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Abstract

This paper introduces a methodology for estimating a Random Vector Field

(RVF), which characterises the local direction of movement for a sample of obser-

vational units in a d-dimensional space. We develop an estimator for RVF based

on Local Polynomial Regression (LPR) and establish its asymptotic normality. Ad-

ditionally, we propose a local significance test and introduce a methodology for

optimal bandwidth selection. To address small sample bias, we explore the effec-

tiveness of the Adaptive Kernel (AK) approach and inference via bootstrap. We

illustrate the properties of our estimator by analysing the joint dynamics of GDP

per capita and life expectancy — the so-called Preston Curve — for a sample of

105 countries from 1960 to 2015. Finally, we generate a forecast for 2045 based

on the estimated RVF, demonstrating one of its key applications in economic and

demographic analysis.
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1 Introduction

Several economic phenomena exhibit heterogeneous local dynamics, meaning that the

behaviour of observational units is crucially affected by their current status. For exam-

ple, Figure 1 illustrates the heterogeneity of local dynamics in GDP per capita and life

expectancy for a sample of 105 countries during the period 1960–1965 (Preston, 1975).

Figure 1: The joint dynamics of life expectancy at birth and real GDP per capita (PPP
in million 2017 USD) during the period 1960–1965 for a sample of 105 countries (black
(red) points represent observations in 1960 (2015)).
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Source: Life expectancy at birth from the World Development Indicators; GDP per capita from the Penn
World Table 10.01.

While the cross-sectional relationship between life expectancy at birth and income

per capita, known as the Preston Curve, has been extensively studied in the literature

(Bloom and Canning, 2007), its evolution over time—i.e., the dynamics shown in Fig-

ure 1—has received less attention (Easterlin, 2004), partly due to the absence of a robust

econometric methodology that accounts for local dynamics.

This paper aims to address this gap—or more broadly, to estimate the local direc-

tion of movement for a sample of observational units in a d-dimensional space when

such movement is modelled by a Random Vector Field (RVF). We propose an RVF estima-
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tor based on Local Polynomial Regression (LPR) and demonstrate that, under standard

conditions, it is asymptotically normally distributed. Additionally, we introduce a test-

ing procedure to assess the significance of local movements along specific directions.

Furthermore, we develop a methodology for selecting the optimal bandwidth for LPR

and explore how the Adaptive Kernel (AK) approach mitigates local bias in small sam-

ple cases. We illustrate our methodology by estimating the dynamics of the Preston

Curve from 1960 to 2015 for a sample of 105 countries. Finally, we use a forecast for

2045 to showcase one of RVF’s key potential applications.

From a methodological perspective, our paper relates to two distinct strands of

literature. The first is nonparametric econometrics (Li and Racine, 2007), particularly

Local Polynomial Regression, which we discuss as an efficient method for estimating an

RVF (Györfi et al., 2013; Fan and Gijbels, 2018). We also draw on the VAR literature, as

an RVF can be interpreted as a nonparametric VAR under certain specifications. In this

regard, Härdle et al. (1998) provides the closest methodological contribution to our

estimation approach, while Kalli and Griffin (2018) introduces a Bayesian method to

mitigate the curse of dimensionality, a common challenge in nonparametric estimation.

The second strand of literature relates to the estimation of conditional kernel density,

first introduced by Rosenblatt (1969). Among others, (Quah, 1992) pioneered its use

in estimating the stochastic kernel to analyse the distribution dynamics of income per

capita. The stochastic kernel can be viewed as a generalisation of our RVF in one di-

mension, where the error component of the RVF is not assumed to be additive. Fiaschi

et al. (2018) provides an initial attempt to extend this approach to a two-dimensional

space. However, while conditional kernel density offers greater generality, it also in-

creases complexity in both estimation and inference.

