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Abstract

Relative prices determine competitiveness across countries. We analyse the impact of di-
verging implicit carbon prices – covering carbon costs, energy costs, and the shadow cost of
regulations – between Germany and other EU countries on manufacturing CO2 emissions.
Using a quantitative trade and environment model with key parameters estimated from
German firm-level data, we track implicit carbon prices from 2005 to 2019. Our findings
reveal a sharper decline in implicit carbon prices in Germany, leading to higher emissions.
In this regard, Germany appears to have emerged as a European pollution haven. We dis-
cuss whether this reallocation of emissions reflects an efficient outcome of emissions trading
or is distorted by overlapping policies.
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1 Introduction

The European Union Emissions Trading System (EU ETS) is the cornerstone of the

EU’s climate policy, setting a cap on the total amount of greenhouse gas emissions across

regulated sectors. While this cap limits overall emissions, it does not prescribe how

emissions reductions should be distributed across industries or regions. This decentralized

approach is designed to promote efficiency by allowing the market to allocate emissions

reductions to the least costly abatement opportunities. However, it also creates incentives

for EU member states to strategically protect their national industry, potentially shifting

the burden of emissions reductions onto neighbouring countries. In response to the threat

of deindustrialization, national governments may actively manage the transition process

and resort to measures such as exemptions or subsidies for energy-intensive industries –

particularly when they have the financial means to do so.

This paper examines how market mechanisms and overlapping policies – across nested

jurisdictions and national policy portfolios – have shaped industrial emissions trends

within the EU. Between 2005 and 2019, industrial CO2 emissions in the rest of the EU

declined by twice as much as in Germany, prompting the question: Is Germany becoming

the European pollution haven? And if so, is this induced by the allocative efficiency of

the EU ETS or the result of strategic national policies?

Evaluating the effective stringency of climate policy in the presence of overlapping

and interacting regulations is inherently challenging, particularly as domestic consump-

tion patterns evolve and international trade partners adjust their regulatory frameworks.

Standard ex-post analyses of climate policies typically isolate the effects of individual

policy measures, but are silent on their interactions within the broader policy landscape.

In this paper, we shed light on precisely these overlooked factors, examining how the

interplay of overlapping policies, foreign regulations, international trade, and general

equilibrium forces shape emissions patterns in ways that traditional reduced-form ap-

proaches cannot fully capture. To do so, we employ quantitative modelling to estimate

implicit carbon prices – a comprehensive measure encompassing all factors influencing

CO2 costs, including EU ETS carbon prices, national policies, fuel prices, and command-

and-control measures. Our analysis then explores how divergent developments in implicit

carbon prices across the EU drive shifts in production and emissions within Europe. We

provide suggestive evidence that these shifts may not be due to the allocative efficiency
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of the EU ETS, raising concerns about the broader impact of regulatory heterogeneity

on intra-European emissions distribution.

For the analysis, we apply a quantitative trade and environment model developed

by Shapiro and Walker (2018), generalizing it to incorporate different assumptions on

production technologies commonly used in the literature. We apply this model to a

three-region world – Germany, the rest of the EU (RoEU), and the rest of the world

(RoW) – allowing us to account for Germany’s deep integration within the EU. This

setup enables us to examine the effects of climate policy in a context where regulations

overlap in a nested jurisdiction.

Using data on trade, production, and emissions, as well as key model parameters

estimated from German firm-level data, we retrieve sector-specific measures of the historic

development of implicit carbon prices for Germany, the rest of the EU, and the rest

of the world from 2005 to 2019. These implicit carbon prices rationalise the observed

outcomes in trade, production, and emissions, given the model structure we impose. We

contrast the development of implicit carbon prices in Germany and the rest of the EU,

and relate them to changes in energy prices and EU ETS permit prices through regression

analysis. Although implicit carbon prices follow a similar trend across both regions, they

declined more sharply in Germany than in the rest of the EU. Notably, we find that ETS

permit prices alone do not fully explain this development in implicit carbon prices. The

remaining variation across countries and sectors is consistent with overlapping national

policies affecting the implicit carbon price.

Our model approach enables us to run counterfactual analyses. In a decomposition

analysis in which we sequentially switch off individual emissions drivers, we show that the

overall trend in implicit carbon prices – and particularly the difference between Germany

and the rest of the EU – have been instrumental in shaping CO2 emissions in German

manufacturing. Finally, we demonstrate that CO2 emissions from German manufacturing

would have been substantially lower if the rest of the EU had experienced the same

developments in implicit carbon prices. In this sense, Germany may indeed be evolving

into a European pollution haven.

Debates about the impact of differences in regulatory stringency are high on the

policy agenda. Given the shared EU climate policy under the EU ETS, these discussions

have primarily focused on disparities between EU and non-EU countries. However, our
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analysis highlights the importance of intra-European differences in implicit carbon prices.

In line with insights from the trade literature, our results indicate that trade linkages

and the risk of production shifts are considerably stronger within the EU than between

EU member states and non-EU countries.1 Imposing a uniform development of implicit

carbon prices in Germany and the rest of the EU changes the intra-EU allocation of

emissions substantially but has little impact on emissions outside the EU.

Our findings suggest that policy discussions should not focus solely on the EU’s Car-

bon Border Adjustment Mechanism (CBAM), which addresses the carbon footprint of

imports from outside the EU; they should also consider the causes and consequences

of intra-European differences in implicit carbon prices. Intra-European production shifts

may be a natural consequence of the EU ETS, which induces production and emissions to

relocate toward regions with less emissions-intensive production. Uniform carbon pricing

makes it costlier to produce where emission intensities are high, reinforcing these shifts.

The relative decline in implicit carbon prices in Germany compared to the rest of the EU

may reflect convergence as other EU countries catch up with Germany’s initially more

stringent regulations, as Germany’s industrial emission intensities were among the EU’s

lowest in 2005.

While such convergence likely plays a role, unilateral climate, energy, and indus-

trial policies can also undermine the allocative efficiency of the EU ETS. Germany ranks

among the top EU countries in state aid spending for “Environmental Protection,” which

includes support schemes such as electricity price compensation and exemptions from en-

ergy taxes, predominantly benefitting energy-intensive sectors. Against this background,

the development in Germany’s industrial emissions seems unlikely to reflect an efficient

allocation.

With this paper, we contribute to four distinct strands of literature. First, we comple-

ment research on econometric ex-post evaluations of single climate policies (e.g., Colmer

et al. 2024, Hernandez-Cortes and Meng 2023, Andersson 2019, Martin et al. 2016, or

Fowlie et al. 2012). Specifically, in the context of Germany, recent studies by Gerster

and Lamp (2024) and von Graevenitz and Rottner (2024) evaluate the causal effects of

electricity price differences on emissions from German manufacturing firms. Our paper

1 See, e.g., Bergstrand et al. (2015); Baier and Bergstrand (2009, 2007); Disdier and Head (2008) or
Yotov (2012) on the elasticity of distance and on the effects of trade agreements in gravity equations.
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extends this literature by offering a new perspective that accounts for developments in

other countries, feedback effects across sectors, and macroeconomic adjustments.

Second, we contribute to the literature that employs general equilibrium models to

study climate policies (see Böhringer et al. 2012 for an overview of computable general

equilibrium (CGE) models). Our work also intersects with the burgeoning strand of liter-

ature in international trade that uses structural gravity models (e.g., Larch and Wanner,

2024, Caron and Fally, 2022, Shapiro, 2016, or Egger and Nigai, 2015). While structural

gravity models may sacrifice some structural detail compared to typical CGE models,

they offer increased tractability. Many studies in this field have quantified models for

ex-ante assessment (e.g., of carbon border adjustments, such as in Campolmi et al. 2023;

Sogalla 2023; Farrokhi and Lashkaripour 2022; Larch and Wanner 2017). In contrast,

following the approach of Shapiro and Walker (2018), we apply this framework to un-

derstand past emissions trends, bridging the gap between reduced form ex-post analyses

and model-based ex-ante evaluations.

Third, we contribute to the literature on overlapping regulation in nested jurisdictions

(for instance, Goulder and Stavins, 2012 in the US context, where interactions between

California’s policies and federal policies raise concerns). The (welfare) effects of overlap-

ping policies have primarily been studied using analytical models (Perino et al., 2022;

Eichner and Pethig, 2019) or through ex-ante simulations with CGE models (Böhringer

and Rosendahl, 2022). We show how to evaluate the importance of these overlaps and in-

teractions ex-post using a quantitative modelling approach. Our research extends beyond

analysing CO2 emissions from German manufacturing and the role of the EU ETS. More

broadly, our approach can be applied to study the interactions and overlaps of regulations

in nested jurisdictions, particularly in deeply integrated regions such as the EU, the US,

and China to recover underlying drivers that are not directly observable, such as implicit

carbon prices.

Finally, we contribute to the literature on pollution havens, which examines how differ-

ences in environmental regulation across countries shape comparative advantages, thereby

influencing the regional allocation of emissions-intensive production (see, e.g., Cherni-

wchan et al., 2017, Levinson and Taylor, 2008, Copeland and Taylor, 2004, or Pethig,

1976). Previous research has primarily focused on the outward shift of emissions-intensive

industries from high-income, high-regulation countries to low-income, low-regulation coun-
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tries (e.g., Wagner and Timmins, 2009 on outward FDI from the German manufacturing

sector; Hanna, 2010 and Kellenberg, 2009 on the responses of US multinational firms to

differences in environmental regulation). In contrast, we emphasize a pollution haven ef-

fect within a group of rich countries that share common regulations but where overlapping

national policies interact to differing degrees with the common policy framework.

In the context of a global pollutant like CO2, incentives to actively adopt policies that

protect domestic industry are strong, as the damage caused by emissions primarily occurs

in other countries. These policies can effectively transform countries into pollution havens.

While such policies under an ETS do not affect overall emissions within a binding cap,

they undermine the allocative efficiency of the system and have important distributional

implications.

The remainder of this paper is structured as follows: In Section 2, we introduce our

quantitative trade and environment model, adapted from Shapiro and Walker (2018),

and discuss key model assumptions. Section 3 presents the data we use for quantifying

the model and outlines our estimation of essential model parameters. In Section 4,

we use the model to back out the historical development of implicit carbon prices in

Germany, the rest of the EU, and the rest of the world. We examine the roles of energy

prices and EU ETS permit prices. Section 5 conducts counterfactual analyses: First,

we decompose the development of Germany’s emissions by isolating individual emissions

drivers to highlight the impact of implicit carbon price changes. Second, we assess how

German emissions would have evolved if the implicit carbon prices in the rest of the

EU had developed identically to those in Germany. In Section 6, we discuss whether

our findings are indicative of allocative efficiency within an EU ETS or rather due to

distortions from overlapping (national) policies. Section 7 concludes.

2 The model

To explain the development of CO2 emissions in German manufacturing, we apply the

quantitative trade and environment model developed by Shapiro and Walker (2018). This

section offers a brief overview of the model and discusses its main assumptions. In Online

Appendix A, we provide a detailed presentation of a generalized version of the model by

Shapiro and Walker (2018). Specifically, we integrate two alternative formulations from
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the literature on incorporating firm-specific productivity into the production function (cf.

Egger et al., 2021), an aspect naturally absent in traditional trade and environment model

frameworks, which do not consider heterogeneous firms.2 While the main text relies on

the original Shapiro and Walker (2018) specification, we show in Online Appendix C.7

that our results remain qualitatively robust to this generalisation.

Our multi-country, multi-sector framework relies on a Melitz (2003)-type environ-

ment, where heterogeneous firms within each sector engage in monopolistic competition.

Firms differ in productivity, leading to differences in emission intensities and generated

emissions. The model features endogenous firm entry and exit, as well as production

and export decisions. In each country, labour is the only productive factor.3 Labour is

supplied inelastically but mobile across sectors within a country. Each firm determines its

production technique based on the economy-wide wage rate relative to the emission price

it faces. This emission price, conceptualised as the implicit carbon price, incorporates all

factors that have an impact on the costs of generating emissions.

2.1 Preferences and technology

We consider a world of N countries, indexed by i and j, and S sectors, each denoted by

s.4 The representative consumer in country i maximises utility by allocating her budget

to consume qsji(ω) of varieties ω ∈ Ωs
j from sector s produced in country j. The set

of available varieties includes both imported and domestically produced varieties. We

assume a two-tier utility function: a constant elasticity of substitution (CES) utility

across varieties within each sector, and Cobb-Douglas utility across sectors. Accordingly,

Ui =
∏
s∈S

[∑
j∈N

∫
ω∈Ωs

j

qsji(ω)
σs−1
σs dω

] σs

σs−1

βs
i

, (1)

2 A growing body of literature explores the role of firm heterogeneity at the intersection of trade and
the environment, following Kreickemeier and Richter (2014). For a recent survey, see Cherniwchan et al.
(2017); for empirical evidence, refer to Rodrigue et al. (2024), Kwon et al. (2023), Forslid et al. (2018),
and Richter and Schiersch (2017).

3 Alternatively, labour can be thought of as a composite of different production factors. When quan-
tifying the modeling and estimating key model parameters, we adopt this more flexible interpretation
(see Section 3).

4 In our application, we consider a three-country world (Germany, RoEU and RoW), and ten disag-
gregated sectors for each region.
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where σs > 1 represents the sector-specific elasticity of substitution across varieties, while

βs
i ∈ (0, 1) denotes the expenditure share on sector s’ varieties, with

∑
s∈S β

s
i = 1. Within

each sector, consumers exhibit a “love of variety”.

Each variety is produced by one specific firm located in a particular country and

characterised by a productivity level φ. Since each firm in country i and sector s is

perfectly distinguishable by its productivity level, we simplify notation from the outset

and use φ = φ(ω). To produce qsji(φ), destined for consumers in country i, labour lsji is

employed at the economy-wide wage rate wj, while emissions zsji are generated as a by-

product. Emissions are costly. We assume a sector-specific emissions price of tsj > 0, which

includes various cost elements related to emissions: different types of regulation, such as

market-based instruments, command-and-control policies, and behavioral interventions,

as well as costs associated with energy consumption leading to emissions.5 This emissions

price varies across sectors due to sector-specific regulation and differences in fuel mixes.

In our application, we refer to this price as the implicit carbon price, a measure that is

not directly observable empirically but which we infer from our quantitative analysis.

In line with the literature based on the seminal work by Copeland and Taylor (1994,

2003), we specify a firm’s production technology as being Cobb-Douglas and treat emis-

sions as an input. Accordingly,

qsji(φ) = φ1−αs

(zsji)
αs

(lsji)
1−αs

, (2)

5 We simplify our analysis by assuming no income is generated from this emissions price. While this
holds true for certain regulatory frameworks, it does not apply to emissions taxes, for instance. Thus,
we assume tax revenues are lost, potentially through rent-seeking, which is not entirely implausible:
As of September 2023, 29.1% of entries in the German Lobby Register concern the topic of energy (see
https://www.lobbyregister.bundestag.de). According to the EU transparency register, ArcelorMittal, the
world’s second biggest steel producer, spends approximately 1.25-1.5 million Euros each year on activities
covered by the register. For the Dow Europe GmbH (chemicals and plastics), this sum amounts to 3-3.5
million Euros. Winkler (2022) finds that lobbying for higher numbers of free emission allowances under
the EU ETS was valuable and indeed successful.
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where αs ∈ (0, 1) denotes the output elasticity of emissions and represents the costs

share of emissions.6 Accordingly, production in sectors with higher αs is more emissions-

intensive, all else equal.

