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1 Introduction

Price competition for homogeneous products is one of the foundational models of microe-

conomics. Suppose that duopolists have the same constant marginal costs of production

and consumers observe all prices. Then, firms set prices equal to marginal costs (Bertrand,

1883). By contrast, if firms face capacity constraints (which is an extreme form of increasing

marginal costs), there does not exist a pure-strategy price equilibrium when capacities are

neither too small nor too large (Edgeworth, 1925). Instead of focusing on firms’ limited

volume to sell in the market, a different challenge to the undercutting logic inherent in the

Bertrand model arises from limited consumer information: If consumers only observed the

price of one of the firms and have to pay a search cost to learn the price of competitors, firms

set prices equal to the monopoly price (Diamond, 1971). However, to obtain the monopoly

outcome, search costs must be strictly positive.

In this paper, we assume that consumers search sequentially for prices, but at zero costs.

Consumers are identical and have downward-sloping individual demand. If firms did not face

any capacity constraints (constant marginal costs for any quantity up to market demand

at the competitive price), the Bertrand result holds. However, if one of the two firms has

insufficient capacity to sell to consumers at the competitive price, under some conditions,

both firms set monopoly prices.

We consider two versions of our model. In the first version, the share of consumers

who visit a particular firm first is an exogenous parameter. In this version, if the capacity-

constrained firm cannot serve all its initial visitors (provided they all want to buy immedi-

ately), then the monopoly pricing emerges in the unique equilibrium. We also characterize a

mixed-strategy equilibrium when this condition does not hold. Furthermore, when restricting

attention to unit demand, we establish the uniqueness of equilibrium.

Our first version is motivated by the observation that, in many markets, consumers are

steered to visit a particular firm first. For instance, in a physical retail environment, some

consumers are located next to one shop and the others are located next to the competing shop

– therefore, the share of consumers who visit any given firm is exogenous. Another instance

is an e-commerce environment in which a platform steers consumers on its marketplace by

showing firm 1’s offer first to a share of consumers and firm 2’s offer to the remaining share.1

Consumers then have the option to buy the first offer they see or to search for a cheaper

1An example of such steering is the Amazon Buy Box which makes one of the sellers visible; this seller
does not necessarily offer the lowest price, and Amazon can randomize over consumers and thus sets the
fraction of consumers who visit the capacity constrained firm first.
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option.

In the second version of the model, we endogenize the fraction of consumers who see firm

1’s offer first and focus on the case of unit demand. In this case, we show that if the capacity

of the restricted firm is sufficiently low, then all consumers prefer to start searching from the

constrained firm. We show the existence of a unique equilibrium; this equilibrium features

monopoly prices. Perhaps surprisingly, under unit demand assumption, monopoly pricing

is the unique equilibrium outcome for all capacity levels up to almost three quarters of the

market.

Related literature Limited capacity and costly consumer search are well-known market

characteristics that lead to higher than perfectly competitive prices under price competition

with homogeneous products. In duopoly, if one firm can not serve all consumer demand

at marginal costs this firms can not deprive its competitor from all profits and allows the

competitor (which may or may not be capacity constrained itself) to obtain some profit.

Costly consumer search leads to monopoly prices if all consumers have strictly positive

search costs (Diamond, 1971). Consumer search theory has considered instances in which

only some consumers have positive search costs and characterized the ensuing mixed-strategy

equilibrium. By contrast, in our model consumers do not have any search costs. Monopoly

pricing arises from a combination of limited capacity and sequential search, since this implies

that consumers who return to an earlier offer may be rationed.

Classical papers on capacity constraints, see Levitan and Shubik (1972) and Kreps and

Scheinkman (1983), often predict mixed strategy equilibria. Our equilibrium with all con-

sumers starting with the unconstrained firm resembles results from this literature, with the

only difference that in our model the firms are asymmetric. Equilibria with other first visit

decisions are different, most notably the monopoly pricing pure strategy equilibrium does

not exist in that literature if firms combined capacity is sufficient to cover the whole market.

In our model, limited capacity deters search by making recall uncertain. This mechanism

is similar to the one in the model of search deterrence by Armstrong and Zhou (2016), where

the seller can increase the price if the buyer returns. The capacity constraint naturally

resolves the commitment power issue that arises in their paper. In the homogeneous goods

version of their paper (see section 5.2.2), a monopoly pricing equilibrium may arise when all

sellers prohibit recall and consumers expect the same price at all firms. In our model, only

one seller needs to be capacity constrained. Moreover, our monopoly pricing equilibrium

is robust in the sense that it remains an equilibrium even if a small fraction of consumers

know both prices prior to search. The monopoly pricing equilibrium in Armstrong and Zhou
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(2016) is not robust according to this definition. Furthermore, contrary to their results, the

monopoly pricing equilibrium in our model is unique for sufficiently small k.

The paper proceeds as follows. In Section 2 we spell out the details of the model. In

Section 3 we characterize the set of equilibria for general demand functions when initial

consumer visits are exogenous. Then we establish uniqueness of equilibrium and obtain

comparative statics results for unit demand case. In Section 4 we consider a model with

endogenous consumer first visits.. In Section 5 discusses the role of assumptions and possible

extensions of the model. Section ?? concludes.

2 Model

Two firms with constant marginal costs of production c up to their respective capacities

compete in a homogeneous product industry. They sell to a unit mass of consumers. Each

consumer demands Q(p) units of the good at a price p. We assume that Q(·) is a weakly

decreasing and differentiable function up to its finite choke price p̌. We assume that per-

consumer profit, π(p) ≡ (p−c)Q(p) is strictly quasi-concave on [c, p̌]. This implies that there

is a unique maximizer, which we denote by pm. We define consumer surplus of buying at a

price p as CS(p) ≡
∫ p̌
p
Q(p′)dp′. As a special case, we consider unit demand with valuation

v > c, implying that pm = v. One of the two firms (firm 1) is unconstrained in the sense that

its own capacity is sufficient to satisfy market demand at marginal costs – that is, to supply

Q(c) units of the product. The other firm (firm k) can not serve full demand at marginal

cost and is constrained by its capacity k < Q(c).

We present two models of sequential search. In the first model the order in which offers

are presented is given (and may be different across consumers): fraction α of consumers are

first steered to the constrained firm and the remaining fraction 1 − α to the unconstrained

firm. In the second model, consumers freely decide with which firm to start leading to an

endogenous α.

Consumers search over time, but they neither have a monetary search cost nor do they

have an opportunity cost of time. Nevertheless, continued search may lead to rationing and

search may turn out to be costly because by continuing search consumers may foregoes the

possibility to buy the lower-priced product if it is sold out when the consumer returns.

At t = 0, firms simultaneously set prices, which can only be observed by consumers

after search. At t = 1, consumers search one of the firms and decide whether to try to buy

their preferred quantity of the product Q(pi). If they are unsuccessful or decide not to try,

4



they enter the next period. At t = 2, remaining consumers visit the firm they did not yet

visit. Upon observing the prices consumers decide whether they want to attempt to buy or

come back. This process continues until all consumers made their purchases. When demand

exceeds capacity we assume random consumer rationing: each consumer either is served and

receives their preferred quantity Q(pi) or is not served.

3 Exogenous decision about first visit

In this section, we assume that an exogenous fraction of consumers α first visit the capacity-

constrained firm.

3.1 General demand

Our first result establishes monopoly pricing when the capacity of the constrained firm is

sufficiently small. The critical capacity level is such that the constrained firm can just satisfy

demand of all first visits at the monopoly price.

Proposition 1. Suppose that αQ(pm) > k. Then, there is a unique equilibrium outcome

with p1 = pk = pm.

The intuition behind Proposition 1 is as follows. By contradiction, suppose that a non-

monopoly price equilibrium existed. Let r be the reservation price associated with the price

distribution of the unconstrained firm. Since the constrained firm faces demand larger than

its capacity, it has no incentive to a charge price below r. Consequently, the unconstrained

firm does not charge prices below r either, because charging a lower price would not attract

additional demand. Given that the reservation price is weakly above the expected price of

the unconstrained firm, we conclude that its price distribution is supported by a single price,

r. Since the constrained firm cannot serve all consumers at this price, we must have that

r = pm.

Note that this equilibrium is different from the equilibrium with search costs in Diamond

(1971). In our model, search costs are zero. Moreover, there is no price risk associated with

the recall uncertainty on the equilibrium price path. The capacity constraint only affects

consumer behavior in putative equilibria with price dispersion. Nonetheless, this force is

strong enough to eliminate any such equilibria.

