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Abstract

How does the spread of non-fundamental information (e.g., order flow information) affect

investor behavior and financial markets? We examine this question in a model in which

information about noise traders’ demand for an asset can be spread through social networks.

When the network connectedness is low, the spread of demand information enables more

rational investors to trade against noise traders, reducing mispricing and increasing market

efficiency. With the increased market efficiency, investors choose to acquire more private in-

formation about noise trading and less private information about asset fundamentals. When

the network connectedness is high, the spread of demand information lowers investors’ incen-

tives to produce demand information, which decreases market efficiency. Our results suggest

that the recent development of online quantitative trading platforms has non-monotonic

impacts on market efficiency and the quality of quantitative strategies posted on these plat-

forms.
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1 Introduction

Empirical literature has shown that information sharing between investors can have sig-

nificant impacts on their trading behavior and asset prices (see, e.g., Shiller and Pound

(1989), Hong et al. (2005), and Ivković and Weisbenner (2007)). Extant theoretical models

have also revealed many channels through which the spread of information affects financial

markets. Ozsoylev and Walden (2011) show that a higher intensity of information sharing

increases information driven price volatility, but has a non-monotonic impact on liquidity

driven price volatility. Han and Yang (2013) find that more communication between in-

vestors can reduce market efficiency by decreasing their incentives to produce information.

Walden (2019) shows that the centrality of social networks can affect investors’ profitability

and price volatility. Han et al. (2022) demonstrate that active trading strategies can prevail

because they are more likely to generate extremely high returns and be shared with others

by investors, compared with passive trading strategies.

A limitation of existing social network models of financial markets is that mostly they

only consider the spread of fundamental information, i.e., the information about the value of

stocks. However, non-fundamental information, e.g., information on market sentiment, ran-

dom asset supplies, or liquidity traders’ order flows, can also affect investors’ trading behavior

and asset prices (Ganguli and Yang (2009); Farboodi and Veldkamp (2020)). Therefore, the

following question naturally arises: What are the impacts of social networks on financial

markets when non-fundamental information can also be shared among investors? In this

paper, we examine this question with a rational expectations equilibrium model in which

investors can share with others information on both asset fundamentals and noise (liquidity)

traders’ order flows.

Our work builds on the literature on social networks in financial markets (e.g., Han and

Yang (2013) and Ozsoylev and Walden (2011)) and information about noisy demands for

(or supplies of) risky assets (e.g., Ganguli and Yang (2009) and Farboodi and Veldkamp

(2020)). Two features of our model differ our work from others. First, investors’ information

choices in our model are more flexible. At the beginning of a period, an investor can choose

whether to become an informed investor by paying a fixed cost to acquire a data processing

technology (see, e.g., Grossman and Stiglitz (1980) and Benhabib et al. (2019)). After

becoming informed, the investor can decide how to allocate the data processing capacity to
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fundamental analysis (i.e., analyzing fundamental information) and demand analysis (i.e.,

analyzing information about noise traders’ demand), as in Farboodi and Veldkamp (2020).

Although these two kinds of information choice problems have been extensively studied

separately by existing papers, few have analyzed both of them simultaneously in a unified

framework. Second, in our model, an informed investor shares with other investors in the

same group the information about both an asset’s fundamentals and noise traders’ demands

for the asset. As has been mentioned, allowing for the spread of non-fundamental information

differs our model from others in which only fundamental information is shared.

Our analysis starts from a benchmark case in which both the proportion of informed

investors and the informed investors’ allocation of their data processing capacity are ex-

ogenous. In this situation, the price informativeness of a risky asset is increasing in the

network connectedness (i.e., the intensity of social communication, measured by the number

of other investors each informed investor can share his/her information with).1 This result

is consistent with those in Ozsoylev and Walden (2011) and Han and Yang (2013). When

the network connectedness increases, every investor becomes more informed and trade more

aggressively, so more information is incorporated into the asset price through their trading.

Notably, we find that even if the informed investors only share the order flow (demand)

information with others, the asset price still reflects more fundamental information when

the network connectedness increases. The reason is that, since the asset price is driven by

both the fundamental information and the noise traders’ order flow, knowing about the noise

traders’ order flow helps investors to filter out the noise contained in the asset price and learn

about the fundamentals. When the investors can receive more order flow information from

others, they can better filter out the noise contained in the asset price and better predict

the future value of the asset. Therefore, they will trade more aggressively and thus inject

more fundamental information into the asset price.

Our result in the benchmark case can be applied to predict the short-run impact of the

spread of quantitative trading strategies on financial market efficiency. In reality, quantitative

trading strategies (e.g., statistical arbitrage) largely profit from mispricing. In our model,

the noise traders’ trading creates mispricing. Learning about noise traders’ order flow helps

rational investors to profit from mispricing by trading against noise traders. As in Farboodi

1Specifically, the price informativeness measures the amount of fundamental information that is reflected
by the asset price.
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and Veldkamp (2020), it is reasonable to interpret the investors’ trading based on order

flow information as “quantitative trading”. Therefore, in our model, the spread of order

flow information resembles the spread of quantitative trading strategies in reality. Recently,

many online quantitative trading platforms (e.g., QUANTCONNECT2 and JoinQuant3)

are developed. These platforms facilitate the spread of quantitative trading strategies by

allowing investors to share their own strategies with others. Based on the result of our

benchmark model (in which information is exogenous and only order flow information can

be shared), one can predict that, in the short run, the development of such online quantitative

trading platforms (i.e., more users sign up for the platforms) allows more investors to adopt

quantitative strategies (e.g., statistical arbitrage) and profit from mispricing, accelerating

the elimination of mispricing and improving market efficiency.

We then investigate the impacts of network connectedness when the allocation of data

processing capacity is optimally determined by the informed investors but the proportion

of informed investors is still exogenously given. We find that when the informed investors’

information choices are endogenous, the price informativeness still increases in the network

connectedness. Han and Yang (2013) argue that when information is endogenous, market

efficiency decreases in network connectedness. However, our result indicates that endogenous

information does not necessarily lead to the negative impact of network connectedness on

market efficiency when multiple dimensions of information can be shared. An increase in

network connectedness makes every investor more informed, increasing the price informa-

tiveness through the investors’ trading. The increased price informativeness allows investors

to extract more fundamental information from the price, lowering the informed investors’

fundamental analysis (i.e., private learning about the asset’s fundamentals). The decreased

fundamental analysis does not lead to a lower price informativeness, because more data pro-

cessing capacity can be used to analyze order flow information. With the spread of more

precise information about noise traders’ order flow, every investor can better trade against

the noise traders, further eliminating mispricing and improving price informativeness. We

also find that, even if informed investors only share their order flow information with others,

the price informativeness and the quality of order flow information are increasing in network

connectedness. This result implies that, when the number of strategy developers is fixed,

2https://www.quantconnect.com.
3https://www.joinquant.com.
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the spread of quantitative trading strategies not only increases market efficiency, but also

encourages developers to improve the quality of their quantitative trading strategies.

When both the proportion of informed investors and the informed investors’ informa-

tion choice are endogenous, the impact of network connectedness on price informativeness

is non-monotonic. When the network connectedness is low, investors cannot receive enough

information from others. Therefore, it is optimal for every investor to become informed

(i.e., have access to a data processing technology) by paying a cost. In this situation, the

equilibrium proportion of informed investors is endogenously fixed, so the price informa-

tiveness and the demand analysis (the fundamental analysis) are increasing (is decreasing)

in the network connectedness, similar to the situation when the proportion of informed in-

vestors is exogenously given. When the network connectedness is sufficiently high, investors

can receive enough information from others. Therefore, a further increase in the network

connectedness reduces investors’ incentives to become informed, decreasing the equilibrium

proportion of informed investors and thus the equilibrium price informativeness. This is sim-

ilar to the situation in Han and Yang (2013). The decreased price informativeness renders

the informed investors to analyze more fundamental information and less order flow infor-

mation. In summary, when the information is fully endogenous (i.e., both the proportion

of informed investors and the informed investors’ information choice are endogenous), the

price informativeness and the demand analysis (the fundamental analysis) are hump-shaped

(is V-shaped) in the network connectedness.

The non-monotonic effects of network connectedness still exist even if only the order

flow information is shared. Therefore, our model with endogenous proportion of informed

investors can be used to predict the long run impacts of the development of online quantita-

tive trading platforms. Note that in the long run, both the proportion of developers and the

quality of strategies can vary. In the early stages of the development of quantitative trading

platforms, with more strategy developers and users joining the platforms, more investors

can adopt quantitative trading strategies (e.g., statistical arbitrage) to trade in the opposite

direction of mispricing, so the market efficiency increases. The increased market efficiency

then induces developers to develop quantitative strategies with higher quality. The market

efficiency reaches the highest level with an intermediate level of platform development. As

the sizes of platforms continue to grow, some developers lose their incentives to develop

their own quantitative strategies because they can easily use a lot of strategies by others.

5



Therefore, the proportion of developers in the population decreases, reducing the market

efficiency. The decreased market efficiency further reduces the quality of the quantitative

strategies developed by the remaining developers.

Our model also shows that a future increase in network connectedness can create “future

information risk”, a concept proposed by Farboodi and Veldkamp (2020). If an increase in

the next period’s network connectedness increases the next period’s price informativeness, it

makes the next period’s price more sensitive to the next period’s information that is unknown

by the current period’s investors, increasing the current period’s investors’ perceived risk of

the asset’s resale price. Therefore, the current period’s investors perceive a higher payoff

risk and trade less aggressively, reducing the current period’s price informativeness.