In our empirical application, this paper contributes to the ongoing debate on the

joint dynamics of life expectancy and income per capita—commonly known as the

Preston Curve (Preston, 1975)—which carries significant policy implications (Pritchett,

2024). The literature on this topic has largely adopted a cross-sectional perspective

(Bloom and Canning, 2007), with a few notable exceptions that take a more descriptive

approach (Easterlin, 2004).

Our paper advances the literature in several key ways. First, we propose a robust

econometric framework for estimating an RVF under general conditions, drawing on
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the extensive literature on Local Polynomial Regression. In this context, we establish

a specific theorem for the limiting distribution of our RVF estimator, distinguishing

our work from Li and Racine (2007) and Härdle et al. (1998). Second, we incorporate

the adaptive kernel approach and develop a methodology for optimal bandwidth se-

lection, significantly improving estimation quality in cases where distributions are not

"well-behaved". Finally, our application to the Preston Curve underscores the impor-

tance of adopting a dynamic perspective on this topic. We identify key nonlinearities in

the joint dynamics of life expectancy and GDP per capita, contributing to the ongoing

debate on the subject (Fiaschi et al., 2020; Pritchett, 2024).

This paper is organised as follows. Section 2 introduces our approach to estimat-

ing an RVF, its limiting distribution, and additional details on estimation. Section 3

explores the numerical properties of our estimator. Section 4 applies our methodology

to the dynamics of GDP per capita and life expectancy. Finally, Section 5 presents our

conclusions.

2 Estimation of a random vector field

Section 2.1 introduces the theoretical framework of random vector field (RVF) in dis-

crete time in a d-dimensional space. Section 2.2 introduce our estimator of RVF based

on a local linear estimator and discuss its limiting behaviour. Section 2.3 presents a

modified version of our estimator based on adaptive kernel, which is particularly use-

ful in the case of non-uniform distribution of observations. Section 2.4 proposes a

method for the choice of bandwidth. Finally, Section 2.5 contains some practical indi-

cations on how to run inference via bootstrap in the small sample case and, in general,

when the asymptotic properties of the estimator seem to be likely to fail.

2.1 The econometric model

We consider a vector field F : Rd → Rd acting on a sample of a random variable Xt ∈ Rd

∆Xi,t = F (Xi,t−1) + Σ(Xi,t−1)
1/2ϵi,t i = 1, . . . , N, (1)
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where ∆Xi,t := Xi,t − Xi,t−1 is the time change in Xi,t, and where, conditional on

Xi,t−1 the ϵi,t are i.i.d. random variables with zero mean and identity covariance matrix.

Equation (1) represents the time evolution of the observations Xit; therefore, we will

consider estimators of F based on the sample (∆X1,t, X1,t−1), . . . , (∆XN,t, XN,t−1). This

evolution presents both a deterministic and a stochastic component. The deterministic

part, F (Xi,t), is a function of the current state. The stochastic part, Σ(Xi,t−1)
1/2ϵi,t is a

random noise whose intensity can depend on the observation Xi,t−1. The formulation

of Equation (1) is quite general and flexible and can be seen as a nonparametric ex-

tension of a vector autoregressive process (VAR). To see why, consider the case where

F (Xi,t−1) := AXi,t−1, where A ∈ Rd×d and Σ(X i
i,t−1)

1/2 := Ω ∈ Rd×d. In this case, Equa-

tion (1) reads:

Xit = (I + A)Xi,t−1 + Ωϵi,t = MXi,t−1 + Ωϵi,t i = 1, . . . , N, (2)

by defining M := I + A; this is the usual expression of a VAR (Hamilton, 1994). Equa-

tion (1) can be also accommodated to account for the dependence of F on some ex-

ogenous variable Zi. In particular we can define X̃i,t := (Xi,t, Z
i) and F̃ (Xi,t, Zi) :=

(F (Xi,t), Zi) and we are again within the scope of Equation (1).

Finally, while the theoretical properties that we derive below hold true for a generic

covariance structure Σ(Xt−1), in practice it is useful to linearly transform the Xi,t−1 so

that their covariance matrix is the identity matrix. This will be the procedure that we

will use in the numerical simulations in Section 3 and in the application in Section 4.