Subject to this technology, a firm in j maximises profits from entering market i de-

noted by

πs
ji(φ) = psji(φ)q

s
ji(φ)− wjl

s
ji(φ)τ

s
ji − tsjz

s
ji(φ)τ

s
ji − wif

s
ji, (3)

where selling in market i involves both variable iceberg trade costs τ sji ≥ 1 and fixed

costs wif
s
ji in terms of labour of the destination market. For domestic sales, we assume

τ sii = f s
ii = 1. Optimal behaviour implies that a firm, facing demand as per Eq. (2), sets

a price psji at a constant markup over marginal supply costs.

Before turning to the market entry mechanism, let us compare two firms of differing

productivity, both located in the same country and each offering a unique variety within

the same sector to consumers in the same destination country. For revenues, emissions

intensities, and emissions, the comparison is as follows:

rsji(φ1)

rsji(φ2)
=

(
φ1

φ2

)(σs−1)(1−αs)

,
isji(φ1)

isji(φ2)
=

(
φ1

φ2

)αs−1

,
zsji(φ1)

zsji(φ2)
=

(
φ1

φ2

)(σs−1)(1−αs)

. (4)

The more productive firm enjoys higher revenues – and hence profits, given identical fixed

costs — due to greater sales volumes, even though it charges a lower price. Moreover, the

more productive firm is characterised by a lower emissions intensity but higher emissions.

2.2 Open economy equilibrium

Prospective firms based in country j learn about their productivity only after incurring

initial entry fixed costs of wjf
s
j , which are denominated in domestic labour. Specifically,

they draw from a sector-specific Pareto productivity distribution

Gs
j

(
φ; bsj

)
= 1−

(
bsj
φ

)θs

, (5)

6 This production technology can also be derived by assuming a specific underlying abatement technol-
ogy where output is sacrificed to reduce emissions (see Shapiro and Walker, 2018). In Online Appendix A,
we present a generalized version of the model by introducing the indicator ξ ∈ {0, 1} to define a firm’s
production function as: qsji(φ) = φ1−ξαs

(zsji)
αs

(lsji)
1−αs

. When ξ = 1, this specification collapses to
Eq. (2) in the main text, while ξ = 0 represents an alternative modelling approach where labour is used
for abatement. In both cases, emissions can be interpreted either as an additional production factor or
as a secondary output. The Cobb-Douglas functional form is both standard in the literature and crucial
for the tractability of the model (see Shapiro and Walker, 2018).
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where the location parameters bsj ≥ 1 defines the lower bound of the distribution and

hence determines country j’s productivity potential in sector s, while the shape parameter

θs > (σs − 1)(1− αs) describes the productivity dispersion in a sector.

In equilibrium, the fixed costs of learning about productivity are equal to the expected

profits (the free entry condition). Only firms with a draw above an (endogenous) pro-

ductivity threshold will find it profitable to produce their unique variety. As exporting

incurs additional cost (fixed costs f s
ji and iceberg transport costs τ sji), only a subset of

those firms are sufficiently productive to profit from exporting to foreign markets. For

each origin-j-market-i combination, the marginal firm is determined by the so-called zero

cutoff profit condition.

Labour markets clear in each country. Labour is used for five purposes: the fixed costs

of the productivity draw, productive labour usage, implicit carbon prices, fixed market

entry costs, and net exports. The latter is necessary because in this static model trade

imbalances are represented by transfers between trading partners.

The zero cutoff profit conditions, the free entry condition, and the labour market

clearing condition jointly constitute the open economy equilibrium.

2.3 Discussion of key assumptions

Before applying the model, we discuss three key assumptions. First, firm-level produc-

tivity φ is assumed to be fixed. The model abstracts from improvements in firm-level

productivity induced by technological change or regulation. While restrictive, this as-

sumption is in line with recent evidence on technology lock-in of US manufacturing plants

from their first year of operation (Hawkins-Pierot and Wagner, 2022). By contrast, labour

productivity as an alternative productivity measure is endogenous at the firm level, with

firms adjusting in response to the wage-to-implicit-carbon-price ratio. Furthermore, the

(weighted) average productivity of a country and sector changes due to the reallocation

of market shares across firms.

Second, the production technology given in Eq. (2) implies constant returns to scale

in emission abatement. This assumption differs from Forslid et al. (2018), who emphasise

scale economies in abatement with investment costs for the most productive (exporting)

firms spread over larger volumes. There is no economically viable end-of-pipe technology

available to abate CO2 emissions. Emission reductions can only be achieved through
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reducing output, saving energy, e.g., by increasing efficiency, or through switching fuels

which does not necessarily incur high fixed cost. Given the unclear role of fixed costs for

reductions of CO2 emissions, we adhere to the commonly used emission generation and

abatement process.

Third, the three key parameters – σs, the elasticity of substitution, αs, the output

elasticity of emissions, and θs, the productivity dispersion – are assumed to be sector-

specific but constant across countries, and, in our application, also over time. Given

the relatively short time span of our analysis from 2005 to 2019, the assumption of con-

stancy over time does not seem controversial, whereas the assumption of constancy across

countries warrants further discussion. This assumption implies inter alia that once tech-

nology is invented, it is available across borders. Differences in emission intensities across

countries then arise from variations in average productivity, wage-to-implicit-carbon-price

ratios, and country specialisations, which are further determined by trade costs. As a

plausibility check, our parameter estimates using German data (see below) exhibit similar

patterns across sectors and are comparable in magnitude to those reported by Shapiro

and Walker (2018) for the USA and the productivity dispersion estimates from Caliendo

and Parro (2015).

2.4 Defining emissions drivers

We reformulate the model using the “exact hat algebra” of Dekle et al. (2008) to facilitate

quantification. This approach expresses all variables as changes from a baseline value x

to a counterfactual value x′, i.e. x̂ ≡ x′/x. Through this reformulation, several variables

that are hard to measure drop out of the model. In our quantitative exercise, we use the

year 2005 as the baseline, rewriting all variables of interest as changes relative to that

year.

Our focus is on changes in emissions. Integrating over the mass of operating firms

allows us to calculate aggregate country-level emissions for j as:

Zj ≡
∑
s∈S

Zs
j with Zs

j =M s
j

wj

tsj
f s
j

αsθs

(1− αs)
, (6)
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where M s
j represents the mass of firms in sector s within country j that have incurred

the fixed entry costs to learn about their productivity. In terms of changes, this reads as:

Ẑj =
∑
s

Ẑs
j

Zs
j

Zj

with Ẑs
j = M̂ s

j

ŵj

t̂sj
. (7)

Accordingly, emissions in sector s increase with both the mass of firms M s
j and the

wage-to-implicit-carbon-price ratio wj/t
s
j . Given the production technology introduced

in Eq. (2), each individual firm adjusts its labour input and emissions generation based

on the factor price ratio, which is exogenous from the firm’s perspective. Production

is allocated among firms of varying emission intensities, where this allocation changes

as firms enter and exit different markets and see changes in their market shares. These

effects are reflected in the changes in firm entries. Considering the model’s implication

that changes in wages and firm entries are functions of changes in country- and sector-

level revenues, it can be inferred that changes in sector-level emissions depend on three

factors: the development of the implicit carbon price, the overall growth of the economy,

and the relative growth of different sectors.7

We quantify the model to recover underlying economic drivers that impact the histor-

ical development of German emissions. The goal is to determine how these drivers must

have evolved in order for the model to generate the observed trade, production, and emis-

sions patterns across countries. Given the model structure and estimated parameters, we

ask how, for example, the implicit carbon prices faced by firms in different sectors and

countries must have evolved to rationalise the observed outcomes.

We follow Shapiro and Walker (2018) in defining four types of emission drivers of

interest, which we allow to vary across sectors and countries.

• Changes in implicit carbon prices: t̂sj . This emission driver comprises all factors

that directly or indirectly influence the cost of emitting CO2 emissions, including

the carbon price under the EU ETS, national (climate) policies, fuel prices, and

command-and-control measures. By rearranging Eq. (7), we obtain: t̂sj = M̂ s
j ŵj/Ẑ

s
j .

7 Specifically, changes in wages equal changes in country-level revenues, while changes in firm entries
are given by sector revenue growth relative to the average growth of the economy. This stems from the
model feature of a single production factor, necessitating that all revenue changes must be reflected in
wage adjustments. Real wages are determined by a country’s growth relative to all other countries.
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• Changes in expenditure shares: β̂s
i . This driver captures the emissions impact of

changes in the allocation of expenditures across sectors, as determined by the utility

function in Eq. (1).

• Changes in the competitiveness: Γ̂s
ji. This driver includes various factors that

affect emissions through changes in a country’s competitiveness, such as changes in

country-j’s productivity bsj in a given sector, in trade costs τ sji, and fixed market

entry costs f s
ji. We do not separate these components but instead derive a single

term that captures all these competitiveness-related variables. Specifically, the

driver is defined as: Γ̂s
ji ≡ (b̂sj)

θs(τ̂ sji)
− θs

1−αs (f̂ s
ji)

1− θs

(σs−1)(1−αs) .

• Changes in trade imbalances. This final emission driver allows our static frame-

work to exactly match historical production and trade data. Conceptually, trade

imbalances are represented as transfers between countries.

By plugging in production, trade, and emissions data as well as parameter estimates

for σs, αs, and θs, we can derive the historical developments of these emission drivers as

implied by the model (see Section 4). We can quantify and interpret changes in implicit

carbon prices, expenditure shares, and trade imbalances. Calculating the competitiveness

drivers, in contrast, requires sector-specific price data which are not available. Conse-

quently, our calculated competitiveness drivers are net of this component, making their

development hard to interpret. Nonetheless, the competitiveness drivers can still be used

to determine counterfactual emissions, as price indices cancel out in the equilibrium con-

ditions where they appear.

In the next step, we disentangle the relative importance of these drivers in shaping

German manufacturing emissions (see Secion 5.1). To do this, we allow all emission

drivers to follow their historical path except for one, which we assume remained at its

2005 level.8 By comparing the resulting counterfactual emissions with the actual emission

development we can assess the significance of a given emission driver and the direction

in which it has influenced emissions. Lastly, we use the model to examine how German

8 Specifically, we plug these alternative values for emission drivers into the model and solve the model
numerically, finding the changes in wages (ŵj) and firm entries (M̂s

j ) consistent with the equilibrium
conditions for all countries, sectors and years. The model is solved numerically using a trust-region-
reflective algorithm, thereby constraining the endogenous variables to take on positive values. The values
backed out by the algorithm can then be used to calculate emissions according to Eq. (7), associated
with the endogenous firm-level decisions on emissions, entry, exit, production and exports. Importantly,
those counterfactual emissions incorporate general equilibrium forces. Plugging historical values for all
emission drivers into the model recreates the actual development of emissions.
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industrial emissions would have developed if the implicit carbon price in the rest of the EU

had followed the same trajectory as in Germany over the study period (see Section 5.2).

3 Data and parameter estimation

3.1 Data

Quantifying the model requires two ingredients: First, we need information on emissions,

production values, and international trade flows. Second, we need sector-specific values

for the three model parameters σs, αs, and θs that govern fundamental model relation-

ships. These data inputs enable us to back out the values of the various emissions drivers

necessary for the model to replicate actual patterns of trade, production and CO2 emis-

sions. In the following, we briefly describe the data sets used, while Section 3.2 provides

a detailed discussion of the estimation procedure for the three key model parameters.

Sector-level emissions are taken from the IEA (2022a) for the period 2005 to 2019.

These emissions data include indirect emissions from electricity consumption.9,10 Accu-

rate sector-level emissions data are available for Germany and the rest of the EU, but

unfortunately not for the entire rest of the world. Many countries report all their indus-

trial emissions under the industry category “non-specified”. Therefore, we define RoW

as those countries in which only a reasonable share of emissions is categorised as non-

specified.11 This choice limits RoW to 22 countries, which collectively account for roughly

70% of German trade flows outside of the EU.12 The development of emissions relative

9 We can calculate sector-level emissions from German manufacturing using Census data. There
are some differences in sector-level emissions for Germany between the two data sets, notably in the
varying trends observed since 2005: According to the Manufacturing Census, CO2 emissions increased
between 2005 and 2017, whereas they exhibit a slightly decreasing trend according to the IEA. We
further elaborate on these differences in Online Appendix B.3. Qualitatively, we obtain similar results
from quantifying the model with either of the two data sources, as shown in Online Appendix C.8.

10 We limit our main analysis to CO2 emissions from combustion. In Online Appendix C.9, we show that
additionally including process emissions does not substantially alter our results. This is because emissions
developments were similar for combustion and process emissions, resulting in comparable outcome in
terms of changes, although emissions levels naturally differ when process emissions are included.

11 Specifically, we require countries to report less than 15% of emissions in the non-specified industry
category for at least 10 out of 15 years (which corresponds to the 90th percentile of this share in the EU),
or to report less than 27% of emissions in the non-specified category in every year (which corresponds
to the 95th percentile of this share in the EU).

12 Our RoW covers the following countries: Albania, Australia, Azerbaijan, Belarus, Bosnia, Brazil,
Chinese Taipei, Colombia, Japan, South Korea, Norway, China, Philippines, North Macedonia, Russia,
Switzerland, Thailand, Ukraine, US, Bahrain, Canada, Costa Rica. The covered world regions are
visualised in Online Appendix B.1. Among the world’s largest CO2 emitters, India is absent from
the analysis because it reports between one-third and two-thirds of its industrial emissions in the non-
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to 2005 is depicted in Figure 1. To ensure that our results are robust to this limited

country coverage, we conduct our decomposition analysis with the full RoW comprising

all countries as well. In this additional analysis, due to the lack of emissions data for the

entire RoW, we cannot distinguish changes in implicit carbon prices from the competitive-

ness driver for RoW, as we do for Germany and RoEU. Qualitatively, our results remain

unchanged when broadening the set of RoW-countries (see Online Appendix C.10).

Production data in manufacturing are taken from the United Nations Industrial De-

velopment Organization (2022). The INDSTAT database provides output (in million

dollars) disaggregated at the 2-digit sector-level of the International Standard Industrial

Classification of All Economic Activities (ISIC) for 174 countries, though the exact cov-

erage varies across years. Data are available from 1963 to 2020, but we focus on the years

2005 to 2019 according to the availability of other datasets. To ensure consistency across

the different data sets, we merge very small sectors and use sector combinations. This

procedure yields 10 different manufacturing sectors for our analysis. Their respective

NACE sector codes and short descriptions are detailed in Table 1.13 Given the European

focus of our analysis, we convert dollar values to Euros using exchange rates from the

OECD (2022). Lastly, we aggregate production data to our three world regions.14

TABLE 1: Analysed NACE 2 sectors

NACE 2 Code Description
10 to 12 Food, tobacco and beverages
13 to 15 Textiles, wearing apparel, fur, leather and footwear
16 Wood products
17 and 18 Paper, paper products, printing and publishing
20 and 21 Chemicals, chemical products and pharmaceuticals
22, 31 and 32 Rubber and plastic products, furniture, manufacturing n.e.c.
23 Non-metallic mineral products
24 Basic metals
25 to 28, 33 Fabricated metals, electronic products, electric equipment,

machinery and installation
29 and 30 Vehicles, vehicle components, other transport

specified industry category. In total, we lose approximately 12% of world production by limiting our
country sample in this manner.