Related Literature. Our paper is closely related to the literature on the impacts of social

networks on investor behavior and financial markets (Ozsoylev and Walden (2011); Han and

Yang (2013); Walden (2019); Hirshleifer (2020); Han et al. (2022)). As has been mentioned,

previous works mainly consider the spread of fundamental information (i.e., information

that is directly related to asset payoffs). However, the information about noise traders’ as-

set demands (or random supplies of assets), which is not directly related to asset payoffs,

also have crucial impacts on investor behavior and financial markets. Ganguli and Yang

(2009) demonstrate that investors’ learning about the supply of an asset can generate mul-

tiple equilibria in a financial market, resulting in excess volatility and crashes. Farboodi

and Veldkamp (2020) show that switching from fundamental analysis (i.e., learning about

fundamental information) to demand analysis (i.e., learning about noise traders’ demand)

can increase price informativeness. Marmora and Rytchkov (2018) find that the informa-

tiveness of an asset’s price can reach its maximum level when most investors learn about

non-fundamental information. We contribute to this strand of literature by showing how the

spread of non-fundamental information affects investor behavior and financial markets.

Our paper is also broadly related to the literature on the information acquisition and

aggregation in financial markets pioneered by Grossman and Stiglitz (1980) and Verrecchi-

a (1982). Grossman and Stiglitz (1980) study a model in which each investor can decide

whether to acquire fundamental information by paying a fixed cost. Verrecchia (1982) s-

tudy a model in which each investor can decide the precision of their private fundamental

information whose cost is continuous, convex, and increasing in the precision. Farboodi and

Veldkamp (2020) develop a model in which each investor can continuously decide his/her
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fundamental information precision and non-fundamental information precision under a data

capacity constraint. Many recent papers investigate the determinants of information acqui-

sition and aggregation, such as, transaction cost (Dávila and Parlatore (2021)), commodity

financialization (Goldstein and Yang (2022)), government intervention (Brunnermeier et al.

(2022)), public disclosure (Goldstein and Yang (2019); Benhabib et al. (2019)), and so on.

We contribute to this strand of literature by incorporating the two kinds of information ac-

quisition decisions (i.e., the kind in Grossman and Stiglitz (1980) and the kind in Farboodi

and Veldkamp (2020)) into a unified framework and analyze how they are simultaneously

affected by social networks in equilibrium.

Our paper is organized as follows. Section 2 presents the model. Section 3 analyzes

the financial market equilibrium with exogenous information. Section 4 endogenizes the

informed investors’ information choice. Section 5 further endogenizes the proportion of

informed investors. Section 6 concludes.

2 The model

In this section, we develop a model in which each informed investor can share his/her

private information on noise traders’ order flow for a firm’s security (e.g., stock) and on

the firm’s fundamentals with other investors in his/her group. Our model can be regarded

as an extension of Han and Yang (2013) to a setting in which order flow or asset supply

information (see, e.g., Ganguli and Yang (2009) and Farboodi and Veldkamp (2020)) is

shared. Compared with social network financial market models in which only fundamental

information is shared (see, e.g., Ozsoylev and Walden (2011), Han and Yang (2013), and

Walden (2019)), the addition of the sharing of order flow information makes our model more

general and more realistic, and can provide richer economic insights.

2.1 Financial assets

There is a risky asset traded in a financial market. At the end of period t, each unit of

the risky asset pays a dividend dt+1 that follows

dt+1 − dt = (1−Gd)(µd − dt) + vt+1, (1)
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where Gd ∈ [0, 1), µd > 0, and vt+1 ∼ N(0, τ−1
v ). The (endogenous) risky asset price at the

beginning of period t is denoted by pt, and the per capita net supply of the risky asset is s.

There is also a risk-free asset whose (exogenous) gross rate of return is r ≥ 1.

2.2 Social networks and information

In each period t, Gt > 0 groups of rational investors enter the financial market. Each

group contains Nt > 0 investors, µtNt of which are informed, and (1 − µt)Nt of which

are uninformed, where µt ∈ [0, 1]. There are also noise traders whose per capita demand

for the risky asset is nt+1 ∼ N(0, τ−1
n ). If investor i in group g is informed, then the

investor can observe a private signal about the noise traders’ demand, zigt = nt+1 + εzigt,

εzigt ∼ N(0, (τ zigt)
−1), and a private signal about the asset payoff, xigt = vt+1 + εxigt, ε

x
igt ∼

N(0, (τxigt)
−1). Uninformed investors cannot observe private signals.

2.2.1 Sending information to others

A period-t informed investor i in group g shares his/her private signals about both the

noise traders’ demand and the asset payoff with the remaining Nt − 1 investors in the same

group. As in Han and Yang (2013), we call Nt, which is the number of investors in a

group, as the “network connectedness”, because investors within a group can communicate

with each other. We assume that the sequence of the network connectedness, {Nt}, is

common knowledge. The two signals from investor i received by another investor j 6= i

in group g are yxigt = xigt + ηxigt and yzigt = zigt + ηzigt, where ηxigt ∼ N(0, (τ ηx)−1) and

ηzigt ∼ N(0, (τ ηz)−1). We assume that ({vt}, {nt}, {εxigt}, {εzigt}, {ηxigt}, {ηzigt}) are mutually

independent. If all informed investors choose the same level of precision of their private

signals xigt (resp., zigt) about the dividend innovation vt+1 (resp., noise traders’ demand

nt+1), i.e., τxigt = τxt (resp., τ zigt = τ zt ), ∀i, g, then the precision of the signal yxigt (resp., yzigt)

sent from an informed investor is τ yxt = (V ar[εxigt + ηxigt])
−1 = [(τxt )−1 + (τ ηx)−1)]−1 (resp.,

τ yzt = (V ar[εzigt + ηzigt])
−1 = [(τ zt )−1 + (τ ηz)−1)]−1).

2.2.2 Information received from others

Denote the set of informed investors from group g in period t by Igt. Then the information

about the dividend innovation vt+1 received by an informed investor j through communicat-
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ing with others in group g can be summarized by the average of the signals sent from others,

i.e.,

Y IN,x
jgt =

1

µtNt − 1

∑
i∈Igt\{j}

yxigt = vt+1 +
1

µtNt − 1

∑
i∈Igt\{j}

(εxigt + ηxigt), (2)

which is also an unbiased noisy signal about vt+1. The precision of Y IN,x
jgt is thus

V ar
 1

µtNt − 1

∑
i∈Igt\{j}

(εxigt + ηxigt)

−1

= (µtNt − 1)τ yxt . (3)

Similarly, the information about the noise traders’ demand nt+1 received by this informed

investor from others can be summarized by

Y IN,z
jgt =

1

µtNt − 1

∑
i∈Igt\{j}

yzigt = nt+1 +
1

µtNt − 1

∑
i∈Igt\{j}

(εzigt + ηzigt), (4)

and the precision of Y IN,z
jgt is thus

V ar
 1

µtNt − 1

∑
i∈Igt\{j}

(εzigt + ηzigt)

−1

= (µtNt − 1)τ yzt . (5)

In contrasts to the informed investors, the uninformed investors born at the beginning of

period t do not have private signals, but they can receive information from all µtNt informed

investors in their same groups. Therefore, the information about the dividend innovation

vt+1 received by an informed investor j through communicating with others in group g can

be summarized by

Y UN,x
jgt =

1

µtNt

∑
i∈Igt

yxigt = vt+1 +
1

µtNt

∑
i∈Igt

(εxigt + ηxigt), (6)

and the precision of this signal isV ar
 1

µtNt

∑
i∈Igt

(εxigt + ηxigt)

−1

= µtNtτ
yx
t . (7)
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Similarly, the information about the noise traders’ demand nt+1 received by the uninformed

investors from others can be summarized by

Y UN,z
jgt =

1

µtNt

∑
i∈Igt

yzigt = nt+1 +
1

µtNt

∑
i∈Igt

(εzigt + ηzigt), (8)

and the precision of Y UN,z
jgt is thus

V ar
 1

µtNt

∑
i∈Igt

(εzigt + ηzigt)

−1

= µtNtτ
yz
t . (9)

The investors born at the beginning of period t can observe all the past dividends {ds}s≤t,
as well as the past and the current asset prices {ps}s≤t. Therefore, an informed investor’s

information set when trading in the financial market is F INigt = { xigt, zigt, Y IN,x
igt , Y IN,z

igt ,

{ds}s≤t, {ps}s≤t }, and an uninformed investor’s information set is FUNigt = { Y UN,x
igt , Y UN,z

igt ,

{ds}s≤t, {ps}s≤t }.

2.3 Investors’ preference and portfolio choices

An investor born at the beginning of period t invests in period t and consumes in period

t+ 1. The investor’s consumption can be expressed as

cig,t+1 = (eigt −migtpt)r +migt(dt+1 + ψpt+1)− 1{i∈Igt}CF , (10)

where eigt is the investor’s initial endowment, migt is the investor’s risky asset holding, CF is

the fixed cost of being informed, and 1{·} is the indicator function (i.e., 1{i∈Igt} = 1 if i ∈ Igt
and 1{i∈Igt} = 0 if i /∈ Igt). Note that ψ ∈ {0, 1} is an indicator about whether investors

care about future resale prices of the risky asset. When ψ = 1 (ψ = 0), our model can be

considered as a dynamic (static) model. This modelling technique is in the spirit of Farboodi

and Veldkamp (2020).

Both the informed and uninformed investors have CARA utility, i.e., their utility function

has the form U(c) = − exp (−γc), where γ > 0 is the absolute risk aversion coefficient. When

trading in the financial market, an investor chooses the risky asset holding to maximize the
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conditional expected utility of the consumption,

max
migt

E [U(cig,t+1)|Figt] , (11)

subject to the budget constraint (10), where Figt = F INigt if the investor is informed, and

Figt = FUNigt if the investor is uninformed.

2.4 Definition of financial market equilibrium

The financial market equilibrium is a competitive noisy rational expectations equilibrium.