2.2 The estimation

To introduce our estimator of RVF we will start by considering each component j =

1, . . . , d of ∆Xi,t separately. More formally, we are interested in estimating Fj :

∆Xi,t,j = Fj(Xi,t−1) +
[
Σ(Xi,t−1)

1/2
]
j
ϵi,t i = 1, . . . , N, (3)

where
[
Σ(Xi,t−1)

1/2
]
j

is the j-th row of the matrix Σ(Xi,t−1)
1/2. Now, we discuss how

the Local Polynomial Regression (LPR) can be used to estimate Fj . LPR is a nonparametric

technique that consists in locally approximating F in a neighbourhood of the evalua-

tion point x with a polynomial in the Xi. The estimator is local in the sense that through
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the use of kernel functions, observations close to x contribute more to the value of the

estimator in x. We focus on the local constant estimator, also known as Nadaraya-Watson

estimator, and the local linear estimator. In particular, the Nadaraya-Watson estimator

is defined as:

F̂0,j(x) :=
N∑
i=1

K
(

Xi,t−1−x

h

)
∑N

i=1K
(

Xi,t−1−x

h

)∆Xi,t,j, (4)

where h is the bandwidth, K : Rd → R is defined as

K(x) = k(x1) · · · k(xd), x = (x1, . . . , xd) ∈ Rd, (5)

and k : R → R is a bounded non-negative kernel function, that satisfies

∫
R
k(x) dx = 1, k(x) = k(−x),

∫
R
x2k(x) dx = k2 < +∞,

∫
R
k(x)2 dx = ||k||22 < +∞.

(6)

It can be shown that (Li and Racine, 2007, pp. 63):

F̂0,j(x) = â0,j(x) = argmin
a∈R

N∑
i=1

(∆Xi,t,j − a)2K

(
Xi,t−1 − x

h

)
. (7)

Similarly, we can define the local linear estimator as follows. Consider the minimizer

(â1,j(x), b̂1,j(x)
T ) ∈ Rd+1 of:

(â1,j(x), b̂1,j(x)
T ) := arg min

a∈R,b∈Rd

N∑
i=1

[
∆Xi,t,j −

(
a+ bTXi,t−1

)]2
K

(
Xi,t−1 − x

h

)
; (8)

then the local linear estimator of Fj is given by:

F̂1,j(x) := â1,j(x). (9)

It can also be shown that b̂1,j(x) is an estimator of the gradient of Fj at x (Li and Racine,

2007, pp. 82). From Equations (4) and (8) we can verify how we locally approximate

F with a polynomial in Xi,t−1 and how the kernel K weights the contribution of each

observation i proportionally to the distance between Xi,t−1 and x.

Here, we will limit our attention only to local constant and local linear estimators;

however, but LPR can be defined for any degree p (Li and Racine, 2007).The level of
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computational complexity of the estimator grows with the degree of the polynomial

but also the accuracy of the estimator. In practice it is rare to use polynomials of de-

gree higher than 3, and, usually, the selection falls on polynomial estimators with odd

degree (say, 1 and 3) because they can be shown to have the same variance than the

even degree ones that precedes them but smaller bias (Fan and Gijbels, 2018). Further-

more, as we will see in the next section, for p ∈ {0, 1}, a local polynomial estimator of

degree p has no bias while estimating a vector field whose p+ 1-th derivatives are null

(Fan and Gijbels, 2018).