In this equilibrium, as in all search models, consumers immediately (attempt to) buy

when indifferent between buying and searching. An attentive reader may notice that if such
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a tie-breaking rule were imposed in a standard Bertrand duopoly, then any pair of prices

pi = pj ∈ [c, pm] would be an equilibrium. Such equilibria, however, are not robust in the

following sense. Let λ be the fraction of consumers who know both prices before their first

visit and let pi(λ) be corresponding equilibrium price.2 We call a pair of prices (pi, pj) a robust

equilibrium outcome if pi = limλ→0 pi(λ). In Bertrand duopoly, the only robust equilibrium

is pi = pj = c, as at any other p the firm can win the λ of informed consumers by slightly

dropping its price. The monopoly pricing equilibrium from Proposition 1 is robust. Indeed,

if λ < k/Q(pm)−α, then the constrained firm still sells out at the monopoly price, and hence

the unconstrained firm would not increase its profit when setting a price less than p1 = pm.

We proceed with the case of “large” capacities, that is when the constrained firm has

sufficient capacity to serve demand from all its first-time visitors at the monopoly price.

Lemma 1. Suppose that αQ(pm) ≤ k. Then there are no robust pure strategy pricing equi-

libria.

We proceed with the characterization of the mixed-strategy equilibria for αQ(pm) < k <

Q(c). We denote the distribution functions of the unconstrained and constrained firms as

F1(·) and Fk(·) respectively. Corresponding upper and lower bounds are denoted by p
i
, pi,

i = 1, k. We start with characterizing the boundaries of the supports of the equilibrium price

distributions.

Lemma 2. In any mixed strategy equilibrium p ≡ p
1
= p

k
> c and max{p1, pk} ≤ pm.

Moreover, αQ(p) < k.

Consumers who start their search from the unconstrained firm always weakly prefer check-

ing the price of the competitor, implying that the reservation price equals to p
1
. Consumers

who started their search from the unconstrained firm face a risk of being rationed out if

they decide to visit the unconstrained firm and, upon discovery of a larger price, attempt to

return. We denote by r the reservation price, i.e. the price at which consumers are indiffer-

ent between immediately buying from the constrained firm and searching the unconstrained

competitor. Note that in any equilibrium, consumers must stop when indifferent (otherwise,

a firm would prefer charging r − ε to charging r). As all consumers visiting the constrained

firm immediately purchase at pk = r, a consumer contemplating search will not return: if the

price in the unconstrained firm is lower than r, she will buy there; if the price is higher than

r, the capacity will be sold out to searchers coming from the unconstrained firm. Hence,

CS(r) = E [CS(p1)] . (1)
2Note that this notion of robustness naturally extends to mixed pricing strategies Fi(p;λ).
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Lemma 3. Any mixed strategy equilibrium has the following properties:

• If α > 0, the equilibrium price distribution F1 has support [p, r]
⋃
[p̂, pm] with p̂ ≤ pm.

If p̂ < pm then Fk has the same support, and if p̂ = pm then Fk has support on [p, r]. Fk

has an atom at r, F1 has an atom at pm, and both distribution functions are continuous

at p ̸= r, pm.

• If α = 0, the equilibrium price distribution functions have support [p, pm]. Fk is contin-

uous on its support and F1 is continuous on [p, pm) and has an atom at pm.

Lemma 3 establishes the necessary conditions for the existence of equilibrium in mixed

strategies.

We introduce notation

ψ(p) ≡ Ek[1/Q(pk)|pk ≤ p]. (2)

That is, kψ(p) is the expected number of consumers the constrained firm serves, given that

it charges a price below p. 3

Consider the unconstrained firm. We start with the lower part of the support, p ∈ [p, r).

The profit function of the unconstrained firm is given by

Π1(p) = [1− Fk(r)]π(p) + [Fk(r)− Fk(p)](1− α)π(p) + Fk(p)[1− kψ(p)]π(p) (3)

The first term corresponds to the case when the constrained firm charges the price above r,

then the unconstrained firm serves the whole market as p ∈ [p, r). Note that if Fk(r) = 1,

this term is zero, as serving the whole market is not possible because some consumers do

not search beyond the constrained firm. The second term corresponds to the case when the

constrained firm charges a price below r, but above the price of the unconstrained firm. In

this case, the unconstrained firm serves everyone, except for α consumers who initially visited

the constrained firm and did not search beyond it. The third term corresponds to the case

when the unconstrained firm loses the price competition and serves the residual demand.

Now, we look at the case when p > r. In this case

Π1(p) = [1− Fk(p)]π(p) + Fk(p)[1− kψ(p)]π(p). (4)

That is, if the price of the unconstrained firm charges a higher price, then the constrained

firm serves the whole market (due to pk > p1 > r all consumers search in this case); if the

3Note, that kψ(p) < 1 for all prices. To see this, note that ψ(p) is increasing in p. However, kψ(pm) > 1
would imply that the equilibrium profit of firm 1 is Π1(p

m) = 0, but this cannot be the case due to Q(c) > k.
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unconstrained firm charges a higher price, then it serves the residual demand. Plugging in

p = pm to (4) we can calculate the equilibrium level of profit as

Πm = [1− kψ(pm)]π(pm).

Plugging in p = p to (4) and equating the equilibrium profit to Πm we obtain

Fk(r) =
1

α

π(p)− Πm

π(p)
.

This means that if Fk(r) = 1 we obtain (1− α)π(p) = Πm, otherwise (1− α)π(p) > Πm.

Now consider the constrained firm. For p ≤ r we obtain

Πk(p) = F1(p)απ(p) + [1− F1(p)]k(p− c). (5)

That is, if the competitor charges a higher price, the constrained firm sells to its α initial

visitors. Otherwise, it sells up to full capacity.

For p > r all consumers search, thus the firm sells only when its price is the lowest, i.e.

Πk(p) = [1− F1(p)]k(p− c). (6)

Plugging p = p into equation (5), we obtain the equilibrium level of profit for the constrained

firm:

Π∗
k = k(p− c).

Using the indifference conditions we can derive the equilibrium distribution functions, which

we summarise in the following proposition.

Proposition 2. Suppose 0 < αQ(pm) < k. Then, there exist an equilibrium in mixed

strategies such that

F1(p) =



k
k−αQ(p)

(
1− p−c

p−c

)
p ∈ [p, r)

k
k−αQ(r)

(
1− p−c

r−c

)
p ∈ [r, p̂)

1− p−c
p−c p ∈ [p̂, pm)

1 p ≥ pm

, Fk(p) =



Πm

kψ(p)−α

(
1

π(p)
− 1

π(p)

)
p ∈ [p, r)

1
α

π(p)−Πm

π(p)
p ∈ [r, p̂)

π(p)−Πm

kψ(p)π(p)
p ∈ [p̂, pm)

1 p ≥ pm

where r solves CS(r) = E[CS(p1)], p̂ = min{p̂1, pm} where p̂1 solves
k(r−p)

(r−c)[k−αQ(r)]
=

p̂1−p
p̂1−c and

p solves Fk(p̂) =
1
α

π(p)−Πm

π(p)
.
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To complete the analysis, we consider the case of α = 0, i.e., when all consumers start

their search from the unconstrained firm.

Proposition 3. Suppose that α = 0. Then, there exists a unique equilibrium in mixed

strategies such that

F1(p) =

{
1− p−c

p−c p ∈ [p, pm)

1 p ≥ pm
, Fk(p) =

{
π(p)−Πm

kψ(p)π(p)
p ∈ [p, pm)

1 p ≥ pm

where p and Πm solve π(p) = Πm and Πm = (1− kψ(pm))π(pm).

Note, that the probability distributions in this case correspond to the upper segments of

the distributions from Proposition 2. The price distribution of the constrained firm is contin-

uous, and the price distribution of the unconstrained firm has an atom at pm. Although we do

not establish uniqueness of equilibria in Proposition 2, the following Lemma establishes that

any such equilibirium, should there be multiple, converges to the equilibrium in Proposition

3.

Lemma 4. As α → 0, any equilibrium of the model converges to that with α = 0 characterized

in Proposition 3.

For αQ(pm) < k any pricing equilibrium is in mixed strategies and must have the structure

described in Propositions 2 and 3. Whether variables (p, p̂, r) are uniquely determined for

a general demand function Q(·) remains an open question. We were able to establish such

uniqueness for the case of unit demand (see the next section).

3.2 Unit Demand

In this section, we focus on the special case of unit demand. This allows us to obtain a

precise characterization of the parameter set for which p̂ is equal to pm or the alternative set

for which p̂ is between 0 and pm. Moreover, we establish the uniqueness of equilibrium and

obtain comparative statics results.

Suppose that each consumer has unit demand and values the product at v. This implies

that Q(p) = 1 for p ≤ v and Q(p) = 0 otherwise and v = pm. Therefore, Proposition 1

implies that for α > k there is a unique equilibrium in which all firms charge p = v.

