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Abstract

Anticipated regret is primarily determined by the information (feedback) the decision-maker

expects to receive about the outcomes of the options she did not choose. We examine how

feedback influences a regret-averse decision-maker’s well-being and risk-taking behavior. To

achieve this, we use the statistical concept of sufficiency to categorize the different feedback

structures based on their informational content. As regret aversion and feedback aversion

are inextricably linked, we determine the conditions under which a regret-averse decision-

maker is feedback-averse: the decision-maker is better off when feedback is less informative.

Additionally, we demonstrate that in regret theory, risk-taking behavior is shaped by risk

preferences, regret aversion, and feedback informativeness. In particular, when the DM is

feedback-averse, the risk premium decreases as feedback becomes more informative. We offer

a new theoretical perspective on the Allais paradox, suggesting that participants in Allais’

experiment do not expect to receive information about the unchosen lottery outcomes. This

particular informational context must be considered when analyzing the paradox with regret

theory. Our approach also allows us to differentiate the roles of risk and regret aversion in the

Allais paradox. We show that risk aversion and regret aversion are partially substitutable in

the genesis of the choices that characterize the paradox.
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1 Introduction

A large part of regret theory is established under perfect information where the payoffs of the

foregone alternatives are perfectly observable (Savage 1951; Luce and Raiffa 1956; Bell 1982; Loomes

and Sugden 1982, 1987; Fishburn 1989; Sugden 1993; Quiggin 1994; Diecidue and Somasundaram

2015). Among the few exceptions, Bell (1983) considers the possibility of the unchosen option being

unresolved when a decision maker (henceforth DM) has the choice between two lotteries. More

recently, Gabillon (2020) proposed a general model that makes it possible to consider any level of

information (feedback structure) on the foregone alternative payoffs. Gabillon (2020) shows that

anticipated regret does depend on anticipated feedback. Bell (1983) was the first to understand that

feedback is not neutral to a regret-averse DM. Considering an additive regret-utility function and a

choice set containing two risky alternatives, the author obtains, under a series of assumptions, that a

DM would prefer to have the foregone lottery unresolved rather than fully resolved. Curiously, this

critical result has yet to be further developed and explored in the literature on regret theory. To our

knowledge, the impact of feedback on a regret-averse DM’s well-being has never been explored in

depth in a theoretical model. Based on Gabillon (2020), we explicitly model feedback as signals on

the foregone option outcomes, and we use the sufficiency statistical criteria to classify the feedback

structures (FS) according to their informational contents: FSA is more informative on the foregone

option outcomes than FSB if signals under FSA are sufficient statistics for signals under FSB . We

also define feedback aversion as follows: FSB is preferred to FSA when FSA is more informative

than FSB . A DM is feedback-averse if she prefers to avoid feedback on the outcomes of the

foregone options. Convincing empirical evidence is in favor of feedback aversion. Feedback aversion

is observed in Reb and Connolly (2009)’s experimental study: in repeated decision-making tasks,

people tend to reject feedback on foregone options to avoid short-term regret, leading to reduced

learning and poor long term performance. Zeelenberg et al. (1996) performed an experiment where

they set up two risky lotteries to which participants were indifferent. Indifference, as regards the

two lotteries, is established when there is no feedback on the foregone lottery. People exclusively

obtain feedback on the lottery of their choice (which corresponds to a non-informative FS in our
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setting). One of the two lotteries is relatively risky, the other relatively safe. Zeelenberg et al.

(1996) modify the feedback context and observe the behavioral consequences. When people know

that the result of the relatively safe lottery will be systematically revealed, they are no longer

indifferent, tending to prefer the relatively safe lottery. People try to protect themselves against

having information about the relatively safe lottery if they choose the risky lottery. Zeelenberg et

al. (1996) show that regret aversion induces risk-avoiding behavior (when people expect feedback

on the safe lottery) or risk-seeking behavior (when people anticipate feedback on the risky lottery).

We conclude from these observations that a complete definition of regret aversion should not be

limited to sensitivity to anticipated regret but should also include feedback aversion. We determine

the conditions under which a regret-averse DM is feedback-averse. For a feedback-averse DM, the

non-informative FS represents the best situation, and the perfectly informative FS represents the

worst situation. Information about the foregone alternative payoffs makes anticipated regret more

salient and decreases the DM’s well-being.

This paper also studies the impact of regret aversion and feedback on risk-taking behavior. In

uncertainty economics, disentangling the effects of risk and regret aversion on risk-taking behav-

ior remains empirically and theoretically underexplored. Engelbrecht-Wiggans and Katok (2009)

address this issue in their sealed-bid first-price auction experiments. They investigate whether the

tendency to bid higher than the risk-free Nash equilibrium can be attributed to risk aversion or

regret aversion. Their findings provide strong support for the explanation based on regret and feed-

back. Filiz-Ozbay and Ozbay (2007) also argue that overbidding in first price auctions is derived

from the anticipation of loser regret. To our knowledge, Somasundaram and Diecidue (2017) is

the only paper examining risk attitudes under regret aversion. The authors consider two opposite

situations: perfect feedback and no feedback. They do not, however, model feedback. They use

the preferences of Bell (1982) and Loomes and Sugden (1982), assuming that feedback increases

regret aversion. Indeed, the authors conjecture that feedback makes anticipated regret more salient.

Empirically, the authors obtain strong support for regret aversion, but no confirmation of the risk

attitudes predicted by their model. In this paper, our approach is different. We explicitly model

feedback and we do not assume that feedback modifies regret aversion. We consider that prefer-
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ences are independent of feedback, and we look at how risk behavior changes when feedback is

modified. We show that, when the FS is non-informative, the risk premium under regret aversion

is higher than the Arrow-Pratt risk premium. We refer to this result as a preference for certainty.

Under a non-informative FS, a regretful DM will likely choose the sure thing more than a von

Neumann-Morgenstern DM (henceforth vNM DM). The sure thing fully protects the DM against

anticipated regret: after choosing the sure thing, the DM cannot observe the lottery’s payoff and

compare it to the sure thing. Consequently, the DM does not experience regret. Independently

of risk preferences, this protection against anticipated regret strengthens the attractiveness of the

sure thing (for empirical evidence, see Zeelenberg 1999) and increases the risk premium compared

to the Arrow-Pratt risk premium. We go further by showing that, under feedback aversion, the

risk premium decreases with the informativeness of the FS. The risk premium is thus maximal

when the FS is non-informative and minimal when the FS is perfectly informative. The informa-

tional context influences risk-taking behavior. Under a non-informative FS, the choice of the sure

thing fully protects the DM against anticipated regret. When, however, some information about

the risky lottery is available after the choice, the sure thing no longer offers complete protection

against regret and becomes less attractive. We even show that, under a perfectly informative FS,

the preference for certainty can give way to a reverse phenomenon: the risk premium can be lower

than the Arrow-Pratt risk premium, which reveals a preference for uncertainty. Risk preferences,

regret aversion and feedback are all factors that determine risk-taking behavior. We also consider

a feedback-averse DM indifferent between two risky options, Y1 and Y2. We show that providing

additional information about the outcome of Y2 if Y1 is chosen causes the DM to be no longer

indifferent, favoring now Y2. Feedback aversion promotes risk-taking when Y2 is the riskier option

and encourages risk-avoidance when Y2 is the safer choice. This finding is in complete agreement

with the observations made by Zeelenberg et al. (1996) (see above in this introduction).