13 The respective concordance table from ISIC Rev. 3 to NACE 2 sector codes is provided in Online
Appendix B.2.

14 We assign countries to only one group, either RoEU or RoW, disregarding changes through EU
accessions. In our analysis, the UK is considered part of RoEU, as Brexit was only implemented after
the end of our period of analysis.
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Figure 1: Development in industrial CO2 emissions, 2005-2019.

Notes: Industrial CO2 emissions from combustion, including emissions from electricity use, by world
region. Source: Own calculation based on IEA (2022a).

Trade data are provided by Eurostat (2023a). Specifically, we obtain German and EU-

level import and export data in Euros.15 To correct for re-exports (i.e., exports where

the goods were not originally produced in the exporting country), we use information on

annual imports that are subsequently re-exported, obtained from input-output tables for

Germany and the EU (Eurostat, 2023b). These re-export values are subtracted from the

import and export data for Germany, RoEU, and RoW.16,17

Moreover, to better understand the factors driving the development of implicit carbon

prices, we collect data on country-level fuel prices and fuel mixes from the IEA (IEA

15 While combining trade and production data at the sectoral level is inherently difficult due to funda-
mentally different underlying classifications, the Eurostat data is reported in a classification that can be
directly linked to NACE codes.

16 The issue is that while re-exports are reflected in trade data both as imports and as exports, they
are not included in production data. Re-exports can be substantial. Quantifying the model requires us
to calculate the shares of worldwide production that are produced and consumed domestically, produced
domestically but exported, and consumed domestically but imported. To ensure these measures are
accurate and prevent exports from exceeding production, we adjust trade flows downward by accounting
for re-exports. Details on the correction we apply can be found in Online Appendix B.4.

17 We cross-check trade and production data in Germany against figures from the German Manufactur-
ing Census. Levels and trends are similar, as shown in Online Appendix B.5. Additionally, we compare
the gross output data from INDSTAT with country-level manufacturing GDP from the World Bank. The
countries included in the INDSTAT data account for approximately 94-96% of global GDP as reported
by the World Bank, depending on the year. Therefore, the coverage of our analysis is extensive. The
ratio of manufacturing GDP (from the World Bank) to gross output (from INDSTAT) is generally around
30% at the median, aligning well with the range reported by Dekle et al. (2008) at the country-level.
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2022c and IEA 2022b), on ETS coverage of different sectors from the European Union’s

transaction log, and on ETS future prices from the EEX. In addition, data on the state

aid expenditures from EU members are taken from the EU’s State Aid Scoreboard.18 All

these data are available for the period between 2005 and 2019.

The data and their level of aggregation have important implications for the scope of

the analysis, warranting a detailed discussion. First, unlike Shapiro and Walker (2018),

we treat the quantitative model as a three-country world, distinguishing between Ger-

many, RoEU, and RoW. We do so to account for Germany’s deep integration within the

EU, with its single market and common (climate) policies, such as the EU ETS. This

distinction allows us to recover separate developments of implicit carbon prices in each

region. Despite the EU having a common climate policy instrument with the EU ETS,

substantial national autonomy remains in setting the stringency of climate regulation for

each country, a topic we will explore in greater detail in Section 4. By contrasting implicit

carbon prices for Germany and RoEU, we can highlight the extent of differences and as-

sess whether there is truly a single climate policy within the EU. Overall, by separating

all German trading partners into groups of countries that are either highly integrated

with Germany or not, we can evaluate the significance of market and policy integration

with other countries for the development of German CO2 emissions.

Second, our sector classification has important implications for identifying and spec-

ifying the separate emission drivers in our quantitative model. Specifically, the model

focuses on within-sector changes and does not account for endogenous substitution across

sectors. Changes in the relative importance of different sectors are reflected as changes in

the Cobb-Douglas exponents βs
i (expenditure share driver). Using a rather broad sector

classification implies that composition shifts within sectors are not treated as changes in

expenditure shares. Instead, any emission development coming from within-sector com-

position shifts is captured by one of the other emission drivers.19 Conducting the analysis

at a more disaggregated sectoral level would provide a more accurate picture but would

also introduce more noise. For instance, using a finer sector classification would allow for

more variation in production technologies and impose fewer restrictions on the responsive-

18 The data can be downloaded under the following address: https://competition-policy.ec.europa.eu/
state-aid/scoreboard/scoreboard-state-aid-data en (last accessed on July 22, 2024).

19 In a decomposition analysis with German data, Rottner and von Graevenitz (2024) show that even
within narrowly defined 3-digits sectors, there may be substantial composition shifts giving rise to ag-
gregation bias when working with aggregate data.
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ness of output to emissions within 2-digit sectors. However, production and trade data at

the 3-digit sector-level, although available, are substantially more volatile. Even at the

2-digit level, small sectors such as tobacco production or printing and publishing display

unreasonably large variation in their production and trade patterns. Additionally, emis-

sions data are not available at the 3-digit level from the IEA. Given these considerations,

we conduct our analysis at the 2-digit sector level.

All parameters are estimated using firm-level data from the official German Manufac-

turing Census, which mandates participation. The Census generally covers all German

manufacturing plants with at least 20 employees, though different thresholds apply to

specific modules. We use data from our base year 2005.20 To estimate the three parame-

ters, we use information on firm-level revenues, energy use, CO2 emissions, capital stocks,

and costs.21

3.2 Parameter estimation

Parametrizing the model requires estimating three distinct sets of parameters at the

sector level: the output elasticity of emissions, αs, the elasticity of substitution, σs, and

the Pareto shape parameter, θs. In the following, we briefly describe the estimation of

each parameter, with further details provided in Online Appendix B.6.

To recover the sector-specific output elasticity of emissions, αs, we proceed in two

steps. First, we compute the output elasticity of energy by applying the factor share

approach, taking the energy cost share from revenues (Syverson, 2011). Second, we

divide this elasticity by an estimate of the elasticity of CO2 emissions to energy use,

20 Choosing 2005, the year the EU ETS was introduced, as a base year might seem an odd choice. An
earlier base year could potentially allow us to analyse the increase in climate policy stringency due the
EU ETS. Recovering this effect is challenging, however: First, firms’ expectations about future carbon
prices might have already influenced their emissions and abatement behaviour even before the EU ETS
took effect. Secondly, grandfathering of free permits under the EU ETS might have induced firms to
increase their emissions prior to its introduction. Additionally, the input-output tables we use are not
available prior to 2005, and the energy statistics in the German Manufacturing Census are less reliable
before 2005 due changes in reporting. Given these challenges, we chose 2005 as our base year.

21 While the Census itself does not contain information on plant-level CO2 emissions, it requires plants
to report their consumption of 14 different fuels plus electricity. We use these fuel consumption data
along with emission factors provided by the German Federal Environmental Agency (Umweltbundesamt,
2008, 2020a,b) to convert fuel consumption into CO2 emissions. Capital stocks are calculated using the
perpetual inventory method, as described by Lutz (2016).
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converting the energy output elasticity to an emissions output elasticity. Formally, the

two steps are summarised by

αs =
∂qs

∂zs
zs

qs
=
∂qs

∂es
× ∂es

∂zs
zs

qs
=

∂qs
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qs
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, (8)

where es denotes energy input.

The factor share approach to retrieve the output elasticity of energy – the numerator

of the last term in Eq. (8) – follows from static cost minimisation. Generally, such simple

index measures of output elasticities have been found to perform well (Biesenbroeck,

2007), but output elasticities obtained from this approach may be misspecified if there

are factor adjustment costs, as discussed in de Loecker and Syverson (2021). While these

costs are typically low for energy (as compared to labour, for instance), we mitigate any

potential bias by taking sector-level averages to smooth out idiosyncratic misalignments

arising from firms operating away from their long-run (desired) input level. We then

adjust the calculated output elasticity of energy by the emission intensity of sector-level

fuel mixes. For that purpose, we estimate the elasticity of CO2 emissions to energy use

separately for each sector in 2005 using log-log regressions of emissions on energy use at

the firm level – the denominator of the last term in Eq. (8).

To obtain sector-level elasticities of substitution between varieties, σs, we adopt an

approach from previous literature, measuring markups by calculating the ratio of revenues

to variable costs (see, e.g., Shapiro and Walker 2018, Antras et al. 2017 or Hsieh and Ossa

2016). Specifically, we follow Blaum et al. (2018) and use firm-level total revenues and

the sum of materials and labour expenditure plus 0.2 times the capital stock as a proxy

for the user cost of capital.22 Subsequently, we back out the elasticity of substitution

that rationalises these markups, given the imposed market structure: σs = (1−αs)/(1−

αs−µs), where µs represents the markup. Using this methodology, we calculate markups

averaging approximately 38% across German industrial sectors in 2005 (unweighted),

which is well in line with the estimate of 35% for Germany by de Loecker and Eeckhout

(2018).

22 This approach helps to operationalise the model relation wjL
s,p
j = (1−αs)(σs − 1)/σsRs

j , with Ls,p
j

denoting labour used in production and Rs
j being revenues in sector s and country j, by eliminating cost

components from the measurement of total input cost that are clearly not productive, such as marketing
cost.
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To estimate the Pareto shape parameter, θs, we leverage the fact that a Pareto distri-

bution of firm productivities implies that firm revenues also follow a Pareto distribution

with a shape parameter θs/(σs−1). Thus, we infer the underlying shape parameter of the

productivity distribution by studying the revenue distribution of firms. Following Gabaix

(2009), we estimate the shape parameter of the revenue distribution in each sector by

regressing the log of a firm’s revenue rank on the log of its revenues. We then calculate θs

by multiplying the estimate with (1−σs). Firm-level revenues are taken from the German

Manufacturing Census and our regressions are conducted for 2005. To mitigate bias due

to selection into exporting, following di Giovanni et al. (2011), we include only domestic

revenues in the regression. Moreover, consistent with previous research (Gabaix, 2009;

di Giovanni et al., 2011), we restrict our sample to firms in the top decile of the revenue

distribution, as the Pareto distribution best fits the right tail of firm distributions.23 To

further mitigate biases, we adjust the sales rank by subtracting one-half before taking

the log, as proposed by Gabaix and Ibragimov (2011). Typically, estimates from the

rank-revenue regression are close to minus unity, as predicted from Zipf’s law.

Our parameter estimates are summarised in Table 2. Basic metals, non-metallic min-

eral products, paper products and chemical products exhibit the highest output elasticity

of emissions, αs. As expected, elasticities of substitution σs are generally lower for sectors

with arguably differentiated products (such as food, chemicals) and higher for sectors in

which products are more homogeneous (like printing and reproduction of media, basic

metals). Related to that, the estimates of θs, describing the dispersion of productivity

within each sector, show that sectors like food and chemicals are relatively heterogeneous

(small θs), whereas the sectors paper products, basic metals, and textiles & apparel are

relatively homogeneous (large θs).

Our findings generally show similar patterns and are fairly similar in magnitude to

other estimates found in the literature, though some sectors are not directly comparable

due to different sector aggregations. For αs, our estimates resemble those of Shapiro and

Walker (2018) despite their focus on local pollutants, whereas we specifically concentrate

on CO2 emissions.24 Our productivity dispersion parameters are similar in magnitude

23 We conduct visual checks to ensure that, indeed, for these firms, the relationship between firm rank
and size is approximately linear.

24 Even if local pollutants and CO2 are co-pollutants, similar parameter values do not necessarily occur.
For local pollutants, end-of-pipe technologies such as filters reduce emissions without an impact on CO2
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TABLE 2: Parameter values

NACE 2 Code Description αs σs θs
10 to 12 Food, tobacco, beverages 0.020 2.512 2.102
13 to 15 Textiles, wearing apparel, leather 0.019 4.442 7.124
16 Wood products 0.038 4.767 6.442
17 and 18 Pulp, paper, publishing 0.058 10.270 16.871
20 and 21 Chemicals, pharmaceuticals 0.041 3.101 2.605
22, 31 and 32 Rubber, plastics, and n.e.c. 0.024 4.323 5.483
23 Non-metallic minerals 0.078 4.563 6.841
24 Basic metals 0.063 7.396 8.187
25 to 28, 33 Metal products, electronics, machinery 0.010 6.194 7.063
29 to 30 Vehicles, other transport, n.e.c. 0.008 6.133 5.147

Notes: All parameter values are estimated using data from the German Manufacturing Census for the
year 2005. αs denotes the output elasticity of emissions. σs represents the elasticity of substitution
between varieties, and θs the shape parameter from the Pareto distribution from which firms draw their
productivity. DOIs: 10.21242/43531.2018.00.03.1.1.0; 10.21242/42111.2021.00.01.1.1.0;
10.21242/42221.2021.00.01.1.1.0

and display similar sectoral patterns as those reported by Caliendo and Parro (2015)

which are widely used in the literature.

emissions. In contrast, the abatement options for CO2 (energy savings, output reductions) also reduce
local pollutant emissions.

21

https://doi.org/10.21242/43531.2018.00.03.1.1.0
https://doi.org/10.21242/42111.2021.00.01.1.1.0
https://doi.org/10.21242/42221.2021.00.01.1.1.0


4 Implicit carbon prices in Germany and the EU

4.1 Historical developments of emission drivers

Quantifying the model allows us to recover the historical developments of the derived

emission drivers. In the following discussion, we focus on the development of implicit

carbon prices.25

Figure 2 shows the development of implicit carbon prices in the considered regions as

compared to base year 2005. Obtaining sector-specific implicit carbon prices, the graph

presents revenue-weighted averages across two types of sectors: those mostly covered by

the EU ETS and the remaining non-ETS sectors.26 Revenue weights are assigned based

on the base year 2005 and differ across regions.

The upper left panel, Figure 2(a), illustrates the development for German manufac-

turing. The implicit carbon price in both sector types follows similar trends; between

2005 and 2015, however, it decreased more substantially in ETS sectors (by 42.9%) than

in non-ETS sectors (by 29.8%). By the end of our study period in 2019, the implicit car-

bon price for non-ETS sectors was slightly higher than in 2005, whereas for ETS sectors,

it remained considerably lower. The upper right panel, Figure 2(b), shows a qualitatively

similar pattern in the RoEU, though with a weaker downward trend and with an initial

increase in implicit carbon prices for ETS sectors. In contrast, the lower left panel, Figure

2(c), reveals that implicit carbon prices in RoW have changed little since 2005. There is

some movement in the less emission-intensive sectors without a clear trend, while implicit

carbon prices in the more emission-intensive sectors have barely changed at all.

A key advantage of our approach is that we can infer implicit carbon prices from

our quantitative analysis without the need to separately quantify all individual effects

that comprise the direct and indirect costs of emitting CO2. This feature, however, also

prevents us from isolating all key drivers behind the development of implicit carbon prices.