Moreover, as ψ(p) = 1 and π(p) = p − c for all p ≤ v, and Πm = (1 − k)(v − c), we can

re-write Propositions 2 and 3 to obtain the following result.
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Proposition 4. For every k > α ≥ 0, there exists a unique mixed strategy equilibrium.Moreover,

there exists a function α̂(k) ∈ (0, k/2) such that:

1. For α ∈ [α̂(k), k), the equilibrium price distributions are given by:

F1(p) =


k

k−α
p−p
p−c p ∈ [p, r)

k
k−α

r−p
r−c p ∈ [r, v)

1 p ≥ v

, Fk(p) =

{
1−k
k−α

v−c
p−c

p−p
p−c p ∈ [p, r)

1 p ≥ r,

where r = E[p1] and p = 1−k
1−α(v − c) + c;

2. For α ∈ (0, α̂(k)), the equilibrium price distributions are given by:

F1(p) =


k

k−α
p−p
p−c p ∈ [p, r)

k
k−α

r−p
p−c p ∈ [r, p̂)

1− p−c
p−c p ∈ [p̂, v)

1 p ≥ v

, Fk(p) =



1−k
k−α

v−c
p−c

p−p
p−c p ∈ [p, r)

1
α

p−c−(1−k)(v−c)
p−c p ∈ [r, p̂)

1
k

(
1− (1− k)v−c

p−c

)
p ∈ [p̂, v)

1 p ≥ v,

where r = E[p1]; and p = 1−k
1−αFk(r)

(v − c) + c and p̂ solves
p̂−p
p̂−c =

k
k−α

r−p
r−c ;

3. For α = 0, the equilibrium price distributions are given by:

F1(p) =

{
1− p−c

p−c p ∈ [p, v)

1 p ≥ v
, Fk(p) =

 1
k

(
1− (1− k)v−c

p−c

)
p ∈ [p, v)

1 p ≥ v,

where p = (1− k)(v − c) + c.

When α is large, i.e. α > α̂(k), the constrained firm avoids charging a price above the

reservation price. Charging such a price carries the risk of losing many consumers in return

for the chance of selling at a higher price. When α is large the risk is not worth taking.

When α is smaller, the charging such a price becomes more attractive and the constrained

firm charges prices p > r with positive probability.

Figure 1 depicts the regions of parameters when each type of equilibria exists. For α > k

(blue region) the equilibrium is the monopoly price, as described in Proposition 1. The

red region corresponds to part 1 of Proposition 4 , in this case the constrained firm does

not charge prices above r and all its initial visitors buy immediately. In the green region,

corresponding to part 2 of Proposition 4, the constrained firm sometimes charges prices above

the reservation price. Finally, the axis α = 0 corresponds to the third part of Proposition 4.
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k

α

1

1

(0, 0)

p1 = pk = v

α̂(k)p̂ = v

p̂ < v

Figure 1: Pricing Equilibria

The equilibrium distributions functions, corresponding to red and green regions are depicted

in Figure 2.

The equilibrium profit of the unconstrained firm equals to Π1(v) = (1−k)(v−c) in either

case. This is the profit level the unconstrained firm can guarantee by setting p = v and

serving all the consumers who cannot be served by the constrained firm. In either case, the

equilibrium profit of the constrained firm is equal to Πk(p) = k(p− c), since at p = p it sells

out its capacity.

When α > α̂(k), consumers who visited the constrained firm do not search, and therefore

Π1(p) = (1 − α)(p − c). Thus, p = 1−k
1−α(v − c) + c and Πk = k 1−k

1−α(v − c). The expected

consumer surplus is given by

CS = v − Π1 − Πk − c =

[
1− (1− k)

(
1 +

k

1− α

)]
(v − c)
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(a) α > α̂(k)
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(b) α < α̂(k)

Figure 2: Price distributions

which is increasing in k for k > α and decreasing in α. This means that consumers are better

off when the constrained firm has a larger capacity, which leads to stronger competition.

Furthermore, as the number of consumers who start searching from the constrained firm,

α, increases, the unconstrained firms risks to lose a smaller number of consumers when it

increases its price, namely k − α. As a result, it increases its prices. This increases the

reservation price r, to which the unconstrained firm responds with its price increase. For

α = k, consumer surplus is equal to 0.

For α < α̂(k) we are getting

CS = v − Π1 − Πk − c = k

(
1− k

k−α
1−k + α v−c

p̂−c

)
(v − c).

This expression also increases in c, decreases in α, converges to the expression for α > α̂(k)

as p̂→ v; and simplifies to CS = k(1− k)(v − c) when α = 0, which is indeed the consumer

surplus corresponding to case 3 of Proposition 4.

4 Consumers’ endogenous choice of first visit

In the previous analysis, we fixed the consumers’ decision on which firm they are visiting

first. In this section, we consider the setting with endogenous α: consumers freely decide

on the order in which they visit the firms. We assume that consumers can distinguish the

constrained and the unconstrained firms prior to the initial search. Consumer strategy in this

setting has two elements: α, the probability of starting their search with the constrained firm,
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and the reservation price r. When deciding where to start the search, consumers compare the

expected price they will pay on each search path given the strategy of the other consumers

and firms. In equilibrium, if α ∈ (0, 1), then these expected prices must be equal to each

other.

We start with a putative equilibrium with αQ(pm) > k. Proposition 1 implies that in

this case p1 = pk = pm and hence consumers are indifferent about the starting point of their

search. Therefore, any α such that αQ(pm) > k constitutes an equilibrium strategy of a

consumer.

Now we turn our attention to the mixed strategy region, i.e. αQ(pm) < k. We denote Uk

the expected consumer surplus of the consumer who starts searching from the constrained

firm and U1 the expected surplus of the consumer who starts from the unconstrained firm.

Then,

Uk = Fk(r)Ek [CS(pk)|pk ≤ r]

+ [1− Fk(r)]Ek {F1(pk)E1 [CS(p1)|p1 < pk]

+ [1− F1(pk)] (ϕ(pk)CS(pk) + [1− ϕ(pk)]E1 [CS(p1)|p1 > pk])} .

That is, with probability Fk(r) the consumer discovers the price below the reservation price

and buys immediately. Otherwise, the consumer explores the unconstrained firm. If p1 ≤ pk

then the consumer immediately buys at the unconstrained firm. Otherwise, they attempts

to come back. With probability ϕ(pk) = max{0, [k− (1−α)Q(pk)]/[αQ(pk)]} they could buy

from the constrained firm,4 otherwise they have get back again to buy at the unconstrained

firm.

Consumer who starts search from the unconstrained firm always checks the constrained

one. Therefore,

U1 = Fk(r)Ek
{
ψ̃(pk)Ek [CS(pk)|] + [1− ψ̃(pk)]E1 [CS(p1)] |pk ≤ r

}
+ E1

(
Fk(p1)Ek

{
ϕ̃(pk)Ek [CS(pk)|] + (1− ϕ̃(pk)]CS(p1)|pk ≤ p1

})
+ E1 {[1− Fk(p1)]CS(p1)} .

That is, if pk ≤ p1, then consumers try to buy at the constrained firm. If pk ≤ r they can do

4The constrained firm will serve (1−α) consumers who started their search from the unconstrained firm.
As pk > r the remaining capacity at this point is k. As pk > p1 all the visitors would attempt to buy. Then
all consumers who visited the constrained firm first would be competing for the remaining capacity, in there
is any.
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it with probability ψ̃(pk) = min{1, [k − αQ(pk)]/[(1− α)Q(pk)]}.5 If pk > r then consumers

can buy with probability ϕ̃(pk) = min{1, k/[(1− α)Q(pk)]}.
In any equilibrium with α ∈ (0, 1) it must be the case that

Uk = U1.

Whenever Uk > U1 for all α we have a monopoly pricing equilibrium with all consumers

starting their search from the constrained firm, i.e. α = 1. Correspondingly, if Uk < U1, then

all consumers start their search from the unconstrained firm, i.e. α = 0.