Similar to Han and Yang (2013), we analyze a large economy in which there are infinitely

many groups of investors (i.e., Gt → +∞, ∀t) for tractability. The formal definition of the

financial market equilibrium is as follows.

Definition 1 (Financial market equilibrium). Given the sequence of the proportion of in-

formed investors {µt}, and the sequences of informed investors’ private signal precision {τxigt}
and {τ zigt}, a financial market equilibrium consists of a sequence of investors’ risky asset hold-

ings {migt} and a sequence of the risky asset prices {pt}, such that (i) each investor’s risky

asset holding migt solves the utility maximization problem (11) subject to the budget con-

straint (10), and (ii) in each period t, the asset price pt clears the financial market, i.e.,

lim
Gt→+∞

1

Gt

Gt∑
g=1

 1

Nt

∑
i∈Igt

migt +
∑
i∈Ugt

migt

+ nt+1 = s, (12)

where Ugt is the set of uninformed investors from group g in period t.

2.5 Characterization of financial market equilibrium

We use the standard “conjecture and verify” method which is common in the rational

expectations equilibrium literature (e.g., Han and Yang (2013), Benhabib et al. (2019),

and Farboodi and Veldkamp (2020)) to solve for the financial market equilibrium. First,

conjecture that the risky asset price in period t has the form

pt = β0t + β1tvt+1 + β2tnt+1 + β3t(dt − µd), (13)
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where β0t, β1t, β2t, and β3t are deterministic (endogenous) price coefficients. An informed

investor of period t can transform pt into a signal about the dividend dt+1,

p̃igt =
pt − β0t − β2tE[nt+1|F INigt ]− β3t(dt − µd)

β1t

= vt+1 +
β2t

β1t

(nt+1 − E[nt+1|F INigt ]).

(14)

The precision of the signal p̃igt is thus τ p̃igt = (β1t
β2t

)2(τn + τ zigt + (µtNt − 1)τ yzt ). Similarly, an

uninformed investor of period t can also transform pt into a signal about the dividend dt+1

using the information about the noise traders’ order flow,

p̂igt =
pt − β0t − β2tE[nt+1|FUNigt ]− β3t(dt − µd)

β1t

= vt+1 +
β2t

β1t

(nt+1 − E[nt+1|FUNigt ]).

(15)

The precision of the signal p̂igt is thus τ p̂igt = (β1t
β2t

)2(τn + µtNtτ
yz
t ).

Solving for problem (11), the optimal risky asset holding for an (informed or uninformed)

investor in period t is

migt =
E[ψpt+1 + dt+1|Figt]− rpt
γV ar[ψpt+1 + dt+1|Figt]

, (16)

where Figt is the information set of the investor. The expressions for the expectation and

variance are provided in the Appendix. Substituting investors optimal decisions (16) into

the market clearing condition (12), and rearranging terms, we can calculate the implied price

function,

pt = lim
Gt→∞

ωINt
ωINt + ωUNt

1

rµtNtGt

Gt∑
g=1

∑
i∈Igt

E[ψpt+1 + dt+1|F INigt ]

+ lim
Gt→∞

ωUNt
ωINt + ωUNt

1

r(1− µt)NtGt

Gt∑
g=1

∑
i∈Ugt

E[ψpt+1 + dt+1|FUNigt ] +
nt+1 − s

r(ωINt + ωUNt )
,

(17)

where ωINt = µt/(γV ar[ψpt+1 + dt+1|F INigt ]) and ωUNt = (1− µt)/(γV ar[ψpt+1 + dt+1|FUNigt ]).

Further calculations can show that the implied price function pt is linear in vt+1, nt+1, and
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(dt − µd). Comparing the implied price function (17) and the conjectured price function

(13), we can derive a system of difference equations that determines the price coefficients.

The following proposition summarizes the above discussion and characterizes the financial

market equilibrium.

Proposition 1 (Characterization of financial market equilibrium). The equilibrium risky

asset price in period t is expressed as

pt = β0t + β1tvt+1 + β2tnt+1 + β3t(dt − µd),

where β0t, β1t, β2t, and β3t satisfy the following system of difference equations,

β0,t =
−s

r(ωINt + ωUNt )
+

1

r
(ψβ0,t+1 + µd),

β1,t =
ωINt

r(ωINt + ωUNt )
(1 + ψβ3,t+1)V IN

t (τx + (µtNt − 1)τ yxt + τ p̃t )

+
ωUNt

r(ωINt + ωUNt )
(1 + ψβ3,t+1)V UN

t (µtNtτ
yx
t + τ p̂t ),

β2,t =
ωINt

r(ωINt + ωUNt )
(1 + ψβ3,t+1)V IN

t τ p̃t
β2,t

β1,t

τn
τn + (µtNt − 1)τ yzt + τ z

+
ωUNt

r(ωINt + ωUNt )
(1 + ψβ3,t+1)V UN

t τ p̂t
β2,t

β1,t

τn
τn + µtNtτ

yz
t

,

β3,t =
Gd

r − ψGd

,

(18)

where

V IN
t = V ar[ψpt+1 + dt+1|F INigt ]

= ψ2(β2
1,t+1τ

−1
v + β2

2,t+1τ
−1
n ) + (1 + ψβ3,t+1)2(τv + τxt + (µtNt − 1)τ yxt + τ p̃t )−1,

V UN
t = V ar[ψpt+1 + dt+1|FUNigt ]

= ψ2(β2
1,t+1τ

−1
v + β2

2,t+1τ
−1
n ) + (1 + ψβ3,t+1)2(τv + µtNtτ

yx
t + τ p̃t )−1.

Proof. See Appendix A.
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3 Analysis of the financial market equilibrium

In this section, we analyze the impacts of social communication on financial markets,

taking the proportion of informed investors and the informed investors’ information choice

(i.e., the precision of their private signals) as given. We first investigate the static situation

in which investors do not care about the risky asset’s resale price (i.e., ψ = 0), and then

explore the dynamic situation in which investors care about the asset’s resale price (i.e.,

ψ = 1).

3.1 The static case

In this subsection, we assume that ψ = 0. Without loss of generality, we also assume that

µd = Gd = 0. With these assumptions, the model developed in Section 2 becomes a one-

period model. Therefore, in this subsection, we drop the time subscript for each variable.

Moreover, by the assumption that Gd = 0 and Proposition 1, we can see that β3 = 0.

Therefore, the risky asset price in the static situation is

p = β0 + β1v + β2n. (19)

As is standard in the rational expectations equilibrium literature (see, e.g., Farboodi and

Veldkamp (2020)), we define the risky asset’s price informativeness as its signal-to-noise ratio,

β1/β2. We find that the price informativeness increases with the network connectedness N

(i.e., the number of investors in a group).

Proposition 2 (Price informativeness in the static case with exogenous information). As-

sume that (i) ψ = Gd = µd = 0, and (ii) the proportion of informed investors µ, fundamental

analysis τx, and demand analysis τ z are given. If γ2 > 4µ2[τ z +(N−1)τ yz][τx+(N−1)τ yx],

then the equilibrium asset price is given by Eq. (19) where β0, β1, and β2 are endogenous

coefficients. Particularly, the equilibrium price informativeness is

β1

β2

=
γ −

√
γ2 − 4µ2[τ z + (N − 1)τ yz][τx + (N − 1)τ yx]

2µ[τ z + (N − 1)τ yz]
. (20)

Moreover, the price informativeness increases in the network connectedness: ∂(β1/β2)
∂N

> 0.
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Proof. See Appendix A.

Proposition 2 shows that when information acquisition decisions are exogenous, the price

informativeness is increasing in the network connectedness. The reason is that when every

informed investor share his/her own information to more other investors, every investor

becomes more informed, and more information is injected into the price through their trading.

Proposition 2 generalizes the result with exogenous information in Han and Yang (2013) to

a situation with demand analysis. In the following proposition, we show that the price

informativeness increases with demand analysis. Moreover, the demand analysis strengthens

the impact of social communication on price informativeness.

Proposition 3 (Impacts of demand analysis). Assume that (i) ψ = Gd = µd = 0, (ii) the

proportion of informed investors µ, fundamental analysis τx, and demand analysis τ z are

given, and (iii) γ2 > 4µ2[τ z + (N − 1)τ yz][τx + (N − 1)τ yx]. Then a higher level of demand

analysis leads to a higher price informativeness, i.e., ∂(β1/β2)
∂τz

> 0. Moreover, the sensitivity

of the price informativeness to network connectedness increases with the demand analysis,

i.e., ∂2(β1/β2)
∂N∂τz

> 0.

Proof. See Appendix A.

The demand analysis (i.e., learning about noise traders’ order flow) helps investors better

filter out the noise contained in the price signal (see Eq. (14)). Therefore, with a higher

level of demand analysis, investors can extract more information about the fundamentals

from the asset price, so the price informativeness is increased through the investors’ trading.

More interestingly, the demand analysis affects the sensitivity of price informativeness to

network connectedness through two channels. First, when demand analysis increases, in-

vestors’ communication about the noise traders’ demand becomes more effective (i.e., every

investor can receive more precise information about the noise traders’ demand from other

investors within the same group). Therefore, the marginal effect of network connectedness

on the information received by each investor increases, so the price informativeness becomes

more sensitive to the network connectedness. Second, even if investors within a same group

do not communicate the order-flow information with each other, the sensitivity of price in-

formativeness to network connectedness still increases with informed investors’ own demand

analysis. When the informed investors have more precise information about the order flow,
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their perceived risk decreases, so they respond more aggressively to the fundamental infor-

mation received from others, strengthening the impact of network connectedness on the price

informativeness.

3.2 The dynamic case

In this subsection, we investigate the impacts of network connectedness and demand

analysis on price informativeness under the dynamic setting (i.e., ψ = 1) with exogenous

information (i.e., the proportion of informed investors µ, fundamental analysis τx, and de-

mand analysis τ z are exogenously given). We plot the price informativeness as functions of

network connectedness and demand analysis in Figure 1.