Lastly, we revisit the common consequence effect (CCE) version of the Allais paradox, focusing

specifically on the preference for the safe option in the initial stage of the experiment. Despite the

fact that the risky alternative nearly dominates the safe lottery in terms of first-order stochastic

dominance, most individuals opt for the safe lottery. This preference suggests extreme levels of risk
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aversion under expected utility theory (EUT). Since EUT fails to adequately explain the choice

of the safe option, we label this phenomenon the certainty bias puzzle. This puzzle is distinct

from the certainty effect proposed by Kahneman and Tversky (1979) to account for preference

reversal in the presence of a sure option. What we call the certainty bias puzzle is not related

to the violation of the independence axiom; it stands independently of the second choice made in

Allais’ experiment. Regret theory has already tackled the problem of preference reversal within

the CCE (Loomes and Sugden 1982; Bleichrodt and Walker 2015). These works are carried out

under the implicit assumption of perfect feedback. However, it is not clear that participants in

Allais’ experiment expected to receive information about the outcomes of the lotteries they did not

choose. Bell (1982) points out that the problem statement in Allais’ experiment does not specify

whether the unchosen gamble will be resolved. In this paper, we believe that when people are

asked to select their preferred lottery without providing them any further details, they are unlikely

to anticipate the resolution of the alternative they did not choose. The most natural (and even

unconscious) attitude is not to anticipate the resolution of the unchosen alternative. Therefore, we

propose a more realistic analysis of the Allais paradox based on the assumption of non-informative

feedback. In our model, non-informative feedback, combined with regret aversion, proves to be the

key factor in explaining the certainty bias puzzle. The preference for certainty, mentioned earlier in

this introduction, explains the certainty bias puzzle. Under a non-informative FS, the safe option

offers complete protection against feedback and, thus, against anticipated regret. We can predict

the safe lottery’s choice without assuming extreme levels of risk aversion, as in the EUT. Except for

high-risk lovers, our model predicts the safe choice if people are sufficiently regret-averse. Besides,

except for high risk-averse (who are expected to make choices consistent with the EUT) and high

risk-lover DMs, our model can also predict the preference reversal which characterizes the Allais

paradox. Furthermore, unlike previous explanations of the Allais paradox using regret theory,

our model enables us to distinguish the individual effects of risk aversion and regret aversion on

decision-making. We identify risk and regret aversion ranges that make preferences consistent with

the CCE choice pattern. The paper is organized as follows: Section 2 presents the concept of FS

and categorizes FSs based on their informativeness. Section 3 discusses preferences and introduces
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feedback aversion. Section 4 examines the risk-taking behavior of a regret-averse DM. Finally,

Section 5 focuses on an analysis of the Allais paradox.

2 Feedback Structures

In this section, we briefly review the concept of FS introduced in Gabillon (2020) and we introduce

the concept of sufficiency. Let Φ = {Y1, .., YN+1} denote the set of N +1 risky alternatives. A risky

alternative Yn is a random variable taking its values on a set Ω, which contains a finite number

of positive values. Without loss of generality, let X denote the chosen alternative and Y1, .., YN

the foregone alternatives. In the rest of the paper, either {Y1, .., YN+1} or {X,Y1, .., YN} will refer

to the choice set Φ depending on whether we need or not to distinguish the chosen alternative X

from the other alternatives. To shorten our notations, let θ denote the realized payoffs x, y1, .., yN

and θ−X the foregone realized payoffs y1, .., yN when alternative X has been adopted. Let p (θ)

denote the prior probability distribution of θ. We assume that, at the feedback stage (i.e., after the

choice), a DM receives information about the alternative payoffs θ and revises her prior accordingly.

When alternative X is adopted, the information obtained by the DM is a collection of probability

spaces
{(

MX ,FX , P θ
X

)}
θ∈ΩN+1 , where (MX ,FX) is a measurable space representing the space

of all possible signals endowed with a family of probability measures P θ
X . A signal on state of

nature θ is a random variable MX taking its value mX in MX . The probability distribution P θ
X

will, henceforth, be denoted by its generic term p (mX |θ ). Probability p (mX |θ ) represents the

conditional probability of MX = mX given the realized payoffs θ.

We also assume that a DM observes the payoff of the alternative she has selected: ∀X ∈ Φ,

signal MX perfectly reveals the payoff x of the chosen option X.

Definition 1. MX is said to be non-informative if the probability distribution of MX is the same

for all θ−X : ∀x ∈ Ω,∀ θ−X ∈ ΩN , p (mX |x, θ−X ) = p (mX |x). One cannot learn about θ−X by

observing from MX .

MX is said to be perfectly informative if for every pair
(
θi−X , θj−X

)
∈ ΩN ×ΩN , the intersection

of the support sets on which p
(
mX

∣∣θi−X , x
)
and p

(
mX

∣∣∣θj−X , x
)
are strictly positive is an empty
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set. After observing MX , θ−X can be identified with certainty.

MX is said to be imperfectly informative in all other situations.

Hereafter, we give the definition of a FS associated to a choice set Φ:

Definition 2. The feedback structure FSΦ, linked to the choice set Φ = {Y1, .., YN+1}, consists of

the signals associated with each alternative in the choice set:

FSΦ =
{
MY1 , ...,MYN+1

}

Definition 3. FSΦ is said to be non-informative if ∀Yn ∈ Φ,MYn is non-informative. A non-

informative FS will be denoted by FSni
Φ .

FSΦ is said to be perfectly informative if ∀Yn ∈ Φ,MYn
is perfectly informative. A perfectly

informative FS will be denoted by FSpi
Φ .

FSΦ is said to be imperfectly informative in all other situations.

The statistical concept of sufficiency is used to compare information systems in the information

economics literature (see for example Kihlstrom 1974). In what follows, we use the criteria of

sufficiency to compare the informational content of two different signals Ma
X and M b

X .

Definition 4. Ma
X is sufficient for M b

X relative to θ−X if there exits a stochastic transformation

π
(
mb

X |ma
X

)
such that

∀θ ∈ ΩN+1,∀mb
X ∈ MX , p

(
mb

X |θ
)
=

∑
ma

X∈MX

π
(
mb

X |ma
X

)
p (ma

X |θ )

with
∑

mb
X∈MX

π
(
mb

X |ma
X

)
= 1,∀ma

X ∈ MX .

Ma
X is sufficient forM b

X means thatMa
X is at least as good asM b

X for learning about θ. Definition

4 can be reformulated as follows: Ma
X is sufficient for M b

X if there exists a random quantity M̂
b

X

which is a ”garbling” of Ma
X in the sense of Blackwell (1951):
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1. M̂
b

X is conditionally independent of θ given ma
X : π

(
mb

X |ma
X , θ

)
= π

(
mb

X |ma
X

)
.

2. The conditional probability of M̂
b

X coincides with that of M b
X : π

(
mb

X |θ
)
= p

(
mb

X |θ
)
.

We move from signal Ma
X to signal M̂

b

X by adding noise. A DM who observes Ma
X can generate

M̂
b

X with the stochastic process πX

(
mb

X |ma
X

)
, which is independent of θ−X .

With the concept of sufficiency, we define a partial ordering on the set of all FSs:

Definition 5. FSa
Φ is sufficient for FSb

Φ if, ∀Yn ∈ Φ, Ma
Yn

is sufficient for M b
Yn

.

To go further, we introduce the following assumption:

A1. ∀Yn ∈ Φ, two potential signalsMa
Yn

andM b
Yn

are conditionally independent given θ: p
(
mb

X |ma
X , θ

)
=

p
(
mb

X |θ
)
.

Assumption A1 rules out uninteresting situations that have no connection with reality in which,

given θ, a signal Ma
Yn

provides information about another signal M b
Yn

that would occur under

another FS. A1 is verified when, for example, signals give information exclusively on θ.

We obtain the following Proposition:

Proposition 1. FSpi
Φ is sufficient for any FS. Under A1, any FS is sufficient for FSni

Φ .

Proof. Proof See Appendix A.

3 Preferences and feedback aversion

A DM’s preferences are represented by the regret-utility function (r-utility) u(x, r), where x repre-

sents the payoff of the chosen alternative X, and r a reference point. The reference point represents

the impact of anticipated regret on the DM’s utility. We will see in what follows that r > x

corresponds to a state of nature in which a foregone alternative performs better than the chosen

alternative. In the event r > x, regret is anticipated. To define the reference point, we use the

concept of choiceless utility (c-utility), which was first introduced by Loomes and Sugden (1982)

and Bell (1982), and generalized in Gabillon (2020):
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Definition 6. The c-utility function, defined as v (x) = u(x, x), measures the satisfaction generated

by the consumption of payoff x.

The c-utility function represents preferences in which sensitivity to regret has been removed

(r = x) and corresponds to the DM’s preferences if she were not regret-averse. Function v (.) also

represents a benchmark, which allows us to compare the results obtained under regret aversion

with those in the EUT. We also assume that the N +1 alternatives are evaluated with the c-utility

function at the feedback stage.