We numerically compute the full set of equilibria for unit demand, which is represented in

Figure 3. Note, that perform the computation for each value of k, hence the only remaining

parameters of the model are v and c, which we decided to normalize at 1 and 0 respectively.

k

α

1

1

(0, 0)

p1 = pk = v

k k

α̂(k)p̂ = v

p̂ < v

Figure 3: Equilibria marked in blue, k ≈ 0.748, k ≈ 0.803

In Figure 3, for k > k, there are three equilibria: one where consumers coordinate on

5Note, that the numerator in this case is always non-negative.
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searching the unconstrained firm first, and two where they randomize between the constrained

and unconstrained firms. For such k, if many consumers search the unconstrained firm first,

it makes sense to follow the same strategy. If k is large and α is small, a consumer starting a

search from the unconstrained firm is very likely to purchase the product at the constrained

firm if the price there turns out to be lower. However, if such a consumer deviates and starts

searching with the constrained firm, they will not be able to come back: if the constrained

firm charges the lowest price, the product will be sold out. Therefore, deviating to search

the constrained firm first makes search without recall, which is not attractive. Hence, all

consumers prefer to start searching from the unconstrained firm. The more consumers visit

the constrained firm first, the weaker the incentives to start the search from the unconstrained

firm. On the one hand, if the price at the constrained firm is below the reservation price,

visitors from the unconstrained firm are more likely to be rationed out. On the other hand, if

pk is high enough to justify search, but eventually is larger than p1, then consumers searching

the constrained firm first get their chance for recall increasing in α: the probability of recall

is k−1−α
α

= 1 − 1−k
α
. This makes searching from the constrained firm progressively more

attractive, and at some point U1 = Uk, so a mixed strategy equilibrium arises. When α > k,

then both price distributions collapse to a single point p1 = pk = v and searching from either

firm is equally profitable. For k ∈ [k; k], the equilibrium with α = 0 does not exist; instead,

there are two equilibria with α ∈ (0, k).

If k < k it is too risky to visit the unconstrained firm first, and in any equilibrium we have

α > k. Therefore, for k < k monopoly pricing is the unique equilibrium outcome in the model

with endogenous first visits. Note, that monopoly pricing does not require severe capacity

restrictions, as k < k ≈ 3/4. That is, the monopoly pricing is the unique equilibrium even if

the market has excess capacity of 74%.

This result has important implications. If one of the firms restricts its capacity to the level

just below k (or a capacity constrained entrant enters a market with capacity unconstrained

incumbent), such firm may earn higher profits that the unconstrained firm: k(v − c) >

(1 − k)(v − c), i.e. the profit of the constrained firm may be almost three times as large as

the profit of the unconstrained one. Thus, unilateral capacity restriction may be a profitable

strategy.
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5 Discussion

In our main analysis we focused on a duopoly case. However, the results of Proposition 1 can

be extended to an oligopoly setting. That is, suppose that there are n capacity constrained

firms with capacities k1, . . . , kn with
∑n

i=1 ki < 1 and one firm without capacity constraints.

Suppose that the initial distribution of consumers is such that αiQ(p
m) > ki. In this case each

firm in the market charges pi = pm, i = 1, . . . n+1. The argument is analogous to Proposition

1. If there was another equilibrium, then let ri be the reservation price associated with search

upon visiting firm i in the first round. Then firm i has no incentives of charging prices below

ri. Then none of the firms charges prices below r = mini ri. This implies that r cannot be a

reservation price, unless all the price distributions are degenerate with support on r. Hence,

all firms charge the monopoly price. Characterization of mixed strategy equilibria in the

oligopoly setting is quire cumbersome and is beyond the scope of this paper.

Appendix

Proof for Proposition 1. We prove the statement of the proposition by ruling out all other

equilibrium candidates, starting with pure strategy ones.

Note that in any equilibrium p1 ≤ pm as otherwise the constrained firm could increase

its profit by decreasing the price. This implies that pk ≤ pm as otherwise all consumers who

initially visited the constrained firm would leave for the incumbent.

On the way to a contradiction, suppose that pk < p1 ≤ pm. Then p′k = (pk + p1)/2 is

a profitable deviation of the constrained firm, as it will still sell up to the full capacity and

because p′k < pm we obtain that Πk(p
′
k) > Πk(pk).

On the way to a contradiction, suppose that p1 < pk ≤ pm. Then p′1 = (pk + p1)/2 is a

profitable deviation by the incumbent firm: as p′1 < pk the total number of consumers served

does not change and p1 < p′1 < pm.

Thus, it must be the case that in any pure strategy equilibrium p1 = pk = p ∈ (c, pm].

On the way to a contradiction, suppose that p < pm. Because αQ(pm) > k we obtain

that the number of consumers who initially visited the constrained firm satisfies α > k/Q(p).

Suppose that measure β > α− k/Q(p) decided to check the price at the incumbent firm and

measure γ ≤ β attempted to return.

If γ = 0 (none of the consumers returns), then there exists ε > 0 such that the constrained
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firm has a profitable deviation to pk = p− ε as

(α− β)Q(p)(p− c) < k(p− ε− c)

for ε small enough.

If γ > 0 (some consumers return), then then there exists ε > 0 such that the unconstrained

firm has a profitable deviation to p1 = p− ε as

(1− α + β − γ)Q(p)(p− c) < (1− α + β)Q(p− ε)(p− ε− c)

for ε small enough. We conclude that it cannot be the case that β > α − k/Q(p), hence

β = α − k/Q(p), i.e. the entrant sells its full capacity to the first-time visitors. Therefore,

the incumbent’s profit is (1 − α)Q(p)(p − c), thus has a profitable deviation from p1 = p to

p1 = pm.

We conclude that the only pure strategy equilibrium is when p1 = pk = pm and the

constrained firm sells out its full capacity in the first round.6

To establish uniqueness we need to verify that there are no (non-degenerate) mixed strat-

egy equilibria. Suppose that such equilibrium exists. Denote the strategies as F1 and Fk.

Denote by r ≤ pm the reservation price, i.e. a price at which consumer who started search

at the constrained firm is indifferent between accepting this price immediately and checking

the unconstrained firm.

First, note that for pk < r the profit of the constrained firm is given by k(pk − c), which

is increasing in pk. Thus, the lower bound of the support of Fk must weakly exceed r. This

implies that the lower bound of the support of the unconstrained firm must weakly exceed

r. Then r is a reservation price if and only if the distribution of the unconstrained firm is

degenerate with support at p = r, which implies that the distribution of the constrained firm

is also degenerate (as charging pk > r results in zero demand). Thus, the mixed strategy

equilibrium reduces the pure strategy equilibrium case analysed earlier.

Proof of Lemma 1. Following the arguments in the proof of Proposition 1 if a pure strategy

equilibrium exists, then it must be the case that p1 = pk = p.

Now we show that none of these candidate equilibria is robust. Denote p̃ solution to

αQ(p̃) = k, p̃ < pm. If p > p̃ then the constrained firm can increase its profit by charging

6Note, that if λ < α− k/Q(pm) the monopoly price equilibrium is robust.
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p′k = p − ε and attracting λ of consumers who sample both firms. If p ≤ p̃ < pm then the

constrained firm sells out, and the unconstrained firm is better off by charging p′1 = pm.

Proof of Lemma 2. We first prove that p
1
= p

k
. On the way to a contradiction, suppose that

p
i
< p−i. The profit of firm i is increasing on the interval (p

i
, p−i), leading to a contradiction.

Now we prove that max{p1, pk}. Consider the unconstrained firm. If p1 > pm, then the

firm can increase its profit by deviating to p′1 = pm as per-consumer profit increases, and the

total number of served consumers does not decrease. Therefore p1 ≤ pm. This implies that

for pk > pm the constrained firm profit is Πk(pk) = 0. Hence, the constrained firm also does

not charge prices above pm.

Note that both firms make positive profits in any equilibrium. The unconstrained firm

can earn strictly positive profits by setting price c+ε, where ε > 0 is sufficiently small. Since

k < Q(c), the constrained firm setting a price lower than c + ε cannot serve all consumers,

implying that some consumers always buy from the unconstrained firm. Thus, p > c. The

constrained firm can earn positive profits by setting price p− ε.

Proof of Lemma 3. The following lemma establishes that the support of the equilibrium

price distribution may have at most one gap, and this gap must be above the reservation

price.

Lemma 5. Suppose that p < a < b < min{p1, pk}.

1. If Fi(b) − Fi(a) = 0 then there exits ε0 > 0 such that for any ε ∈ (0, ε0) and F−i(b −
ε)− F−i(a) = 0.

2. If Fi(b)− Fi(a) = 0 then a = r.

Proof. Note that if firm i has a gap on some (a, b), then Π−i(p) is increasing on this interval,

so firm −i also must have a gap. This proves the first claim and allows us to focus on common

gaps in the support.

Suppose that a ̸= r. On the way to a contradiction, we consider two cases: when a firm

has an atom at p = a and when both distribution functions are continuous at p = a.

Suppose that both firms have an atom at p = a. If a > p then all consumers from

the unconstrained firm search and hence, there exists ε > 0 such that Πi(a − ε) > Πi(a),

i = 1, k. If a = p and consumers who initially visited the unconstrained search, then the
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same undercutting argument applies. If these consumers search, then due to a < r there

exists ε > 0 such that Πk(a) < Πk(a + ε) (as all consumers initially visiting the constrained

firm stay, and all consumers who may come from the unconstrained firm observed p1 > p+ε).