2.2.1 Limit distribution

The two theorems below report the limiting distribution

Theorem 2.1 (Asymptotic normality of component-wise estimator). Let K be a kernel

satisfying Eqq (5) and (6). Furthermore assume that the j-th component of the vector field F ,

Fj(x), the density of Xi,t−1, f(x), and the covariance matrix of the errors, Σ(x), are three times

differentiable. As h → 0, N → ∞, Nhd+2 → ∞ and Nhd+6 → 0, for any interior point x for

the local constant estimator it holds

(Nhd)1/2

[
F̂0,j(x)− Fj(x)−

κ2h
2

2

d∑
s=1

(
2

f(x)

∂f

∂xs

∂Fj

∂xs

(x) +
∂2Fj

∂x2
s

(x)

)]
L→N

(
0,

||k||2d2 Σj,j(x)

f(x)

)
,

(10)

while for the local linear estimator

(Nhd)1/2

[
F̂1,j(x)− Fj(x)−

κ2h
2

2

d∑
s=1

∂2Fj

∂x2
s

(x)

]
L→N

(
0,

||k||2d2 Σj,j(x)

f(x)

)
, (11)

where N is the Normal distribution.

Proof. See Chapter 2 of Li and Racine (2007).

Theorem 2.1 can be interpreted as a description of the limit distribution of the

marginals of the vectors F̂0(x) =
(
F̂j,0

)
j=1,...,d

and F̂1(x) =
(
F̂j,0

)
j=1,...,d

. Since we

are interested in estimating RVF, we want to understand also the limit distribution of

the whole estimator and not only its marginals. To do this we can extend the results of

the previous theorem:
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Theorem 2.2 (Asymptotic normality of the RVF estimator). Under the same assumptions

of Theorem 2.1 it holds that for the joint distribution of F̂0(x) and F̂1(x) we have:

(Nhd)1/2
[
F̂0(x)− F (x)− κ2h

2

2

[
2

f(x)
JF (x)∇f(x) + ∆F (x)

]]
L→N

(
0,

||k||2d2 Σ(x)

f(x)

)
,

(12)

and

(Nhd)1/2
[
F̂1(x)− F (x)− κ2h

2

2
∆F (x)

]
L→N

(
0,

||k||2d2 Σ(x)

f(x)

)
, (13)

where JF (x) is the Jacobian matrix of F (x), ∇f(x) is the gradient of f(x), and ∆F (x) is the

vector Laplacian of F (x), i.e.

JF (x) ∈ Rd×d, JF (x)r,s =
∂Fr(x)

∂xs

, (14)

∇f(x) ∈ Rd, ∇f(x)r =
∂f(x)

∂xr

, ∆F (x) ∈ Rd, ∆F (x)r =
d∑

s=1

∂2Fr(x)

∂x2
s

. (15)

Proof. The proof follows the steps of Theorem 2.1, with the additional step that now

we have to compute the covariance terms between any two components of the vector

estimator. This computation can be carried out by using the same set of techniques

used in computing the variance in Theorem 2.1.

Finally, Theorem 2.2 makes clear why, as we mentioned above, a local linear estima-

tor has no bias if F is a local linear RVF, i.e. ∆F (x) = 0 ∀x.

2.3 Estimation with the adaptive kernel

We also propose an adaptive kernel version of our estimator. In the same flavour adap-

tive kernel density estimation (Silverman, 1986), by considering a local bandwidth that

varies with the local density of initial observations. The adaptive approach is partic-

ularly effective when observations are spread very far apart from the median, with

regions displaying a high number of observations and others with only a few. We then

replace Equations (8) and (9) by

(âad1,j(x),
ˆ

bT,ad1,j (x)) := arg min
a∈R,b∈Rd

N∑
i=1

(
∆Xi,t,j −

(
a+ bTXi,t−1

))2
K

(
Xi,t−1 − x

hi

)
. (16)
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and

F̂ ad
1,j(x) :=

ˆaad1,j(x). (17)

In practice, the choice of hi is carried out by performing first a pilot estimation of the

density of observations at time t,

f̂0(x) =
1

N

N∑
i=1

1

hd
K

(
Xi,t−1 − x

h

)
, (18)

and then choosing hi = h · λi with

λi =

(
f̂0(Xi,t−1)

g

)−α

and g = exp

(
1

N

N∑
i=1

log(f̂0(Xi,t−1))

)
. (19)

Parameter α ∈ (0, 1), measuring the intensity of adaptiveness, i.e. how the estimator

is sensible to the variation of local density, is usually taken equal to 0.5 as a reference

value. A possible approach in the selection of parameter α (as well as h) is described

in Section 2.4.