Figure 1: Network connectedness, demand analysis, and price informativeness in the dynamic
setting with exogenous information. The left panel plots the period-t price informativeness
β1t/β2t as a function of period-t network connectedness Nt. The middle panel plots the
period-t price informativeness β1t/β2t as a function of period-t + 1 network connectedness
Nt+1. The right panel plots the stationary price informativeness β1/β2 as a function of the
stationary network connectedness N . Parameter values: µd = 0.04, G = 0.98, r = 1.02,
γ = 0.05, µ = 0.73, τv = 80.08, τn = 19.75, τx = 2, τ ηx = 0.1, τ ηz = 0.1, and ψ = 1.

The left panel of Figure 1 plots the period-t price informativeness β1t/β2t as a function

of period-t network connectedness Nt, assuming that Ns = 5, ∀s > t. It shows that the

current period’s price informativeness β1t/β2t increases with the current period’s network

connectednessNt. The intuition is the same with that in the static setting (see Proposition 2).

When the investors can immediately communicate with more other investors, each investor

will become more informed, and their trading will immediately inject more information into

the asset price, increasing the price informativeness. In contrast, the middle panel of Figure 1

shows that the current period’s price informativeness β1t/β2t decreases with the next period’s
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network connectedness Nt+1. The reason is that, when investors in the next period are

more connected, the price informativeness in the next period will increase. In other words,

the next period’s price will be more sensitive to the next period’s information. However,

investors in the current period are uncertain about the realization of information the next

period’s investors will acquire. Therefore, a higher sensitivity of the next period’s asset

price to the next period’s information increases the risk perceived by the current period’s

investors. Specifically, the current period’s investors are more uncertain about their asset’s

resale price. As a result, the current period’s investors will trade less aggressively, decreasing

the current period’s price informativeness. Our result that a future increase in the network

connectedness can decrease current price informativeness provides another example for the

“future information risk” concept proposed by Farboodi and Veldkamp (2020).

The right panel of Figure 1 shows the impact of network connectedness on price informa-

tiveness under the situation in which the network connectedness in all periods are equal. In

other words, an overall increase in the network connectedness leads to a higher price infor-

mativeness in every period. The reason is that the impact of future network connectedness

on the current price informativeness is less pronounced than that of the current network

connectedness. Therefore, when there is an overall increase in the network connectedness,

the positive impact of the higher current network connectedness dominates, resulting in a

higher price informativeness in the current period.4

Figure 1 also shows that more demand analysis can lead to a price informativeness and

strengthen the impact of network connectedness on price informativeness (see the left panel

and the right panel), consistent with Proposition 3. Interestingly, the middle panel of Figure

1 demonstrates that, when the next period’s network connectedness is much higher than the

current period’s network connectedness (e.g., Nt+1 = 10 and Nt = 5), more demand analysis

can result in a lower price informativeness β1t/β2t in the current period. The reason is that,

when the demand analysis τz increases, the next period’s price informativeness β1,t+1/β2,t+1

also increases. Therefore, the investors in period t face a higher risk of their resale price

V ar[pt+1|Figt] and trade less aggressively, decreasing the period-t price informativeness.

4Note that under the stationary equilibrium, the values of the price informativeness in all periods are
equal.
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3.3 Application: the short-run impacts of sharing quantitative

trading strategies

In recent years, many online quantitative trading platforms (e.g., QUANTCONNECT

and JoinQuant) are developed. On these platforms, investors not only develop and implement

their own quantitative trading strategies, but also share their strategies with others (or learn

the strategies developed by other users). Therefore, such platforms facilitate the spread of

trading strategies. In this subsection, we apply our model to analyze the consequences of

the development of online quantitative trading platforms.

As in Farboodi and Veldkamp (2020), we interpret the investors’ trading based on the

order flow information as “quantitative trading”. A private signal about the noise trader’s

order flow zig = n + εzig can be regarded as being generated by the quantitative trading

algorithm developed by an informed investor. To further understand why the trading based

on the order flow information can be thought of as quantitative trading, recall that (in the

static case) the asset price can be expressed as p = β0 + β1v + β2n, where β0 + β1v reflects

the asset’s fundamental value, and β2n reflects the “mispricing” caused by the noise traders’

trading. Therefore, analyzing the noise traders’ order flow n helps investors profit from the

mispricing. In other words, trading based on the signal zig resembles quantitative strategies

like “statistical arbitrage” and “factor investing” in reality.

To focus on the spread of quantitative trading strategies, we assume that investors do not

share fundamental information with others, i.e., τ ηx = 0. Moreover, since we are focusing

on the “short-run” effect, we assume that µ, τx, and τz are exogenously given. Intuitively,

investors only share existing trading strategies, without developing new strategies. The

following corollary of Proposition 2 shows the impact of the spread of quantitative trading

strategies on market efficiency.

Corollary 1 (Short-run impact of sharing quantitative trading strategies under the static

setting). Assume that Gd = µd = ψ = 0, and τ ηx = 0. The price informativeness is

increasing in the network connectedness, i.e., ∂(β1/β2)
∂N

|τηx=0 > 0.

Proof. This result follows directly from Proposition 2.

When τ ηx = 0, investors do not communicate fundamental information with others,

so an increase in the network connectedness N only means that a quantitative trading
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strategy is shared with more investors. Corollary 1 shows that under the static setting, the

sharing of quantitative trading strategies has a positive short-run impact on financial price

informativeness. In reality, as online quantitative trading platforms develop, more people

can use strategies like statistical arbitrage to profit from mispricing, which accelerates the

elimination of mispricing, making the financial market more efficient in the short run.

4 Equilibrium with endogenous fundamental and de-

mand analysis

In this section, we first extend the model in Section 2 to a setting with endogenous

fundamental analysis and demand analysis (i.e., an informed investor can optimally choose

the signal precision τxigt and τ zigt), while exogenously fixing the proportion of informed in-

vestors µt. Then we investigate how the network connectedness affects informed investors’

information acquisition decisions.

4.1 Information choice problem

As in Farboodi and Veldkamp (2020), before receiving information in period t, an investor

chooses τxigt and τ zigt to maximize the ex ante expected utility,

max
τxigt,τ

z
igt

E[U(cig,t+1)|{ds}s≤t], (21)

subject to the constraint (τxigt)
2 +χ(τ zigt)

2 ≤ Ht, where Ht > 0 is the data processing capacity

in period t, and χ > 0 determines the cost of demand analysis relative to fundamental

analysis. Following Farboodi and Veldkamp (2020), one can also interpret Ht as the level

of financial data technology. The utility maximization problem in (21) can be transformed

into minimizing the ex post payoff variance V ar[dt+1 + ψpt+1|F INigt ], which can further be

expressed as maximizing τxigt + (β1t
β2t

)2τ zigt. This problem can be solved using the method of

Lagrange’s multipliers. Moreover, since the informed investors are ex ante identical, all of

them will choose the same level of signal precision. Therefore, we focus on the symmetric

equilibrium in which τxigt = τxt and τ zigt = τ zt , ∀i, g. We have the following proposition that

characterizes the informed investors’ optimal information choice.
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Proposition 4 (Information choice). Assume that in period t the proportion of informed

investors µt and the level of financial data technology Ht are given. Then every informed

investor’s optimal fundamental analysis τxt (i.e., the precision of the private signal about the

asset payoff) and demand analysis τ zt (i.e., the precision of the private signal about the noise

traders’ order flow), and the equilibrium price coefficients βjt, j = 0, 1, 2, 3, must satisfy Eq.

(18) as well as the following system of equations,

τxt =

√
Ht√

1 + (β1t
β2t

)4 1
χ

, τ zt =
1

χ

(
β1t

β2t

)2 √
Ht√

1 + (β1t
β2t

)4 1
χ

. (22)

Proof. See Appendix A.

One can derive the equilibrium fundamental analysis, demand analysis, and price coeffi-

cients by solving Eqs. (22) and (18) simultaneously.

4.2 The static case

In this subsection, we consider the static case (i.e., ψ = 0) of the model with endogenous

fundamental analysis and demand analysis. As in Subsection 3.1, we also assume that

Gd = µd = 0 and drop the time subscript. We find that when fundamental analysis and

demand analysis can be endogenously chosen by informed investors, the price informativeness

still increases with a higher network connectedness if the proportion of informed investors is

fixed. Moreover, a higher network connectedness increases the informed investors’ demand

analysis and decreases their fundamental analysis.

Proposition 5 (Price informativeness in the static case with endogenous fundamental and

demand analysis). Consider the situation in which ψ = Gd = µd = 0. Also assume that the

proportion of informed investors µ ∈ [0, 1] is given. Then the equilibrium price informative-

ness is increasing in the network connectedness, i.e., ∂(β1/β2)
∂N

> 0. Moreover, the equilibrium

fundamental analysis is decreasing in the network connectedness, i.e., ∂τx

∂N
< 0, and the

equilibrium demand analysis is increasing in the network connectedness, i.e., ∂τz

∂N
> 0.

Proof. See Appendix A.
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Figure 2: Impact of network connectedness when the proportion of informed investors is
fixed (static case). This figure plots the price informativeness β1/β2, fundamental analysis
τx, and demand analysis τ z as functions of network connectedness N . Parameter values:
τv = 1, τn = 1, τ ηz = 0.01, γ = 1, χ = 20, H = 2, µ = 0.73, and Gd = µd = ψ = 0.