Secondly, suppose that firm −i does not have a mass point at a ̸= r and firm i charges

pi = a with strictly positive probability. Then it must be the case that Πi(a) < Πi(a+ ε), as

the probability of sale does not change when deviating from a to a+ ε and a < pm.

Finally, if both distribution functions are continuous in the lower neighborhood of a, then

there exists ε1, ε2 > 0 such that for any p ∈ (a− ε1, a] we have that Πi(p) < Πi(a+ ε2). That

is, a cannot be the infimum of the gap for firm i leading to a contradiction.

Lemma 6. Fi(p) is continuous at any p ∈ [p, pi) and p ̸= r. Moreover, if limε→0 Fi(p) −
Fi(p− ε) > 0 then limε→0 F−i(p)− F−i(p− ε) = 0.

Proof. Suppose that limε→0[Fi(p0)− Fi(p0 − ε)] > 0. Then there exists ε0 > 0 such that for

any ε ∈ (0, ε0] we have Π−i(p0 + ε) < Π−i(p0), which implies that F−i(p0 + ε0)−F−i(p0) = 0.

Then, from Lemma 5 it follows that either p0 = r or p0 = p−i. Moreover, if limε→0[Fi(p0)−
Fi(p0 − ε)] > 0 then there exists such ε > 0 that Π−i(p0 − ε) < Π−i(p0), implying that firm

−i cannot charge p0 with positive probability.

Lemma 6 states that if either firm has a price played with positive probability, then it

must be either the reservation price, of the upper bound of the support of the firm’s pricing

distribution. Moreover, if one firms plays such price with a positive probability, then another

firm cannot do the same.

Lemma 7. Suppose that Fi(r) < 1 for any i ∈ {1, k}. Then p1 = pk = pm.

Proof. Suppose that pi > p−i. As Fi(r) < 1, then from Lemma 5 it follows that there exists

ε such that distribution function Fi is continuous on (pi − ε, pi). However, pi > p−i implies

that Π(p) is strictly increasing on (pi− ε, pi) leading to a contradiction. Denote the common

upper bound p.

Now, from Lemma 6 it follows at most one firm charges p with positive probability. Denote

this firm i. Then, Πi(p) is increasing on p ∈ [p, pm], as the competitor charges a lower price

than p with probability 1. Hence, if p < pm firm i has a profitable deviation.

Lemma 8. Suppose that α > 0. Then, there exists ε0 > 0 such that Fi(r) = Fi(r + ε0).

Moreover, limε→0[Fk(r)− Fk(r − ε)] > 0.
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Proof. First, notice that as all consumers search at pk > r we have that there exists ε > 0

such that Πk(r + ε) < Πk(r), i.e. Fk has a gap above r, hence, by Lemma 5, F1 also must

have a gap above r.

Second, suppose that limε→0[Fk(r)− Fk(r − ε)] = 0, i.e. firm k does not have atom at r.

Then, there exists small enough ε > 0 such that Π1(r + ε) > Π(r) as the expected demand

for the unconstrained is the same at r + ε and r.

Lemma 9. limε→0[F1(p
m)− F1(p

m − ε)] > 0.

Proof. On the way to a contradiction suppose that limε→0[F1(p
m) − F1(p

m − ε)] = 0. We

consider two cases: Fk(r) < 1 and Fk(r) = 1.

Suppose that Fk(r) < 1. Then from Lemmata 5 and 7 there exists an interval (pm−ε, pm]
such that F1 is continuous on this interval. Then limε→0Πk(p

m−ε) = 0, hence the constrained

firm must have a gap below pm, which contradicts Lemma 5.

Suppose that Fk(r) = 1. Note, that p1 > r by the definition of reservation price. Fk(r) = 1

implies that Π1(p
m) > Π1(p) for any p ∈ (r, pm), hence F1 has an atom at pm.

Proof Lemma 3. From Lemma 5 we know that supports of the distributions may have

at most one gap. I a gap exists, it is the same for both F1 and Fk and starts at p = r.

Lemma 6 states that both distribution functions are continuous in their support except

possibly for either p = r or p = pi. If one distribution has an atom at such p, then another

is continuous.

Lemma 2 states that if both firms charge prices above r, they must charge prices all the

way up to pm.

Lemma 8 states that if the constrained firm is initially visited by some consumers, then

it must have an atom at p = r (hence by Lemma 6 the unconstrained firm does not have an

atom there). Moreover, either both firms have a gap above r or Fi(r) = 1.

Lastly, Lemma 9 states that the unconstrained firm has at atom at pm.

Summing up, both firms play a continuous distribution on [p, r) (Lemmata 2 and 6). If

α > 0, then the constrained firm has an atom at r (Lemma 8), the unconstrained firm does

not (Lemma 6). Now we consider two cases: Fk(r) = 1 and Fk(r) < 1.

If Fk(r) = 1, then Π1[p1] is increasing on p1 ∈ (r, pm], hence the unconstrained firm does

not charge prices in this interval but charges pm with strictly positive probability (Lemma

9). Hence, Fk has support [p, r] with an atom at r and F1 has support [p, r]
⋃
{pm} with an

atom at pm.
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If Fk(r) < 1, then by Lemmata 8 and 5, both distributions have a single gap, with the

lower bound at r. We denote the upper bound of the gap as p̂. By Lemma 7, the upper

bounds of the supports coincide and are equal to pm. Hence, both distributions have support

[p, r]
⋃
[p̂, pm] with Fk having atom at r and F1 having atom at pm (Lemmata 8 and 9).

For α = 0 we prove that support is convex. From Lemma 5 we know that if gaps in

supports exist, they must coincide. Denote this gap (a, b). As all consumers start with

the unconstrained firm, they always check the constrained one. As the constrained firm

does not have an atom at a (Lemma 6) we get that Πk(p) is increasing on [a, b) leading

to a contradiction. Thus, support is convex. Convexity of support and continuity of price

distributions in the interior of the supports (Lemma 6) imply that supports coincide, which,

in turn, implies that Fk(r) < 1. Hence, by lemma 7, the common upper bound equals pm.

Thus, both distributions are continuous on their common support [p, pm) and F1 has an atom

at pm (Lemma 9).

Proof of Proposition 2. The distribution functions are obtained from solving equations Π1(p) =

Πm and Πk(p) = k(p− c). In what follows, we show that the functions are well-defined; that

is, densities are positive on the support.

We start with the function Fk. For the segment p ∈ [p, r) we get

Fk(p)[ψ(p)− α] = Πm

(
1

π(p)
− 1

π(p)

)
or, equivalently, ∫ p

p

kfk(pk)

Q(pk)
dpk − αFk(p) = Πm

(
1

π(p)
− 1

π(p)

)
.

Differentiating both sides with respect to p gives

fk(p)

(
k

Q(p)
− α

)
=

Πm

[π(p)]2
π′(p)

which implies that the density is positive for p < r < pm.

For the segment p ∈ [p̂, pm] we get

Fk(p)ψ(p) = 1− Πm

π(p)
.
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Differentiating both sides with respect to p gives

kfk(p)

Q(p)
=

Πm

[π(p)]2
π′(p),

which implies that the density is positive for p < pm and is zero for p = pm.

Now consider the distribution function F1. On the segment p < r applying the Implicit

Function Theorem to (5) gives

f1(p) =
F1απ

′(p) + [1− F1(p)]k

k(p− c)− απ(p)
> 0.

On the segment p ∈ [p̂, pm) differentiation gives

f1(p) =
p− c

(p− c)2
> 0.

Thus, the distribution functions in the proposition are well-defined.

Finally, note that the constrained firm is indifferent between charging r and charging p̂,

and strictly prefers r to any p ∈ (r, p̂). Also, note that

lim
p̂→pm

π(p̂)− [1− kψ(pm)]π(pm)

kψ(p̂)π(p̂)
= 1.

Therefore, if the pricing distribution has a gap on (r, pm) then deviation to any point in this

gap is not profitable for firm k.

To show the existence of the equilibrium, it is sufficient to show that there exist (p, r, p̂1)

and p̂ = min{p̂1, pm} such that

CS(r) = E[CS(p1)] (7)

p̂1 − p

p̂1 − c
=
r − p

r − c

k

k − αQ(r)
(8)

(1− kψ(pm))π(pm) = [1− αFk(p̂)]π(p) (9)

As the first step, we show that for any p ∈ (c, pm) there exist continuous functions r(p)

and p̂(p) such that they solve equations (7) and (8) with p < r(p) < p̂(p) ≤ pm.