Nevertheless, we discuss driving forces of these developments in implicit carbon prices

carefully in the following. For both Germany and the RoEU, the decline in implicit carbon

25 The historical developments of expenditure shares are shown in Online Appendix C.1, whereas, as
mentioned earlier, the historical values of the competitiveness drivers are not meaningful for interpreta-
tion.

26 Sectors mostly covered by the EU ETS are NACE 17+18: pulp, paper and publishing; NACE 20+21:
chemicals and pharmaceuticals; NACE 23: other non-metallic mineral products and NACE 24: metal
production. Changes in implicit carbon prices for individual sectors are reported in Online Appendix C.2.
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(a) Germany (b) RoEU

(c) RoW (d) ETS futures

Figure 2: Development of the Implicit Carbon Price and ETS Future Prices

Notes: ETS sectors comprise NACE codes 17, 18, 20, 21, 23 and 24. Non-ETS sectors comprise NACE
codes 10-16, 22, and 25-33. Sector-level implicit carbon price developments are aggregated using 2005,
country-specific revenue-weights. Annual averages of one year ETS futures are calculated using
transaction volume weights. Sources: own calculations based on INDSTAT, IEA, and EEX data.
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prices for ETS sectors visibly mirrors the development of EU ETS futures, as shown in

the lower right panel, Figure 2(d). This correlation holds true for both the initial decline

– with EU ETS futures falling by 73.6% from 2005 to 2017 – and the increase in the last

years of our study period. While this link to the EU’s main climate policy instrument is

unsurprising and reassuring, it is notable for two reasons.

First, the decrease in implicit carbon prices is reflected not only in sectors covered

by the EU ETS but also in less emission-intensive sectors, particularly pronounced in

Germany and also evident in the RoEU. This similarity across sectors may stem from

firms covered by the EU ETS passing on costs, as suggested by Hintermann et al. (2020)

for manufacturing or Hintermann (2016) for the power sector, indirectly affecting firms in

non-ETS sectors. For instance, the pass-through of costs in electricity generation exposes

manufacturing firms using electricity to the ETS price.

Second, carbon prices under the EU ETS are not the only factor captured. The

implicit carbon prices also reflect the evolution of energy prices and various command-

and-control regulation, such as the promotion of renewable energies and combined heat

and power (CHP), technology standards under directives like the large combustion plant

directives (LCPD), emission reporting requirements introduced by the E-PRTR, and

mandates for energy management systems or energy audits for large companies.

In the following sections, we investigate the role of the EU ETS, energy prices, and

other factors using descriptive regression analysis. We further discuss the underlying

reasons for differences in implicit carbon prices between Germany and RoEU.

4.2 Explaining developments in implicit carbon prices

To what extent is the initial decrease in implicit carbon prices in Germany and RoEU

associated with declining prices under the EU ETS, as opposed to changes in fuel prices

and command-and-control measures? To disentangle the relative importance of these

factors, we employ a simple regression analysis and focus on the implicit carbon price
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developments within the EU, with i ∈ {DE,RoEU}.27 Specifically, we estimate the

following equations:

t̂si,y = βf p̂
s,energy
i,y + βetsp̂

s,ets
i,y + µi,y + ϵsi,y (9)

µi,y = γetsp̂
ets
i,y + ψi,y, (10)

where the subscript y denotes the years of the sample between 2005 and 2019. The ex-

planatory variable ps,energyi,y reflects the energy prices faced by sector s in country i at time

y. While industrial fuel prices do not vary across sectors within a given country-year com-

bination, variation across sectors is introduced by the different fuel mixes used. Sectors

that more heavily rely on natural gas, e.g., are more exposed to gas price developments

than other sectors.

Similarly, ps,etsi,y captures the effective sector-specific carbon price expectation under

the EU ETS. Since the EU constitutes a single carbon market, the ETS-price only displays

variation over time. However, sector- and country-level variation emerges from sectors

and countries using fuel mixes with varying emission intensities, as well as from sectors

being covered to different extents under the EU ETS in different countries and at different

times. Due to the installation-specific inclusion threshold of 20 MW in the industrial

sector, not all emissions from a given sector are regulated. These differences are captured

by ps,etsi,y , which reflects the effective average price in EUR/kWh in a sector, country, and

year, given the emission intensity of the fuel mix and the ETS coverage.

To capture the perceived stringency of climate policy, we use ETS price expectations

instead of spot market prices. These expectations are more influential in driving firms’

adjustment responses than spot market prices. Some ETS price developments over the

period are merely artefacts of regulatory design (e.g., the drop to zero in 2007 due to

banking restrictions across ETS phases). We use a transaction volume-weighted average

of one-year future prices from the EEX.28 Both the development of energy prices and

effective ETS-prices for different sectors are shown in Online Appendix B.7 and B.8.

General developments in EU ETS and energy prices, as well as national cross-sectoral

command-and-control measures, are captured by the country-by-year fixed effects µi,y.

27 RoW is comprised of very heterogeneous countries for which the estimation of average effects in such
a regression is less meaningful.

28 In Online Appendix C.3, we report regression results using ETS spot prices instead. The point
coefficient estimates and R2 value are substantially smaller when using spot market prices.
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We decompose this fixed effect in a second regression, Eq. (10), to separate the EU ETS

from national regulation (ψi,y). Any other command-and-control measures that vary by

country, sector, and year are included in the error term ϵsi,y. We abstain from clustering

standard errors at the sector level due to the low number of clusters (see Cameron and

Miller, 2015). Since the dependent variable is an index (equal to 1 in base year 2005),

we also transform our explanatory variables ps,energyi,y and ps,etsi,y into indices. Thus, we

correlate the development in implicit carbon prices with the development in energy and

carbon prices. This transformation has a similar, albeit not identical, effect to using

sector fixed effects.

The results are shown in Table 3. As indicated in column (1), energy prices strongly

correlate with implicit carbon prices: A doubling of energy prices compared to 2005 (i.e.,

an increase in a sector’s energy price index by 1) is associated with a 49 percentage point

increase in implicit carbon prices. In contrast, carbon prices under the EU ETS exhibit

a small negative correlation when identified from sectoral variation. This suggests that

the EU ETS is mostly captured by the country-by-year fixed effects.

TABLE 3: Determinants of the development of implicit carbon prices

t̂si,y µi,y

(1) (2)

p̂s,energyi,y 0.491∗∗∗

(0.106)
p̂s,etsi,y -0.055∗∗∗ 0.473∗∗∗

(0.019) (0.025)

N 300 300
R2 0.37 0.55

Notes: The regressions include observations from 2005–2019. Dependent variables are indexed and are
1 in 2005. The regression in column (1) is run with country by year fixed effects. Column (2) explains
the fixed effect estimated in column (1). Standard errors are displayed in parentheses. ∗, ∗∗ and ∗∗∗

indicate significance at 10%, 5% and 1%, respectively.

This is confirmed in Column (2), which shows a highly significant relationship be-

tween the ETS price and the fixed effects. Carbon prices under the EU ETS exhibit

a correlation with implicit carbon prices similar to that of energy prices. This coeffi-

cient captures both the direct regulation under the EU ETS and the indirect regulation

through rising electricity prices, to the extent permit prices might have been passed on
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by the power sector, as suggested by Fabra and Reguant (2014) and Hintermann (2016).

Approximately half of the country-by-year variation in implicit carbon prices is explained

by the EU ETS, indicating that other policies, e.g., command-and-control measures, also

play a substantial role.

During our observation period, permit prices under the EU ETS did not increase

or decrease monotonically. Therefore, it is reassuring in terms of the informative value

of our model that we observe a strong relationship between the country-by-year fixed

effects and permit prices. This relationship is not merely driven by both factors moving

continuously up or down. In fact, plotting the estimated µi,y from the regression reveals

a pattern over time that closely mirrors the development of permit prices under the EU

ETS, as illustrated in Figure 3.

Figure 3: Development of Estimated Country-by-Year Fixed Effects from Explaining
the Historical Implicit Carbon Prices, and of One-Year ETS Future Prices

4.3 Differences in implicit carbon prices across regions

We have seen in Figure 2 that the implicit carbon prices we back out from the model

exhibit a similar trend in Germany and RoEU. This similarity extends to the non sector-

specific country-by-year component, depicted in Figure 3. The common trends are rea-

sonable given the common policy framework within the EU: The EU ETS applies to

all member states, as do many command-and-control measures. For instance, the Large

Combustion Plant (LCP) Directive (2001/80/EC) sets technology standards and emis-

sion limits (for local pollutants) for large combustion plants with a capacity of more than
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50 MW across the EU. Similarly, emissions reporting requirements under the E-PRTR

must be met by all member states (regulation no. 166/2006).

Yet, our findings indicate that the German implicit carbon price has declined at a

steeper rate than in the rest of the EU compared to its 2005 level. This trend is observed

in both ETS and non-ETS sectors.29 Are such differing developments reasonable given

the many common policies in place in the EU? At least four explanations come to mind:

First, the common European policy framework allows member states some leeway in

the exact policy implementation. For example, in case of the EU ETS, member states

decided on the amount and rules for allocating emission allowances through national

allocation plans prior to phase 1. While the plans were reviewed by the European Com-

mission, this decentralised approach arguably led to cross-country differences in climate

policy stringency within the EU. Additionally, member states have the opportunity to

compensate firms in certain sectors for electricity price increases due to the EU ETS.

While most member states take advantage of this opportunity, the exact implementation

of the compensation scheme (and the size of eligible sectors) differs across member states.

In 2018, Germany had by far the largest number of beneficiaries in terms of installations

(891), followed by France (296) and Spain (151) (EC, 2019).30 Generally, countries are

not restricted from exceeding the requirements set by the EU. The UK, for instance, has

supplemented the EU ETS with a price floor since 2013.

Second, even if EU member states follow a common policy, the impact of that pol-

icy may differ across countries. For example, the LCP Directive sets common emission

limits for local pollutants (SO2, NOx, dust) from large combustion plants. Before the

LCP, there was substantial variation in the emission intensity of individual plants across

Europe, with plants especially in Eastern European countries being substantially more

emission-intensive than, for instance, German plants. The LCP Directive led to large

emission reductions in local pollutants, especially in the most emission-intensive coun-

tries (e.g., Cyprus, Estonia, Greece, Romania, Slovenia, Spain), while having a very small

impact in Germany over the period from 2004 to 2015 (EEA, 2019). These reductions

29 We are silent on the absolute level of regulatory stringency, however. It is possible that Germany
started out with more stringent climate policies than other EU countries, e.g., in form of higher energy
prices or environmental standards. In that case, our results imply a convergence of German policy toward
the climate policy stringency of the rest of the EU. We return to this point in section 6.

30 In 2018, Germany spent about 18% of allowance auction revenues on indirect cost compensation,
compared to almost 20% in the Netherlands, 32% in France and 29% in Finland. The UK, in contrast,
spent less than 4%, whereas Spain spent 12% of auction revenues in the same year.
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were partly achieved through the shutdown of the most inefficient plants and reduced

coal usage, also contributing to reduced CO2 emissions. The LCP requirements became

binding between 2010 and 2014, consistent with a smaller decline in implicit carbon prices

for RoEU compared to Germany, where most facilities were already compliant.

Third, member states can adopt unilateral policies. A prominent example is Ger-

many’s heavy subsidies for the expansion of renewable energies under the Renewable En-

ergy Act since 1990. This expansion has reduced the CO2 emissions intensity of the power

sector in Germany and thus indirect CO2 emissions in manufacturing. The feed-in tariffs

used in this scheme were financed through a surcharge on electricity prices.31 To mitigate

any adverse impact on the competitiveness of German industrial firms, exemptions from

paying the Renewable Energy Surcharge were introduced for electricity-intensive firms

and expanded over the period under study. Exemptions from paying electricity grid

charges were also expanded for large electricity users in 2011. These exemptions primar-

ily affect sectors regulated under the EU ETS. Therefore, this policy development – and

especially the increase in the Renewable Energy Surcharge over the period – is consistent

with the growing divergence in implicit carbon prices between ETS and non-ETS sectors

in Germany after 2012. The expansion of exemptions from different policy instruments

also aligns with the stronger decrease in implicit carbon prices in Germany as compared

to RoEU.

Fourth, industrial energy and electricity prices differ across countries due to funda-

mentally different energy mixes in the industrial and power sectors: France relies more on

nuclear power than Germany, Poland more on coal, Estonia on oil, Denmark on renew-

ables, etc. Against this background, the difference in the development of implicit carbon

prices between Germany and the rest of the EU seems plausible.

5 Counterfactual analysis

5.1 Decomposing CO2 emissions from German manufacturing

How important has the decrease in the implicit carbon prices been for the emissions devel-

opment in German manufacturing? How significant is the divergence in the development

31 The German Renewable Energy Surcharge increased from 2 ct/kWh in 2010 to 6.2 ct/kWh in 2014,
peaking at 6.9 ct/kWh in 2017.
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between RoEU and German (and RoW) implicit carbon prices in shaping German indus-

trial emissions? Are changes in competitiveness a major driver of emissions in German

industry? To understand the relative contributions of different driving forces, we run

counterfactuals where we allow all determinants of emissions in the model to follow their

historical paths except one. By isolating and shutting off each driver of German industrial

emissions one by one, we can assess the contribution of each driver to the actual emission

development.

The results of this exercise are shown in Figure 4.32 The red line represents the

actual development in German industrial CO2 emissions, indexed to base year 2005. All

other lines depict counterfactual emissions where one emission driver is held constant

at its 2005 value. The upper panel, Figure 4(a), focuses on the roles of the implicit

carbon price developments, while the lower panel, Figure 4(b), examines the role of the

development in competitiveness and expenditure shares. If counterfactual emissions are

higher than actual emissions, it indicates that the development of the emission driver held

constant has contributed to a decline in emissions. Conversely, if counterfactual emissions

are lower than the actual ones, it suggest that the development of the respective emission

driver has contributed to an increase in emissions.

Mimicking the decline in implicit carbon prices documented in the previous sub-

sections, the dashed black line in Figure 4(a) shows that, except in the early years,

German industrial emissions would have been lower than they actually were if everything

had followed its historical path except for German implicit carbon prices (t̂sGER,y = 1 ∀ y).

By 2019, in the counterfactual, German emissions would have been 35% lower than in

2005, while in reality they declined by about 20%. Thus, the development in German

implicit carbon prices has contributed to an increase in industrial emissions.

The difference between the counterfactual with a constant implicit carbon price and

actual emissions is not driven by strong differences in growth, but rather by the Ger-

man sector composition. In the counterfactual, Germany would have grown less in very

emission-intensive sectors (specifically metals, and pulp and paper, where the elasticity

of substitution is large, as well as chemicals). Conversely, labour would have been shifted

toward less emission-intensive sectors (like machinery, cars, and textiles).

32 We check the residuals from running the trust-region-reflective algorithm and find them to be ex-
tremely small throughout. When setting all emission drivers to their historic values, the model accurately
recreates the actual emission development.
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(a) The role of implicit carbon prices

(b) The role of competitiveness and expenditure shares

Figure 4: Decomposition of the Actual German Industrial CO2 Emissions Development

Notes: One by one the driving forces are held constant at their 2005 values while the other driving
forces follow their historical paths
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Given the single market in the EU, policy developments in other EU member states

might significantly impact German emissions development. The blue line in Figure 4(a)

(which is covered almost entirely by the black line) shows that this is indeed the case.