Han and Yang (2013) find that when information is endogenous, price informativeness

decreases in network connectedness. However, Proposition 5 and Figure 2 show that in

our setting, even if information is endogenous, the price informativeness is increasing in the

network connectedness. Proposition 5 and Figure 2 also show that the fundamental (de-

mand) analysis is decreasing (increasing) in network connectedness. When the proportion

of informed investors is fixed, an increase in network connectedness makes all investors more

informed, injecting more information into the asset price. The increased price informative-

ness allows informed investors to extract more fundamental information from the price and

lowers their incentives to conduct fundamental analysis by themselves. However, the de-

crease in fundamental analysis does not lead to a lower price informativeness, because more

data processing capacity are available for demand analysis, which also increases the price

informativeness (see Proposition 3).

4.3 The dynamic case

In this subsection, we investigate the impacts of network connectedness on price infor-

mativeness and informed investors’ allocation of their data processing capacity under the

dynamic setting (i.e., ψ = 1) when the proportion of informed investors µ is exogenously

given. We plot the equilibrium price informativeness, fundamental analysis, and demand

analysis as functions of network connectedness in Figure 3.

The upper left and lower left panels of Figure 3 show that an increase in the current
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Figure 3: Impacts of network connectedness when the proportion of informed investors is
fixed (dynamic case). The upper left panel plots the period-t price informativeness β1t/β2t

as a function of period-t network connectedness Nt. The lower left panel plots the period-t
fundamental analysis τxt and demand analysis τ zt as functions of period-t network connect-
edness Nt. The upper middle panel plots the period-t price informativeness β1t/β2t as a
function of period-t + 1 network connectedness Nt+1. The lower middle panel plots the
period-t fundamental analysis τxt and demand analysis τ zt as functions of period-t + 1 net-
work connectedness Nt+1. The upper right panel plots the stationary price informativeness
β1/β2 as a function of the stationary network connectedness N . The lower right panel plots
the stationary fundamental analysis τx and demand analysis τ z as functions of the stationary
network connectedness N . Parameter values: µd = 0.04, Gd = 0.98, r = 1.02, γ = 0.05,
µ = 0.73, τv = 80.08, τn = 19.75, τ ηx = 0.1, τ ηz = 0.1, χ = 21.12, H = 100, and ψ = 1.
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period’s network connectedness results in a higher price informativeness, a lower fundamental

analysis, and a higher demand analysis in the current period. The intuitions are the same as

those of Proposition 5. In contrast, an increase in the next period’s network connectedness

results in a lower price informativeness, a higher fundamental analysis, and a lower demand

analysis in the current period. The reason is the same as that described in Section 3: A

higher next period’s network connectedness increases the next period’s asset price’s response

to the next period’s information, which increases the current period’s investors’ perceived

risk of the resale price, reducing informed trading and lowering the price informativeness

in the current period. A lower price informativeness induces investors to conduct more

fundamental analysis. However, the increase in fundamental analysis does not lead to a

higher price informativeness, because demand analysis decreases due to the limitation of

data processing capacity. Since the impacts of network connectedness in the future on

the current period’s equilibrium variables are less pronounced than the impacts of network

connectedness in current period, an overall increase in the network connectedness increases

the stationary price informativeness, decreases the stationary fundamental analysis, and

increases the stationary demand analysis (see the upper right and lower right panels of

Figure 3).

4.4 Application: the sharing and quality of quantitative trading

strategies

In this subsection, we apply our model with endogenous allocation of data processing

capacity and fixed proportion of informed investors to analyze the impact of the development

of online quantitative trading platforms on the quality of quantitative trading strategies.

As has been explained in Section 3, we follow Farboodi and Veldkamp (2020) to interpret

a private signal about the noise trader’s order flow zig = n + εzig as a quantitative trading

strategy developed by an informed investor, so the precision of this signal τ z can be regarded

as the quality of the quantitative trading strategy. Intuitively, when τ z becomes higher, the

quantitative strategy can identify the mispricing n more precisely, resulting in a higher

trading profit. The following corollary of Proposition 5 shows that, when the proportion of

informed investors is fixed, the spread of quantitative trading strategies encourages investors

to develop better quantitative trading strategies.
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Corollary 2 (Spread of quantitative trading strategies, market efficiency, and quality of

strategies). Assume that ψ = Gd = µd = 0, and µ is exogenously given. Also assume that

τ ηx = 0, so that no fundamental information is shared. Then the share of quantitative trading

strategies improves both the market efficiency and the quality of quantitative strategies, i.e.,
∂(β1/β2)
∂N

|τηx=0 > 0 and ∂τz

∂N
|τηx=0 > 0. Moreover, the sharing of quantitative strategies lowers

the fundamental analysis, i.e., ∂τx

∂N
|τηx=0 < 0.

Proof. This result follows directly from Proposition 5.

As has been explained in Section 3, the spread of quantitative trading strategies allows

more investors to engage in statistical arbitrage, which accelerates the elimination of mispric-

ing and improves the market efficiency. A more efficient financial market that reveals more

fundamental information lowers the potential profits from fundamental trading, reducing the

investors’ incentives to produce private fundamental information. Therefore, more resources

are allocated to developing quantitative trading strategies, increasing their quality.

5 The full equilibrium: endogenous proportion of in-

formed investors

In this section, we consider the full equilibrium in which both the proportion of informed

investors (i.e., µt) and the informed investors’ information choice (i.e., τxt and τ zt ) are en-

dogenously determined. Assume that at the beginning of period t, each investor decides

whether to become informed or not. If an investor decides to become informed, then the

investor pays a fixed cost CF to gain access to a data processing technology with capacity

Ht. In the spirit of Grossman and Stiglitz (1980), the equilibrium proportion of informed

investors µt should be such that any investor is indifferent between being informed and being

uninformed. Formally, define

∆Ut(µt) = E[E[U(cig,t+1)|F INigt ]|{ds}s≤t]|µt − E[E[U(cig,t+1)|FUNigt ]|{ds}s≤t]|µt . (23)

Intuitively, ∆Ut(µt) measures the benefit of being informed when the proportion of informed

investor is µt. If ∆Ut(0) > 0 and ∆Ut(1) < 0, then the equilibrium proportion of informed

investors is determined by ∆Ut(µt) = 0. If ∆Ut(0) ≤ 0 (i.e., being informed is worse
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than being uninformed even if no one is informed), the equilibrium proportion of informed

investors is µt = 0. If ∆Ut(1) ≥ 0 (i.e., being informed is better than being uninformed

even if everyone is informed), the equilibrium proportion of informed investors is µt = 1.

We have the following proposition that characterizes the equilibrium proportion of informed

investors.

Proposition 6 (The proportion of informed investors). In period t, (a) if ∆Ut(0) > 0 and

∆Ut(1) < 0, the proportion of informed investors µt must satisfy the following equation,√
V ar[ψpt+1 + dt+1|FUNigt ]|µt
V ar[ψpt+1 + dt+1|F INigt ]|µt

= eγCF . (24)

(b) If ∆Ut(0) ≤ 0, then the equilibrium proportion of informed investors is µt = 0. (c) If

∆Ut(1) ≥ 0, then the equilibrium proportion of informed investors is µt = 1.

Proof. See Appendix A.

One can derive the equilibrium proportion of informed investors, fundamental analysis,

demand analysis, and price coefficients by solving Eqs. (24), (22), and (18) simultaneously.

5.1 The static case

In this subsection, we analyze the static case (i.e., ψ = 0) of the full model to investi-

gate the impacts of network connectedness on the price informativeness, informed investors’

information choices, and the proportion of informed investors. We find that when both the

two kinds of information choice decisions (i.e., µ and (τx, τ z)) are endogenous, the effect of

network connectedness on the price informativeness can be non-monotonic.

Proposition 7 (The impacts of network connectedness when both the proportion of in-

formed investors and their information choice are endogenous). Assume that ψ = µd = Gd =

0. Define ∆U(µ) = E[E[U(cig)|F INig ]]|µ − E[E[U(cig)|FUNig ]]|µ. (a) If ∆U(1) ≥ 0, then the

proportion of informed investors is fixed at µ = 1. Moreover, a higher network connectedness

increases the price informativeness, decreases the fundamental analysis, and increases the de-

mand analysis, i.e., ∂(β1/β2)
∂N

> 0, ∂τx

∂N
< 0, and ∂τz

∂N
> 0. (b) If ∆U(0) > 0 and ∆U(1) < 0,
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then the proportion of informed investors µ satisfies the following equation,

µ =
[τx − τ yx + (β1

β2
)2(τ z − τ yz)]− (e2γCF − 1)(τv + (β1

β2
)2τn)

N(e2γCF − 1)[τ yx + (β1
β2

)2τ yz]
. (25)

Moreover, a higher network connectedness decreases the price informativeness, increases the

fundamental analysis, and decreases the demand analysis, i.e., ∂(β1/β2)
∂N

< 0, ∂τx

∂N
> 0, and

∂τz

∂N
< 0.

Proof. See Appendix A.

Figure 4: Impact of network connectedness when the proportion of informed investors is
endogenous (static case). This figure plots price informativeness β1

β2
, fundamental analysis

τx, demand analysis τ z, and proportion of informed investors µ as functions of network
connectedness N . Parameter values: τv = 1, τn = 1, τ ηx = 0.01, τ ηz = 0.01, γ = 1, χ = 20,
v̄ = 1, H = 1, CF = 0.17, and ψ = Gd = µd = 0.

Proposition 7 suggests that when the proportion of informed investors µ is endogenously

determined, the price informativeness β1/β2 is hump-shaped in the network connectedness

N . When the network connectedness N is low, investors can get little information from

others. Therefore, even if others are all informed, it is still optimal for an investor to pay

a cost to become informed (i.e., ∆U(1) > 0), so the proportion of informed investors is

fixed at µ = 1. Since the proportion of informed investors is fixed, by Proposition 5, the

price informativeness is increasing in the network connectedness N . In contrast, when the

network connectedness N is sufficiently large, every investor can learn enough information

from others. In this situation, if all other investors are informed, it is optimal for an investor

not to be informed (i.e., ∆U(1) < 0). Therefore, the proportion of informed investors µ is

not fixed at 1. Moreover, a further increase in N reduces investors’ incentives to become
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informed and thus the equilibrium proportion of informed investors µ, lowering the price

informativeness. Therefore, as is shown in Figure 4, the price informativeness is hump-shaped

in the network connectedness N . Correspondingly, the demand analysis τ z is hump-shaped

in the network connectedness N , and the fundamental analysis is V-shaped in N .