Let u1 (x, r) denote ∂u(x,r)
∂x , u2 (x, r) denote ∂u(x,r)

∂r and v
′
(x) denote ∂v(x)

∂x . We make the

following assumptions about the r-utility function u(x, r):

A2. The r-utility u (x, r) is differentiable on R+2.

A3. v′ (x) = u1 (x, x) + u2 (x, x) > 0.

A4. u1 (x, r) > 0.

A5. u2 (x, r) < 0.

Assumptions A3 and A4 state that the utility increases with payoff x. Assumption A5 charac-

terizes regret aversion. Given payoff x, anticipated regret increases with the reference point, which

decreases utility.

After observing the signal MX at the feedback stage, the DM revises her prior probability p (θ)

in a Bayesian way. After the information has been processed, beliefs are characterized by the

posterior probability distribution p (θ |MX ). At the feedback stage, the DM evaluates the N + 1

alternatives with the posterior probability distribution and the c-utility function. We compute the

posterior certainty equivalent of a foregone alternative Yn with the marginal posterior probability

distribution p (yn |MX ):

v
(
CEv,MX

Yn

)
= E [v (Yn)|MX ] , (1)

where the operator E [ .|MX ] represents the conditional expectation, given the signal MX . The notation

CEv,MX
Yn

indicates, in superscript, that the certainty equivalent is computed with the c-utility function v (.),
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given information MX .

We can now define the reference point :

Definition 7. The reference point RMX is the highest posterior certainty equivalent:

RMX = Max
{
X,CEv,MX

Max

}
with CEv,MX

Max = Max
{
CEv,MX

Y1
, ..., CEv,MX

YN

}
.

Under assumption A3, the reference point is the certainty equivalent of the alternative which

maximizes the expected c-utility, given available information at the feedback stage. In the event

RMX > X, the DM regrets her choice since a foregone alternative proves to be more attractive than

the chosen alternative.

We obtain the preferences of a regretful DM :

E
[
u
(
X,RMX

)]
= E

[
u
(
X,Max

{
X,CEv,MX

Max

})]
. (2)

The properties of these preferences are analyzed in Gabillon (2020).

This paper introduces two additional assumptions about the r-utility function:

A6. u22 (x, r) ≤ 0

A7. v′′ (x) ≤ 0

When A6 is verified, a DM exhibits reference point risk aversion (RPRA). A reference point

risk-averse DM has an increasing marginal disutility of regret. However, the RPRA property has

another critical interpretation: the reference point RMX fluctuates with the feedback a DM receives

about the payoffs of the foregone alternatives. Assumption A6 is thus the central assumption of

feedback aversion. Assumption A7 is an assumption of risk aversion about the c-utility function. We

show, in what follows, that A6 and A7 together imply feedback aversion. We note that inequalities

in A6 and A7 are not strict: when u22 (x, r) = 0 and/or v” (x) = 0, the DM is feedback-averse.

We define feedback aversion as follows:

Definition 8. If FSa
Φ is sufficient for FSb

Φ then a feedback-averse DM prefers FSb
Φ to FSa

Φ.
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A feedback-averse DM prefers to minimize her exposure to feedback about foregone alternatives.

We obtain the following proposition:

Proposition 2. A DM who is reference-point-risk-averse (assumptions A6) and risk-averse (as-

sumption A7) is feedback-averse.

Proof. Proof See Appendix B. Proposition 2 is obtained under assumptions A2 to A7.

Appendix B shows that, under assumptions A6 and A7, for any alternative X ∈ Φ, the expected

r-utility of X under FSb
Φ is greater than or equal to its value under FSa

Φ when FSa
Φ is sufficient for

FSb
Φ. To get the intuition of Proposition 2, let us consider the following property obtained under

A7 (see Equation B.19 in Appendix B):

∀X ∈ Φ,∀x ∈ Ω,∀mb
X ∈ MX ,

Rmb
X ≤

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
Rma

X . (3)

For each signal value mb
X , the reference point under FSb

Φ is lower than the average value of

reference points under FSa
Φ. Under A5 (u2 (x, r) < 0) and A6 (u22 (x, r) ≤ 0), easy computations

give that the expected r-utility is higher under FSb
Φ than under FSa

Φ.

From propositions 1 and 2, we obtain the following corollary:

Corollary 1. Among all FSs, FSpi
Φ represents the worst FS for a feedback-averse DM. Under A1,

among all FSs, FSni
Φ is the preferred FS.

While Definition 8 and Proposition 2 consider the FSs that can be ordered with the suffi-

ciency criteria, we stress the generality of Corollary 1. Among all FSs (without any restrictions), a

feedback-averse DM prefers the non-informative FS. Similarly, among all FSs, the perfectly infor-

mative FS represents the least desirable one.
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4 Feedback and risk behavior

Gabillon (2020) generalized the concept of regret certainty equivalent (RCE) under a non-informative

FS, initially introduced by Bell (1983) under the name of cancellation price. In Bell (1983) and

Gabillon (2020), the RCE is defined under the assumption of a non-informative FS. In what follows,

we define the RCE for any FS and give the definition of the risk premium of a regret-averse DM.

Definition 9. When a regret-averse DM chooses between a sure payoff Z and a risky alternative

Y , the RCE of the risky alternative Y under FSΦ, denoted by RCEu,FSΦ

Y , corresponds to the value

of the sure payoff Z which makes the DM indifferent about choosing Z or Y under FSΦ.

Πu,FSΦ

Y = E (Y )−RCEu,FSΦ

Y denotes the risk premium under FSΦ.

RCEu,FSΦ

Y is the Z-solution of the following equation 1:

E
[
u
(
Z,Max

(
Z,CEv,MZ

Y

))]
= E [u (Y,Max (Y,Z))] , (4)

where MZ is the signal on the risky lottery Y when the sure payoff Z is adopted, and v
(
CEv,MZ

Y

)
=

E [v (Y )|MZ ] (see Equation 1).

Let CEv
Y denote the Arrow-Pratt certainty equivalent of a risky alternative Y :

v (CEv
Y ) = E [v (Y )] . (5)

Gabillon (2020) shows that, under a non-informative FS (MZ conveys no information on Y ), the

RCE exists, is unique, and that RCE
u,FSni

Φ

Y < CEv
Y . Let Πv

Y = E (Y ) − CEv
Y denote the Arrow-

Pratt risk premium. Based on Gabillon (2020), we can state the following corollary:

Corollary 2. When the FS is non-informative, a regret-averse DM exhibits a preference for cer-

tainty regardless of her risk preferences: Π
u,FSni

Φ

Y > Πv
Y .

1Gabillon (2020) shows that the reference point in the left-hand side of Equation (4) does not correspond to
anticipated regret. Instead, it represents the psychological opportunity cost the DM is willing to support to avoid
anticipated regret.
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The risk premium is higher when anticipated regret is considered in decision-making than when

it is not. Under a non-informative FS, the sure payoff offers protection against anticipated regret. A

regret-averse DM is less likely to take risks than a vNMDM. Regret aversion under a non-informative

FS increases the proportion of seemingly risk-averse people. Risk-neutral DMs exhibit a positive

risk premium, and so do some risk lovers. It is worth noting that the preference for certainty does

not resort to the assumptions of feedback aversion but only to regret aversion (assumption A5).

The property of preference for certainty is obtained under a non-informative FS. In what follows,

we demonstrate the existence of the RCE under any FS:

Proposition 3. ∀ FSΦ, RCEu,FSΦ

Y exists, is unique, and belongs to
]
y, y

[
, where y and y respec-

tively denote the minimum value and the maximum value that Y takes on its support Ω.

Proof. Proof See Appendix C. Proposition 3 is obtained under assumptions A1 to A5.

We also obtain the following proposition:

Proposition 4. Under feedback aversion, if FSa
Φ is sufficient for FSb

Φ, we have RCE
u,FSb

Φ

Y ≤

RCE
u,FSa

Φ

Y , or else Π
u,FSa

Φ

Y ≤ Π
u,FSb

Φ

Y .

