ≥ 2 is preferred to singletons by
the leader, it suffi ces to note that π0(2) > π0 because, as just shown, π0 is an
increasing function of J . Indeed,

(αC − 1)
(

2× 3
1

αC−1 − (n− 2)2
1

αC−1
)

+
2

3
+
n− 2

2
≥ 2

1
αC−1 (nαC − n) +

n

2
,

if and only if

2(αC − 1)
(
×3

1
αC−1 − 2

1
αC−1

)
− 1

3
≥ 0.

The left-hand-side of this inequality is a decreasing function of αC for αC > 1.
Its limit as αC approaches 1 from the right is∞ while its limit as αC approaches
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∞ is − 13 + 2 (ln 3− ln 2) > 0. Hence, the inequality is always true for any value
of αC > 1.

We finally prove the last part of Proposition 3. From the internal (15)
and external (16) stability conditions, the external stability condition can be
rewritten as πj(J∗ + 1)− πk(J∗) ≤ 0. Hence, a stable coalition J∗ must satisfy
the two internal and external stability conditions. We concentrate then on the
analysis of the function Π(J) = πj(J) − πk(J − 1). Note that the internal
stability condition for J is satisfied when Π(J) ≥ 0 and the external stability
condition for J is satisfied when Π(J + 1) ≤ 0. Recall that

πj(J)− πk(J − 1) = b
(
J(J + 1)

1
αC−1 − (J − 1)J

1
αC−1 − 2

1
αC−1

)
qBR −

−
(
J(J + 1)

1
αC−1 +

1

J + 1
− 2

1
αC−1 − 1

2

)
C(qBR).

Given that bqBR = αCC(qBR),we have Π(J) = F (J)C(qBR) with

F (J) = (αC − 1)(J(J + 1)
1

αC−1 − 2
1

αC−1 )− αC(J − 1)J
1

αC−1 − 1

J + 1
+

1

2
.

This means that Π(J) has the same sign as F (J) and a stable coalition of size
J∗ ≥ 2 must verify F (J∗) ≥ 0 and F (J∗ + 1) ≤ 0 for the internal and external
coalitions, respectively.
We start by checking the conditions for J∗ = 2. Note that

F (2) ≥ 0↔ αC ≤ 4.05937 and F (3) ≤ 0↔ αC ≥ 1.21459.

Hence, J∗ = 2 whenever αC ∈ [1.21459, 4.05937]. This means that for a
quadratic cost function αC = 2 the stable coalition has a size of 2. We can
also identify the conditions for J∗ = 3. Indeed,

F (3) ≥ 0↔ αC ≤ 1.21459. and F (4) ≤ 0↔ αC ≥ 1.11045.

Hence, J∗ = 3 whenever αC ∈ [1.11045, 1.21459]. In a similar way, we obtain
J∗ = 4 whenever αC ∈ [1.075, 1.11045] and J∗ = 5 whenever αC ∈ [1.056, 1.075].
In general, note that when a coalition of size J is not internally stable then

F (J) < 0. This condition is as well telling us that J − 1 is externally stable.
Following a similar argument, if J is not externally stable then F (J + 1) > 0,
which means that J + 1 is internally stable. This explains the overlapping in
the values of αC for the stability of each consecutive coalition size.
Note that the function F (J) for each J tends to +∞ as αC approaches 1 from

the right (taking larger values). This means that F (n) would also have such
behavior. Interestingly, there is no external stability condition for the grand
coalition to check because there are no further players k outside the coalition.
If F (n) is positive for αC suffi ciently close to 1, this means that the grand
coalition is internally stable, and therefore stable, for αC suffi ciently close to 1.
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Furthermore, as αC goes to infinity (J + 1)
1

α−1 , J
1

α−1 , (J − 1)
1

α−1 and 2
1

α−1 all
go to 1 (faster than the multiplicative term). Hence

lim
αC→∞

F (J) ∼ J − 1

2(J + 1)
(−J − 3) < 0.

Hence, for αC suffi ciently large F (J) ≤ 0 for all J and all players inside the pool
prefer leaving the coalition whatever the size of J . This completes the proof of
Proposition 3.

Proof of Proposition 4

We start by proving part 1 of Proposition 4.
If we take the conditions for an interior solution given by (3) and (29) we

must have

B′(qBRi (Q−i) +Q−i) = c = 2B′(qi +Q−i) = B′
(

2
− 1
1−αB qi + 2

− 1
1−αB Q−i

)
,

because B′ is a homogeneous function of degree αB − 1. Hence,

qi +Q−i = 2
1

1−αB qBRi (Q−i) + 2
1

1−αB Q−i.

But if Q−i = (n− 1)qi (by symmetry of cost and benefit functions) then

nqi = 2
1

1−αB qBRi (Q−i) + 2
1

1−αB (n− 1)qi,

which is impossible because n < 2
1

1−αB (n − 1) (note that 2
1

1−αB > 2 > n+1
n )

and qBRi (Q−i) ≥ 0. The Nash-in-Nash bargaining solution must yield a corner
solution.
We cannot have qi = 0 and qBRi > 0 as the Nash-in-Nash bargaining result.

If that would be the case, then Q−i = 0 with 2B′(0) ≤ c = B′(qBRi (0)). Again,

by homogeneity of B′ we would have B′(2
−1

1−αB 0) = B′(0) ≤ B′(qBRi (0)). By
strict concavity of B (αB < 1), B′ is strictly decreasing and hence 0 ≥ qBRi (0), a
contradiction with qi = 0 and qBRi > 0. The only possibility is then qBRi (Q−i) =
0 and qi > 0 solves

2B′(nqi) = c. (35)

We obtain then

qi =
1

n

(
2B(1)αB

c

) 1
1−αB

= qs,

with ti = c
2q
s from (2). The total level of abatement is then Q = nqs.