Fix some p ∈ (c, pm). Consider r = p. Equation (8) implies that p̂ = p, which together

with (7) implies that CS(p) > E[CS(p1)].
Consider r = pm. Then, equation (8) implies that p̂1 > r = pm and therefore p̂ = pm.
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CS(pm) < E[CS(p1)].
Now we define r′ as the value of r such that p̂1 = pm:

pm − p

pm − c
=
r′ − p

r′ − c

k

k − αQ(r′)
.

For any r ∈ (p, r′), equation (8) implies that p̂(r) < pm. This allows us to rewrite equation

(7) as

G1(p, r) ≡ CS(r)−
∫ r

p

CS(p)dF1(p)−
∫ pm

p̂(r)

CS(p)dF1(p)− [1− F1(p
m)]CS(pm) = 0.

Taking the derivative with respect to r gives:

∂G1(p̂, r)

∂r
= −Q(r)− CS(r)f1(r) + CS(p̂)f1(p̂)

∂p̂

∂r
.

As F1(r) = F1(p̂(r)), we have f1(r) = f1(p̂)
∂p̂
∂r

and therefore

∂G1(p̂, r)

∂r
= −Q(r)− [CS(r)− CS(p̂)]f1(r) < 0.

Now consider r ∈ (r′, pm). Then, in the neighbourhood of r, equation (8) implies that

p̂ = pm. This allows us to rewrite equation (7) as

G2(p, r) ≡ CS(r)−
∫ r

p

CS(p)dF1(p)− [1− F1(r)]CS(p
m) = 0

and
∂G2(p̂, r)

∂r
= −Q(r)− [CS(r)− CS(pm)]f1(r) < 0.

Finally, at r = r′, negative left- and right-derivatives exist. Hence, G(p, r) is strictly decreas-

ing in r ∈ (p, pm). Using continuity of G(p, r) and the facts that G(p, p) > 0 and G(p, pm) < 0

and applying the Intermediate Value Theorem implies that for any p there is a pair (p̂, r)

which solves equations (7) and (8). As G(p, r) is continuous and strictly monotone, we can

apply the Implicit Function Theorem and obtain that the solution r(p) of G(p, r) = 0 is

unique and continuous in p. As p̂(r) is continuous in r, we obtain that p̂ is continuous in p.

Now, consider equation (9). Note, that if p = pm then (r, p̂) solving (7) and (8) equals

(pm, pm). Plugging these values into (9), we obtain

(1− α)π(pm)− [1− k/Q(pm)]π(pm) > 0.
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On the other hand,

[1− αFk(p̂)]π(p)− [1− kψ(pm)]π(pm) < [1− αFk(p̂)]π(p)− [1− kQ(pm)]π(pm)

and

lim
p→c

[1− αFk(p̂)]π(p)− [1− kQ(pm)]π(pm) = −[1− kQ(pm)]π(pm) < 0.

Therefore, there exists p which solves equation (9), and hence there exists a triplet (p, r, pm)

with solves equations (7)-(9).

Proof of Proposition 3. From Lemma 3 we know that for α = 0 both distribution functions

have convex support [p, pm], Fk is continuous on its support, and F1 is continuous for p < pm

and has an atom at pm.

The indifference condition for the unconstrained firm gives:

Π1(p) = [1− Fk(p)]π(p) + Fk(p)[1− kψ(p)]π(p).

Note that Π1(p) = π(p) and Π1(p
m) = Πm, implying π(p) = Πm. Using the latter boundary

condition we obtain

Fk(p) =
π(p)− Πm

kψ(p)π(p)
.

In the proof of Proposition 2 we have shown that this is an increasing function. Now, we

consider the constrained firm:

Πk(p) = [1− F1(p)]k(p− c)

with the boundary condition Πk(p) = k(p− c). This implies that

F1(p) = 1−
p− c

p− c
,

which is increasing in p.

To prove the existence, we need to show that equation π(p) = Πm has a solution. Note,

that

fk(p) =
Πm

k

π′(p)

π(p)(p− c)
.
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Using the fact that Fk(p) is continuous at p
m, we obtain

Πm

k

∫ pm

p

π′(x)dx

π(x)(x− c)
= 1.

Plugging in Πm = π(p) and rearranging, we have

H(p) ≡ π(p)

∫ pm

p

π′(x)dx

π(x)(x− c)
= k.

Note that H(p) tends to 0 when p tends to pm. Moreover, note that the integral

∫ pm

p

π′(x)dx

π(x)(x− c)
>

1

pm − c

∫ pm

p

π′(x)dx

π(x)
=

1

pm − c
log

π(pm)

π(p)
,

and, therefore, tends to +∞ as p→ c. Thus, by L’Hospital’s rule, we have that:

lim
p→c

H(p) = lim
p→c

∫ pm
p

π′(x)dx
π(x)(x−c)

1/π(p)
= lim

p→c

−π′(p)

π(p)(p−c)

− π′(p)

π2(p)

= Q(c) > k,

implying that H(p) is greater than k for p sufficiently close to c. The existence follows from

the Intermediate Value Theorem.

Next, we show uniqueness. The derivative of H with respect to p is

dH

dp
= π′(p)

[∫ pm

p

π′(x)dx

π(x)(x− c)
− 1

p− c

]
.

Note that for any p ∈ (c, pm], we have

d

dp

[∫ pm

p

π′(x)dx

π(x)(x− c)
− 1

p− c

]
= −

π′(p)

π(p)(p− c)
+

1

(p− c)2
= −

Q′(p)

p− c
> 0,

implying that the expression in square brackets strictly increases on (c, pm] and attains its

maximal value −1/(pm − c). Therefore, for any p ∈ (c, pm),

dH

dp
< −

π′(p)

pm − c
< 0,

implying that H(p) strictly decreases on (c, pm).
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Since H(p)−k is monotone and changes its sign on (c, pm), we have that there is a unique

p ∈ (c, pm) that solves H(p)− k = 0.

Proof of Lemma 4. For every α ∈ (0, k/Q(pm)), let r be an equilibrium reservation price of

consumers who start their search at the constrained firm. Define also p, p̂, p̂1 and Πm as the

associated parameters of the equilibrium distribution functions Fk(·) and F1(·), characterized
in Proposition 2.

Define p
0
as the lower bound of the equilibrium support in the model with α = 0. By

Proposition 3, p
0
is uniquely defined and p

0
∈ (c, pm).

Assume by contradiction that the equilibrium p does not converge to p
0
as α tends to

0. Then, there exists a sequence (αn)n≥0 that tends to zero and the associated sequence

(pn)n≥0 remains bounded away from p
0
. Since this sequence is bounded, we can extract a

subsequence converging to some p′
0
̸= p

0
. In the following, all limits are taken along that

converging subsequence.

Note that p′
0
> c. Otherwise, the corresponding equilibrium profits of firm 1, given in

equation (3), tend to 0 as n → ∞, contradicting the fact that firm 1 can always guarantee

positive profits of (1−k)π(pm). Moreover, we must have that p′
0
< pm. Otherwise, if p′

0
= pm,

then for sufficiently high n, the constrained firm could achieve a discrete jump in demand by

setting a price slightly below pn but still sufficiently close to pm.

Rewriting the equation for p̂n1 , we have that

p̂n1 − rn

p̂n1 − c
= αn

Q(rn)

k − αnQ(rn)

rn − pn

pn − c
−→
n→∞

0,

since pn − c is bounded away from zero for sufficiently high n (p′
0
> c). Moreover, since

rn is bounded, we have that p̂n1 is also bounded (from the definition of p̂1), implying that

p̂n1 − rn → 0 as n→ ∞. It follows that p̂n − rn → 0.

Next, we show that F n
1 weakly converges to

F1(p, p
′
0
) =

{
1− p′

0
−c

p−c p ∈ [p′
0
, pm)

1 p ≥ pm.

Let p < p′
0
. Then, for n sufficiently large, pn > p and F n(p) = 0, which converges to 0 as

n → ∞. Next, let p ∈ [p′
0
, pm). Since p̂n − rn tends to 0, we have that the gap (rn, p̂n) in
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F n
1 (p) vanishes as n → ∞. Moreover, we have that F n

1 (p) −→
n→∞

1− p′
0
−c

p−c = F1(p). Therefore,

F n
1 weakly converges to F1.

In the following step of the proof, we show that rn tends to r′0 < pm, where r′0 solves

CS(r′0)− CS(pm) =

∫ pm

p′
0

Q(p)F1(p, p
′
0
)dp.

The equation determining rn can be rewritten as

CS(rn)− CS(pm) =

∫ pm

pn
Q(p)F n

1 (p)dp.