Proof. Proof See Appendix C. Proposition 4 is obtained under assumptions A2 to A7.

As the FS becomes informative, choosing the sure payoff offers less protection against feedback

and anticipated regret. The sure payoff that a regretful DM would accept instead of the risky

alternative Y increases with the informativeness of the FS, and the risk premium decreases.

From propositions 1 and 4, we obtain:

Corollary 3. Under feedback aversion, ∀FSΦ, Π
u,FSpi

Φ

Y ≤ Πu,FSΦ

Y and, under A1, Πu,FSΦ

Y ≤

Π
u,FSni

Φ

Y .

Proposition 4 states that, under feedback aversion, the risk premium decreases with the FS

informativeness. It is under a perfectly informative FS that a feedback-averse DM is the most

risk-taker and it is under a non-informative FS that she is the less.

In what follows, we introduce the risk premium’s decomposition of Bell (1983):
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Πu,FSΦ

Y = E (Y )− CEv
Y + CEv

Y −RCE
u,FSni

Φ

Y

−
[
RCEu,FSΦ

Y −RCE
u,FSni

Φ

Y

]
. (6)

The first term is the Arrow-Pratt risk premium. The second term is the regret premium, and

the last term is a generalization to any FS of the resolution premium introduced by Bell (1983).

The regret premium is the difference between the Arrow-Pratt certainty equivalent and the regret

certainty equivalent when the FS is non-informative. Compared to a vNM DM, the regret premium

represents the extra amount a regret-averse DM will pay to avoid regret. At the utility level,

Gabillon (2020) provides a psychological interpretation of the regret premium as the maximum

psychological opportunity cost a DM will support to avoid anticipated regret. The resolution

premium is the difference between the RCE under FSΦ and the RCE under the non-informative

FS. Bell (1983), who compare a situation of perfect feedback (FSΦ = FSpi
Φ ) with a situation of

no feedback, shows that the resolution premium is positive when the regret fonction is concave.

The author considers an additive regret/rejoicing utility function. In this framework, the concavity

of the regret function is a special case of our definition of feedback aversion. In this paper, we

obtain that, whatever the FS, the resolution premium is positive when the DM is feedback-averse

(see Proposition 4). For Somasundaram and Diecidue (2017), who also compare perfect feedback

with no feedback, the resolution premium can be negative or positive depending on the prospect.

The author’s interpretation of the resolution premium stems from their hypothesis that feedback

increases regret aversion (see Introduction).

Since the Arrow-Pratt risk premium and the regret premium are constant, the resolution pre-

mium is the portion of the risk premium that increases with the FS’s informativeness (see Propo-

sition 4). The following Proposition states that, under perfect feedback, the resolution premium

can be so significant that the risk premium under regret aversion is lower than the Arrow-Pratt

risk premium. Paradoxically, this happens for a risk-averse DM, who displays a preference for

uncertainty under perfect feedback.
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Proposition 5. When preferences are represented by the r-utility u (x, r) = xα − k (r − x) (which

satisfies A2 to A7) and when the FS is perfectly informative, the risk premium Π
u,FSpi

Φ

Y satisfies

0 ≤ Π
u,FSpi

Φ

Y ≤ Πv
Y when the DM is risk-averse (α < 1), Π

u,FSpi
Φ

Y = Πv
Y = 0 when the DM is risk

neutral (α = 1) and Πv
Y ≤ Π

u,FSpi
Φ

Y ≤ 0 when the DM is risk-lover (α > 1).

Proof. Proof See Appendix D.

In Proposition 5 and the rest of the paper, risk preferences are defined with the c-utility func-

tion, representing the DM’s preferences if she were not regret-averse. This approach allows us

to disentangle the effect of risk aversion and regret aversion. We can see how anticipated regret

affects risk behavior. All our model is based on the implicit comparison between the preferences

of a regret-averse DM, represented by the r-utility function u (x, r), and the corresponding vNM

preferences, represented by the c-utility function v (x) = u (x, x).

When u (x, r) = xα − k (r − x), under perfect feedback, the risk premium of a risk-and-regret-

averse DM is positive but lower than the Arrow-Pratt risk premium. The risk premium of a

risk-neutral and regret-averse DM is equal to zero, and the risk premium of a risk-lover and regret-

averse DM is negative but higher than the Arrow-Pratt risk premium. Risk behaviors are less

differentiated when regret aversion is involved in decision-making than when it is not: a risk-averse

DM is more risk-taker, and a risk-lover DM is less risk-taker. This result contrasts with what we

obtain when the FS is non-informative. Under a non-informative FS, preference for certainty prevails

regardless of risk preferences, systematically resulting in a risk premium above the Arrow-Pratt risk

premium (see Corollary 2). Under perfect feedback, however, when u (x, r) = xα − k (r − x), only

risk-lover DMs exhibit a preference for certainty. For risk-averse DMs, Proposition 5 highlights a

reverse phenomenon, which characterizes a preference for uncertainty (still compared to the EUT).

Risk-taking behavior and feedback on the foregone options cannot be considered separately.

Let’s consider now a choice set containing two risky alternatives Φ = {Y1, Y2} and a DM who is

indifferent between Y1 and Y2 :

14



E
[
u
(
Y1,Max

(
Y1, CE

v,MY1

Y2

))]
= E

[
u
(
Y2,Max

(
Y2, CE

v,MY2

Y1

))]
, (7)

with MY1 the signal about Y2 when Y1 is selected and MY2 the signal about Y1 when Y2 is selected.

From Proposition 2, we obtain the following corollary:

Corollary 4. We consider a choice set Φ = {Y1, Y2} containing two risky alternatives to which a

feedback-averse DM is indifferent. If the informativeness of signal MY1 increases (the new signal is

sufficient for the previous signal about Y2), the DM is no longer indifferent and prefers alternative

Y2.

By proving Proposition 2 in Appendix B, we establish that if information about the forgone

alternatives increases, the expected r-utility of the chosen alternative decreases. In our case, im-

proving information about Y2 when Y1 is selected decreases the expected r-utility of Y1, leading to

a shift in preference, with the DM now favoring option Y2. Feedback aversion favors risk-taking

behavior when Y2 is the riskier of the two alternatives and risk-avoiding behavior when Y2 is the

safest alternative. This result perfectly aligns with the observations of Zeelenberg et al. (1996) (see

Introduction).

5 Preference for certainty and the Allais paradox

In what follows, we use our model to analyze the common consequence version of the Allais paradox.

In Allais’ experiment, people are asked the following two questions2:

Do you prefer situation A or situation B?

A→ 1 [1] and B

↗ 5 [0, 1]

→ 1 [0, 89]

↘ 0 [0, 01]

2In Allais’ experiment, payoffs are expressed in millions of francs.
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Do you prefer situation C or situation D?

C
↗ 1 [0, 11]

↘ 0 [0, 89]
and D

↗ 5 [0, 1]

↘ 0 [0, 9]

The CCE is a behavioral regularity characterized by the A and D choice, which violates the

EUT. An appeal to certainty (Kahneman and Tversky 1979, Wakker 2010, Schneider and Schonger

2019, Cerreia-Vioglio et al. 2015) or an aversion to zero (Incekara-Hafalir et al. 2021) have been

proposed as possible explanations of why people choose A over B but prefers D over C. The first

explanation considers that the CCE is an evidence of the certainty effect. The certainty effect can

be defined as a tendency of people to favor a risk-free option in violation of Expected Utility. When

choosing A while they prefers D to C, people overvalue certainty.

However, this paper considers the choice of situation A to be puzzling, regardless of the prefer-

ence between C and D. To clarify this point, let us compare the following two situations:

A→ 1 [1] and B′
↗ 5 [0, 1]

↘ 1 [0, 9]

Situation B′ first-order stochastically dominates situation A. Under the EUT, any DM with an

increasing utility function prefers B′. One could expect that, by continuity, moving from B′ to B

will not significantly modify preferences between the two situations. Contrary to observation, one

would expect that most people prefer situation B to situation A. In the EUT, the preference for

situation A, observed in the Allais paradox, can only be explained by an extreme level of local risk

aversion. If we consider the utility function v (x) = xα, situation A is preferred to situation B in

the EUT when α < ln(1,1)
ln(5) ≃ 0, 05921954 = 0, 059+, which approximately corresponds to the 6%

most risk-averse people in the experimental study of Holt and Laury 2002. We call the certainty

bias puzzle the choice of the safe option in Allais’ experiment.