5.2 The dynamic case

In this subsection, we investigate the impacts of network connectedness on price infor-

mativeness and informed investors’ allocation of their data processing capacity under the

dynamic setting (i.e., ψ = 1) when the proportion of informed investors µt is endogenous.

We plot the equilibrium price informativeness, fundamental analysis, demand analysis, and

the proportion of informed investors as functions of network connectedness in Figure 5.

The upper left and upper middle panels of Figure 5 show that the current period’s price

informativeness and demand analysis are hump-shaped (is V-shaped) in the current period’s

network connectedness. Moreover, the upper right panel of Figure 5 shows that when the

current period’s network connectedness is low, an increase in it has no impact on the current

period’s proportion of informed investors. In contrast, when the current period’s network

connectedness is sufficiently large, an increase in it decreases the proportion of informed

investors. These results are consistent with those in the static case (see Proposition 7 and

Figure 4).

As has been explained in Section 3, a higher price informativeness in the next period

leads to a higher risk perceived by the current period’s investors and thus a lower price infor-

mativeness in the current period. Therefore, as is shown in the lower left panel of Figure 5,

the current period’s price informativeness is V-shaped in the next period’s network connect-

edness. Correspondingly, the lower middle panel of Figure 5 shows that the current period’s

fundamental analysis (demand analysis) is hump-shaped (V-shaped) in the next period’s

network connectedness. Moreover, the current period’s proportion of informed investors is

hump-shaped in the next period’s network connectedness (see the lower right panel of Fig-

ure 5), because when the price informativeness becomes lower, the investors cannot extract

enough information from the price, so it is optimal for more of them to pay a cost to become

informed, and vice versa.
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Figure 5: Impacts of network connectedness when the proportion of informed investors is
endogenous (dynamic case). The upper left panel plots the period-t price informativeness
β1t/β2t as a function of period-t network connectedness Nt. The upper middle panel plots the
period-t fundamental analysis τxt and demand analysis τ zt as functions of period-t network
connectedness Nt. The lower left panel plots the period-t price informativeness β1t/β2t

as a function of period-t + 1 network connectedness Nt+1. The lower middle panel plots
the period-t fundamental analysis τxt and demand analysis τ zt as functions of period-t + 1
network connectedness Nt+1. The upper right panel plots the period-t proportion of informed
investors µt as a function of period-t network connectedness Nt. The lower right panel
plots the period-t proportion of informed investors µt as a function of period-t + 1 network
connectedness Nt+1. Parameter values: µd = 0.04, Gd = 0.98, r = 1.02, γ = 0.05, µ = 0.73,
τv = 80.08, τn = 19.75, τ ηx = 0.1, τ ηz = 0.1, χ = 21.12, H = 100, CF = 0.07, and ψ = 1.
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5.3 Application: the long-run impacts of sharing quantitative trad-

ing strategies

In this subsection, we apply our model with endogenous information choice and endoge-

nous proportion of informed investors to analyze the long-run impact of sharing quantitative

trading strategies. As before, when analyzing the spread of quantitative trading strategies,

we assume that no fundamental information is shared, i.e., τ ηx = 0. In the long-run, both

the quality of quantitative trading strategies τ z and the proportion of strategy developers µ

are determined in equilibrium. We have the following corollary of Proposition 7.

Corollary 3 (Long-run impacts of sharing quantitative trading strategies). Assume that

ψ = Gd = µd = 0. Also assume that τ ηx = 0 so that no fundamental information is shared.

(a) If ∆U(1) ≥ 0, then µ is fixed at 1. Moreover, we have ∂(β1/β2)
∂N

|τηx=0 > 0, ∂τx

∂N
|τηx=0 < 0,

and ∂τz

∂N
|τηx=0 > 0. (b) If ∆U(0) > 0 and ∆U(1) < 0, then µ satisfies the following equation,

µ =
[τx + (β1

β2
)2(τ z − τ yz)]− (e2γCF − 1)(τv + (β1

β2
)2τn)

N(e2γCF − 1)(β1
β2

)2τ yz
. (26)

Moreover, we have ∂(β1/β2)
∂N

|τηx=0 < 0, ∂τx

∂N
|τηx=0 > 0, and ∂τz

∂N
|τηx=0 < 0.

Proof. This result follows directly from Proposition 7.

Corollary 3 indicates that the spread of quantitative trading strategies has non-monotonic

impacts on market efficiency, the quality of strategies, and the number of developers in the

long run. When each strategy is not shared with many investors, it is optimal for every

investor to develop his/her own strategies. When quantitative strategies are shared with

more investors, the investors can implement better statistical arbitrage, reducing mispricing

and improving market efficiency. When the market becomes more efficient, the investors can

profit less from trading on fundamental information, so more (less) resources are allocated

to developing quantitative (fundamental) strategies, increasing the quality of quantitative

(fundamental) strategies.

When each strategy can be shared with many investors, the investors do not have high

incentives to develop their own strategies. Therefore, when the strategies are shared with

even more investors, it is optimal for a proportion of investors not to develop their own

strategies but instead rely on the strategies developed by others, so the number of developers
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(i.e., the proportion of informed investors in our model) decreases. As a result, the number of

quantitative strategies decreases, and the statistical arbitrage implemented by the investors

is less effective, which exacerbates mispricing, reducing market efficiency. Since the market

efficiency decreases, the investors can profit more from trading on fundamental information,

so more (less) resources are allocated to developing fundamental (quantitative) strategies,

decreasing (increasing) the quality of quantitative (fundamental) strategies.

6 Conclusion

This paper presents a model of financial market in which information on both noise

traders’ order flows and asset fundamentals can be shared among investors. We demonstrate

that when both the proportion of informed investors and the informed investors’ choice

between fundamental analysis and demand analysis are endogenous, the financial price in-

formativeness and demand analysis (fundamental analysis) are hump-shaped (is V-shaped)

in the network connectedness. These results still hold even if only the demand information

is shared. We also find that investor social networks can generate the “future information

risk” effect. An application of our model predicts that the development of online quantitative

trading platforms can improve market efficiency in the short run, but have non-monotonic

long-run impacts on market efficiency and the quality of quantitative strategies. Our model

can be further extended to investigate questions that are not answered in this paper. For

example, adding a real sector to the model (i.e., endogenizing the asset payoff) allows people

to study how the sharing of information between financial investors affects firm managers’

real decisions through the market feedback channel. Moreover, one can investigate the de-

terminants of network connectedness by endogenizing investors’ sharing decisions. We leave

these questions for future research.
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Appendix

A Proofs of Propositions

A.1 Proof of Proposition 1

Proof. By direct calculation, the expectation of the asset payoff ψpt+1 + dt+1 conditional on

the information set Figt can be decomposed as

E[ψpt+1+dt+1|Figt] = ψβ0,t+1+µd+(1+ψβ3,t+1)G(dt−µd)+(1+ψβ3,t+1)E[vt+1|Figt]. (A.1)

For informed investors, the conditional expectation of vt+1 can be calculated using Bayes’

rule,

E[vt+1|F INigt ] =
τxt xigt + (µtNt − 1)τ yxt Y IN,x

igt + τ p̃igtp̃igt

τv + τxt + (µtNt − 1)τ yxt + τ p̃igt
. (A.2)

For uninformed investors, the conditional expectation of vt+1 is

E[vt+1|FUNigt ] =
(µtNt)τ

yx
t Y UN,x

gt + τ p̂igtp̂igt

τv + (µtNt)τ
yx
t + τ p̂igt

. (A.3)
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By direct calculation, the variance of the asset payoff ψpt+1 + dt+1 conditional on the infor-

mation set Figt can be decomposed as

V ar[ψpt+1 + dt+1|Figt] = ψ2V ar[pt+1|Figt] + V ar[dt+1|Figt] + 2ψCov[pt+1, dt+1|Figt]

= ψ2(β2
1,t+1τ

−1
v + β2

2,t+1τ
−1
n ) + (1 + ψβ3,t+1)2V ar[dt+1|Figt].

(A.4)

An informed investor’s perceived variance of dt+1 is

V ar[dt+1|F INigt ] = V ar[vt+1|F INigt ] =
1

τv + τxt + (µtNt − 1)τ yxt + τ p̃igt
. (A.5)

An uninformed investor’s perceived variance of dt+1 is

V ar[dt+1|FUNigt ] = V ar[vt+1|FUNigt ] =
1

τv + (µtNt)τ
yx
t + τ p̂igt

. (A.6)

With the conditional variances calculated above, we can derive the expressions for ωINt and

ωUNt .

Without loss of generality, assume that the first µtNt investors in each group are informed.

Then the implied price function (17) can also be expressed as

pt =
ωINt

ωINt + ωUNt

1

rµtNt

µtNt∑
i=1

(
lim
Gt→∞

1

Gt

Gt∑
g=1

E[ψpt+1 + dt+1|F INigt ]

)

+
ωUNt

ωINt + ωUNt

1

r(1− µt)Nt

Nt∑
i=µtNt+1

(
lim
Gt→∞

1

Gt

Gt∑
g=1

E[ψpt+1 + dt+1|FUNigt ]

)
+

nt+1 − s
r(ωINt + ωUNt )

.