2.4 Optimal choice of bandwidth

The choice of parameters α and h of Equations (16) and (17) are made by minimising

the mean square error (MSE) of the estimate for a set of candidate couples. In particular,

for each possible couple of (α, h) estimate the adaptive RVF, F̂ ad
1 (x;h, α); then, use the

estimated RVF, given the initial observations, to predict their values in the final year,

i.e.

X̂i,t := Xi,t−1 + F̂ ad
1 (Xi,t−1;h, α), (20)

Finally, the goodness of the estimation is measured by the mean of the square distance

between the predicted observations X̂i,t and the actual observation at the final year Xi,t,

i.e.:

MSE(α, h) :=
1

N

N∑
j=1

∣∣∣∣∣∣Xt−1 + F̂ ad
1 (Xt−1;h, α)−X i

t

∣∣∣∣∣∣2 .
In practice, the optimal couple of (α, h), i.e. the one minimising MSE(α, h), is searched

over a finite grid.
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2.5 Inference

Theorem 2.2 allows us to address the simplest scenario in the estimation process, i.e.,

the case with a large number of observations with "well-behaved" distributional prop-

erties. In particular, an estimated direction at x is statistically significant if we can reject

the null hypothesis that all d components of movement are jointly equal to zero. There-

fore, given the estimated direction at x, F̂1(x), and the estimated asymptotic covariance

matrix of Theorem 2.2, it is possible to show that under the null hypothesis:

F̂1(x)
′

[
||k||2d2 Σ̂(x)

f̂(x)Nhd

]−1

F̂1(x) ∼ χ2
d, (21)

which represents a standard Wald test, whose limiting distribution can be found in

Greene (2003, p. 107).

Other scenarios, for example, the use of the adaptive kernel, small sample case,

not well-behaved distribution of observations, cross-sectional dependence and auto-

correlated observations, pose significant issues for the inference. In this case, we can

resort to a bootstrap procedure, with the caveat that sampling should be performed

from the set of all observed pairs (∆Xi,t, Xi,t−1). Additionally, a version of the bootstrap

method (e.g., block bootstrap) should be adopted to mitigate potential issues arising

from the sample’s inherent properties, and observations with cross-sectional and time

dependence.

3 Numerical simulations

In this section, we numerically explore the properties of proposed LPR estimator, using

a VAR representation as a benchmark (Equation (2)). As discussed above, the latter

represents a sort of "linear" representation of an RVF. In particular, we consider a 2-

dimensional space and two data generation processes, the first where the linearity of

VAR should have an advantage in the estimate (Section 3.1). Instead, in the second case,

the nonlinear dynamics should make evident the advantages of using a local linear

estimator (Section 3.2). In all simulations, we use as an initial condition a sample of

10,000 observations drawn from a bivariate Gaussian distribution with mean (0, 0) and

diagonal covariance matrix and constant variance of 0.75. RVF is estimated by the local
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linear estimator (i.e. LPR of order 1) using the Epanechnikov kernel and the optimal

choice of bandwidth. The VAR is estimated as suggested Hamilton (1994) by OLS.

3.1 Linear RVF

Consider the following RVF:

∆Xi,t = MXi,t−1 + Ωϵi,t, for i = 1, . . . , N, (22)

where Xi,t = (Xi,t,1, Xi,t,2) is a vector of length 2, ϵt is a vector of length 2 of independent

Gaussian errors with unit variance,

M =

0 −1

1 0

 (23)

and

Ω =

 0.01 0.005

0.005 0.02

 . (24)

The specification of M makes the direction of vectors circular (the eigenvalues have

null real parts and complex conjugates), as shown in Figure 2a. The focus on a linear