Rearranging terms and taking absolute values, we have that

|CS(rn)− CS(r′0)| =

∣∣∣∣∣
∫ p′

0

p

Q(p)F n
1 (p)dp+

∫ pm

p′
0

Q(p)(F n
1 (p)− F1(p, p

′
0
))dp

∣∣∣∣∣ .
As n goes to∞, the first integral in the right-hand side tends to 0 as the integrand is bounded.

By Lebesgue’s dominated convergence theorem, the second integral on the right-hand side

also tends to 0, as the integrand is bounded and converges pointwise to 0 on [p′
0
, pm]. This

implies that rn tends r′0 as n→ ∞.

Next, we show that F n
k weakly converges to

Fk(p, p
′
0
) =


π(p′

0
)

k

∫ p
p′
0

π′(x)dx
π(x)(x−c) p ∈ [p′

0
, pm)

1 p ≥ pm.

From the definition of pn, we have that

π(pn)− Πm,n = αnπ(pn)Fk(r
n) −→

n→∞
0,

implying that Πm,n tends to π(p′
0
) as n → ∞. Using the expression for Fk in the proof of

Proposition 2, we have that

F n
k (p) =



Πm,n
∫ p
pn

1
k−αnQ(x)

π′(x)dx
π(x)(x−c) p ∈ [pn, rn)

Πm,n

k

∫ p̂n
pn

π′(x)dx
π(x)(x−c) p ∈ [rn, p̂n)

Πm,n

k

∫ p
pn

π′(x)dx
π(x)(x−c) p ∈ [p̂n, pm)

1 p ≥ pm.
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By Lebesgue’s dominated convergence theorem, we have that the first and the third inte-

grals tend to
π(p′

0
)

k

∫ p
p′
0

π′(x)dx
π(x)(x−c) (as the integrands are bounded and converge pointwise to

π′(x)/(π(x)(x− c))). Since p̂n, rn tends to r′0, the gap (rn, p̂n) in F n
k (p) vanishes as n → ∞.

It follows that, F n
k weakly converges to Fk(p, p

′
0
).

Since p̂n → r′0 < pm as n→ ∞, we have that Fk(p, p
′
0) is continuous at p = pm, implying

that
π(p′

0
)

k

∫ pm

p′
0

π′(x)dx

π(x)(x− c)
= 1.

In Proposition 3, we have established that there exists a unique solution to this equation,

which is equal to p0. Thus, p′
0
= p

0
, a contradiction. Hence, the equilibrium p converges to

p
0
as α tends to 0.

Following the same steps, we can show that the equilibrium Fk(p) and F1(p), given in

Proposition 2, weakly converge to the equilibrium distributions given in Proposition 3. More-

over, p̂, r tend to r0 that solves

CS(r0)− CS(pm) =

∫ pm

p
0

Q(p)

(
1−

p
0
− c

p− c

)
dp.

5.1 Proof of Proposition 4

The existence of equilibrium and equations defining the distribution functions follow from

Propositions 2 and 3. It remains to be shown the uniqueness of equilibrium and existence of

α̂(k). The proof follows a sequence of Lemmata. Lemma 10 establishes uniqueness of solution

to search equation when p̂ = pm. Lemma 12 shows that equilibrium with p̂ = pm exists if and

only if α > α̂(k), and, together with the previous Lemma establishes uniqueness. Lemma 13

characterises the properties of function α̂(k). Finally, Lemma 14 establishes uniqueness of

equilibrium for α < α̂(k).

We define the function

b(r) = r −
∫ r

p

pdF1(p)− (1− F1(r))v,

that is, b(r) = r − E1p1 in the case when p̂ = pm.

Lemma 10. Suppose that α ∈ [0, k) and pk = r. Then, there exists a unique r ∈ (p, v) that

solves b(r) = 0.
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Proof. Note that b(p) = p − v < 0 and b(v) =
∫ v
p
(v − p)dF1(p) > 0. Moreover, since

b′ = 1− rf1(r) + vf1(r) > 0 we have that there exists r ∈ (p, v) that solves b(r) = 0.

We define τ = r−c
p−c and define a function

b(x;α, k) =
k − α

k
x− log x−

(
1

x
− α

k

)
1− α

1− k
. (10)

Note, that b(τ ;α, k) = 0. The equilibrium with p̂ = pm exists when the constrained firm

prefers to set any price from its support to setting a price just below v, i.e. whenever

k(p− c) ≥ k[1− F1(r)](v − c). We define α̂(k) as a solution of

1 = [1− F1(r)]
v − c

p− c
,

were r is determined by b(r) = 0. Then denoting τ̂ a solution to b(·; α̂(k), k) = 0 we obtain

1 = τ̂ − k

k − α̂(k)
log τ̂ , (11)

Lemma 11. The ratio τ = (r − c)/(p − c) strictly decreases in α on [0, k) and strictly

increases in k on (α, 1).

Proof. We start by exploring the derivative of τ with respect to α, where α ∈ [0, k). This

derivative can be computed as τ ′α = − ∂b
∂α
/ ∂b
∂x
. We separately analyze the sign of the partial

derivatives of b(x;α, k) at x = τ . The partial derivatives of b(x;α, k) with respect to x and

α are respectively given by

∂b

∂x
=
k − α

k
− 1

x
+

1− α

1− k

1

x2
;

∂b

∂α
= −x

k
+

1

x

1

1− k
+

1− 2α

k(1− k)
.

It is easy to see that the partial derivative of b with respect to x is positive at x = τ since
∂b
∂x
(τ ;α, k) > 1

τ

(
1−α
1−k

1
τ
− 1
)
= 1

τ

(
v−c
p−c

p−c
r−c − 1

)
= 1

τ

(
v−c
r−c − 1

)
> 0.

Next, we show that ∂b
∂α
(τ ;α, k) > 0. Note that ∂b

∂α
(x;α, k) strictly decreases in x. First,

suppose that α
k
≤ 1−k

1−α (note that α < k < 1). Then,

∂b

∂α
(τ ;α, k) >

∂b

∂α

(
1− α

1− k
;α, k

)
=

1

1− k

(
1− k

1− α
− α

k

)
≥ 0.
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Second, suppose that α
k
> 1−k

1−α . This implies that α > 0 and k/α is well defined. Note that

b(k/α;α, k) =
k

α
− 1− log

k

α
> 0,

as log z < z− 1 for z > 1. Thus, since function b(·;α, k) strictly increases in x and is strictly

positive at x = k/α we have that τ < k
α
. Therefore, the partial derivative of b with respect

to α can be evaluated from below as follows

∂b

∂α
(τ ;α, k) >

∂b

∂α
(k/α;α, k) =

1

k

(
−k

α
+

1− α

1− k

)
> 0.

This implies that τ ′α < 0.

Next, we explore the behavior of τ with respect to k. The partial derivative of b(·) with
respect to k is given by

∂b

∂k
=

α

k2
x− 1− α

(1− k)2
1

x
+
α(1− α)(2k − 1)

k2(1− k)2
.

Note that ∂b
∂k

strictly increases in x. First, suppose that α
k
≤ 1−k

1−α . Then,

∂b

∂k
(τ ;α, k) <

∂b

∂k

(
1− α

1− k
;α, k

)
= − 1− α

(1− k)2

(
1− k

1− α
− α

k

)
≤ 0.

Second, suppose that α
k
> 1−k

1−α . Then, since k/α > τ , we have that

∂b

∂k
(τ ;α, k) <

∂b

∂k
(k/α;α, k) =

1− α

k(1− k)

(
1− k

1− α
− α

k

)
< 0.

Therefore, we can conclude that τ ′k > 0. This establishes the result of the lemma.

Lemma 12. There exists a unique mixed strategy equilibrium in which p̂ = pm if and only if

α ∈ [α̂(k), k), where α̂(k) ∈ (0, k/2) for all k ∈ (0, 1).

Proof. Let us define the function

g(α) ≡ k − α

τ − 1

(
1− (1− F1(r))

v − c

p− c

)
,

where r solves b(r) = 0 and α ∈ [0, k). Note that firm k does not find it optimal to deviate

to price v− ε if and only if g(α) ≥ 0. We show that g(α) strictly increases on [0, k) and there

exists a unique α̂(k) ∈ (0, k/2) that solves g(α̂(k)) = 0.
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By plugging F1(·) in the formula for g(α) and using the fact that b(τ ;α, k) = 0, we obtain

that g(α) can be represented in the following way,

g(α) =
k − α

τ − 1

(
1− k

k − α

(
1

τ
− α

k

)
1− α

1− k

)
=
k − α

τ − 1

(
1− τ +

k

k − α
log τ

)
= k

log τ

τ − 1
− (k − α).

By taking the derivative we obtain that

g′(α) = k
1− 1

τ
− log τ

(τ − 1)2
τ ′α + 1.