Note that c nqs = 2αBB(nqs) from the FOC in equation (35) and the benefit
function being homogeneous of degree αB , the payoffs of singleton players and
for the leader are

πi = B(nqs)− c

2
qs = B(nqs)

(
n− αB
n

)
,

π0 = B(nqs)− nc
2
qs = B(nqs) (1− αB) .
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It shows that πi > π0 for n > 1.

To prove part 2 of the Proposition, we proceed with the computations for
a coalition of size J . We assume throughout that J > 2 because J = 1 is
equivalent to the leader bargaining with singletons. In this case we cannot have
qj > 0 for j ∈ J and qk > 0 for k /∈ J because that would mean c = 2B′(Q) =
(J+1)B′(Q). Given that 2 < (J+1) the bargaining results in qk = 0 for k /∈ J .
We also must have qBRk (JqJ) = 0 because B′(Q) = B′(JqJ) = c

J+1 < c.
We obtain

qBRj =
1

J

(
αBB(1)

c

) 1
1−αB

=
n

J

(
1

2

) 1
1−αB

qs,

qj(J) =
1

J

(
(J + 1)αBB(1)

c

) 1
1−αB

=
n

J

(
J + 1

2

) 1
1−αB

qs.

After some rearrangement, we obtain the payofffs:

πj(J) = 2
− αB
1−αB

(
(J + 1)

αB
1−αB (1− αB)− αB

J (J + 1)

)
B(nqs),

πk(J) = 2
− αB
1−αB (J + 1)

αB
1−αB B(nqs),

π0(J) = 2
− αB
1−αB

(
(J + 1)

αB
1−αB (1− αB) +

αB
J + 1

)
B(nqs).

It shows that πk(J) > π0(J) > πj(J).

We prove part 3 of Proposition 4. In order to see that the leader’s preferred
coalition size is J = n we check that π0(J) is increasing in J . Recall that

π0(J) =
B(nqs)

2
αB

1−αB

(
(J + 1)

αB
1−αB (1− αB) +

αB
J + 1

)
.

By checking that its derivative with respect to J is positive, we know that π0(J)
is an increasing function in J . Note that

π′0(J) =
B(nqs)

2
αB

1−αB

αB
(J + 1)2

(
(J + 1)

1
1−αB − αB

)
,

which is positive given that (J + 1)
1

1−αB > 1 > αB .
In order to check that a pool of size J ≥ 2 is preferred to singletons by

the leader, it suffi ces to note that π0(2) > π0 because, as just shown, π0 is an
increasing function of J . Indeed,

B(nqs)

2
αB

1−αB

(
(J + 1)

αB
1−αB (1− αB) +

αB
J + 1

)
≥ B(nqs)(1− αB),

if and only if

(J + 1)
αB

1−αB (1− αB) +
αB
J + 1

≥ 2
αB

1−αB (1− αB).
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This inequality is true because J ≥ 2.

We finally prove the last part of Proposition. A stable coalition J∗ must
satisfy the two internal and external stability conditions. We concentrate then
on the analysis of the function Π(J) = πj(J)−πk(J−1). Note that the internal
stability condition for J is satisfied when Π(J) ≥ 0 and the external stability
condition for J is satisfied when Π(J + 1) ≤ 0. Recall that

πj(J)−πk(J−1) = 2
− αB
1−αB

(
(J + 1)

αB
1−αB (1− αB)− αB

J (J + 1)
− J

αB
1−αB

)
B(nqs),

for J ≥ 3. However the case J = 1 refers to the situation of the leader facing
singletons (with qk 6= 0). In that case the payoff of a singleton is

πk(1) =

(
n− αB
n

)
B(nqs).

Since πj(2) = 2
− αB
1−αB

(
3

αB
1−αB (1− αB)− αB

6

)
B(nqs) it implies that

πj(2)− πk(1) = 2
− αB
1−αB

(
(1− αB)3

αB
1−αB − 2

αB
1−αB

n− αB
n

− αB
6

)
B(nqs).

Let us define H(J) = (1−αB)(J + 1)
αB

1−αB −J
αB

1−αB − αB
J(J+1) , for J ≥ 3 and

H(2) = (1 − αB)3
αB

1−αB − 2
αB

1−αB n−αB
n − αB

6 . A stable coalition of size J
∗ ≥ 2

must verify πj(J∗) − πk(J∗ − 1) ≥ 0 and πj(J
∗ + 1) − πk(J∗) ≤ 0. These

two conditions hold if and only if H(J∗) ≥ 0 and H(J∗ + 1) ≤ 0, respectively.
We start by checking the conditions for J∗ = 2. Note that H(2) depends on
n while H(3) ≤ 0 ↔ αB ≤ 0.880902. More precisely, for n = 3 H(2) ≤ 0 ↔
αB ≥ 0.711563, which means that J∗ = 2 whenever αB ∈ [0.711563, 0.880902].
For n = 4 H(2) ≤ 0 ↔ αB ≥ 0.743462, which means that J∗ = 2 whenever
αB ∈ [0.743462, 0.880902]. For n = 200 H(2) ≤ 0 ↔ αB ≥ 0.798448, which
means that J∗ = 2 whenever αB ∈ [0.798448, 0.880902]. As n tends to infinity,

H(2) tends to H∞(2) = (1−αB)3
αB

1−αB −2
αB

1−αB − αB
6 . Given that H

∞(2) ≤ 0↔
αB ≥ 0.799213, which means that J∗ = 2 whenever αB ∈ [0.799213, 0.880902]
for any value of n. This also means that for a square-root benefit function
αB = 0.5 there is not stable coalition because H(J) ≤ 0 for all J > 2, and
all players prefer bargaining individually with the leader to avoid the strong
free-riding outside the coalition. We can more easily identify the conditions for
J∗ = 3. Indeed,

H(3) ≥ 0↔ αB ≥ 0.880902 and H(4) ≤ 0↔ αB ≤ 0.918139.