RVF as the one in Equation (22) is motivated by the goal of comparing local linear

estimation with the one resulting from using a VAR representation, where the latter

should perform better because data generation process and econometric specification

perfectly coincide. Comparing Figures 2b and 2c with Figure 2a, we can appreciate how

both methods identify the overall shape of RVF. However, a closer inspection of (log of)

local errors calculated as log10
(∣∣∣∣∣∣F̂ (x)− F (x)

∣∣∣∣∣∣ / ||F (x)||
)

(F̂ (x) is the estimated RVF in

x and F (x) its true value), reported in Figure 3, reveals the better performance of VAR

concerning the local linear estimator, with the local error mainly in the range 0.01% −

10% (10−3−10−1) for the local linear estimator versus 0.001%−0.01% (10−4−10−3) for the

VAR. The worst performances for both estimates are in the origin, where the direction

of RVF is particularly involved. The use of adaptive kernel as explained in Section 2.3

(with the standard value of α = 0.5) does not produce substantial improvements in the

estimate but a higher precision around the origin, where the error is higher. The higher

density of observations around the origin, indeed, produces a lower bandwidth there
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Figure 2: Local linear model versus VAR representation in the estimate of a linear RVF
generated using Equation (22), with the specification of M in (23) and of the covariance
matrix Ω in (24) for a sample of 10,000 observations.
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Theorem 2.2).
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and therefore, in the presence of very local dynamics, a higher precision.

Figure 3: The local errors in the estimation of linear RVF calculated as
log10

(∣∣∣∣∣∣F̂ (x)− F (x)
∣∣∣∣∣∣ / ||F (x)||

)
(F̂ (x) is the estimated RVF in x and F (x) is its true

value).
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for the local linear estimator
using the adaptive kernel of
Section 2.3.
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3.2 Nonlinear RVF

Consider the following RVF:

∆Xt := Xt −Xt−1 = F (Xt−1) + Ωϵt, (25)

where:

F (Xi,t) = −1

5

2X3
i,t,1 −Xi,t,1

Xi,t,2

 (26)

and Ω is the same of (24). Figure 4a highlights the presence of three attractors, all on

the x-axis, where the ones at the extreme are locally stable, while the one in the ori-

gin is unstable (in physics, this pattern is called the symmetric double-well potential).

The extreme nonlinearity is well managed by the local linear estimator, as shown in

Figure 4b, which reproduces the overall pattern. This does not hold for the VAR rep-

resentation, which turns out to be incapable of grasping even the distinctive features

of the aggregate dynamics (Figure 4c). The estimated local errors fully reflect these

conclusions, with the error for the local linear estimator mainly ranging in 0.01%−30%

(10−3 − 10−0.5) versus a main range of 0.01% − 10000% (10−3 − 101). The use of adap-

tive kernel again does not produce sensible improvements in the estimate but a more

uniform distribution of errors (see Figure 5c).

4 The dynamics of Preston Curve

Figure 6 presents the estimated relationship between the logarithm of GDP per capita

and life expectancy at birth at country level for the years 1960-2015, based on a sample

of 105 countries using local constant estimator (i.e. LPR of order 0).1 The Preston Curve

is the term used in the literature to describe this positive relationship, which assumes a

characteristic concave shape in its original version, where GDP per capita is not taken

in logarithmic scale (Preston, 1975).

Comparing the curves for 1960 (blue curve) and 2015 (red curve) in Figure 6, the

Preston Curve appears to shift northwest over time. As explained by Easterlin (2004),

this shift results from two (possibly interconnected) processes, which are useful to con-

1Data on life expectancy is taken from World Development Indicators Bank (2025), while on GDP per
capita from Penn World Table 10.01 Feenstra et al. (2021).
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Figure 4: Local linear model versus VAR representation in the estimate of a nonlin-
ear RVF generated using Equation (25), with the specification of F in (26) and of the
covariance matrix Ω in (24) for a sample of 10,000 observations.
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Figure 5: The local errors in the estimation of nonlinear RVF calculated as
log10

(∣∣∣∣∣∣F̂ (x)− F (x)
∣∣∣∣∣∣ / ||F (x)||

)
(F̂ (x) is the estimated RVF in x and F (x) is its true

value).
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sider separately. The first is the increase in life expectancy due to the development and

introduction of improved medical technologies and practices, reflected in the upward

shift of the curve—i.e., for a given level of income, life expectancy increases over time.