(A.7)

Using the expression for the conditional expectations calculated above, we can show that

lim
Gt→∞

1

Gt

Gt∑
g=1

E[ψpt+1 + dt+1|F INigt ]

= Ct +
1 + ψβ3,t+1

τv + τxt + (µtNt − 1)τ yxt + τ p̃igt
lim
Gt→∞

1

Gt

Gt∑
g=1

[
τxt xigt + (µtNt − 1)τ yxt Y IN,x

igt + τ p̃igtp̃igt

]
,

(A.8)

where Ct = ψβ0,t+1 +µd + (1 +ψβ3,t+1)G(dt−µd). Recall that xigt = vt+1 + εxigt. By the Law

33



of Large Numbers, we can calculate that

lim
Gt→∞

1

Gt

Gt∑
g=1

xigt = vt+1 + lim
Gt→∞

1

Gt

Gt∑
g=1

εxigt = vt+1. (A.9)

Similarly, we can show that

lim
Gt→∞

1

Gt

Gt∑
g=1

Y IN,x
igt = lim

Gt→∞

1

Gt

Gt∑
g=1

 1

µtNt − 1

∑
j∈Igt\{i}

yxjgt


= vt+1 +

1

µtNt − 1

∑
j≤µtNt,j 6=i

[
lim
Gt→∞

1

Gt

Gt∑
g=1

(εxjgt + ηxjgt)

]
= vt+1.

(A.10)

Moreover, we have

lim
Gt→∞

1

Gt

Gt∑
g=1

p̃igt = lim
Gt→∞

1

Gt

Gt∑
g=1

[
vt+1 +

β2t

β1t

(nt+1 − E[nt+1|F INigt ])

]

= vt+1 +
β2t

β1t

[
nt+1 − lim

Gt→∞

1

Gt

Gt∑
g=1

τ zt zigt + (µtNt − 1)τ yzt Y
IN,z
igt

τn + τ zt + (µtNt − 1)τ yzt

]

= vt+1 +
β2t

β1t

[
nt+1 −

τ zt nt+1 + (µtNt − 1)τ yzt nt+1

τn + τ zt + (µtNt − 1)τ yzt

]
= vt+1 +

β2t

β1t

[
τnnt+1

τn + τ zt + (µtNt − 1)τ yzt

]
.

(A.11)

Therefore, we can calculate that

lim
Gt→∞

1

Gt

Gt∑
g=1

E[ψpt+1 + dt+1|F INigt ] = Ct +
1 + ψβ3,t+1

τv + τxt + (µtNt − 1)τ yxt + τ p̃t
×[

(τxt + (µtNt − 1)τ yxt + τ p̃t )vt+1 + τ p̃t
β2t

β1t

τnnt+1

τn + τ zt + (µtNt − 1)τ yzt

]
.

(A.12)
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We can also calculate that

lim
Gt→∞

1

Gt

Gt∑
g=1

E[ψpt+1 + dt+1|FUNigt ]

= Ct +
1 + ψβ3,t+1

τv + (µtNt)τ
yx
t + τ p̂igt

lim
Gt→∞

1

Gt

Gt∑
g=1

[
(µtNt)τ

yx
t Y UN,x

gt + τ p̂igtp̂igt

]
,

(A.13)

and that

lim
Gt→∞

1

Gt

Gt∑
g=1

Y UN,x
gt = vt+1 +

1

µtNt

Nt∑
i=µtNt+1

[
lim
Gt→∞

1

Gt

Gt∑
g=1

(εxigt + ηxigt)

]
= vt+1, (A.14)

and that

lim
Gt→∞

1

Gt

Gt∑
g=1

p̂igt = vt+1 +
β2t

β1t

(
nt+1 −

µtNtτ
yz
t nt+1

τn + µtNtτ
yz
t

)
= vt+1 +

β2t

β1t

(
τnnt+1

τn + µtNtτ
yz
t

)
. (A.15)

Therefore, we have

lim
Gt→∞

1

Gt

Gt∑
g=1

E[ψpt+1 + dt+1|FUNigt ]

= Ct +
1 + ψβ3,t+1

τv + (µtNt)τ
yx
t + τ p̂igt

[
(µtNtτ

yx
t + τ p̂t )vt+1 + τ p̂t

β2t

β1t

τnnt+1

τn + µtNtτ
yz
t

]
.

(A.16)

Substituting Equations (A.12) and (A.16) into Equation (A.7), and collecting terms, we have
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pt =
−s

r(ωINt + ωUNt )
+

1

r
(ψβ0,t+1 + µd)

+

[
ωINt

r(ωINt + ωUNt )
(1 + ψβ3,t+1)V IN

t (τx + (µtNt − 1)τ yxt + τ p̃t )

+
ωUNt

r(ωINt + ωUNt )
(1 + ψβ3,t+1)V UN

t (µtNtτ
yx
t + τ p̂t )

]
vt+1

+

[
ωINt

r(ωINt + ωUNt )
(1 + ψβ3,t+1)V IN

t τ p̃t
β2,t

β1,t

τn
τn + (µtNt − 1)τ yzt + τ z

+
ωUNt

r(ωINt + ωUNt )
(1 + ψβ3,t+1)V UN

t τ p̂t
β2,t

β1,t

τn
τn + µtNtτ

yz
t

]
nt+1

+

[
Gd

r − ψGd

]
(dt − µd),

(A.17)

where V IN
t = V ar[ψpt+1 + dt+1|F INigt ] and V UN

t = V ar[ψpt+1 + dt+1|FUNigt ]. Comparing the

implied price function (A.17) and the conjectured price function (13), we can derive Equation

(18), which completes the proof.

A.2 Proof of Proposition 2

Proof. In the static case we have Gd = µd = ψ = 0. From Proposition 1 we know that

β1

β2

=
µτx + µ(N − 1)τ yx + µτ p̃ + (1− µ)τ p̂

µτ p̃ β2
β1

τn
τn+τz+(µN−1)τyz

+ (1− µ)τ p̂ β2
β1

τn
τn+µNτyz

+ γ
.

Rearranging terms, we have

[µτ z + µ(N − 1)τ yz](β1
β2

)2 − γ(β1
β2

) + γ[µτx + µ(N − 1)τ yx] = 0. (A.18)

Solving this equation of β1
β2

, and following Farboodi and Veldkamp (2020) to choose from the

two solutions, we can derive (20).

Notice that β1
β2

can be viewed as a function of N . Taking derivative with respect to N on

both sides of (A.18), we have µ[τ yz(β1
β2

)2+(τ z+(N−1)τ yz)2(β1
β2

)∂(β1/β2)
∂N

]−γ ∂(β1/β2)
∂N

+µτ yx = 0.
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Collecting terms, we have

∂(β1/β2)

∂N
=

µτ yz(β1
β2

)2 + µτ yx

γ − 2µ(τ z + (N − 1)τ yz)(β1
β2

)
. (A.19)

From (20) we can calculate that

2µ(τ z + (N − 1)τ yz)(β1
β2

) = γ −
√
γ2 − 4µ2[τ z + (N − 1)τ yz][τx + (N − 1)τ yx] < γ.

Therefore, we have ∂(β1/β2)
∂N

> 0.

A.3 Proof of Proposition 3

Proof. Denote Ωx = τx + (N − 1)τ yx and Ωz = τ z + (N − 1)τ yz. Then from Eq. (20) the

price informativeness β1/β2 can be written as

β1

β2

=
γ −

√
γ2 − 4µ2ΩzΩx

2µΩz

=
2µΩx

γ +
√
γ2 − 4µ2ΩzΩx

. (A.20)

Notice that ∂(β1/β2)
∂Ωz

> 0. Moreover, since τ yz = [(τ z)−1 + (τ ηz)−1]−1, we have ∂τyz

∂τz
> 0 and

thus ∂Ωz
∂τz

> 0. Therefore, by the chain rule, we have

∂(β1/β2)

∂τ z
=
∂(β1/β2)

∂Ωz

∂Ωz

∂τ z
> 0.

Combining this result with Eq. (A.19), we immediately have ∂2(β1/β2)
∂N∂τz

> 0.

A.4 Proof of Proposition 4

Proof. If an investor employs the optimal trading strategy (16), then her consumption can

be written as

cig,t+1 = eigtr +
E[ψpt+1 + dt+1|Figt]− rpt
γV ar[ψpt+1 + dt+1|Figt]

(dt+1 + ψpt+1 − rpt)− 1{i∈Igt}CF , (A.21)
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and her expected utility conditional on Figt is thus (by the moment generating function of a

normal random variable)

E[U(cig,t+1)|Figt] = −e−γ[eigtr−1{i∈Igt}CF ]−1
2

(E[ψpt+1+dt+1−rpt|Figt])2
V ar[ψpt+1+dt+1|Figt] . (A.22)

Therefore, the investor’s ex ante expected utility is (by the moment generating function of

non-central chi-squared random variable)

E[E[U(cig,t+1)|Figt]|{ds}s≤t] = −
√

Vt
Vt + V0t

e
−γ[eigtr−1{i∈Igt}CF ]−1

2

(E[ψpt+1+dt+1−rpt|{ds}s≤t])2
Vt+V0t ,

(A.23)

where Vt = V ar[ψpt+1 + dt+1|Figt] and V0t = V ar[E[ψpt+1 + dt+1 − rpt|Figt]|{ds}s≤t]. Notice

that

Vt + V0t = V o
t = V ar[ψpt+1 + dt+1 − rpt|{ds}s≤t]. (A.24)

Also notice that (by the Law of Iterated Expectations),

E[U(cig,t+1)|{ds}s≤t] = E[E[U(cig,t+1)|Figt]|{ds}s≤t]. (A.25)

We can calculate that

ln (−E[U(cig,t+1)|{ds}s≤t]) = ln

√
Vt
V o
t

−γ[eigtr−1{i∈Igt}CF ]−1

2

(E[ψpt+1 + dt+1 − rpt|{ds}s≤t])2

V o
t

.