Hence, J∗ = 3 whenever αB ∈ [0.880902, 0.918139]. In a similar way, we obtain
J∗ = 4 whenever αB ∈ [0.918139, 0.938701].
In general, note that when a coalition of size J is not internally stable then

H(J) < 0. This condition is as well telling us that J − 1 is externally stable.
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Following a similar argument, if J is not externally stable then H(J + 1) > 0,
which means that J + 1 is internally stable. This explains the overlapping in
the values of αB for the stability of each consecutive coalition size. Note that
the function H(J) for each J tends to +∞ as αB approaches 1 from the left
(taking smaller values). This means that H(n) would also have such behavior.
Interestingly, there is no external stability condition for the grand coalition to
check because there are no further players k outside the coalition. If H(n) is
positive for αB suffi ciently close to 1, this means that the grand coalition is in-
ternally stable, and therefore stable, for αB suffi ciently close to 1. Furthermore,
for any coalition size J

lim
αB→0

H(J) = 0, lim
αB→1+

H(J) =∞,

with
∂H(J)

∂J

∣∣∣∣
αB=0

< 0,

and a unique local minimum and no local maximum between 0 and 1. Hence,
for suffi ciently low αB we have that H(J) ≤ 0 for all J and all players inside
the pool prefer leaving the coalition whatever the size of J . This completes the
proof of Proposition 4.

6.1 Proof of Proposition 5

We assume B(Q) = QαBB(1) and C(q) = q2−αBC(1). From the FOC C ′(qi) =

2B′(Q) with Q = nqi we obtain qi =
(
2αB
2−αB

B(1)
C(1)

) 1
2(1−αB)

n−
1
2 . Using the FOC

B′(qBRi + Q−i) = C ′(qBRi ), the best reply is solution of the second order con-

dition
(
qBRi

)2
+ qBRi (Q− qi) −

(
αBB(1)

(2−αB)C(1)

) 1
1−αB = 0 which gives qBRi =

1
2

(√
2
− 1
1−αB

((
n−1√
n

)2
2

1
1−αB + 4

)
n− (n− 1)

)
qi. When a coalition forms,

the ratio of the FOC gives qj =
(
J+1
2

)1−αB
qk andQ =

(
J
(
J+1
2

) 1
1−αB + n− J

)
qk

with qk =
(
2αB
2−αB

B(1)
C(1)

) 1
2(1−αB)

(
J
(
J+1
2

) 1
1−αB + n− J

)− 1
2

. Concerning the best

reply qBRj is solution of the second order equation

J
(
qBRj

)2
+ (n− J)qkq

BR
j −

(
αB

2− αB
B(1)

C(1)

) 1
1−αB

= 0

The determinant is ∆ =
(

(n− J)2 + 2
2αB−1
αB−1 J

(
J
(
J+1
2

) 1
1−αB + n− J

))
q2k and

it gives

qBRj =

√
(n− J)2 + 2

2αB−1
αB−1 J

(
J
(
J+1
2

) 1
1−αB + n− J

)
− (n− J)

2
− αB
1−αB J (J + 1)

1
1−αB

qj
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The best remply qBRk is solution of the second order equation

(
qBRk

)2
+

((
J

(
J + 1

2

) 1
1−αB

+ n− J − 1

)
qk

)
qBRk −

(
αB

2− αB
B(1)

C(1)

) 1
1−αB

= 0

The determinant is∆ =

((
J
(
J+1
2

) 1
1−αB + n− J − 1

)2
+ 2

2αB−1
αB−1

(
J
(
J+1
2

) 1
1−αB + n− J

))
q2k

and it gives

qBRk =
1

2


√(

J
(
J+1
2

) 1
1−αB + n− J − 1

)2
+ 2

(2αB−1)
αB−1

(
J
(
J+1
2

) 1
1−αB + n− J

)
−
(
J
(
J+1
2

) 1
1−αB + n− J − 1

)
 qk

For αB = 1/2 and αC = 3/2 we obtain

qj =

(
J + 1

2

)2
qk, qk =

2b

3c

(
J

(
J + 1

2

)2
+ (n− J)

)− 1
2

,

Q =

(
J

(
J + 1

2

)2
+ (n− J)

)
qk,

qBRj =
2

J (J + 1)
2


√√√√(n− J)

2
+ J

(
J

(
J + 1

2

)2
+ (n− J)

)
− (n− J)

 qj ,

qBRk =
1

2


√(

J
(
J+1
2

)2
+ n− J − 1

)2
+ J

(
J+1
2

)2
+ (n− J)

−
(
J
(
J+1
2

)2
+ n− J − 1

)
 qk.