The second is the rise in per capita GDP due to factor accumulation and technologi-

cal progress, reflected in the horizontal shift of the curve—i.e., for a given level of life

expectancy.

Our focus on the dynamics of the Preston Curve also suggests considering the loga-

rithm of GDP per capita instead of its absolute level, as is done in the original Preston

Curve. GDP per capita generally exhibits exponential growth over time, and using its

absolute difference over time in the estimation would involve a non-stationary variable.

In contrast, taking the logarithm of GDP per capita ensures that horizontal movements

in the regression function correspond to GDP per capita growth rates, which should

be time-stationary if some form of conditional convergence across countries’ incomes

has held over the period of analysis (Barro and Sala-i Martin, 2004).

In all the estimates we use the local linear estimator (i.e. the LPR of order 1), an

Epanechnikov kernel and the optimal choice of bandwidth. The significance level of

estimated RVF is calculated using the results in Theorem 2.2. Figure 7a presents the

estimated RVF for our sample of 105 countries, considering 5-year changes (resulting in

a total sample size of 1,070 observations). Using a grid of 100×100 = 10, 000 evaluation

points, the reported arrows indicate the estimated local directions in the RVF that are

statistically significant at the 5% level. The overall pattern suggests a joint increase

in both variables, but with important nuances that can be better appreciated by also

examining Figure 7b. For low levels of life expectancy and GDP per capita, changes in

the former are more pronounced compared to those in the latter. This is particularly

evident for countries with a life expectancy of 40 years and a GDP per capita of $3000.

Beyond 70 years of life expectancy, this gradient remains but becomes progressively

weaker.

Figure 8a highlights a key advantage of our methodology—namely, the ability to

provide a local estimate of the direction of the RVF. In particular, we can observe that,

for a given level of life expectancy, the growth rate of GDP per capita decreases as GDP

per capita increases (i.e., evidence of convergence), except within the life expectancy

range of [45,60], where the relationship follows a U-shaped pattern. The magnitude of

16



Figure 6: The estimated relationship, obtained using LPR of order 0, between the log-
arithm of GDP per capita and life expectancy at birth for various years in a sample of
105 countries. Blue (red) points represent observations from 1960 (2015).
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Figure 7: The estimated RVF for a sample of 105 countries over the period 1960–2015,
using 5-year changes in life expectancy at birth and the logarithm of real GDP per
capita (PPP in millions of 2017 USD).
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this gradient is also noteworthy, ranging from 0% to 5% in terms of the annual growth

rate. Furthermore, for a given level of GDP per capita, countries with higher life ex-

pectancy tend to grow at a significantly faster rate, supporting the idea of a conditional

convergence/growth regime model (Barro and Sala-i Martin, 2004; Easterlin, 2004; Fi-

aschi et al., 2020).

Equally interesting are the results of the estimated local changes in life expectancy,

as reported in Figure 8b. For life expectancy levels above 70, no clear gradient is ob-

served for either life expectancy or GDP per capita, suggesting a lack of convergence in

life expectancy across countries. Below this threshold, however, for life expectancy in

the range [45,60], changes in life expectancy exhibit a U-shaped relationship with GDP

per capita—indicating that the highest increases in life expectancy have occurred in

both poor and middle-income countries. A similar pattern emerges when considering

GDP per capita: for countries with a GDP per capita below $ 1,000, the changes in life

expectancy display a comparable U-shaped trend. This evidence further suggests that

the trajectories followed by countries with poor health conditions are complex and can-

not be adequately explained by a single theoretical framework (Easterlin, 2004; Bloom

and Canning, 2007).