Bleichrodt and Walker (2015) who confront the model of Loomes and Sugden (1982) with various

paradoxes, analyze the CCE. A DM who has previously chosen A chooses situation D when she

fears enough the state of nature in which C gives 0, and D gives 5. When the difference between

5 and 0 results in an intense regret (under a convexity assumption), Bleichrodt and Walker (2015)
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obtain the CCE. In Allais’ experiment, however, people are not explicitly told that the result of the

foregone situation will be disclosed. Since people are just told to choose the situation they prefer,

it is reasonable to consider that they do not anticipate the resolution of the foregone situation. In

our terminology, Allais’ experiment is led under a non-informative FS. The ”strong regret” arising

from comparing the perceived payoff 0 and the lost payoff 5 has no reason to be anticipated. In

our approach, a DM who chooses C anticipates comparing the result of C to her opinion about

D, which corresponds, under a non-informative FS, to the Arrow-Pratt certainty equivalent of D,

which will be denoted by CEv
D in the following.

In what follows, we use the Arrow-Pratt certainty equivalent of situation B, CEv
B , as a measure

of risk preferences:

v (CEv
B) = 0, 1v (5) + 0, 89v (1) + 0, 01v (0) . (8)

Situation A is preferred to situation B in the EUT when CEv
B < 1. Under risk aversion, CEv

B is

lower than the expected payoff of situation B, equal to 1, 39. In the following table, we summarize

the different categories of risk preferences to which we will refer. The last line of the table gives

the values of α when the c-utility function is v (x) = xα.

Table 1

CEv
B < 1 1 ≤ CEv

B < 1, 39 CEv
B = 1, 39 CEv

B > 1, 39

Highly risk-averse Risk-averse Risk-neutral Risk-lover

α < 0, 059+ 0, 059+ ≤ α < 1 α = 1 α > 1
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Let us first analyze the certainty bias puzzle. Under a non-informative FS, a DM chooses

situation A if3:

u (1,Max (1, CEv
B))

> 0, 1v (5) + 0, 89v (1) + 0, 01u (0, 1) . (9)

To go further, let us introduce the additive r-utility function u (x, r) = v (x) − kg (r − x) with

k > 0, v′ (.) > 0, v (0) = 0, g′ (.) > 0 and g (0) = 0. Parameter k could be integrated into function

g (.), but we prefer to keep it outside as a measure of regret aversion. We summarize our findings

in the following proposition:

Proposition 6. Property 1: When CEv
B < 1, a DM prefers situation A, whether or not she is

regret-averse.

Property 2: When CEv
B ≥ 1, a DM can prefer situation A only if she is regret-averse.

Property 3: When CEv
B ≥ 1 and u (x, r) = v (x) − kg (r − x), a DM prefers situation A when

CEv
B < 1 + δ < 2 and when regret aversion k is sufficiently high: k > kmin = 0,1v(5)−0,11v(1)

0,01g(1)−g(CEv
B−1)

.

If g(.) is linear then 1 + δ = 1, 01. If g(.) is strictly convex then 1 + δ > 1, 01. If g (x) = xβ then

1 + δ = 1 + 0, 01
1
β .

Proof. Proof See Appendix E.

A highly risk-averse DM (CEv
B < 1) prefers situation A, whether or not she is regret-averse

(property 1). Property 2 of Proposition 6 states that regret aversion is necessary to explain the

certainty bias puzzle: the choice of situation A with a reasonable level of risk aversion (CEv
B ≥ 1)

can only occur under regret aversion. Under a non-informative FS, situation A offers a protection

against anticipated regret, creating a preference for certainty.

As the risk of feeling regret in situation B is very low (the probability is 0, 01), property 3 of

Proposition 6 states that the protection against anticipated regret offered by situation A is not

3In the right-hand side of Equation (9), when x = 0 and r = 1, the reference point represents anticipated regret.
On the left-hand side of Equation (9), the reference point does not represent anticipated regret, but a psychological
opportunity cost (see Gabillon 2020 ). The DM supports a psychological cost because choosing situation A implies
missing out situation B, which represents a ”better” option (when CEv

B > 1) that the DM would have adopted if
she had not been regret-averse.
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sufficiently attractive when risk aversion is too weak (CEv
B > 1 + δ). When, on the contrary, risk

aversion and regret aversion are sufficiently high (CEv
B < 1 + δ and k > kmin), situation A is

adopted. This choice happens all the more easily when the regret function is convex, corresponding

to our assumption A6 of RPRA. Under a non-informative FS, the RPRA property should not

be interpreted as feedback aversion but rather as a hypothesis of increasing marginal disutility of

regret. When g (x) = xβ , we have 1 + δ −→ 2 when β → +∞. The value of δ increases with

the convexity of the regret function g(.) but tends to a boundary. Proposition 6 states that regret

theory with an additive r-utility function is unable to predict the preference for situation A when

people are highly risk lovers (CEv
B ≥ 2). For all the other cases, however, any DM can prefer

situation A if she is sufficiently regret-averse (k sufficiently high) and reference point-risk-averse (β

sufficiently high).

Contrary to the EUT, our model explains the preference for situation A without assuming

extreme levels of risk aversion. When 1 < CEv
B < 1 + δ, situation A is not the best option in the

EUT (because CEv
B > 1), whereas it is the right choice under regret aversion when k > kmin. When

the sensitivity to anticipated regret is sufficiently high (k > kmin), we have RCEu
B < 1 < CEv

B : the

regret-averse DM chooses situation A, whereas the vNM DM chooses situation B. The underlying

property, which explains this result, is the preference for certainty under a non-informative FS

(RCEu
B < CEv

B) presented in section 4. The informational context of Allais’ experiment is the

key to understanding people’s extreme prudence when choosing situation A. When u (x, r) =

xα − k (r − x)
β
, the choice between situation A and situation B depends on three parameters: the

risk aversion parameter α, the regret aversion parameter k, and the RPRA parameter β. Table 2

illustrates, for different values of α, the conditions that the regret parameters k and β must meet

for the DM to prefer situation A to situation B:
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Table 2

α β kmin

α = 0, 059+ (CEv
B = 1) βmin = 0+ kmin = 0+

α = 0, 3 (CEv
B ≃ 1, 18) βmin ≃ 2, 7234 kmin ≃ +∞

β = 3 kmin ≃ 13, 94

β = 5 kmin ≃ 5, 32

β = 10 kmin ≃ 5, 21

α = 0, 5 (CEv
B ≃ 1, 24) βmin ≃ 3, 23 kmin ≃ +∞

β = 5 kmin ≃ 12, 35

β = 10 kmin ≃ 11, 362

α = 1 (CEv
B = 1, 39) βmin ≃ 4, 891 kmin ≃ +∞

β = 6 kmin ≃ 60, 174

β = 10 kmin ≃ 39, 321

α = 1, 5 (CEv
B ≃ 1, 59) βmin ≃ 8, 775 kmin ≃ +∞

β = 10 kmin ≃ 212, 48

β = 15 kmin ≃ 104, 80

Table 2 reads: when CEv
B = 1, situation A is strictly preferred as soon as k and β are strictly

positive. When CEv
B = 1, 18, situation A is selected if β exceeds 2, 7234. But for β = 2, 7234, k

must be extremely high (+∞). For β = 3, however, k must be greater than 13, 94. The rest of

Table 2 reads the same way. Appendix E shows that βmin and kmin both increase with α: when

risk aversion decreases, the attractiveness of situation B increases (CEv
B increases with α). Regret

parameters must increase in return to preserve the preference for situation A. This result shows

that risk aversion and regret aversion can be substitutable when it comes to avoiding or taking
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risks. If we reduce risk aversion, we need to increase regret aversion in order to continue preferring

situation A. Appendix E also shows that kmin decreases when β increases.