It can be shown that 0 < qBRj < qj and 0 < qBRk < qk.
Payoffs are

πj(J) = b
3
2

3
1
2 c

1
2

2
1
2

(
J( J+12 )

2
+(n−J)

)
− 1
J+1

1
3

J(J+1)32− 3
2+( 1

J )
3
2

(√
(n−J)2+J

(
J( J+12 )

2
+(n−J)

)
−(n−J)

) 3
2


(
J( J+12 )

2
+(n−J)

) 3
4

πk(J) = b
3
2

3
1
2 c

1
2

2
1
2

(
J( J+12 )

2
+(n−J)

)
− 1
6

2 32+(√(J( J+12 )
2
+n−J−1

)2
+J( J+12 )

2
+(n−J)−

(
J( J+12 )

2
+n−J−1

)) 3
2


(
J( J+12 )

2
+(n−J)

) 3
4

It can be graphically shown that F (J) = πj(J)− πk(J − 1) is a decreasing
function of J meaning that the only stable coalition is the empty coalition J = ∅
∀n.
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For αB = 3/4 and αC = 5/4, we obtain

qj =

(
J + 1

2

)4
qk, qk =

(
6b

5c

)2((
J

(
J + 1

2

)4
+ n− J

))− 1
2

,

Q =

(
J

(
J + 1

2

)4
+ n− J

)
qk,

qBRj =
4

J (J + 1)
4


√√√√4 (n− J)

2
+ J

(
J

(
J + 1

2

)4
+ n− J

)
− 2 (n− J)

 qj ,

qBRk =
1

4


√

4
(
J
(
J+1
2

)4
+ n− J − 1

)2
+ J

(
J+1
2

)4
+ n− J

−2
(
J
(
J+1
2

)4
+ n− J − 1

)
 qk.

It can be shown that 0 < qBRj < qj and 0 < qBRk < qk. Payoffs are

πj(J) = 3
3
2 b

5
2

5
3
2 c

3
2

2
3
2

(
J( J+12 )

4
+n−J

)
− 1
J+1

3
5

2− 5
2 (J+1)5+( 1

J )
5
4

(√
4(n−J)2+J

(
J( J+12 )

4
+n−J

)
−2(n−J)

) 5
4


(
J( J+12 )

4
+n−J

) 5
8

πk(J) = 3
3
2 b

5
2

5
3
2 c

3
2

2
3
2

(
J( J+12 )

4
+n−J

)
− 3
10

2 52+(√4(J( J+12 )
4
+n−J−1

)2
+J( J+12 )

4
+n−J−2

(
J( J+12 )

4
+n−J−1

)) 5
4


(
J( J+12 )

4
+n−J

) 5
8

It can be graphically shown that F (J) = πj(J)− πk(J − 1) is an increasing
function of J meaning that the grand coalition J = n is stable ∀n.

Proof of Proposition 6

We consider general functions B(Q) = QαBB(1) and C(q) = qαCC(1). When
the leader negotiates against singletons, the FOCs B′(Qd) = C ′(qdi ) given by
(17) and 2B′(Q) = C ′(qi) given by (3) implies qdi > 0 and qi > 0, with

qdi =

(
αBB(1)

αCC(1)

) 1
αC−αB

n
− 1−αB
αC−αB , qi = 2

1
αC−αB qdi ,

leading to the following payoff for the singleton

πi =

(
2

αB
αC−αB

(
αC
αB

n− 1

)
− 1

2

)
C(1)(qdi )αC .

From B′(Qd) = C ′(qdi ) we also obtain C(qdi ) = αB
αC

B(Qd)
n since B′(Qd) =

αB
B(Qd)
Qd

and C ′(qdi ) = αC
C(qdi )

qdi
.

When a coalition forms to bargain with the leader, we assume throughout
that J > 1 because J = 1 is equivalent the leader bargaining with singletons.
From the two FOCs in Proposition 2 C ′(qj) = (J + 1)B′(Q) given by (8) and
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C ′(qk) = 2B′(Q) given by (11) we obtain the following relation between qj and

qk: qj =
(
J+1)
2

) 1
αC−1 qk. It helps to obtain a relation between the abatement

realised by the singleton outside the pool and its abatement in case of disagree-
ment

qk = 2
1

αC−αB

 n

J
(
J+1)
2

) 1
αC−1 + n− J


1−αB
αC−αB

qdk.

Depending on the different values of n, J , αC and αB , we may have qk > qdk or
qk < qdk. From the expression of the transfer tk = 1

2

(
C(qk)− C(qdk

)
given by

(10), a positive transfer implies the condition qk > qdk. However for qk < qdk we
fix tk = 0. If we do not impose any condition on the sign of tk, it is player k who
transfers money to the leader, who in turn will transfer it to the coalition J , in
exchange of free-riding: tk < 0. But since the leader is not allowed to enforce
formal sanction, he cannot collect fees from singletons. Such a configuration is
not possible and we add the restriction tk ≥ 0.

Considering the case of a constant marginal benefit αB = 1, we obtain
qk > qdk since 2

1
αC−αB > 1. In that case payoffs are

πj(J) =
1

n

(
J (J + 1)

1
αC−1

(
1− 1

αC

)
+ 2

1
αC−1 (n− J)− 1

J + 1

1

αC

)
B
(
Qd
)
,

πk(J) =
1

n

(
J (J + 1))

1
αC−1 + 2

1
αC−1

(
n− J − αB

αC

)
− 1

2

1

αC

)
B(Qd).

Define πj(J)− πk(J − 1) = G(J)C(Qd) since C(qdi ) = αB
αC

B(Qd)
n with

G(J) =

(
(αC − 1)

(
J (J + 1)

1
αC−1 − 2

1
αC−1

)
− αC (J − 1) J

1
αC−1 − 1

J + 1
+

1

2

)
,

which is the same expression denoted by F (J) obtained in the case of passive
beliefs. It proves part 1 of the proposition.

Considering the case of a constant marginal cost αC = 1. When the leader
negotiates against singletons, we obtain qdi > 0 and qi > 0, with

qdi =
1

n

(
αBB(1)

c

) 1
1−αB

, qi = 2
1

1−αB qdi .