Figure 8: The separate estimate of the two components of the vectors in the RVF of
Preston Curve. Small black points are the observations used in the estimate.
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Finally, Figure 9 presents the estimated future dynamics of the Preston Curve based

on the projected trends for our sample of countries, as forecasted using the estimated

RVF, for the years 2025, 2035, and 2045. From Figure 9, the impression is that the

phase of significant gains in life expectancy due to medical innovations is now over

for low and medium countries, and only a substantial increase in their income can

allow to achieve considerable improvements in their life expectancy. For high-income

countries, instead, medical innovation or the adoption of best practices can still allow

substantial gains (Easterlin, 2004). The longest-living country in our forecast of 2045

is Japan (also the one in 2015), which is expected to gain an average of 2.4 months per

year in the next 30 years.

Figure 9: The 10-, 20-, and 30-year ahead forecast of the Preston Curve using the es-
timated RVF starting from 2015. Dark green points are the forecast in 2045 for our
sample of 105 countries.
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5 Conclusions

We have presented a methodology for estimating the RVF and discussed its limiting

distribution. Numerical simulations have highlighted the importance of considering

a nonparametric specification in the analysis of dynamical systems with strong local

behaviour. The application to the Preston Curve has demonstrated the potential of our

methodology in uncovering nonlinearities in thedynamics, as well as its usefulness for

forecasting.

The paper leaves open several research questions, including: i) the limiting distribu-

tion of LPR when the adaptive kernel is used, a topic that has so far been studied only

in density estimation and for specific estimators (Silverman, 1984); ii) the case where

the RVF includes exogenous variables and higher-order lags, as in the parametric VAR

literature (Hamilton, 1994); iii) the extension of our estimator to the three-dimensional

case when the dynamics is confined to a sphere, which has important applications in

spatial economics and other scientific fields (Marinucci and Peccati, 2011).
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Appendix

A Countries’list

Code Country Code Country Code Country
ARG Argentina GIN Guinea PER Peru
AUS Australia GMB Gambia PHL Philippines
AUT Austria GNB Guinea-Bissau PRT Portugal
BDI Burundi GNQ Equatorial Guinea PRY Paraguay
BEL Belgium GRC Greece ROU Romania
BEN Benin GTM Guatemala RWA Rwanda
BFA Burkina Faso HND Honduras SEN Senegal
BGD Bangladesh HTI Haiti SGP Singapore
BOL Bolivia IDN Indonesia SLV El Salvador
BRA Brazil IND India SWE Sweden
BRB Barbados IRN Iran, Islamic Republic of SYR Syrian Arab Republic
BWA Botswana ISL Iceland TCD Chad
CAF Central African Republic ITA Italy TGO Togo
CAN Canada JAM Jamaica THA Thailand
CHE Switzerland JOR Jordan TTO Trinidad and Tobago
CHL Chile JPN Japan TUN Tunisia
CHN China KEN Kenya TUR Türkiye
CIV Côte d’Ivoire KOR Korea, Republic of TZA Tanzania
CMR Cameroon LKA Sri Lanka UGA Uganda
COD Congo, DR LSO Lesotho URY Uruguay
COG Congo MAR Morocco USA United States of America
COL Colombia MDG Madagascar VEN Venezuela
COM Comoros MEX Mexico ZAF South Africa
CPV Cabo Verde MLI Mali ZMB Zambia
CRI Costa Rica MLT Malta ZWE Zimbabwe
CYP Cyprus MOZ Mozambique
DEU Germany MRT Mauritania
DNK Denmark MUS Mauritius
DOM Dominican Republic MWI Malawi
DZA Algeria MYS Malaysia
ECU Ecuador NAM Namibia
EGY Egypt NER Niger
ESP Spain NGA Nigeria
ETH Ethiopia NIC Nicaragua
FIN Finland NLD Netherlands
FJI Fiji NOR Norway
FRA France NPL Nepal
GAB Gabon NZL New Zealand
GBR Great Britain PAK Pakistan
GHA Ghana PAN Panama
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