Let us now analyze the preference reversal paradox. All we have to do is to find the conditions

under which situation D is preferred to situation C and confront these conditions with those under

which A is preferred to B. Under a non-informative FS, a DM chooses situation D if:

0, 1u (5,Max(5, CEv
C))

+ 0, 9u (0,Max (0, CEv
C))

>

0, 11u (1,Max(1, CEv
D))

+ 0, 89u (0,Max (0, CEv
D)) . (10)

We analyze Equation (10) in Appendix E. We summarize our results in the following ta-

ble. Some results are general, and others are obtained with the r-utility function u (x, r) =

xα − k (r − x)
β
. Table 3 gives choices predicted by the EUT and regret theory (RT) for differ-

ent levels of risk aversion. The main insights are given just after the table. We recall that the CCE

is characterized by choices A and D.
Table 3: Is the CCE possible? Yes or No

CEv
B < 1 1 ≤ CEv

B < 1+ 1+ ≤ CEv
B < 2 CEv

B ≥ 2

Highly

risk-averse

Risk-averse,

risk-neutral

and risk-lover

Highly

risk-lover

EUT AC BD BD BD

RT AC
choice A possible

choice C

choice A possible

choice D possible

choice B

choice D possible

CCE possible? No. No. Yes under RT. No.
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When risk aversion is very high (CEv
B < 1), regret theory is unable to explain the choice of

situation D in the Allais paradox. For a highly risk-averse DM, situation C is more attractive for

two reasons:

a. Given her risk aversion, the DM values more C thanD: when CEv
B < 1, we have CEv

C > CEv
D.

b. Anticipated regret in situation D is more significant than in situation C. In situation D, the

probability of experiencing regret is higher (0, 9 > 0, 89), and anticipated regret is stronger:

in situation D, the DM feels regret when she compares 0 to CEv
C whereas, in situation C, she

feels regret when she compares 0 to CEv
D < CEv

C . In our model, anticipated regret depends

on both regret aversion and risk aversion (which determines CEv
C and CEv

D).

When 1 ≤ CEv
B < 1+, this is a small intermediate case. Despite that CEv

D is now greater

than CEv
C , situation C remains the optimal choice because the probability of experiencing regret

in situation D is higher (0, 9 > 0, 89).

When 1+ ≤ CEv
B < 2, regret theory under a non-informative FS can explain both the preference

for situation A (contrary to the EUT) and the choice of situation D. In situation D, although the

probability of experiencing regret is higher (0, 9 > 0, 89), anticipated regret is weaker: the DM feels

regret when she compares 0 to CEv
C whereas, in situation C, she feels regret when she compares 0

to CEv
D > CEv

C .

When CEv
B ≥ 2 (α ≥ 2, 295), the DM is such a risk lover that our model cannot predict the

choice of the safe situation (situation A). Given that risk lovers with α > 1, 95 represent only 3%

of participants in Holt and Laury (2002)’s experiment, we guess that probably almost nobody in

the population displays α ≥ 2, 295.

Our model is consistent with the Allais paradox since we predict that the A and D choice will be

the most frequently observed if people are sufficiently regret-averse. According to our model, only

high-risk-averse or high-risk-lover people will systematically exhibit a different pattern of choice.
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6 Conclusion

One result of this paper shows that the risk-taking behavior of a regret-averse DM depends not only

on risk aversion but also on regret aversion and feedback on foregone options. In particular, we show

that while a regretful DM systematically exhibits a preference for certainty under a non-informative

FS, she can display, on the contrary, a preference for uncertainty under a perfectly informative FS.

Gabillon (2020) also shows that statewise stochastic dominance, a natural property of preferences, is

satisfied under perfect feedback but cannot be generalized to any other FS. Given the particularity

of its implications, the assumption of perfect feedback should be used with caution when drawing

general conclusions about decision-making under regret aversion since risk-taking behavior and

preference properties vary with the degree of resolution of the foregone options.

Appendix A

Let MYn
denote the signal associated to an alternative Yn under any FSΦ.

Signal MYn
is conditionally independent of θ given Mpi

Yn
: p

(
mYn

∣∣∣mpi
Yn

, θ
)

= p
(
mYn

∣∣∣mpi
Yn

)
since mpi

Yn
reveals θ. We thus have:

p (mYn
|θ ) =

∑
mYn∈MYn

p
(
mYn

∣∣∣mpi
Yn

)
p
(
mpi

Yn
|θ
)
. (A.1)

Mpi
Yn

is sufficient for MYn
.

Let us now consider signals MYn and Mni
Yn

. We have:

p
(
mni

Yn
|mYn

)
=

∑
θ∈ΩN+1

p
(
mni

Yn
, θ |mYn

)
=

∑
θ∈ΩN+1

p
(
mni

Yn
|mYn

, θ
)
p (θ |mYn

) . (A.2)

Under A1, Equation (A.2) gives
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p
(
mni

Yn
|mYn

)
=

∑
θ∈ΩN+1

p
(
mni

Yn
|θ
)
p (θ |mYn

) . (A.3)

Given that Mni
Yn

is independent of θ, we obtain:

p
(
mni

Yn
|mYn

)
= p

(
mni

Yn

) ∑
θ∈ΩN+1

p (θ |mYn
) = p

(
mni

Yn

)
. (A.4)

In addition, we have:

p
(
mni

Yn
|mYn

, θ
)
=

P
(
mni

Yn
,mYn , θ

)
p (mYn

, θ)

=
p
(
mYn

∣∣mni
Yn

, θ
)
p
(
mni

Yn
|θ
)
p (θ)

p (mYn |θ ) p (θ)
. (A.5)

Under A1, Equation (A.5) give:

p
(
mni

Yn
|mYn , θ

)
=

p (mYn
|θ ) p

(
mni

Yn

)
p (mYn |θ )

= p
(
mni

Yn

)
. (A.6)

Equations (A.4) and (A.6) imply

p
(
mni

Yn
|mYn , θ

)
= p

(
mni

Yn
|mYn

)
. (A.7)

We also have:

p
(
mni

Yn
|θ
)
=

∑
mYn∈MYn

p
(
mni

Yn
|mYn

, θ
)
p (mYn

|θ ) . (A.8)

Equations (A.7) and (A.8) give

p
(
mni

Yn
|θ
)
=

∑
mYn∈MYn

p
(
mni

Yn
|mYn

)
p (mYn |θ ) . (A.9)

MYn
is sufficient for Mni

Yn
.
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Appendix B

FSa
Φ is sufficient for FSb

Φ (see definitions 4 and 5) implies that ∀X ∈ Φ,∀θ ∈ ΩN+1,∀mb
X ∈ MX ,

p
(
mb

X |θ
)
p (θ) =

∑
ma

X∈MX

π
(
mb

X |ma
X

)
p (ma

X |θ ) p (θ) , (B.1)

with
∑

mb
X∈MX

πX

(
mb

X |ma
X

)
= 1.

Equation (B.1) can be rewritten as follows:

∀X ∈ Φ,∀θ ∈ ΩN+1,∀mb
X ∈ MX ,

p
(
mb

X , θ
)
=

∑
ma

X∈MX

π
(
mb

X |ma
X

)
p (ma

X , θ) . (B.2)

By summing over θ, we obtain:

∀X ∈ Φ,∀mb
X ∈ MX ,

p
(
mb

X

)
=

∑
ma

X∈MX

π
(
mb

X |ma
X

)
p (ma

X) . (B.3)

Besides, Equation (B.2) can also be written as follows:

∀X ∈ Φ,∀θ ∈ ΩN+1,∀mb
X ∈ MX ,

p
(
θ
∣∣mb

X

)
p
(
mb

X

)
=

∑
ma

X∈MX

π
(
mb

X |ma
X

)
p (θ |ma

X ) p (ma
X) . (B.4)

We obtain that ∀X ∈ Φ,∀θ ∈ ΩN+1,∀mb
X ∈ MX ,

p
(
θ
∣∣mb

X

)
=

∑
ma

X∈MX

π
(
mb

X |ma
X

)
p (ma

X)

p
(
mb

X

) p (θ |ma
X ) . (B.5)

Since
π(mb

X |ma
X )p(ma

X)

p(mb
X)