With symmetric beliefs (with the uperscript SB), payoffs in the singleton case
are

πSBi = B(Q)− cqi + ti = B(1)
1

1−αB

(αB
c

) αB
1−αB

(
2

αB
1−αB

(
1− αB

n

)
− αB

2n

)
,

πSB0 = B(Q)− nc
2

(qi − qdi ) = B(1)
1

1−αB

(αB
c

) αB
1−αB

(
(1− αB) 2

αB
1−αB − αB

2

)
.
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It shows that πSBi > πSB0 for n > 1. Moreover, comparing these payoffs with
the ones obtained in the passive beliefs (with the upperscript PB)

πPBi = B(1)
1

1−αB

(αB
c

) αB
1−αB 2

αB
1−αB

(
1− αB

n

)
,

πPB0 = B(1)
1

1−αB

(αB
c

) αB
1−αB (1− αB) 2

αB
1−αB .

It can be shown that πPBi > πSBi . Total abatement is the same in both
cases but the transfer paid by the leader to the singletons is higher in the
passive beliefs case tPBi > tSBi and this explains why singletons prefer this case
and the leader the second case. This is the opposite for the leader πPB0 < πSB0 .
When a coalition forms, we cannot have qj > 0 for j ∈ J and qk > 0 for

k /∈ J because that would mean c = 2B′(Q) = (J + 1)B′(Q). Given that
2 < (J + 1) the bargaining results in qk = 0 for k /∈ J . Interestingly, we obtain

qdj = qdk = qd =
1

n

(
αBB(1)

c

) 1
1−αB

,

and
qj =

n

J
(J + 1)

1
1−αB qd > qd

In this case qdk > qk = 0 and tk = 0. To prove that tk = 0 consider the the
maximization problem

max
(qk,tk)

NP0,k =
(
π0 − πd0,−k

) (
πk − πdk,−k

)
,

subject to tk ≥ 0. The first order condition implies that

∂NP

∂tk
= NP0,k

(
−1

π0 − πd0,−k
+

1

πk − πdk,−k

)
,

is negative at the (corner) solution, i.e., when tk = 0, qdk = qd, qk = 0. This is
so because π0 − πd0,−k < πk − πdk,−k ⇔ π0 − πk = −Jtj < πd0,−k − πdk,−k = cqd.
Payoffs are

πj(J) = B(Jqj)− cqj + tj = B(1)
1

1−αB

(αB
c

) αB
1−αB

(
(1− αB) (J + 1)

αB
1−αB − αB

n (J + 1)

)
,

πk(J) = B(Jqj) =
(αB
c

) αB
1−αB B(1)

1
1−αB (J + 1)

αB
1−αB ,

π0(J) = B(Jqj)− Jtj = B(1)
1

1−αB

(αB
c

) αB
1−αB

(
(1− αBJ) (J + 1)

αB
1−αB +

αBJ

n (J + 1)

)
.

It is clear that πk(J) > πj(J). From all the above,

πj(J)−πk(J−1) = B(1)
1

1−αB

(αB
c

) αB
1−αB

[
(1− αB)(J + 1)

αB
1−αB − J

αB
1−αB − αB

n (J + 1)

]
,
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for J ≥ 3.
However the case J = 1 refers to the situation of the leader facing singletons

(with qk 6= 0). In that case the payoff of a singleton is

πk(1) = B(1)
1

1−αB

(αB
c

) αB
1−αB

(
2

αB
1−αB

(
1− αB

n

)
− αB

2n

)
,

while

πj(2) = B(1)
1

1−αB

(αB
c

) αB
1−αB

(
(1− αB) 3

αB
1−αB − αB

3n

)
.

It implies that

πj(2)−πk(1) = B(1)
1

1−αB

(αB
c

) αB
1−αB

(
(1− αB) 3

αB
1−αB − 2

αB
1−αB

(
1− αB

n

)
+
αB
6n

)
.

Let us define G(J) = (1−αB)(J + 1)
αB

1−αB − J
αB

1−αB − αB
n(J+1) , for J ≥ 3 and

G(2) = (1− αB)3
αB

1−αB − 2
αB

1−αB n−αB
n + αB

6n .
A stable coalition of size J∗ ≥ 2 must verify πj(J∗) − πk(J∗ − 1) ≥ 0 and

πj(J
∗ + 1) − πk(J∗) ≤ 0. These two conditions hold if and only if G(J∗) ≥ 0

and G(J∗ + 1) ≤ 0, respectively. In this case both inequalities depend on the
value of n.

1. Fix first n = 3. We have J∗ = 2 (G(2) ≥ 0 and G(3) ≤ 0) whenever
αB ∈ [0.79694, 0.880902] and J∗ = 3 (G(3) ≥ 0, no external stability
because there are no further agents) whenever αB ≥ 0.880902.

2. Consider n = 4. We have J∗ = 2 whenever αB ∈ [0.797005, 0.880902],
J∗ = 3 whenever αB ∈ [0.880902, 0.918139], and J∗ = 4 whenever αB ≥
0.918139.

If we consider higher numbers, for example n = 200 we obtain J∗ = 200
whenever αB ≥ 0.999316. Again, any coalition size can be stable for αB taking
values in an interval suffi ciently close to 1 but for reasonable values of αB ,
for example αB ≤ 0.7, there is no stable coalition because all players prefer
bargaining individually with the leader to avoid the strong free-riding outside
the coalition.
For the sake of completeness, if we consider n going to infinity, we obtain

that G(J) tends to G∞(J) = (1−αB)(J + 1)
αB

1−αB − J
αB

1−αB for all J ≥ 2. With
these functions, J∗ = 2 whenever αB ∈ [0.797537, 0.88091], J∗ = 3 whenever
αB ∈ [0.88091, 0.918139], J∗ = 4 whenever αB ∈ [0.918139, 0.938701], etc.
These numbers can be used as an approximation.
Quantities in case of agreement do not depend on beliefs, it is the transfers

(and hence final payoffs) that depend on beliefs. The conclusions are similar,
the limits separating each stable coalition size slightly depend on n but stay
close to the numbers for passive beliefs. The difference is that with symmetric
beliefs the disagreement quantities are strictly positive. We have

qBRk = 0 < qdk and q
BR
j = 0 > qdj .
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In both cases tk = 0 but tPBj < tSBj . This means that πPBk = πSBk and πPBj <

πSBj for all J .
We have the following inequalities regarding the internal and stability con-

ditions:

πPBj (J)−πPBk (J−1) < πSBj (J)−πSBk (J−1) and πPBj (J+1)−πPBk (J) < πSBj (J+1)−πSBk (J).