Holding constant the RoEU’s implicit carbon prices in addition to Germany’s (t̂sRoEU,y =

t̂sGER,y = 1 ∀ y) results in a smaller decrease in emissions compared to holding constant

only German implicit carbon prices. In 2015 and 2016, the difference amounts to roughly

7 percentage points.

The fact that RoEU’s implicit carbon prices decreased simultaneously mitigates the

emission-increasing effect of the German development in implicit carbon prices. However,

in terms of magnitude, the development in RoEU’s implicit carbon prices is markedly

less important than the development in German implicit carbon prices. In contrast, ad-

ditionally holding constant the implicit carbon price development in RoW barely changes

counterfactual emissions, as shown in the solid black line in Figure 4(a). In Online Ap-

pendix C.6, we demonstrate that this is not due to a lack of significant changes in implicit

carbon prices in RoW (as shown in Figure 2). Rather, it is because developments in im-

plicit carbon prices in RoW generally matter less for German emissions, given the lower

level of market integration.

Our finding suggests that the differences in implicit carbon prices within the EU,

documented in the last section, are significant for the emissions development. Given the

small distance between EU countries and the high degree of market integration, even

comparatively small regulatory differences might have large effects on production shifts,

especially in sectors producing relatively homogeneous products. In the next subsection,

we examine how German industrial emissions would have developed had the implicit

carbon price in RoEU followed exactly the same path as in Germany.

The developments of the different competitiveness drivers (net of implicit carbon

prices) also play an important role, as shown in Figure 4(b). Specifically, our results

indicate that German competitiveness decreased over time. Without that loss in com-

petitiveness, German production and hence German emissions would have increased, as

shown by the dotted black line. Accordingly, part of German production has been re-

placed by foreign production, thereby reducing the emissions occurring in Germany.

The impact of competitiveness developments in RoEU is also important for the de-

velopment of industrial emissions in Germany. From 2013 onward, increased RoEU com-
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petitiveness has contributed to decreasing German industrial emissions, as visible in the

solid black line. The competitiveness of RoW generally increased as well. In a counterfac-

tual where only RoW competitiveness is held constant at 2005 values, German emissions

would have increased due to production shifting toward Germany, as shown in the dashed

blue line.

Finally, the counterfactual scenario focusing on the role of the expenditure share

development (solid blue line) suggests that worldwide consumer spending shifts have

barely affected German emissions.

5.2 Equating German and EU implicit carbon prices

To understand the importance of intra-European differences in the development of reg-

ulatory stringency captured by the implicit carbon prices, we run a counterfactual sce-

nario where the implicit carbon prices in Germany and RoEU follow identical paths,

t̂sRoEU,y = t̂sGER,y. In principal, this scenario can impact German emissions through two

channels: First, there is no change in the relative difference of implicit carbon prices

anymore; a harmonisation occurs. Second, there is a change in stringency in one re-

gion. To focus on the first channel and isolate the effect of relative price differences on

German emissions, we assume that RoEU’s implicit carbon price would have followed

the same trajectory as that in Germany.33 For RoEU, the counterfactual conflates the

harmonisation of climate policies with a decline in climate policy stringency.

Results for this scenario are shown in Figure 5. Figure 5(a) depicts the counterfactual

emissions in Germany, Figure 5(b) in RoEU, and Figure 5(c) in RoW.34

In the years prior to 2009, equating the implicit carbon price developments makes

little difference to German emissions since developments in implicit carbon prices were

very similar in RoEU and Germany during this period. However, in subsequent years,

German emissions would have been up to 9 percent lower compared to base year 2005

(most notably in 2015 and 2018), if the RoEU experienced the same changes in implicit

carbon prices as Germany. In this scenario, the metals sector in Germany would have

33 In Online Appendix C.5, we present results for the alternative counterfactual scenario where German
implicit carbon prices follow the path of those in RoEU.

34 Online Appendix C.4 provides the according counterfactual scenario separately for the metals and
paper sectors.
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(a) Emissions in Germany (b) Emissions in RoEU

(c) Emissions in RoW

Figure 5: Counterfactual with RoEU Implicit Carbon Prices Following the German
Path with all other Emission Drivers Taking on their Historical Values

Notes: All driving forces take on their historical value, except the implicit carbon prices whose
development varies over counterfactuals.

contracted substantially more than it actually did by 2019, driving much of the decline

in emissions.

The EU displays opposite patterns: Had the RoEU experienced the same change in

implicit carbon prices as Germany, emissions would have been higher than they actually

were. The relative difference between actual and counterfactual emissions is larger than

for Germany, amounting to up to 17 percent in 2015. Therefore, at the EU-level, har-

monising the development of implicit carbon prices would have led to more emissions.

RoEU emissions would have increased by more than German emissions would have de-

creased. This is because the RoEU is larger in terms of emissions, which are affected
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by the implicit carbon prices, and because German emission intensity in many sectors,

including metals and non-metallic minerals, was lower than the EU average in 2005.35

For the emissions of RoW, the implicit carbon price equality in Germany and RoEU

hardly matters.

6 Discussion

Our findings show that changes in relative implicit carbon prices, alongside changes in

competitiveness, significantly influence the evolution of CO2 emissions. Specifically, im-

plicit carbon prices have decreased in Germany compared to RoEU.

In the title, we ask whether Germany is becoming the European pollution haven. Our

results are consistent with such a scenario. However, our analysis rests on the effect of

changes in implicit carbon prices and is silent on the absolute levels in each region.

The steeper decline in implicit prices in Germany compared to RoEU could be at-

tributed to a “catching up” effect if Germany initially had higher implicit carbon prices.

This interpretation holds some truth, as Germany has historically had higher electricity

prices than the EU average and stricter policies on co-pollutants from burning fossil fuels,

such as SO2 and particulate matter, harmonised with the LCP Directive. Indeed, at the

beginning of the study period, Germany was less emission-intensive than the EU average

in several energy-intensive sectors (see Figure 6).

With this interpretation, our results may illustrate the “first-mover-advantage” often

cited by policymakers aiming to develop green lead markets. In a world where climate

policies become more common across countries over time, countries with low emission

intensity in production have a stronger initial position and can benefit from these early

policy steps. Consequently, our findings are relevant beyond the EU context in global

markets. They may reflect the allocative efficiency properties of an ETS, as production

shifts to locations where emission intensities are lower.

The allocative efficiency of an ETS, which implies that emission reductions occur

where they are cheapest (or production takes place where it is associated with the least

emissions), is a feature that makes it popular among economists. As discussed in Sec-

35 In Online Appendix B.9, we provide information on sector-level emission intensities across regions.
The net increase in EU emissions would, of course, also have impacted the ETS price, which would likely
have mitigated the increase in emissions.
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tion 4.3, however, there are overlapping policies affecting implicit carbon prices that can

undermine this allocative efficiency.

When assessing the development of emission intensity by sector and region over time,

we observe in Figure 6 that while Germany initially had low emission intensities compared

to the RoEU average, Germany’s emission intensities, e.g., in the metals sector (NACE

24), were higher than in RoEU at the end of the period. Additionally, emission intensities

declined faster in several sectors in the RoEU than in Germany.

Figure 6: Developments from 2005 to 2019 in Emission Intensity by Region and Sector

Notes: The figure displays emission intensities in gCO2/e of output by sector and region for the years
2005 and 2019. The figure is based on data from the IEA (emissions) and UNIDO (output).

Ideally, through the ETS, we would expect emission intensities across countries to con-

verge as inefficient production sites reduce activities. Overlapping policies can interfere

with this development by providing heterogeneous marginal incentives across countries

and sectors.36

Germany has a history of compensating particularly energy-intensive industries for

rising energy prices due to climate policy. The EU Commission’s state aid scoreboard

consistently places Germany among the top five spenders on programs labelled as “Aid

for Environmental Protection”.37 Figure 7(a) demonstrates that between 2014 and 2019,

Germany’s state aid expenditures in this category exceeded the combined expenditures

36 In Online Appendix B.9, we separate RoEU countries into individual EU member states and show
that manufacturing emission intensities have indeed become less heterogeneous over time. However,
Germany’s position in the ranking has declined, which is consistent with interference with the ETS
through unilateral policies.

37 This data source defines the EU excluding the UK.
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of RoEU. These programs include support schemes such as electricity price compensation

and exemptions from renewable energy surcharges over the study period, predominantly

benefiting the energy-intensive sectors. Such programs are motivated by concerns about

competitiveness and demonstrate Germany’s commitment to maintaining its position as

an industrial hub. By supporting stringent common climate policies while having the

fiscal ability to provide relief to domestic industry, Germany’s approach could be viewed

as a “beggar-thy-neighbour” industrial policy within the EU context.

(a) Environmental protection & energy savings (b) Total

Figure 7: State aid in constant prices in Germany and RoEU.

Notes: The figure shows the development of state aid expenditures from Germany and the rest of the
EU, excluding the UK. Panel (a) collects information on the state aid measures with the objective of
environmental protection, including energy savings, panel (b) on all state aid measures. Constant
prices adjust for the effects of inflation. Source: EU State Aid Scoreboard.

Also in terms of total expenditures, Germany holds a substantial and growing share.

As shown in Figure 7(b), total state aid granted by Germany increased by a factor of

roughly 2.5 between 2005 and 2019 (in constant prices), compared to growth factor of

roughly 1.8 in the rest of the EU.

Our results highlight that the impact of inner-European differences in implicit carbon

prices on production allocation is important. With substantial heterogeneity in the fiscal

capability of member states, the distortionary effects of such policies could undermine the

cohesion of the EU, challenging the “Just Transition” (EU Commission). Against this

background, it is unlikely that the increase in German industrial emissions is efficient.

Similar effects are conceivable in other regions of the world where countries are closely

integrated yet heterogeneous in their fiscal capabilities.
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7 Conclusion

In contrast to the broader EU trend, Germany’s industrial CO2 emissions have declined

at a significantly slower rate, raising questions about the underlying drivers. Using a

quantitative trade and environment model, we show that this disparity is partly driven

by regional differences in the development of implicit carbon prices – a comprehensive

measure that includes all factors influencing CO2 costs. Specifically, our findings indicate

that Germany’s implicit carbon price declined significantly from 2005 to 2017 before rising

again toward the end of our study period. While implicit carbon prices also declined in the

rest of the EU, the decrease was less pronounced than in Germany. These trends generally

follow the EU ETS permit prices and correlate with fluctuations in fuel prices, with the

remaining variation suggesting a role for overlapping national policies. We demonstrate

that this divergence in implicit carbon prices has significantly impacted the allocation

of industrial CO2 emissions. Had firms across the EU faced the same development of

implicit carbon prices as in Germany, German emissions would have been substantially

lower, while industrial emissions in the rest of the EU would have been higher.

Our analysis suggests that Germany’s relatively steeper decline in implicit carbon

prices has attracted more CO2 emission-intensive production, potentially making it a

European pollution haven. However, since our approach does not reveal absolute levels

of implicit carbon prices, it remains unclear whether Germany reduced implicit carbon

prices more from a comparable baseline or if it sought to level the playing field by lowering

carbon prices more steeply from a higher initial level. The answer is likely a combina-

tion of both. In 2005, German industrial production was generally less carbon-intensive

than in most other EU member states, reflecting earlier stringent regulation. Thus, the

stronger decrease in implicit carbon prices in Germany may partly reflect convergence

induced by the ETS and other EU regulation, granting Germany a first-mover advantage.

At the same time, we also document Germany’s stronger use of state aid programs to

exempt and compensate energy-intensive industries. By 2019, German emission intensity

in several sectors had declined less than the EU average, suggesting that overlapping

national policies within the EU can undermine the allocative efficiency of the EU ETS.

Previous research on EU climate policy has largely focused on the risk of carbon

leakage and the countermeasures such as carbon border adjustments. In contrast, our

analysis highlights that strong trade ties and spatial proximity among EU member states
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make intra-EU production shifts highly likely in response to regulatory differences –

perhaps even more so than shifts to distant, less integrated economies. Therefore, closer

coordination of climate policies within the EU – including the alignment of state aid

schemes – is essential to fully realize the efficiency gains that make the EU ETS a cost-

minimizing policy tool. Such coordination would also enhance transparency and support

a just transition.
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Appendix

A The quantitative trade and environment model

This section of the Appendix provides details on our quantitative trade and environment model, including
the derivations of key relationships not covered in the main text. Specifically, we extend the model of
Shapiro and Walker (2018) by allowing for the more general firm-specific production function:

qsji(φ) = φ1−ξαs

(zsji)
αs

(lsji)
1−αs

, (A.1)

where ξ ∈ {0, 1} denotes an indicator, while the remaining notation follows as introduced in the main
text. As in Shapiro and Walker (2018) and Anouliès (2017), we assume ξ = 1 in the main text and
specify the corresponding production function in Eq. (2). An often-used alternative with ξ = 0 (e.g.
Egger et al., 2021) is included in the following generalized model presentation.1

We show that the choice of ξ does not qualitatively alter any key theoretical or numerical results,
which is reassuring given the different model choices in the literature. However, it does have implications
for the trade elasticity, as this includes αs when ξ = 1.

A.1 Optimal firm behaviour subject to entry

Given utility in Eq. (1), an individual firm with productivity φ located in country j faces demand for its
unique variety within sector s from country i as

qsji(φ) =
psji(φ)

−σs

(P s
i )

1−σs E
s
i , (A.2)

where Es
i (P

s
i )

σs−1 is the market size of country i with P s
i denoting the standard CES-price index of

sector s in country i and Es
i country-i’s total expenditures on varieties in sector s. Country-sector-

specific expenditures are determined as a constant share βs
i of total revenues Ri net of transfers for trade

deficits NXi, i.e. E
s
i = βs

i (Ri −NXi).
Subject to Eqs. (A.1), (A.2) and firm profits in Eq. (3), we derive the profit-maximising price of this

firm as

psji(φ) =
σs

σs − 1
τsjic

s
j(φ), (A.3)

where (destination-independent) marginal production costs are denoted by:

csj(φ) =
cs0(t

s
j)

αs

(wj)
1−αs

φ1−ξαs with cs0 ≡ (αs)−αs

(1− αs)−(1−αs) > 0. (A.4)

Making use of Eqs. (A.2)-(A.4), we can specify sold quantities as:

qsji(φ) =

[
σs

σs−1τ
s
jic

s
0(t

s
j)

αs

(wj)
1−αs

]−σ

(P s
i )

1−σs Es
i φ

σ(1−ξαs) (A.5)

and can express firm revenues as:

rsji(φ) ≡ psji(φ)q
s
ji(φ) =

(
psji(φ)

P s
i

)1−σs

Es
i . (A.6)

Firm profits given by Eq. (3) can be rewritten as

πs
ji(φ) = rsji(φ)− τsjic

s
j(φ)q

s
ji(φ)− wif

s
ji =

rsji(φ)

σs
− wif

s
ji. (A.7)

1 Rationalizing the production technology in Eq. (A.1) based on a specific abatement technology (see Copeland
and Taylor, 1994, 2003), ξ = 1 corresponds to the assumption that output is sacrificed to reduce emissions. In
contrast, ξ = 0 corresponds to using labour input for abatement.
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Profit maximisation leads to optimal variable labour input demand of:

lsji(φ) = (1− αs)cs0

(
tsj
wj

)αs

φ−(1−ξαs)qsji(φ), (A.8)

while generated emissions are determined as:

zsji(φ) = αscs0

(
wj

tsj

)1−αs

φ−(1−ξαs)qsji(φ). (A.9)

From Eq. (A.9), we can finally compute emissions intensity (per physical quantity) as:

isji(φ) ≡
zsji(φ)

qsji(φ)
= αscs0

(
wj

tsj

)1−αs

φ−(1−ξαs). (A.10)

From these expressions, we can compare two firms of different productivity levels, generalizing Eq. (4)
in the main text as follows:

psji(φ1)

psij(φ2)
=

(
φ1

φ2

)−(1−ξαs)

,
qsji(φ1)

qsji(φ2)
=

(
φ1

φ2

)σs(1−ξαs)

(A.11)

rsji(φ1)

rsji(φ2)
=

(
φ1

φ2

)(σs−1)(1−ξαs)

,
isji(φ1)

isji(φ2)
=

(
φ1

φ2

)ξαs−1

, (A.12)

zsji(φ1)

zsji(φ2)
=

(
φ1

φ2

)(σs−1)(1−ξαs)

. (A.13)

Since αs ∈ (0, 1), the choice of ξ does not qualitatively alter the comparison, and the statements from
the main text generally apply.