Note that 1− 1
z
− log z is equal to zero at z = 1 and strictly decreases for any z > 1, implying

that 1− 1
τ
− log τ < 0. By lemma 11, we have that τ ′α < 0 which implies that g′(α) > 0 for

any α ∈ [0, k).

To prove the existence and uniqueness of α̂(k) that solves g(α) = 0 it remains to show

that g(α) is negative at α = 0 and positive for α = k/2. Note that the sign of g(0) is

determined by the sign of 1 − [1 − F1(r)]
v−c
p−c = 1 − v−c

r−c < 0. At α = k/2 we have that the

corresponding τ satisfies b(τ ; k/2, k) = 0 which is equivalent to

1

2
τ − log τ −

(
1

τ
− 1

2

)
1− k/2

1− k
= 0.

Note that for any k we have that this τ ∈ (1, 2). Therefore, by plugging this into g(·) at

α = k/2 we obtain

g(k/2) =
k/2

τ − 1

(
1− 2

(
1

τ
− 1

2

)
1− k/2

1− k

)
=

k/2

τ − 1
(1− τ + 2 log τ) >

k/2

τ − 1
(1− 1 + log 1) = 0,

where we used the fact that function 1− x+2 log x is a strictly increasing function on [1, 2).

Therefore, we showed that g(α) strictly increases in α, is negative at α = 0 and is positive

at α = k/2. This implies that it intersects with zero at exactly one point that we refer to as

α̂(k) ∈ (0, k/2). For α ≥ α(k), we have that p − c ≥ [1 − F1(r)](v − c) and firm k does not

find it profitable to deviate to a price slightly lower than v. Otherwise, if α < α̂(k), then the

deviation is profitable and such an equilibrium does not exist.
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Lemma 13. Function α̂(k) strictly increases in k on (0, 1) and converges to α̂1, that solves

1 + α̂1 log α̂1

(1−α̂1)2
= 0, when k tends to 1.7

Proof. Recall that α̂(k) is determined by the following equation

1 = τ̂ − k

k − α̂(k)
log τ̂ ,

where τ̂ = τ(α̂(k), k) and τ̂ solves b(·, α̂(k), k) = 0. By taking the derivative of this equation

with respect to k we have that(
1− k

k − α̂(k)

1

τ̂

)(
τ ′α
dα̂(k)

dk
+ τ ′k

)
− log τ̂

(
k

(k − α̂(k))2
dα̂(k)

dk
− α̂(k)

(k − α̂(k))2

)
= 0.

Solving for the derivative of α̂(k) with respect to k we obtain

dα̂(k)

dk
=

(
−ϕ(k)τ ′k −

α̂(k)

(k − α̂(k))2
log τ̂

)/(
ϕ(k)τ ′α −

k

(k − α̂(k))2
log τ̂

)
, (12)

where

ϕ(k) = 1− k

k − α̂(k)

1

τ̂
.

To determine the sign of the derivative of α̂(k) with respect to k we show that ϕ(k) > 0 for

any k ∈ (0, 1). Note that by plugging the distribution function F1(r) into the definition of

α̂(k) we have that

1 =
k

k − α̂(k)

(
1

τ̂
− α̂(k)

k

)
1− α̂(k)

1− k
.

By rearranging and solving for ϕ we show that ϕ is positive – that is,

ϕ(k) = 1− α̂(k)

k − α̂(k)
− 1− k

1− α̂(k)
=

k2 − 2kα̂(k) + α̂(k)

(k − α̂(k))(1− α̂(k))

=
(k − α̂(k))2 + α̂(k)(1− α̂(k))

(k − α̂(k))(1− α̂(k))
> 0.

Since ϕ(k) > 0 and by Lemma 11 the partial derivatives τ ′α < 0 and τ ′k > 0 we have that the

numerator and the denominator of (12) are both strictly negative implying that dα̂(k)/dk > 0

for all k ∈ (0, 1). Therefore, α̂(k) strictly increases on (0, 1).

Next, we explore the limiting behavior of α̂(k) when k tends to 1. First, we compute the

7The root is approximately equal to 0.394229.
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limit of τ for a given α ≥ α̂(k) when k approaches 1. Note that since α > α̂(k) > 0 (by

Lemma 12), we have that k/α is well defined. In the proof of Lemma 11 we have shown that

τ < k/α. Thus, τ is bounded from above by 1/α. Since τ strictly increases in k, then we

can conclude that the limit there exists a finite limit of τ when k tends to 1. The equation

b(τ ;α, k) = 0 can be rewritten as

(p− c)τ =
k

k − α
(p− c) log τ +

(
k

k − α

1

τ
− α

k − α

)
(v − c).

By taking the limit on both sides when k tends to 1 and using the fact that p converges to

0, we obtain that

lim
k→1−

τ =
1

α
.

Since α̂(k) is an increasing function on (0, 1) and is bounded by 1/2 (by Lemma 12), we have

that α̂(k) has a finite limit when k → 1 that we denote as α̂1. Note, that τ̂ converges to 1/α̂1

when k goes to 1. By taking the limit of equation (11) that determines α̂(k) when k → 1,

we obtain

1 = lim
k→1−

(
τ̂ − k

k − α̂(k)
log τ̂

)
=

1

α̂1

+
1

1− α̂1

log α̂1.

Therefore, the limit of α̂1 solves

1 +
α̂1 log α̂1

(1− α̂1)2
= 0

and is approximately equal to 0.394229.

Lemma 14. Suppose that α < α̂(k). Then there exists a unique mixed strategy equilibrium,

and in this equilibrium p̂ < pm.

Proof. Note, that the existence of equilibrium follows from Proposition 2. Moreover, from

Lemma 11 it follows that in this equilibrium p̂ < pm. Thus, it remains to establish the

uniqueness of equilibrium.

We define η = p̂−c
p−c and ζ =

v−c
p̂−c . Since F1(p) is continuous at p = r we obtain that

1− 1

η
=

k

k − α

(
1− 1

τ

)
.

Next, since Fk(p̂) = Fk(r), we have that π1(p) = π1(p̂) implies that [1 − αFk(r)](p − c) =

[1− kFk(r)](p̂− c). Dividing this equation by (p− c) and solving for Fk(r), we obtain that

Fk(r) = (η − 1)/(kη − α). Then, we equate the profits of firm 1 at p = p̂ and p = v,
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[1− kFk(r)](p̂− c) = (1− k)(v − c) to obtain

ζ =
k − α

1− k

1

kη − α
.

By rearranging, we have that

1− 1

ζ
=
k(1− k)

k − α

(
1− α

1− k
− η

)
.

The reservation price is given by r = E[p1]:

r =

∫ r

p

k

k − α

p− c

(p− c)2
pdp+

∫ v

p̂

p− c

(p− c)2
pdp+

p− c

v − c
v,

which simplifies to

τ =
k

k − α
log τ + log ζ + 1.

To sum up, for any k, α such that α < k, we have that τ, η, ζ solve the following system

of equations: 
1− 1

η
= k

k−α

(
1− 1

τ

)
1− 1

ζ
= k(1−k)

k−α

(
1−α
1−k − η

)
log ζ = τ − 1− k

k−α log τ

. (13)

Since

1

ζ
= 1− k(1− k)

k − α

(
1− α

1− k
− η

)
= 1− (1− k)

(
k

k − α

1− α

1− k
− 1

1
τ
− α

k

)
= (1− k)

(
1

1
τ
− α

k

− α

k − α

)
,

we obtain that the system can be simplified to

L(τ ; k, α) ≡ (1− k)

(
1

1
τ
− α

k

− α

k − α

)
= exp

(
1− τ +

k

k − α
log τ

)
≡ R(τ ; k, α)

We now show that this equation has a unique solution for α < α̂(k). Note that τ > 1, and

because πk = k(p − c) > α(r − c) we have that τ < k/α. Both sides of this equation are

continuous in τ on τ ∈ [1, k/α).
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Note that L(1; k, α) = 1− k < 1 = R(1, k, α), R(k/α; k, α) = exp
(
k log(k/α)
k−α − k−α

α

)
and

lim
τ→k/α

L(τ ; k, α) = ∞.

Hence solution to equation exists.

Solving for ∂2R
∂τ2

= 0 gives

τ1,2 =
k

k − α
±
√

k

k − α
.

As the maximum of R is attained at τ = k
k−α , we have that R(τ ; k, α) is increasing at

first infliction point and decreasing at second. Moreover, if τ1 < 1, then R is concave in τ

on its increasing part, and therefore solution to equation is unique. Solving τ1 < 1 gives

α2 < k(k − α) or α <
√
5−1
2
k. Note, that

√
5−1
2
k > α̂(k), hence L(τ ; k, α) is convex and

R(τ ; k, α) is concave for α < α̂(k) and therefore solution is unique.
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