This means that the internal stability condition with passive beliefs implies
the internal stability condition with symmetric beliefs, and that the external
stability condition with symmetric beliefs implies the external stability condition
with passive beliefs. Another interpretation is that countries or agents gain less
to add themselves to the coalition under passive beliefs than under symmetric
beliefs, independently of the size of the coalition.
It completess the proof of part 2 of the proposition.
Now if we consider different values of αC and αB , we have to check whether

tk = 0 or tk > 0 since it impacts the payoff of player k. We obtain

qk > (<)qdk ⇔ tk > (=)0 for 2
1

αC−αB

 n

J
(
J+1)
2

) 1
αC−1 + n− J


1−αB
αC−αB

> (<)1

For αC = 3
2 , αB = 1

2 and n = 20, we can show that from J = 1 to 5 the
transfer is positive tk > 0 but for J ∈ [6, n] tk = 0. The computation of the
internal stability condition shows that the grand coalition is stable. Increasing
the number of countries to n = 200 modifies the above condition since tk > 0
for J ∈ [1, 12] and tk = 0 for J ∈ [13, n] but the grand coalition remains stable.
We obtain similar results when αC = 5/4, αB = 3/4, n = 200. However for
αC = 1.9 and αB = 0.8 the coalition is empty and all players prefer to negociate
alone with the leader.

Proof of Proposition 7

At stage 1 ce assume that a coalition forms to bargain with the leader. At
stage 2 the leader bargains with the singletons. The game is solved backwards,
starting at stage 2. We will denote by QhJ the total emission reduction by the
players in the coalition. In history h there could have been an agreement or
not, but at stage 2 it is known whether that is the case, and the corresponding
quantity QhJ .

We assume that all possible agreements are beneficial in equilibrium and will
check the conditions that guarantee so. Each of the singletons bargain with the
leader assuming that the others are agreeing as in the equilibrium path starting
at history QhJ .

max
(qk,tk)

NP0,k =
(
π0 − πd0,−k

) (
πk − πdk,−k

)
.
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Under passive beliefs, players 0 and k believe that all other bargaining meet-
ings reach the equilibrium agreement in stage 2 knowing QhJ . We denote the
equilibrium agreement emission reduction by qk(QhJ ), as it is a function of the
known emission by players j in the coalition. By symmetry, the emission re-
duction by the other singleton players in equilibrium in stage 2, is equal to
(K − 1)qk(QhJ ). In case of disagreement with the leader, player k optimally
chooses her disagreement emission reduction that we denote by qBRk (QhJ ), given
by

qBRk (QhJ ) = argmax
qk≥0

B(qk + (K − 1)qk(QhJ ) +QhJ )− C(qk),

where (K − 1)qk(QhJ ) and QhJ are taken as given.
The FOC of this maximization problem (interior solution) is given by

B′(qBRk (QhJ ) + (K − 1)qk(QhJ ) +QhJ ) = C ′(qBRk (QhJ )).

By the implicit function theorem

dqBRk
dQhJ

=
B′′(qBRk (QhJ ) + (K − 1)qk(QhJ ) +QhJ )

C ′′(qBRk (QhJ ))−B′′(qBRk (QhJ ) + (K − 1)qk(QhJ ) +QhJ )

(
(K − 1)

dqk
dQhJ

+ 1

)
.

Again, in case of disagreement tk = 0. With this in mind,

π0 − πd0,−k = B(Q)−B(qBRk (QhJ ) + (K − 1)qk(QhJ ) +QhJ )− tk,
πk − πdk,−k = B(Q)−B(qBRk (QhJ ) + (K − 1)qk(QhJ ) +QhJ ) + tk − C(qk) + C(qBRk (QhJ )).

At each bilateral negotiation between 0 and k Nash-in-Nash solves max
(qk≥0,tk≥0)

NP0,k.

The FOCs of this maximization problem give:

tk =
1

2

(
C(qk)− C(qBRk (QhJ ))

)
,

C ′(qk(QhJ )) = 2B′(Q).

with Q = Kqk(QhJ ) +QhJ .
By the implicit function theorem the reaction function qk(QhJ ) has the deriv-

ative given by:

dqk
dQhJ

=
2B′′(Kqk(QhJ ) +QhJ )

C ′′(qk(QhJ ))− 2KB′′(Kqk(QhJ ) +QhJ )
≤ 0.

At stage 1 the leader negotiates with the coalition

max
(qj ,tj)

NBP0,J =
(
π0 − πd0,−J

) ∏
j∈J

(
πj − πdj,−J

)
. (36)

Players know that in case of agreement the resulting Jqj = QJ in stage
1 becomes known in stage 2, following the rule qk(QhJ ), with QJ = QhJ . This
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means what is decided today becomes history tomorrow. Players in the coalition
anticipate this.
We consider first the case when all singleton players reach an agreement, even

when the coalition does not agree. Each player j optimally (and simultaneously)
chooses qj , anticipating the behavior of singleton players in stage 2. We denote
by qBRj the emission reduction by player j in case of disagreement, given by

qBRj = argmax
qj≥0

B(qj +Q−J +Kqk(qj +Q−J ))− C(qj).

with Q−J =
∑
i 6=j,i∈J qi.