= π
(
ma

X

∣∣mb
X

)
, Equation (B.5) becomes:
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∀X ∈ Φ,∀θ ∈ ΩN+1,∀mb
X ∈ MX ,

p
(
θ
∣∣mb

X

)
=

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
p (θ |ma

X ) . (B.6)

Given that θ = {x, y1, ..., yN}, it is easy to obtain from Equation (B.6) that ∀X ∈ Φ,∀Yn ∈

Φ/ {X} ,∀yn ∈ Ω,∀mb
X ∈ MX ,

p
(
yn

∣∣mb
X

)
=

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
p (yn |ma

X ) . (B.7)

Besides (see Equation 1), we recall that

∀X ∈ Φ,∀Yn ∈ Φ/ {X} , v
(
CE

v,Mb
X

Yn

)
= E

[
v (yn)|M b

X

]
. (B.8)

Or, equivalently:

∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀mb
X ∈ MX ,

v
(
CE

v,mb
X

Yn

)
=

∑
yn∈ΩYn

p
(
yn

∣∣mb
X

)
v (yn) . (B.9)

From Equation (B.7) and Equation (B.9), we obtain that ∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀mb
X ∈ MX ,

v
(
CE

v,mb
X

Yn

)
=

∑
yn∈Ω

v (yn)
∑

ma
X∈MX

π
(
ma

X

∣∣mb
X

)
p (yn |ma

X ) . (B.10)

Or, equivalently,

∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀mb
X ∈ MX ,

v
(
CE

v,mb
X

Yn

)
=

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

) ∑
yn∈ΩYn

v (yn) p (yn |ma
X ) . (B.11)

We obtain the following relationship between CE
v,ma

X

Yn
and CE

v,mb
X

Yn
:
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∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀mb
X ∈ MX ,

v
(
CE

v,mb
X

Yn

)
=

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
v
(
CE

v,ma
X

Yn

)
. (B.12)

We thus have:

∀X ∈ Φ,∀Yn ∈ Φ/ {X} ,∀mb
X ∈ MX ,

v
(
CE

v,mb
X

Yn

)
≤

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
v
(
CE

v,ma
X

Max

)
, (B.13)

with CE
v,ma

X

Max = Max
{
CE

v,ma
X

Y1
, ..., CE

v,ma
X

YN

}
.

And thus, we also have:

∀X ∈ Φ,∀mb
X ∈ MX , v

(
CE

v,mb
X

Max

)
≤

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
v
(
CE

v,ma
X

Max

)
, (B.14)

with CE
v,mb

X

Max = Max
{
CE

v,mb
X

Y1
, ..., CE

v,mb
X

YN

}
.

Under assumption A7, Equation (B.14) implies:

∀X ∈ Φ,∀mb
X ∈ MX , v

(
CE

v,mb
X

Max

)
≤ v

 ∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
CE

v,ma
X

Max

 . (B.15)

Which implies under A3:

∀X ∈ Φ,∀mb
X ∈ MX , CE

v,mb
X

Max

≤
∑

ma
X∈MX

π
(
ma

X

∣∣mb
X

)
CE

v,ma
X

Max . (B.16)

Which implies
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∀X ∈ Φ,∀x ∈ Ω,∀mb
X ∈ MX ,Max

(
x,CE

v,mb
X

Max

)
≤ Max

x,
∑

ma
X∈MX

π
(
ma

X

∣∣mb
X

)
CE

v,ma
X

Max

 . (B.17)

Moreover, since the Max function is convex, we have:

∀X ∈ Φ,∀x ∈ Ω,∀mb
X ∈ MX ,Max

(
x,CE

v,mb
X

Max

)
≤

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
Max

(
x,CE

v,ma
X

Max

)
. (B.18)

Given Definition 7, equations (B.18) can be rewritten as follows:

∀X ∈ Φ,∀x ∈ Ω,∀mb
X ∈ MX , Rmb

X

≤
∑

ma
X∈MX

π
(
ma

X

∣∣mb
X

)
Rma

X . (B.19)

For each signal value mb
X , the reference point Rmb

X is lower than the average value of the

reference point Rma
X .

Under A5, we obtain, that ∀X ∈ Φ,∀x ∈ Ω,∀mb
X ∈ MX ,

u

x,
∑

ma
X∈MX

π
(
ma

X

∣∣mb
X

)
Rma

X

 ≤ u
(
x,Rmb

X

)
. (B.20)

Which implies, under A6, that ∀X ∈ Φ,∀x ∈ Ω,∀mb
X ∈ MX ,

∑
ma

X∈MX

π
(
ma

X

∣∣mb
X

)
u
(
x,Rma

X

)
≤ u

(
x,Rmb

X

)
. (B.21)

Since π
(
ma

X

∣∣mb
X

)
=

π(mb
X |ma

X )p(ma
X)

p(mb
X)

, we obtain:

∀X ∈ Φ,∀x ∈ Ω,∀mb
X ∈ MX ,
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∑
ma

X∈MX

π
(
mb

X |ma
X

)
p (ma

X)u (x,Rma)

≤ p
(
mb

X

)
u
(
x,Rmb

X

)
. (B.22)

Which implies that ∀X ∈ Φ,∀x ∈ Ω,∑
mb

X∈M

∑
Xma

X∈MX

π
(
mb

X |ma
X

)
p (ma

X)u
(
x,Rma

X

)
≤

∑
mb

X∈MX

p
(
mb

X

)
u
(
x,Rmb

X

)
. (B.23)

Or, equivalently, that ∀X ∈ Φ,∀x ∈ Ω,

∑
ma

X∈MX

p (ma
X)u

(
x,Rma

X

)
≤

∑
mb

X∈MX

p
(
mb

X

)
u
(
x,Rmb

X

)
. (B.24)

Taking the expectation with respect to x, we obtain:

∀X ∈ Φ,

E
[
u
(
X,Max

(
X,RMa

X

))]
≤ E

[
u
(
X,Max

(
X,RMb

X

))]
. (B.25)

Appendix C

Proof of Proposition 3 :

First, let us show that, for any FS, the solution of Equation (4) exists and is unique.

If Z = y then the left-hand side (LHS) of Equation (4) is

E
[
u
(
Z,Max

(
Z,CEv,MZ

Y

))]
= E

[
u
(
y, CEv,MZ

Y

)]
. (C.1)

The right-hand side (RHS) is

E [u (Y,Max (Y, Z))] = E [u (Y, Y )] = E [v (y)] . (C.2)

29



Equation (4) is not satisfied since, under A4 and A5, we have:

E
[
u
(
y, CEv,MZ

Y

)]
≤ u

(
y, y

)
= v

(
y
)
< E [v (y)] . (C.3)

The RHS of Equation (4) is greater than the LHS.

If Z = y then the LHS of Equation (4) is

E
[
u
(
Z,Max

(
Z,CEv,MZ

Y

))]
= u (y, y) . (C.4)

The RHS is

E [u (Y,Max (Y,Z))] = E [u (Y, y)] . (C.5)

Equation (4) is not satisfied since, under A4, u (y, y) > E [u (Y, y)]. The LHS of Equation (4) is

now greater than the RHS.

Moreover, under A3 and A4, function E
[
u
(
Z,Max

(
Z,CEv,MZ

Y

))]
increases with Z and

under A4, function E [u (Y,Max (Y, Z))] decreases with Z. Under A2, the solution of Equation (4)

exists, is unique, and belongs to
]
y, y

[
.

Proof of Proposition 4 :

The choice set is Ω = {Z, Y }.

If Za and Zb respectively denote the Z-solution of Equation (4) under FSa and FSb, let us show

that Zb ≤ Za.

If FSa
Φ is sufficient for FSb

Φ, feedback aversion implies that (see Proposition 2):

E
[
u
(
Z,Max

(
Z,CE

v,Ma
Z

Y

))]
≤ E

[
u
(
Z,Max

(
Z,CE

v,Mb
Z

Y

))]
. (C.6)
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The LHS of Equation (4) is greater under FSb
Φ than under FSa

Φ. The RHS of Equation (4),

E [u (Y,Max (Y, Z))], is independent of the FS and decreases with Z under A5. We thus have

Zb ≤ Za.