(A.26)

Notice that both V o
t and E[ψpt+1 +dt+1−rpt|{ds}s≤t] are not affected by a specific investor’s

information choice. Therefore, for a specific informed investor, the information choice prob-

lem (21) can be converted to minimizing V IN
t = V ar[ψpt+1 + dt+1|F INigt ]. Recall that

V ar[ψpt+1 + dt+1|F INigt ]

= ψ2(β2
1,t+1τ

−1
v + β2

2,t+1τ
−1
n ) + (1 + ψβ3,t+1)2(τv + τxigt + (µtNt − 1)τ yxt + τ p̃igt)

−1,
(A.27)
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where τ p̃igt = (β1t
β2t

)2(τn + τ zigt + (µtNt − 1)τ yzt ). Since the specific investor can only choose τxigt

and τ zigt, the information choice problem can be expressed as

max
τxigt,τ

z
igt

τxigt + (β1t
β2t

)2τ zigt, s.t. (τxigt)
2 + χ(τ zigt)

2 ≤ Ht. (A.28)

Since the objective function is increasing in both choice variables, we know that the constraint

is binding. The Lagrangian function is

Lt = τxigt + (β1t
β2t

)2τ zigt + λt(Ht − (τxigt)
2 − χ(τ zigt)

2), (A.29)

where λt is the Lagrangian multiplier. The first-order conditions give the following system

of equations,

∂Lt
∂τxigt

= 1− 2λtτ
x
igt = 0,

∂Lt
∂τ zigt

=

(
β1t

β2t

)2

− 2χλtτ
z
igt = 0,

∂Lt
∂λt

= Ht − (τxigt)
2 − χ(τ zigt)

2 = 0.

(A.30)

Solving this system of equations for τxigt, τ
z
igt, and λt, and using the symmetric equilibrium

conditions (i.e., τxigt = τxt and τ zigt = τ zt , ∀i, g), we can derive Equation (22), which completes

the proof.

A.5 Proof of Proposition 5

Proof. Recall that the equilibrium price informativeness β1/β2 is determined by (A.20).

Notice that when the fundamental analysis and the demand analysis are endogenously de-

termined by the investors, both Ωx = τx+(N−1)τ yx and Ωz = τ z+(N−1)τ yz are functions

of β1/β2 and N (see Eq. (22)). Denote ξ = β1/β2. Then Eq. (A.20) can be written as

ξ = f(ξ,N), where

f(ξ,N) =
2µΩx(ξ,N)

γ +
√
γ2 − 4µ2Ωz(ξ,N)Ωx(ξ,N)

. (A.31)

It is obvious that ∂Ωx(ξ,N)
∂N

> 0 and ∂Ωz(ξ,N)
∂N

> 0. Therefore, we can notice that ∂f(ξ,N)
∂N

> 0.

Moreover, from Eq. (22), we can calculate that τx|ξ=0 =
√
H > 0 and τ z|ξ=0 = 0, so we

know that f(0, N) > 0.
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Let N1 ≥ 0, and ∆N > 0. Denote N2 = N + ∆N > N1. Let ξ(N2) be the solution

to ξ = f(ξ,N2). Since ∂f(ξ,N)
∂N

> 0, we have f(ξ(N2), N1) < f(ξ(N2), N2) = ξ(N2), so

f(ξ(N2), N1)−ξ(N2) < 0. Recall that f(0, N1)−0 > 0. Therefore, by the intermediate value

theorem, we know that there exists a ξ(N1) ∈ (0, ξ(N2)), such that f(ξ(N1), N1)−ξ(N1) = 0,

or equivalently, ξ(N1) = f(ξ(N1), N1).

Now we have already proved that ξ(N1 + ∆N) > ξ(N1), where ξ(N) is the solution to

ξ = f(ξ,N). Since the selection of ∆N > 0 is arbitrary, we have

ξ′(N1) = lim
∆N→0

ξ(N1 + ∆N)− ξ(N1)

∆N
> 0. (A.32)

Since the selection of N1 is also arbitrary, we know that ξ′(N) > 0, ∀N ≥ 0. In other words,
∂(β1/β2)
∂N

> 0. With this result and Eq. (22), one can immediately observe that ∂τx

∂N
< 0 and

∂τz

∂N
> 0.

A.6 Proof of Proposition 6

Proof. The results when ∆Ut(0) ≤ 0 and ∆Ut(1) ≥ 0 are trivial. Now we consider the

situation when ∆Ut(0) > 0 and ∆Ut(1) < 0. Denote

φt = −γeigtr −
1

2

(E[ψpt+1 + dt+1 − rpt|{ds}s≤t])2

V o
t

. (A.33)

From Equation (A.23) we know that, given µt, an investor’s ex ante expected utility can be

written as

E[E[U(cig,t+1)|Figt]|{ds}s≤t]|µt = −

√
Vt
V o
t

eφt+γ1{i∈Igt}CF . (A.34)

Therefore, we have

∆Ut(µt) = −

√
V IN
t

V o
t

eφt+γCF +

√
V UN
t

V o
t

eφt =

√
V IN
t

V o
t

eφt

√V UN
t

V IN
t

− eγCF

 . (A.35)

By inspection, we have

∆Ut(µt) = 0⇔

√
V UN
t

V IN
t

= eγCF , (A.36)
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which completes the proof.

A.7 Proof of Proposition 7

Proof. Part (a): As has been shown in Proposition 6, when ∆U(1) > 0, the proportion of

informed investors is µ = 1. Therefore, as long as N is within the range such that ∆U(1) > 0,

µ is fixed at 1, so the impacts of N on equilibrium variables are the same as those when

µ is exogenously set to be 1. From Proposition 5 we know that ∂(β1/β2)
∂N

> 0, ∂τx

∂N
< 0, and

∂τz

∂N
> 0.

Part(b): Now we consider the situation in which ∆U(1) < 0 and ∆U(0) > 0. Denote

ξ = β1/β2. From Eq. (25), we can notice that when ψ = 0, the equilibrium proportion of

informed investors µ must satisfy the following equation,√
τv + τx + (µN − 1)τ yx + ξ2(τn + τ z + (µN − 1)τ yz)

τv + µNτ yx + ξ2(τn + µNτ yz)
= eγCF , (A.37)

Therefore, we can express the proportion of informed traders as a function of ξ and N ,

µ = µ(ξ,N) =
[τx − τ yx + ξ2(τ z − τ yz)]− (e2γCF − 1)(τv + ξ2τn)

N(e2γCF − 1)(τ yx + ξ2τ yz)
. (A.38)

Notice that τx, τ yx, τ z, and τ yz are also functions of ξ, but are not directly affected by N .

From Eq. (A.20) we know that the equilibrium price informativeness is determined by the

equation ξ = h(ξ,N), where

h(ξ,N) =
2µ(ξ,N)Ωx(ξ,N)

γ +
√
γ2 − 4[µ(ξ,N)Ωz(ξ,N)][µ(ξ,N)Ωx(ξ,N)]

. (A.39)

We can calculate that

µ(ξ,N)× Ωx(ξ,N)

=
[τx − τ yx + ξ2(τ z − τ yz)]− (e2γCF − 1)(τv + ξ2τn)

(e2γCF − 1)(τ yx + ξ2τ yz)︸ ︷︷ ︸
Not affected by N

×
[

1

N
(τx − τ yx) + τ yx

]
︸ ︷︷ ︸

Decreasing in N

. (A.40)

Recall that τ yx = [(τx)−1 + (τ ηx)−1]−1, so we can notice that τx > τ yx. Therefore, we can
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see that ∂[µ(ξ,N)Ωx(ξ,N)]
∂N

< 0. Similarly, we can prove that ∂[µ(ξ,N)Ωz(ξ,N)]
∂N

< 0. Therefore, we

have ∂h(ξ,N)
∂N

< 0.

Now we prove that h(0, N) > 0, ∀N ≥ 1. Suppose that µ is fixed at 0. Then from Eq.

(A.20) we know that the equilibrium price informativeness is β1
β2

= 0. From Eq. (22) we know

that the equilibrium information choices are τx =
√
H and τ z = 0. Correspondingly, we have

τ yx = [(
√
H)−1 + (τ ηx)−1]−1. By assumption, we have ∆U(0) > 0, i.e., V UN/V IN > e2γCF ,

which leads to the following relationship between exogenous parameters,

√
H − [(

√
H)−1 + (τ ηx)−1]−1 > (e2γCF − 1)τv. (A.41)

Notice that µ(0, N) can be expressed as

µ(0, N) =

√
H − [(

√
H)−1 + (τ ηx)−1]−1 − (e2γCF − 1)τv

N(e2γCF − 1)[(
√
H)−1 + (τ ηx)−1]−1

. (A.42)

Therefore, by Eq. (A.41), we know that µ(0, N) > 0, and thus h(0, N) > 0, ∀N ≥ 1.

Now we prove that ξ(N) is decreasing in N , where ξ(N) is the solution to equation

ξ = h(ξ,N). Let N2 > N1 ≥ 1. Let ξ(N1) be the solution to equation ξ = h(ξ,N1). Since
∂h(ξ,N)
∂N

< 0, we know that h(ξ(N1), N2) < h(ξ(N1), N1) = ξ(N1), so h(ξ(N1), N2)−ξ(N1) < 0.

Recall that we have proved that h(0, N2) − 0 > 0. Therefore, by the intermediate value

theorem, there exists a ξ(N2) ∈ (0, ξ(N1)), such that h(ξ(N2), N2) − ξ(N2) = 0. In other

words, ξ(N2), which is the solution to ξ = h(ξ,N2), is less than ξ(N1). Since the selection of

N2 > N1 ≥ 1 is arbitrary, we know that ξ(N) is decreasing in N , i.e., ξ′(N) < 0. With this

result and Eq. (22), we can derive that ∂τx

∂N
> 0 and ∂τz

∂N
< 0.
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