The FOC of this maximization problem (interior solution) is given by

B′(qBRj (Q−J ) +Q−J +Kqk(qj +Q−J )) = C ′(qBRj (Q−J )).

Such a condition, together with Q−J = (J − 1)qBRj , determines qBRj . With this
in mind, net payoffs are

π0 − πd0,−J = B(Q)−B(JqBRj +Kqk(JqBRj ))−
∑
j∈J

tj ,

πj − πdj,−J = B(Q)−B(JqBRj +Kqk(JqBRj )) + tj − C(qj) + C(qBRj ).

Recall that Q =
∑
n∈J qn + Kqk(

∑
n∈J qn). At the bilateral negotiation be-

tween 0 and J Nash-in-Nash solves max(qj≥0,tj≥0)NBP0,J given by (5). The
FOCs of this maximization problem (interior solution) give:

tj(J) =
1

J + 1

(
C(qj)− C(qBRj )

)
,

C ′(qj) = (J + 1)B′(Q)

(
1 +K

d qk
d QJ

)
≤ (J + 1)B′(Q).

Given that marginal cost is non-decreasing, we have that qj is smaller in this
stackelberg setting than in the static setting.

Proof of Proposition 8

At stage 1 we assume that the singletons bargain first with the leader. At stage 2
the leader bargains with the coalition. The game is solved backwards, starting at
stage 2. We will denote byQhK the total emission reduction by the players outside
the coalition. In history h there could have been agreements or not, but at stage
2 it is known whether that is the case, and the corresponding quantity QhK. We
assume that all possible agreements are beneficial in equilibrium and will check
the conditions that guarantee so. We denote the equilibrium agreement emission
reduction by qj(QhK), as it is a function of the known emission by players k not
in the coalition. In case of disagreement with the leader, player j ∈ J optimally
chooses her disagreement emission reduction that we denote by qBRj (QhK), given
by

qBRj (QhK) = argmax
qj≥0

B(qj +
∑

h∈J ,h6=j
qh +QhK)− C(qj).
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where
∑
h∈J ,h6=j qh and Q

h
J are taken as given. The FOC of this maximization

problem (interior solution) is given by

B′(qBRj (QhK) +
∑

h∈J ,h6=j
qh +QhK) = C ′(qBRj (QhK)).

By symmetry, qh = qBRj (QhK) for h ∈ J , and the FOC becomes

B′(JqBRj (QhK) +QhK) = C ′(qBRj (QhK)).

By the implicit function theorem

dqBRj
dQhK

=
B′′(JqBRj (QhK) +QhK)

C ′′(qBRj (QhK))− JB′′(JqBRj (QhK) +QhK)
≤ 0.

In case of disagreement tj = 0. With this in mind,

π0 − πd0,−J = B(Q)−B(JqBRj (QhK) +QhK)− Jtj ,
πj − πdj,−J = B(Q)−B(JqBRj (QhK) +QhK) + tj − C(qj) + C(qBRj (QhK)).

At the negotiation between 0 and J Nash-in-Nash solves max
(qj≥0,tj≥0)

NBP0,J .

The FOCs of this maximization problem give:

tj =
1

J + 1

(
C(qj)− C(qBRj (QhK))

)
,

C ′(qj(Q
h
K)) = (J + 1)B′(Q),

with Q = Jqj(Q
h
K) +QhK.

By the implicit function theorem the reaction function qk(QhJ ) has the deriv-
ative given by:

dqj
dQhK

=
(J + 1)B′′(Jqj(Q

h
K) +QhK)

C ′′(qj(QhK))− (J + 1)JB′′Jqj(QhK) +QhK)
≤ 0.

At stage 1, the leader bargains simultaneously with the singletons k ∈ K.
Players know that in case of agreement the resulting

∑
k∈K = QK in stage 1

becomes known in stage 2, following the rule qj(QhK), with QK = QhK. This
means what is decided today becomes history tomorrow. Singleton players
anticipate this.
We consider first the case when the coalition reaches an agreement, even

when a singleton does not agree. Each player k optimally (and simultaneously)
chooses qk, anticipating the behavior of coalition players in stage 2. We denote
by qBRk the emission reduction by player k in case of disagreement, given by

qBRk = argmax
qk≥0

B(qk +
∑

h∈K,h 6=k
qh +

∑
j∈J

qj

qk +
∑

h∈K,h6=k
qh

)− C(qk),
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where
∑
h∈K,h6=k qh is taken as given and equal to the equilibrium emission

reductions.
The FOC of this maximization problem (interior solution) is given by

B′(qBRk +
∑

h∈K,h6=k
qh +

∑
j∈J

qj

qk +
∑

h∈K,h 6=k
qh

) = C ′(qBRk ).

Recall that in case of disagreement tk = 0. With this in mind,

π0 − πd0,−k = B(Q)−B(qBRk +
∑

h∈K,h6=k
qh +

∑
j∈J

qj

qBRk +
∑

h∈K,h 6=k
qh

)− tk,

πk − πdk,−k = B(Q)−B(qBRk +
∑

h∈K,h6=k
qh +

∑
j∈J

qj

qBRk +
∑

h∈K,h 6=k
qh

) + tk − C(qk) + C(qBRk ).

At each bilateral negotiation between 0 and k Nash-in-Nash solves max
(qk≥0,tk≥0)

NP0,k.

The FOCs of this maximization problem give:

tk =
1

2

(
C(qk)− C(qBRk )

)
,

C ′(qk) = 2B′(Q)

(
1 + J

dqj
dQhK

)
≤ 2B′(Q),

with Q = qk +
∑
h∈K,h 6=k qh +

∑
j∈J qj

(
qk +

∑
h∈K,h6=k qh

)
. In equilibrium,

qk = qh for h, k ∈ K and Q becomes Q = Kqk + Jqj (Kqk)
Given that marginal cost is non-decreasing, we have that qk is smaller in

this stackelberg setting than in the static setting.