A.2 The equilibrium conditions

In equilibrium, firm selection into destination markets is determined via zero cutoff profits conditions,
while two additional conditions need to be satisfied: the free entry condition and the labour market
clearing condition.

A.2.1 Zero cutoff profits conditions

Given knowledge of productivity φ, an individual firm decides to enter a specific market whenever it
can earn non-negative profits. The marginal firm located in j, entering market i and characterised by
cutoff productivity φs

ji, is implicitly determined by the zero cutoff profit condition πs
ji(φ

s
ji) = 0. Using

Eqs. (A.3)-(A.7), we can compute

φs
ji =

[
σs

σs − 1

τsjic
s
0(t

s
j)

αs

(wj)
1−αs

P s
i

(
σswif

s
ji

Es
i

) 1
σs−1

] 1
1−ξαs

, (A.14)

where every firm with φ ≥ φs
ji enters.

A.2.2 Free entry condition

The free entry condition requires that, within each sector, the fixed cost of drawing a productivity in
terms of labour equals the expected profits of doing so:

wjf
s
j =

∑
i

∫ ∞

φs
ji

πs
ji(φ)g(φ)dφ. (A.15)
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This can be rewritten using the expression for firm profits in Eq. (A.7), the specified Pareto distribution
in Eq. (5), the firm comparison in Eq. (A.12), and the relationship rsji(φ

s
ji) = σswif

s
ji as:

wjf
s
j =

(σs − 1)(1− ξαs)

θs − (σs − 1)(1− ξαs)

∑
i

(
bsj
φs
ji

)θs

wif
s
ji. (A.16)

We can further simplify this condition by substituting φs
ji using an alternative expression to Eq. (A.14).

To do so, we first need to define sector-specific bilateral expenditures, which satisfy Es
i =

∑
j X

s
ji. This

yields

Xs
ji ≡ [1−Gs

j(φ
s
ji)]M

s
j

∫ ∞

φs
ji

rsji(φ)
g(φ)

1−Gs
j(φ

s
ji)

dφ (A.17)

= Ms
jwif

s
ji

σsθs

θs − (σs − 1)(1− ξαs)

(
bsj
φs
ji

)θs

, (A.18)

where the second equality follows from the specified Pareto distribution in Eq. (5), firm comparison
in Eq. (A.12), and the relationship rsji(φ

s
ji) = σswif

s
ji. Reformulating this, we obtain an alternative

expression for the cutoff productivity level:

(
φs
ji

)θs

=
σsθs

θs − (σs − 1)(1− ξαs)

Ms
j

(
bsj
)θs

wif
s
ji

Xs
ji

. (A.19)

Finally, by inserting Eq. (A.19) in Eq. (A.16), we arrive at the rewritten free entry condition

wjf
s
j =

1− ξαs

θs
σs − 1

σs

Rs
j

Ms
j

, (A.20)

where Rs
j =

∑
i X

s
ji denotes the total revenues from sector s in country j. Note that sector-level revenues

and expenditures do not necessarily coincide; we define NXs
j ≡ Rs

j −Es
j as the net exports of country j

in sector s.

A.2.3 Labour market clearing condition

The labour market clearing condition states that

Lj = Ld
j with Ld

j =
∑
s

Ls,e
j + Ls,p

j + Ls,t
j + Ls,m

j + Lnx
j , (A.21)

where Lj and Ld
j denote country j’s total labour supply and demand, respectively. Here, Ls,e

j represents

the labour input used to pay the fixed entry cost, Ls,p
j the labour input for production, Ls,t

j the labour

used to pay the carbon tax, Ls,m
j the labour for market entry costs,2 and Lnx

j accounts for labour to pay
for trade deficits.

In detail, we can derive the individual components of labour demand as follows, occasionally utilizing
the free entry condition from Eq. (A.20) and the specified Pareto distribution in Eq. (5).

First, the labour input used to pay the fixed entry cost can be directly computed as:

Ls,e
j ≡ Ms

j f
s
j =

1− ξαs

θs
σs − 1

σs

Rs
j

ws
j

. (A.22)

Second, using Eq. (A.8), we calculate the aggregate labour input for production as

Ls,p
j ≡ Ms

j

∑
i

∫ ∞

φs
ji

τsjil
s
jig

s
j (φ)dφ = (1− αs)

σs − 1

σs

Rs
j

ws
j

. (A.23)

2 Both domestic firms and foreign exporters pay these fixed costs. Country j exporting firms, in turn, pay
fixed costs in foreign country i, which is accounted for in Lnx

i .
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Third, and similarly to Ls,p
j , the labour used for emission tax payments is computed as:

Ls,t
j =

tsjZ
s
j

wj
= αsσ

s − 1

σs

Rs
j

ws
j

, (A.24)

where we make use of Eq. (A.10) to derive aggregate sector-level emissions:

Zs
j ≡ Ms

j

∑
i

∫ ∞

φs
ji

τsjiz
s
jig

s
j (φ)dφ = Ms

j

wj

tsj
fs
j

αsθs

1− ξαs
(A.25)

Setting ξ = 1 gives Eq. (6) in the main text.
Fourth, we derive aggregate labour use for market entry using Eq. (A.18) and the relationship

Es
j =

∑
k X

s
kj as

Ls,m
j ≡

∑
k

[1−G(φs
kj ]M

s
kf

s
kj =

θs − (σs − 1)(1− ξαs)

σsθs
Es

j

wj
(A.26)

Fifth, we derive labour for transfer payments for trade deficits as residuum labour demand compo-
nent. To do so, we collect the four derived components of labour demand, employ labour market clearing
from Eq. (A.21) and use the following relationships Rj = Ljwj , NXs

j = Rs
j−Es

j , and NXj = Rj−
∑

s E
s
j .

This yields:

Lnx
j =

NXj

wj
−
∑
s

NXs
j

wj

(σs − 1)[θs + (1− ξαs)]

σsθs
. (A.27)

Given Eqs. (A.21)-(A.27), we can finally express the labour market clearing condition as

Lj =
∑
s

1

1− θs−(σs−1)(1−ξαs)
σsθs βs

j

1

wj

[
Rs

j

(σs − 1)[θs + (1− ξαs)]

σsθs
+ ηj

]
, (A.28)

with ηj ≡
∑

s

[
− θs−(σs−1)(1−ξαs)−σsθs

σsθs βs
jNXj −NXs

j
(σs−1)[θs+(1−ξαs)]

σsθs

]
.

A.3 Model formulation in changes

In the following, we express the equilibrium in terms of changes using the “exact hat algebra” by Dekle
et al. (2008). Consistent with Shapiro and Walker (2018), we assume throughout that f̂s

j = 1.

A.3.1 Equilibrium conditions in changes

We can express the free entry condition from Eq. (A.20) in terms of changes as

ŵj =
R̂s

j

M̂s
j

. (A.29)

To operationalize this, following Shapiro and Walker (2018), we rewrite Eq. (A.29) by replacing R̂s
j . To

do so, we use Rs
j =

∑
i X

s
ji =

∑
i λ

s
jiE

s
i , with λs

ji ≡ Xs
ji/E

s
i denoting the sector-specific expenditure

share of country i for country j’s products in sector s, computed from Eq. (A.18) as:

λs
ji =

Ms
j

(
bsj
)θs (

τsji
) −θs

1−ξαs
(wj)

−(1−αs)θs

1−ξαs
(
tsj
)−αsθs

1−ξαs
(
fs
ji

) (σs−1)(1−ξαs)−θs

(σs−1)(1−ξαs)∑
k M

s
k (b

s
k)

θs

(τski)
− θs

1−ξαs (wk)
− (1−αs)θs

1−ξαs (tsk)
− αsθs

1−ξαs (fs
ki)

(σs−1)(1−ξαs)−θs

(σs−1)(1−ξαs)

, (A.30)
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where k ∈ N is an alias for i and j. Expressing this in terms of changes, we derive the envisaged
alternative to Eq. (A.29) as:

ŵj =
∑
i

ζsji(b̂
s
j)

θs

(τ̂sji)
− θs

1−ξαs (t̂sj)
− αsθs

1−ξαs (ŵj)
− (1−αs)θs

1−ξαs (f̂s
ji)

1− θs

(σs−1)(1−ξαs)∑
k λ

s
kiM̂

s
k(b̂

s
k)

θs(τ̂ski)
− θs

1−ξαs (t̂sk)
− αsθs

1−ξαs (ŵk)
− (1−αs)θs

1−ξαs (f̂s
ki)

1− θs

(σs−1)(1−ξαs)

(A.31)

· β̂s
i

R′
i −NX ′

i

Ri −NXi
,

where ζsji ≡ Xs
ji/
∑

i X
s
ji denotes the share of country j’s production in sector s that is exported to

country i, and where we incorporate the relationship

Ês
i = β̂s

i Êi = β̂s
i

R′
i −NX ′

i

Ri −NXi
. (A.32)

We can express the labour market clearing condition from Eq. (A.28) in terms of changes as:

1 =
1−

∑
s

θs−(σs−1)(1−ξαs)
σsθs βs

j

1−
∑

s
θs−(σs−1)(1−ξαs)

σsθs βs′
j

∑s M̂
s
jR

s
j
(σs−1)[θs+(1−ξαs)]

σsθs + 1
ŵj

ηs
′

j∑
s R

s
j
(σs−1)[θs+(1−ξαs)]

σsθs + ηsj

 , (A.33)

noting that Rs′

j /ŵj = M̂s
jR

s
j from Eq. (A.29).

A.3.2 Emissions drivers

In addition to changes in implicit carbon prices t̂sj , as shown in the main text, we can specify the changes
in expenditure shares as

β̂s
i =

Ês
i

Êi

=
Ês

i
R′

i−NX′
i

Ri−NXi

, (A.34)

essentially reformulating Eq. (A.32). The changes in competitiveness, in turn, are computed based on

λ̂s
ji = X̂s

ji/Ê
s
i , together with Eqs. (A.14), (A.18), and(A.32), as:

Γ̂s
ji ≡ (b̂sj)

θs

(τ̂sji)
− θs

1−ξαs (f̂s
ji)

1− θs

(σs−1)(1−ξαs) (A.35)

= (t̂sj)
αsθs

1−ξαs
λ̂s
ji

M̂s
j ŵ

− (1−αs)θs

1−ξαs

j

(P̂ s
i )

− θs

1−ξαs

(
β̂s
i

ŵi

R′
i −NX ′

i

Ri −NXi

)1− θs

(σs−1)(1−ξαs)

While destination-specific price index data are generally not available, counterfactuals can be analysed
without measuring P̂ s

i . This is because, in the free entry conditions in changes in Eq. (A.31), the price
indices cancel out. Consequently, counterfactual emissions calculated using competitiveness measures
that omit price indices are equivalent to those obtained by incorporating accurate measures of com-
petitiveness drivers that include price indices. However, historical measures of domestic and foreign
competitiveness that exclude the price index information are not informative, and thus, we refrain from
interpreting them.
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B Data details

This part of the Appendix provides more details on the data used and evaluates data accuracy, where
possible. The Appendix also contains more details on the estimation of central model parameters and
additional summary statistics.

B.1 World regions in the analysis

Given the lack of reliable emissions data at the sector level, our analysis does not cover the full set of
countries around the world. The countries included in the analysis are visualised in Figure B.1.

Figure B.1: World Regions in the Analysis
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B.2 Concordance tables ISIC Rev. 3 – NACE 2

TABLE B.1: Concordance ISIC Rev. 3 – NACE 2

ISIC Rev. 3 Code Description NACE 2 Code
15 Food and beverages 10 and 11
16 Tobacco products 12
17 Textiles 13
18 Wearing apparel, fur 14
19 Leather, leather products and footwear 15
20 Wood products (no furniture) 16
21 Paper and paper products 17
22 Printing and publishing 18
23 Coke, refined petroleum products, nuclear fuel 19
24 Chemicals and chemical products 20 and 21
25 Rubber and plastic products 22
26 Non-metallic mineral products 23
27 Basic metals 24
28 Fabricated metal products 25
29 Machinery and equipment 28 and 33
30 Office, accounting and computing machinery 26
31 Electrical machinery and apparatus 27
32 Radio, television and communication equipment 26
33 Medical, precision and optimal instruments 26
34 Motor vehicles, trailers, semi-trailers 29
35 Other transport equipment 30
36 Furniture; manufacturing n.e.c. 31 and 32

Taken from the INDSTAT 2 metadata

B.3 Comparing IEA emissions data to emissions computed with the German
manufacturing Census

We take sector-level emissions from the IEA database “CO2 Emissions from Fuel Combustion Statistics:
Greenhouse Gas Emissions from Energy”. We use total CO2 emissions, i.e., including scope 2 emissions
from electricity and heat generation. The IEA computes CO2 emissions based on the IEA energy data
(i.e., the World Energy Balances and World Energy Statistics) and methods and emission factors from
the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.3 This method does not take into
account more detailed country-specific information, e.g., on different technologies or processes, even
though the emission factor for electricity varies across countries. The general approach of combining
energy consumption data with emission factors however is the same we follow for calculating emissions
from the German Manufacturing Census. For more information, the reader is referred to the database
documentation.

Table B.2 shows the average and median percentage deviation between German CO2 emissions from
IEA and manufacturing Census over the years 2005 to 2017 (for which both data sources are available).
Percentage deviations are calculated by subtracting the Census emissions from the IEA emissions and
dividing by the Census values.