Appendix D

Under the assumptions of Proposition 5, RCE
u,FSi

Φ

Y is the Z-solution of the following equation (see

Equation 4):

Zα − kE [Max (Y,Z)− Z]

= E (Y α)− kE [Max (Y, Z)− Y ] . (D.1)

Equation (D.1) can be rewritten as follows:

Zα + kZ = E (Y α + kY ) . (D.2)

The Z-solution of Equation (D.2) is the Arrow-Pratt certainty equivalent of Y computed with

the vNM utility function v̂ (Y ) = Y α + kY .

When α < 1, the utility function v̂ (Y ) displays less risk aversion than the c-utility function

v (Y ) = Y α and CEv
Y < RCE

u,FSpi
Φ

Y < E (Y ).

When α = 1, the utility function v̂ (Y ) displays risk neutrality as the c-utility function v (Y ) =

Y α and RCE
u,FSpi

Φ

Y = CEv
Y = E (Y ) .

When α > 1, the utility function v̂ (Y ) displays less risk loving than the c-utility function

v (Y ) = Y α and CEv
Y > RCE

u,FSpi
Φ

Y > E (Y ).

Appendix E

Proof of Proposition 6:

Under a non-informative FS, we have RCEu
B < CEv

B (see Corollary 2). When CEv
B < 1 (risk

aversion is high), we thus have RCEu
B < CEv

B < 1, which allows us to conclude that Equation (9)
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is satisfied.

In what follows, we pursue our analysis with CEv
B ≥ 1 (B is preferred to A in the EUT).

Equation (9) is satisfied if

u (1, CEv
B) > 0, 1v (5) + 0, 89v (1) + 0, 01u (0, 1) . (E.1)

Since u (1, CEv
B) ≤ v (1) ≤ v (CEv

B), Inequality (E.1) can only be satisfied if u (0, 1) < v (0)

(see Equation 8). When CEv
B ≥ 1, the DM must be sensitive to anticipated regret to exhibit a

preference for situation A. Inequality (E.1) is satisfied when RCEu
B < 1 < CEv

B which means that

situation B is preferred in the EUT, while situation A is preferred under regret aversion. This result

is possible due to the property of preference for certainty (RCEu
B < CEv

B) stated in Corollary 2.

When u (x, r) = v (x) − kg (r − x) with v (0) = 0, RCEu
B is the Z-solution of the following

equation:

v (Z)− kg (CEv
B − Z) = 0, 1v (5) + 0, 89v (1)− 0, 01kg (Z) . (E.2)

Equation (E.2) is obtained with Equation (4) and RCEu
B < CEv

B .

Using Equation (8), we write Equation (E.2) as follows:

v (Z) + k [0, 01g (Z)− g (CEv
B − Z)] = v (CEv

B) . (E.3)

Given that inequality (E.1) is satisfied when RCEu
B < 1, Equation (E.3) implies:

v (1) + k [0, 01g (1)− g (CEv
B − 1)] > v (CEv

B) . (E.4)

Equation (E.4) and CEv
B ≥ 1 imply:

0, 01g (1)− g (CEv
B − 1) > 0. (E.5)

Given that g′ (.) > 0, Equation (E.5) cannot be verified when CEv
B ≥ 2. When CEv

B ≥ 2, the
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DM is such a risk-lover that regret theory cannot explain the preference for situation A observed

in the Allais paradox.

Let us introduce δ < 1, which verifies:

g (δ) = 0, 01g (1) . (E.6)

The preference for situation A can only be explained when CEv
B < 1 + δ. When the regret

function g (.) is linear (g (tx) = tg (x)), we obtain δ = 0, 01. When the regret function is strictly

convex (g (tx) < tg (x) when t < 1), we have δ > 0, 01. When g (x) = xβ , we obtain δ = 0, 01
1
β .

When β → +∞, we have δ −→ 1 and situation A is preferred when CEv
B < 2.

Secondly, Equation (E.4) is satisfied when k is high enough:

k > kmin =
v (CEv

B)− v (1)

0, 01g (1)− g (CEv
B − 1)

. (E.7)

Or else:

k > kmin =
0, 1v (5)− 0, 11v (1)

0, 01g (1)− g (CEv
B − 1)

. (E.8)

Computations for Table 2:

When u (x, r) = xα − k (r − x)
β
, Equation (E.5) can be written as follows:

0, 01− (CEv
B − 1)

β
> 0. (E.9)

Which gives:

β > βmin =
0, 01

ln (CEv
B − 1)

when CEv
B < 2. (E.10)

We also have:

CEv
B = (0, 1× 5α + 0, 89)

1
α increases with α.
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kmin = 0,1v(5)−0,11v(1)

0,01g(1)−g(CEv
B−1)

= 0,1×5α−0,11[
0,01−(CEv

B−1)
β
] increases with α, and decreases with β when

CEv
B < 2.

Choice between C and D:

Given that 0 < CEv
C < 1 and CEv

D > 0, Equation (10) can be written as follows:

0, 1v (5) + 0, 9u (0, CEv
C)

> 0, 11u (1,Max(1, CEv
D)) + 0, 89u (0, CEv

D) . (E.11)

We must consider two cases: the first case is CEv
D ≤ 1 which encompasses all the risk-averse

DMs (CEv
D ≤ 0, 5) and some risk lovers (0, 5 < CEv

D ≤ 1). The second case is CEv
D > 1.

1. When CEv
D ≤ 1, Equation (E.11) becomes:

0, 1v (5) + 0, 9u (0, CEv
C) > 0, 11v (1) + 0, 89u (0, CEv

D) . (E.12)

Which gives:

[0, 1v (5)− 0, 11v (1)]︸ ︷︷ ︸
(I)

+ [0, 9u (0, CEv
C)− 0, 89u (0, CEv

D)]︸ ︷︷ ︸
(II)

> 0. (E.13)

In what follows, we posit v (0) = 0 for the sake of simplicity. Expression (I) represents

the difference between the expected utility of D and the expected utility of C in the EUT.

Expression (II) represents the difference between anticipated regret in D and C. We consider

three subcases:

(a) When CEv
B < 1 (α < 0, 059+), we have 0, 11v (1) > 0, 1v (5) (see Equation 8), and thus

CEv
C > CEv

D. Expression (I) and Expression (II) in Equation (E.13) are both negative,
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and Equation (E.13) cannot be satisfied. When CEv
B < 1, the EUT ((I) < 0) and regret

theory ((I) + (II) < 0) predict that situation C will be chosen instead of situation D.

(b) When CEv
B = 1 (α = 0, 059+), we have 0, 11v (1) = 0, 1v (5) (see Equation 8), and thus

CEv
C = CEv

D. Expression (I) is equal to 0, and Expression (II) is negative. When

CEv
B = 1, the EUT predicts indifference between C and D. Regret theory predicts the

choice of situation C because the probability of experiencing regret is lower in C than

in D.

(c) When CEv
B > 1 (α > 0, 059+), we have 0, 11v (1) < 0, 1v (5) (see Equation 8), and thus

CEv
C < CEv

D. Expression (I) in Equation (E.13) is positive. The EUT predicts choice

D. By continuity with the previous case, the sign of Expression (I) + (II) is negative

when CEv
B is just greater than 1.

If we consider, however, the r-utility function u (x, r) = xα − k (r − x)
β
, Expression (I)

and Expression (II) are both positive when α ≥ 0, 059633542 = 0, 59++ (⇔ CEv
B ≥

1, 001230184 = 1+) and β ≥ 1 (the regret function is linear or convex). See online

appendix.

2. When CEv
D > 1, Equation (E.11) can be written as follows:

0, 1v (5) + 0, 9u (0, CEv
C)

> 0, 11u (1, CEv
D) + 0, 89u (0, CEv

D) . (E.14)

Or else:

[0, 1v (5)− 0, 11u (1, CEv
D)]︸ ︷︷ ︸

(I)

+ [0, 9u (0, CEv
C)− 0, 89u (0, CEv

D)]︸ ︷︷ ︸
(II)

> 0. (E.15)

When CEv
D > 1, we also have CEv

B > 1. When α ≥ 0, 59++ and β ≥ 1, we know that

Equation (E.13) is satisfied (see subcase c), which implies that Equation (E.15) is also satisfied.
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