Proof of Proposition 9

To prove part 1 of the proposition, consider stage 2 when the leader negotiates
with the singletons: From c = 2B′(QhJ +Kqk), we obtain

qk(QhJ ) =
1

K

[(
2B(1)αB

c

) 1
1−αB

−QhJ

]
.

We see that d qk
d QJ

= − 1
K and that Kqk(QhJ ) + QhJ = nqs is constant. From

B′(qBRk +QhJ + (K − 1)qk) = c, we obtain that

qBRk (QhJ ) = qk − (2
1

1−αB − 1)nqs.

Note that this value is negative because (2
1

1−αB − 1)nqs > nqs > qk. Hence,
qBRk (QhJ ) = 0. At stage 1 with the coalition, we cannot have

B′(nqs) = c = (J + 1)B′(nqs),

37



so qBRj = 0. Given that d qk
d QJ

= − 1
K then qj = 0 as far as K > 1. It shows that

the coalition contributes nothing when they bargain first. The total amount of

abatement is Q = nqs =
(
2B(1)αB

c

) 1
1−αB and is only made by the singletons

which receive tk = 1
2C(qk). It gives the payoffs

πC,S0 = B(Q)−Ktk = (1− αB)B(nqS) = 2
αB

1−αB

(αB
c

) αB
1−αB B(1)

1
1−αB (1− αB) ,

πC,Sj = B(Q) = B(nqS) = 2
αB

1−αB

(αB
c

) αB
1−αB B(1)

1
1−αB ,

πC,Sk = B(Q) + tk − C (qk) =
(

1− αB
K

)
B(nqS) = 2

αB
1−αB

(αB
c

) αB
1−αB B(1)

1
1−αB

(
1− αB

K

)
.

We now prove part 2 of the proposition.
Stage 2 with the coalition: From c = (J + 1)B′(QhK + Jqj), we obtain

qj(Q
h
K) =

1

J

[(
(J + 1)B(1)αB

c

) 1
1−αB

−QhK

]
.

We see that d qjd Q = − 1
J and that Jqj(Q

h
K) +QhK) = nqs

(
J+1
S

) 1
1−αB is constant.

From
B′(JqBRj +QhK) = c,

we obtain that

qBRj (QhK) =
1

J

[
B(1)αB

c

1
1−αB

−QhK

]
At stage 1 with the coalition, we cannot have

B′(nqs
(
J + 1

S

) 1
1−αB

) = c = 2B′(nqs
(
J + 1

2

) 1
1−αB

),

so there is no interior solution for qBRk > 0 and qk > 0. It implies that

qBRk = 0. Futhermore we cannot have c = 2B′(nqs
(
J+1
2

) 1
1−αB ) and c =

(J + 1)B′(nqs
(
J+1
2

) 1
1−αB ), so we obtain qk = 0.

The singletons didn’t abate and the total amount of abatement made by

the insiders is Q =
(
(J+1)B(1)αB

c

) 1
1−αB = nqs

(
J+1
2

) 1
1−αB and they receive

tj = 1
J+1

(
C(qj)− C

(
qBRj (QhK)

))
.

If the coalition bargains at the end, the reduction will be larger than when

the singletons bargain at the end since nqs
(
J+1
2

) 1
1−αB > nqs.
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It gives the payoffs

πS,C0 (J) = B(Q)− Jtj =
(αB
c

) αB
1−αB B(1)

1
1−αB

(
(1− αB) (J + 1)

αB
1−αB +

αB
J + 1

)
,

πS,Cj (J) = B(Q) + tj − C(qj) =
(αB
c

) αB
1−αB B(1)

1
1−αB

(
(1− αB) (J + 1)

αB
1−αB − αB

J(J + 1)

)
,

πS,Ck (J) = B(Q) = (J + 1)
αB

1−αB

(αB
c

) αB
1−αB B(1)

1
1−αB .

It can be shown that πS,C0 (J) > πC,S0 since (1− αB)
(

(J + 1)
αB

1−αB − 2
αB

1−αB

)
+

αB
J+1 > 0. The leader prefers to negotiate first with the singletons and second
with the coalition. It completes part one of the proposition.
To prove part 2 of the propositio, it straightforward to show that πS,C0 (J) =

π0(J) and QS,C = Q.The leader is indifferent in terms of payoffs between the
stackelberg case when he negotiates with the coalition at the second stage and
simultaneously with the coalition and the singletons. In both cases the total
abatement is the same as well as the transfers because the singletons fully free
ride.
Based on the internal and external stability conditions, we analyse the func-

tion Π(J) = πj(J)− πk(J − 1). Note that the internal stability condition for J
is satisfied when Π(J) ≥ 0 and the external stability condition for J is satisfied
when Π(J + 1) ≤ 0.
Recall that

πj(J)− πk(J − 1) =
B(nqs)

2
αB

1−αB

(
(J + 1)

αB
1−αB (1− αB)− αB

J (J + 1)
− J

αB
1−αB

)
,

for J ≥ 3. However the case J = 1 refers to the situation where in the first
stage of the protocol n−1 agents negotiates withe the leader simultaneously and
one agent negotiates in the second stage with the leader. In that case it means
that all the abatement will be implemented by this last player. Consequently he
will prefer to bargain simultaneously with the other sigletons in the first stage,
meaning that J = 1 is not a stable coalition.
The rest of the proof is the same as the one in proposition 4 since tha analysis

of the fonction H(J) = (1−αB)(J + 1)
αB

1−αB −J
αB

1−αB − αB
J(J+1) , for J ≥ 3 is the

same.
This completes the proof of the proposition.
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