As can be seen, in most sectors, the deviations are below 5%. Generally, the emissions data from
the IEA are a bit too small. However, there is a larger deviation in sector 24 (metal production) in
which IEA emissions data are tremendously smaller. Metal production involves energy consumption in
transformation for coke ovens and blast furnaces, where allocation of emissions might be challenging.

Figure B.2 shows the aggregate development of CO2 emissions according to both data sources over
time. As can be seen, while emission paths generally are similar, over the last years of the sample,
emissions diverge: According to the IEA, emissions by 2017 were lower than in 2005, while (the more
accurate) manufacturing Census shows an increase in emissions.

3 In the case of Germany, e.g., the information on energy use in the Energy Balances comes from the Federal
Ministry for Economic Affairs and Energy.
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TABLE B.2: Percentage deviation between emissions from IEA and German man-
ufacturing Census across sectors

NACE 2 Code Average deviation Median deviation
10 to 12 -0.032 -0.038
13 to 15 -0.052 -0.044
16 -0.042 -0.044
17 and 18 0.008 0.006
20 and 21 -0.036 -0.062
22, 31 and 32 0.121 0.042
23 0.077 0.051
24 -0.369 -0.390
25 to 28, 33 -0.043 -0.025
29 and 30 -0.048 -0.054

The Table shows the average and median deviation from emissions data over time from the IEA and the
German Manufacturing Census by sector. Positive numbers indicate that IEA emissions are larger, negative
numbers indicate that Census emissions are larger.

Figure B.2: Aggregate Emissions Development in German Manufacturing according to IEA
and Manufacturing Census

Our analysis does not rely on emissions data in levels, but in changes as compared to our base year.
As long as sector-level emission paths develop similar in the different data sets, the (partly substantial)
differences across data sets do not matter. For robustness, however, we also run the analysis using the
emissions from the manufacturing census for Germany which limits the analysis window to the time
period between 2005 and 2017. Qualitatively, the results are unchanged, as reported in Appendix C.

B.4 Correction of trade data to account for re-exports

Re-exports are a well-known challenge encountered in combining production and trade data. Intuitively,
the problem occurs because exports not produced in the exporting country are counted as exports, but
not as production – which means that exports of a given good can exceed actual production. The
issue becomes larger the smaller the unit analysed: For a single country, all exports which have been
imported previously constitute re-exports; if country groups are analysed, only the exports that have
been imported from third countries outside of the country group itself, and additionally are exported
to third countries are re-exports. Everything that would represent re-exports from the perspective of a
single country, but stays within the country group, constitutes intra-group trade.
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We use data from Eurostat input-output tables to correct for re-exports, specifically from the import
use matrix. For Germany and the EU28 (including Germany), we compute the share of imports that
are exported to the EU and to the rest of the world, respectively. For Germany, in 2016, the share of
imports exported again gets as large as 43% for the pharmaceuticals sector (NACE 21). With about 3%,
the share is smallest in the coke and petroleum sector (NACE 19). For the EU28, numbers are generally
lower, due to intra-group trade not being counted as re-exports. Note that for the rest of the EU in our
model, we use the values of the EU28, that include Germany (which it strictly speaking should not, in
our context). However, the error is likely to be small. Computing shares for the EU without Germany
from country-level input-output tables would require knowledge to where exactly imported goods are
exported to, in order to accurately distinguish within-group versus out-of-group exports. These data are
not available to us.

As we treat our model as a three-country world, for Germany, we calculate separate shares (of imports
that are exported again) for the rest of the world and the EU. That is necessary because shares can differ
widely: In the car industry (NACE 29), e.g., only about 5% of total imports are re-exported to other
EU countries, but 24% to countries outside of the EU.

We multiply the calculated re-export shares of imports with total imports to obtain a measure of
total re-exports that differ by country, sector and year. Then we subtract these re-exports from both the
import and export numbers such that trade patterns of each country only reflect trade in own production.
Note that we do not need any input-output table for the rest of the world, as trade is symmetric (i.e.,
German imports from RoW are equal to RoW exports to Germany). Therefore, RoW trade patterns are
automatically adjusted by correcting EU and German trade flows.

B.5 Comparing German export and production data from different data
sources

The following graphs compare production (dark blue, dark red) and export (green, yellow) from aggregate
data sources (UNIDO and Eurostat) versus the German Manufacturing Census (AFiD). The comparison
is exemplary depicted for sectors 10/11, 20/21, 22 and 29, but generally the patterns hold across all
sectors. As can be seen, numbers are generally similar and follow similar trends, even though levels
are not always identical. Differences between the data sources can be explained by inaccurate sector
recodings, different exact measurements as well as the manufacturing Census not covering very small
plants (below 20 employees).
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(a) 10, 11 and 12 (food, beverages and tobacco) (b) 20 and 21 (chemicals and pharmaceuticals)

(c) 22 (rubber and plastics) (d) 29–32 (vehicles, other transport, other)

Figure B.3: Production and Trade Data for Germany and RoW from Different Data Sources
for Selected Sectors.

B.6 Details on parameter estimation

We estimate the Pareto shape parameter θs by regressing log firm sales on log firm’s sales rank, as
described in the main text. The shape parameter is recovered by combining the estimated coefficient,
shown in column (1) of Table B.3, with the elasticity of substitution.

Column (2) of Table B.3 reports the estimated multiplicative markups that are needed to back out
the elasticity of substitution σs. Column (3) reports the estimated energy output elasticities (i.e., energy
cost shares from revenues), and column (4) contains the elasticity of emissions to energy input, retrieved
from log-log regressions. All numbers are for 2005.
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TABLE B.3: Intermediate results for the parameter estimation

NACE 2 Coefficient estimate Markups Energy output Emissions
Code for θs elasticity elasticity

(1) (2) (3) (4)
10 to 12 -1.391 1.695 0.016 0.974
13 to 15 -2.065 1.316 0.018 1.002
16 -1.708 1.316 0.031 0.873
17 and 18 -1.825 1.177 0.059 0.962
20 and 21 -1.239 1.539 0.034 0.993
22, 31 and 32 -1.652 1.333 0.022 1.012
23 -1.924 1.389 0.065 0.946
24 -1.277 1.235 0.061 0.993
25 to 28, 33 -1.363 1.205 0.010 1.011
29 to 30 -0.936 1.205 0.008 1.001

Column (1) of the Table shows the estimated coefficient from log sales – log sales rank regressions. Column (2)
of Table B.3 reports the estimated multiplicative markups from taking the ratio of variable to total cost.
Column (3) reports the ratio of energy cost to revenues, and column (4) the estimated coefficient from log-log
regressions of emissions on energy use. All regressions are based on data for our base year 2005 from the
German Manufacturing Census.

B.7 Energy price data

We take energy price data from the IEA (2022b). Time-varying fuel prices for industry are weighted by
a sector’s fuel mix in each year to compute one average energy price. Country-level prices are aggregated
to the EU-level by taking a weighted average of prices, where weights are given by the country’s energy
consumption relative to total EU energy consumption in a given sector. Missings (especially for coal
prices) are filled in by averages of other reporting countries in a given year. Figure B.4 shows the
development of the computed average energy prices for different sectors in Germany and the rest of the
EU, respectively.

S.13



(a) ETS sectors in Germany (b) Non-ETS sectors in Germany

(c) ETS sectors in RoEU (d) Non-ETS sectors in RoEU

Figure B.4: Average Energy Prices in Different Sectors in USD/toe.

The Figure shows the development of average energy prices by sector and region. Data are taken from the IEA.
Energy price data vary by country, and sectoral variation comes from differences in fuel mixes.

B.8 ETS price data

We calculate the EU ETS permit prices for different sector/country/year combinations, taking into
account the sector’s coverage under the EU ETS, as well as sector-level fuel mixes.

Transaction weighted averages of one year future ETS prices are taken from the EEX. These permit
prices are multiplied with a sector-country-year specific emission intensity. We obtain this emission
intensity by dividing verified emissions under the EU ETS from the EU’s transaction log by the sector’s
fossil energy use in a given country and year (taken from the IEA 2022a).4 This emission intensity
reflects both the sector’s fuel mix (i.e., verified emissions per kWh of energy use are higher with a dirtier
fuel mix) and the sector’s coverage under the EU ETS (i.e., sectors in which many installations are
subject to the EU ETS have higher verified emissions). Note that generally, a sector’s average permit
price calculated this way is too high, as verified emissions also contain process emissions. Unfortunately,
however, the EUTL data does not allow us to separate process from combustion emissions. The error
however is likely to be small, as we only make use of the development in average ETS prices, not their
levels.

The development of the resulting permit prices is shown in Figure B.5. As can be seen, prices
across sectors generally follow the same trend, namely the trend of future permit prices. Still, there is

4 Implicitly, we are assuming that the ETS covered installations in any sector use the same fuel mix as those
firms not directly regulated under the EU ETS.
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substantial variation as some sectors (such as textiles or machinery) are barely directly regulated under
the EU ETS.

(a) ETS sectors in Germany (b) Non-ETS sectors in Germany

(c) ETS sectors in RoEU (d) Non-ETS sectors in RoEU

Figure B.5: Average Permit Prices in Different Sectors in EUR/kWh.

The Figure shows the development of average ETS permit prices. Permit prices are taken from the EEX and
constitute one year ahead prices. Permit prices vary over time, and sectoral variation comes from differences in
fuel mixes and ETS coverage. Information on these variables comes from the IEA and the EUTL.

.

B.9 Development of emission intensities of production in different sectors

Table B.4 shows sector-level emission intensities of production in the different world regions over time.
Emission intensities are calculated by dividing IEA sector-level emissions by the (non-deflated) UNIDO
production values in EUR. Emission intensities are expressed as grams of CO2 per EUR of output.

Figure B.6 shows the average emission intensity of production (i.e., gram of CO2 per Euro of output)
in manufacturing per EU member state. Output values are not adjusted for inflation. Germany is marked
in red.
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TABLE B.4: Emission intensities of production

NACE 2 region 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Code

10 to 12 DE 123.8 118.8 117.1 107.7 111.5 106.1 101.8 102.6 99.6 99.0 98.1 98.6 89.9 89.3 76.0
RoEU 127.6 117.2 111.2 104.2 100.5 98.1 91.8 88.2 82.4 79.1 81.1 80.2 76.4 97.8 69.2
RoW 275.1 277.3 277.6 258.3 231.9 198.2 181.1 154.2 152.8 140.9 118.3 118.4 120.2 128.4 120.0

13 to 15 DE 125.0 111.7 112.9 107.4 106.3 110.5 97.7 107.3 94.4 83.6 93.6 84.1 78.6 77.1 63.2
RoEU 143.4 130.2 116.3 111.6 110.2 97.8 88.5 89.1 84.5 73.2 69.7 67.5 66.3 65.1 58.3
RoW 547.7 538.5 558.9 492.8 445.1 366.4 339.3 292.0 274.5 240.5 196.7 202.7 224.3 264.9 243.1

16 DE 169.0 155.7 156.4 163.3 168.3 158.2 146.3 144.3 146.3 123.3 120.1 126.0 125.6 112.6 88.6
RoEU 130.1 124.3 117.4 116.6 127.8 120.6 116.1 112.0 108.1 94.1 94.6 98.6 99.4 93.3 81.1
RoW 364.9 379.1 402.4 442.3 460.1 387.9 326.8 267.0 242.9 225.5 178.4 182.3 181.0 212.5 203.0

17 and 18 DE 302.9 279.6 290.2 386.2 407.2 379.4 360.2 382.3 390.1 386.2 374.3 357.7 333.2 321.9 276.7
RoEU 207.1 203.6 196.3 199.9 292.6 276.2 256.8 257.6 257.6 238.4 217.8 215.2 210.1 193.6 178.8
RoW 644.9 626.0 674.6 657.4 649.0 564.3 545.0 467.7 456.5 438.3 369.4 368.8 374.0 384.2 344.5

20 and 21 DE 381.7 367.8 373.1 353.1 358.0 348.1 323.3 339.1 328.4 326.3 330.4 333.4 308.1 267.7 232.0
RoEU 332.4 294.4 281.2 277.4 297.8 263.4 267.4 256.6 249.2 233.0 243.7 244.1 220.0 200.9 213.9
RoW 945.4 890.4 908.9 813.5 809.0 715.3 644.2 559.9 552.2 532.7 484.0 480.4 517.1 565.3 530.0

22, 31 and 32 DE 183.4 183.7 202.4 139.0 120.7 114.7 101.4 104.2 104.3 99.3 94.2 91.9 83.1 73.1 64.3
RoEU 273.3 252.3 247.8 257.1 235.6 224.8 166.7 168.9 155.9 145.0 135.5 117.4 112.2 101.7 90.8
RoW 837.5 788.0 680.2 666.7 656.6 612.2 535.4 514.0 480.4 428.3 341.4 327.6 328.1 377.8 375.2

23 DE 639.2 603.0 629.7 657.7 658.8 642.3 574.3 563.5 548.0 528.4 539.9 517.1 497.0 505.5 455.5
RoEU 790.4 695.7 664.0 656.0 657.9 669.9 657.8 655.0 646.7 622.4 610.6 617.0 569.2 565.5 511.5
RoW 2809.5 2552.6 2554.6 2377.8 2355.6 1920.0 1795.5 1462.3 1346.3 1281.5 1042.3 1018.1 1001.5 1132.7 1054.3

24 DE 760.3 672.4 544.9 531.0 612.9 587.3 498.7 498.6 536.9 527.1 552.7 568.2 492.7 468.0 427.2
RoEU 777.2 624.0 564.0 530.0 626.1 524.5 473.0 481.5 477.6 452.0 440.0 457.7 406.9 350.1 339.3
RoW 1952.1 1739.8 1700.0 1481.3 1748.7 1388.7 1306.0 1230.0 1275.6 1321.6 1175.6 1208.9 1188.0 1251.6 1201.1

25 to 28, 33 DE 47.4 43.5 41.8 51.2 52.5 50.7 47.3 49.6 50.8 49.0 41.3 40.0 37.0 33.3 27.9
RoEU 59.7 54.5 50.0 47.2 50.1 48.2 44.8 42.4 41.4 36.8 36.7 35.9 34.8 33.1 29.8
RoW 153.7 153.8 162.7 158.6 161.1 144.3 141.8 120.3 121.2 113.1 88.3 90.2 94.4 100.3 94.3

29 to 30 DE 54.0 48.9 45.7 42.2 46.4 43.2 37.9 39.3 41.4 35.9 32.6 32.3 29.5 27.7 23.6
RoEU 44.1 42.7 40.1 40.0 43.2 39.1 36.2 35.8 34.1 29.4 25.9 23.0 22.5 21.9 19.6
RoW 107.3 108.6 112.8 111.5 111.3 94.5 91.7 79.9 79.6 72.3 57.0 54.4 55.9 63.3 55.4

Emission intensities are in grams of CO2 per Euro of output. Emissions include scope 2 emissions from
electricity consumption. Source: own calculation, based on data from UNIDO and the IEA.

(a) Emission intensities in 2005 (b) Emission intensities in 2019

Figure B.6: Average CO2 Emission Intensity in Manufacturing by EU Member State in 2005
and 2019

Note: Emissions include scope 2 emissions from electricity consumption. Emission intensities are calculated for
the manufacturing sector as a whole. Based on data from UNIDO and the IEA.
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C Additional results

This part of the Appendix reports additional results and robustness checks not discussed in the main
text.

C.1 Historical developments of emission drivers and the accompanying de-
velopment of endogenous variables

The following graphs show the historical development of the domestic and foreign expenditure share
drivers, as well as the development of endogenous variables (firm entries, wages) in the different countries.
Historical competitiveness drivers are not shown as they are not informative due to the omission of price
index data. Note that real wages are not sector-specific and hence, for real wages, results are not split
across ETS- and non-ETS-sectors. For all other depicted variables, the results are simple arithmetic
averages across sectors.

(a) Germany (b) RoEU

(c) RoW

Figure C.1: Development of the Expenditure Share Driver.

Own calculations. Based on data from UNIDO.
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(a) (b)

(c) (d)

(e) (f)

Figure C.2: Development of Endogenous Variables when all Emission Drivers take on Histor-
ical Values: (a) German Real Wages (b) RoW Real Wages (c) RoEU Real Wages
(d) German Firm Entries (e) RoW Firm Entries (f) RoEU Firm Entries

Own calculations. Based on data from UNIDO.
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C.2 Development of implicit carbon prices by sector

Here we report the development of implicit carbon prices separately by region and by NACE sector.

TABLE C.1: Implicit carbon prices by sector

NACE 2 region 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Code

10 to 12 DE 1 0.95 0.93 0.98 1.02 0.87 0.82 0.73 0.74 0.72 0.64 0.63 0.70 0.75 0.84
RoEU 1 1.00 1.01 1.04 1.17 0.97 0.94 0.88 0.92 0.92 0.80 0.80 0.85 0.70 0.95
RoW 1 0.91 0.87 0.91 1.09 1.03 1.03 1.08 1.07 1.12 1.18 1.17 1.17 1.15 1.18

13 to 15 DE 1 1.02 0.97 0.99 1.08 0.84 0.86 0.71 0.79 0.86 0.68 0.75 0.81 0.87 1.01
RoEU 1 1.01 1.08 1.09 1.20 1.09 1.09 0.98 1.01 1.12 1.04 1.07 1.11 1.18 1.26
RoW 1 0.93 0.86 0.95 1.13 1.11 1.09 1.14 1.19 1.30 1.41 1.37 1.25 1.11 1.16

16 DE 1 0.99 0.95 0.88 0.93 0.80 0.78 0.71 0.69 0.77 0.71 0.68 0.69 0.81 0.98
RoEU 1 0.96 0.97 0.95 0.94 0.80 0.76 0.70 0.72 0.79 0.70 0.67 0.67 0.75 0.82
RoW 1 0.88 0.80 0.70 0.73 0.70 0.75 0.83 0.90 0.93 1.04 1.01 1.03 0.92 0.92

17 and 18 DE 1 0.99 0.92 0.67 0.69 0.59 0.57 0.48 0.46 0.45 0.41 0.43 0.46 0.51 0.56
RoEU 1 0.93 0.93 0.88 0.65 0.56 0.54 0.49 0.48 0.50 0.48 0.49 0.50 0.57 0.59
RoW 1 0.94 0.84 0.83 0.92 0.85 0.80 0.84 0.83 0.84 0.88 0.88 0.88 0.90 0.96

20 and 21 DE 1 0.95 0.90 0.92 0.98 0.82 0.80 0.68 0.69 0.67 0.59 0.58 0.63 0.77 0.84
RoEU 1 1.03 1.04 1.02 1.03 0.94 0.84 0.79 0.79 0.82 0.69 0.69 0.77 0.89 0.80
RoW 1 0.97 0.91 0.99 1.08 0.98 0.99 1.02 1.02 1.02 0.99 0.99 0.93 0.90 0.91

22, 31 and 32 DE 1 0.91 0.79 1.12 1.40 1.19 1.22 1.07 1.05 1.06 0.99 1.01 1.13 1.35 1.46
RoEU 1 0.99 0.97 0.90 1.07 0.91 1.11 0.98 1.05 1.08 1.02 1.18 1.24 1.45 1.54
RoW 1 0.97 1.08 1.07 1.18 1.02 1.06 0.99 1.04 1.12 1.24 1.29 1.30 1.19 1.14

23 DE 1 0.97 0.89 0.83 0.89 0.74 0.75 0.69 0.70 0.69 0.60 0.62 0.66 0.68 0.72
RoEU 1 1.04 1.04 1.02 1.11 0.88 0.81 0.73 0.73 0.73 0.66 0.65 0.71 0.75 0.79
RoW 1 1.01 0.96 1.00 1.10 1.09 1.06 1.17 1.24 1.26 1.37 1.39 1.43 1.33 1.37

24 DE 1 1.03 1.22 1.22 1.14 0.96 1.03 0.93 0.84 0.83 0.70 0.68 0.79 0.87 0.91
RoEU 1 1.14 1.21 1.25 1.14 1.10 1.11 0.98 0.97 0.98 0.89 0.86 0.97 1.19 1.17
RoW 1 1.03 1.01 1.12 1.03 1.05 1.01 0.96 0.91 0.85 0.84 0.82 0.83 0.84 0.83

25 to 28, 33 DE 1 1.00 0.99 0.79 0.83 0.70 0.68 0.58 0.55 0.55 0.58 0.60 0.65 0.76 0.87
RoEU 1 1.00 1.05 1.07 1.10 0.92 0.90 0.85 0.86 0.93 0.82 0.84 0.88 0.97 1.03
RoW 1 0.91 0.83 0.82 0.88 0.79 0.73 0.78 0.76 0.78 0.88 0.86 0.83 0.82 0.84

29 to 30 DE 1 1.01 1.04 1.09 1.07 0.93 0.96 0.83 0.78 0.86 0.84 0.84 0.93 1.05 1.17
RoEU 1 0.94 0.97 0.94 0.94 0.84 0.82 0.75 0.77 0.86 0.86 0.97 1.00 1.08 1.15
RoW 1 0.90 0.83 0.82 0.89 0.85 0.79 0.81 0.80 0.85 0.95 1.00 0.98 0.91 0.99

Sources: own calculations based on INDSTAT and IEA data

C.3 Explaining the implicit carbon price development using ETS spot mar-
ket prices

We here run the same regression as in the main text (shown in Table III), but refer to ETS spot market
prices instead of ETS futures. While this does not qualitatively change results, the explanatory power
of spot market prices is substantially lower, owing to the drop in ETS prices in 2007.

TABLE C.2: Determinants of the development of implicit carbon prices

t̂si,y µi,y

(1) (2)

p̂s,energyi,y 0.491∗∗∗

(0.106)

p̂s,etsi,y -0.055∗∗∗ 0.358∗∗∗

(0.019) (0.028)

N 300 300
R2 0.37 0.36

Notes: The regressions include observations from 2005–2019. Dependent variables are indexed and are 1 in
2005. The regression in column (1) is run with country by year fixed effects. Column (2) explains the fixed
effect estimated in column (1). Standard errors are displayed in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance
at 10%, 5% and 1%, respectively.
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C.4 Counterfactual emissions for specific sectors

In the main text, we only report counterfactual emissions on aggregate. We here show counterfactuals
exemplary for two emission intensive sectors, namely metals (NACE 24) and pulp, paper and publishing
(NACE 17+18).

(a) Germany (b) RoEU

(c) RoW

Figure C.3: Counterfactual in the Metals Sector under Different Scenarios.

Notes: One by one the driving forces are held constant at their 2005 values while the other driving forces follow
their historical paths
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(a) Germany (b) RoEU

(c) RoW

Figure C.4: Counterfactual in the Pulp, Paper, and Publishing Sector under Different Scenar-
ios.

Notes: One by one the driving forces are held constant at their 2005 values while the other driving forces follow
their historical paths
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C.5 Counterfactual analysis with German implicit carbon prices taking on
EU values

In this subsection, we run a counterfactual in which the German implicit carbon prices do not follow
their historical path, but take on the values from the rest of the EU. Regulatory differences in the EU
are hence shut off. In this counterfactual, German emissions would have decreased by more than with
EU implicit carbon prices taking on German values, as not only regulatory differences are shut off, but
also German regulation is rendered more stringent. In the rest of the EU (and RoW), the counterfactual
leads to an emission increase.

(a) Germany (b) RoEU

(c) RoW

Figure C.5: Counterfactual Emissions with the German Implicit Carbon Prices taking on EU
Values with all other Emission Drivers taking on their Historical Values.

Notes: All driving forces take on their historical value, except the implicit carbon prices whose development
varies over counterfactuals.

C.6 Counterfactual analysis with all world regions following the German
implicit carbon price development

In this subsection, we try to better understand the role played by developments in implicit carbon prices
in the rest of the world for German industrial emissions. As implicit carbon prices haven’t changed
strongly in the rest of the world, it is not clear from the decomposition in Section 5 whether the small
impact from RoW implicit carbon prices is due to the lack of variation in these prices or due to the lack
of relevance of the rest of the world for German emissions. Here, we conduct a counterfactual analysis
in which all world regions follow the German development in implicit carbon prices. As can be seen in
Figure C.6, this yields hardly different results than just equating German and EU implicit carbon prices
as done in Figure IV.
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(a) Germany (b) RoEU

(c) RoW

Figure C.6: Counterfactual Emissions with Identical German, EU and RoW Carbon Price
Developments with all other Emission Drivers taking on their Historical Values.

Notes: All driving forces take on their historical value, except the implicit carbon prices whose development
varies over counterfactuals.
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C.7 Analysis with a more generalised production technology

In this Appendix, we show that decomposing the emissions development into the different drivers yields
qualitatively the same results when using a more generalised production technology where ξ takes on a
value of zero. The results are very similar to the results with ξ = 1 shown in Figure III in the main text.

(a) (b)

Figure C.7: Decomposition of Actual German Industrial Emissions Development where Selec-
tive Driving Forces are held constant at their 2005 Values while the other Driving
Forces follow their Historical Paths using the German Manufacturing Census. The
Value of ξ is set equal to Zero.

Notes: One by one the driving forces are held constant at their 2005 values while the other driving forces follow
their historical paths

C.8 Analysis using emissions data from the German Manufacturing Census

In light of the difference in German industrial carbon emissions across data sources reported in Appendix
B, In this section, we report results using, for Germany, emission data from the German Manufacturing
Census instead of the IEA. As we have Census data available only up to 2017, the time frame of this
analysis differs from the main results. We report both developments in historical implicit carbon prices
if retrieved from the Census data, and counterfactual emissions.

TABLE C.3: Determinants of the development of implicit carbon prices

t̂i,t,s µi,t

(1) (2)

p̂energyi,s,t 0.371∗∗∗

(0.095)
p̂etsi,(s),t -0.017 0.462∗∗∗

(0.031) (0.028)

N 260 260
R2 0.53 0.52

Notes: The regressions include observations from 2005–2017. Dependent variables are indexed and are 1 in
2005. The regression in column (1) is run with country by year fixed effects. Column (2) explains the fixed
effect estimated in column (1). Standard errors are displayed in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance
at 10%, 5% and 1%, respectively.
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(a) (b)

Figure C.8: Development of Implicit Price on CO2 Emissions in Germany (a) using Data
from the German Manufacturing Census (b) using Data from the IEA (right) on
German Industrial CO2 Emissions

Source: own calculations, based on data from INDSTAT, the IEA, and the German Manufacturing Census.

(a) (b)

Figure C.9: Decomposition of Actual German Industrial Emissions Development where Selec-
tive Driving Forces are held constant at their 2005 Values while the other Driving
Forces follow their Historical Paths using the German Manufacturing Census

Notes: One by one the driving forces are held constant at their 2005 values while the other driving forces follow
their historical paths
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(a) Germany (b) RoEU

(c) RoW

Figure C.10: Counterfactual Emissions with Identical German and EU Carbon Price Devel-
opments with all other Emission Drivers taking on their Historical Values.

Notes: All driving forces take on their historical value, except the implicit carbon prices whose development
varies over counterfactuals.
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C.9 Analysis with process emissions

In the main text, our measure of emissions by the IEA is limited to combustion emissions. In this section,
we additionally consider process emissions. For that purpose, we complement the IEA emissions data
with process emissions from EDGAR (2023). Process emissions occur in the chemicals sector (NACE 20),
the non-metallic minerals sector (NACE 23) and the metals sector (NACE 24). While, especially in the
non-metallic minerals sector, process emissions make up a considerable share of total emissions (roughly
half), in changes, total emissions developments are very similar to the case of combustion emissions only.
It is therefore not surprising that including process emissions does not substantially alter results, as
shown below.

(a) (b)

Figure C.11: Development of Implicit Price on CO2 Emissions in Germany (a) adding Data
on Process Emissions from EDGAR (b) using only Combustion Emissions Data
from the IEA (right) on German Industrial CO2 Emissions

Source: own calculations, based on data from INDSTAT, the IEA, and EDGAR.
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(a) (b)

Figure C.12: Decomposition of Actual German Industrial Emissions Development (including
Process Emissions) where Selective Driving Forces are held constant at their 2005
Values while the other Driving Forces follow their Historical Paths

Notes: One by one the driving forces are held constant at their 2005 values while the other driving forces follow
their historical paths
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(a) Germany (b) RoEU

(c) RoW

Figure C.13: Counterfactual Emissions (including Process Emissions) with Identical German
and EU Carbon Price Developments with all other Emission Drivers taking on
their Historical Values.

Notes: All driving forces take on their historical value, except the implicit carbon prices whose development
varies over counterfactuals.
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C.10 Analysis using data on the full set of RoW countries

In this section, we use trade flow and production data for the full set of RoW (including countries for
which no reliable emissions data are available) to show that our results are not driven by sample selection.
As we do not have emissions data for the full set of rest of the world countries, in this analysis, we cannot
compute the implicit carbon price for RoW. Instead, in the counterfactual analyses, the change in implicit
carbon prices for RoW is subsumed under the competitiveness driver and not separated as in Eq. (A.35).
The adjusted competitiveness driver, which includes the implicit carbon price, is defined as:

Γ̂s,t
ji ≡ (b̂sj)

θs

(τ̂sji)
− θs

1−αs (f̂s
ji)

1− θs

(σs−1)(1−αs) (t̂sj)
− αsθs

1−αs (C.1)

=
λ̂s
ji

M̂s
j ŵ

−θs

j

(P̂ s
i )

− θs

1−αs

(
β̂s
i

ŵi

R′
i −NX ′

i

Ri −NXi

)1− θs

(σs−1)(1−αs)

for j = RoW . For the other two regions, we sill employ Γ̂s
ji from Eq. (A.35).

As Figures C.14 and C.15 show, our results are barely affected by this change in the sample.

(a) Germany (b) RoEU

Figure C.14: Development of Implicit Price on CO2 Emissions with a Full Set of RoW Coun-
tries.

Source: own calculations, based on data from INDSTAT and the IEA.
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(a) (b)

Figure C.15: Decomposition of Actual German Industrial Emissions Development where Se-
lective Driving Forces are held constant at their 2005 Values while the other
Driving Forces follow their Historical Paths using a Full Set of RoW Countries

Notes: One by one the driving forces are held constant at their 2005 values while the other driving forces follow
their historical paths
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