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Abstract

This paper proposes two rankings of statistical experiments using the
linear convex order. These rankings provide simpler and more tractable
characterizations than Blackwell order, which relies on the convex order.
We apply these rankings to compare statistical experiments in binary-action
decision problems and in decision problems that aggregate payoffs over a
collection of binary-action decision problems. Furthermore, these rankings
enable comparisons of statistical experiments in moral hazard problems
without requiring the validity of the first-order approach, thereby comple-
menting the results in Holmström (1979) and Kim (1995).
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1 Introduction

Statistical experiments formalize information and uncertainty in mathematical
models: Given a set of unknown states of the world Θ, an experiment F generates
a signal x ∈ X with the conditional distribution Fθ when the true state is θ ∈
Θ. A decision maker (DM) with a prior belief q over Θ updates her posterior
belief using Bayes’ rule after observing the signal. For discrete state spaces Θ =
{θ0, . . . , θn}, the experiment has two equivalent representations: an n-dimensional
random vector of likelihood ratios of θ1, . . . , θn relative to θ0, or an n-dimensional
random vector of posterior beliefs about θ1, . . . , θn.

Blackwell’s celebrated theorem (Blackwell et al. (1951) and Blackwell (1953))
provides a ranking of experiments by their informativeness, which is fundamental
to information economics. An experiment F dominates another experiment G
in Blackwell order if the random vectors of likelihood ratios and posterior beliefs
generated by F are more dispersed than those generated byG. That is, the random
vectors1 generated by F dominate those generated by G in the convex order.
Specifically, an n-dimensional random vector µ dominates another n-dimensional
random vector ν in the convex order if for all convex functions C with n variables,

E[C(µ)] ≥ E[C(ν)].

For the binary-state case (i.e., n = 1 and Θ = {θ0, θ1}), Blackwell order has
been extensively studied. In this case, the convex order over random variables is
equivalent to majorization, Lorenz order, and second-order stochastic dominance.
The set of univariate convex functions can be characterized as a one-parameter
family of extremal rays, and the convex order has a simple characterization based
on the pointwise comparison of the integral of distribution functions.

However, Blackwell order is significantly more complex in the multi-state cases
than in the binary-state case, as noted by Blackwell and Girshick (1954). Je-
witt (2007) identifies two major limitations of Blackwell order: First, as noted by
Lehmann (1988), it fails to apply in certain cases where it intuitively should. Sec-
ond, verifying the ranking between two experiments is computationally intractable,
particularly with infinite signal spaces. These limitations stem from fundamental
differences between one-dimensional and multi-dimensional convex orders. The
convex order over multi-dimensional random vectors imposes stronger conditions
and lacks a tractable characterization. Indeed, The set of multivariable convex

1Comparing the dispersion of likelihood-ratio vectors is equivalent to comparing the dispersion
of posterior-belief vectors.
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functions is too intricate to provide a practical characterization, as pointed out by
Johansen (1972) and Johansen (1974).

There is a growing statistical literature (e.g., Marshall (1979), Bhandari (1988),
Joe and Verducci (1992), Scarsini (1998), and Arnold (2012)) examining a weaker
order over random vectors for comparing their dispersion: the linear convex or-
der. An n-dimensional random vector µ dominates another n-dimensional random
vector ν in the linear convex order if, for each vector b ∈ Rn, the random vari-
able b′µ dominates the random variable b′ν in the convex order. In contrast to
the convex order, the linear convex order compares all linear combinations of two
random vectors, thereby simplifying the problem to a univariate comparison and
enabling a straightforward characterization. Furthermore, Koshevoy and Moseler
in a series of papers (Koshevoy (1995), Koshevoy and Mosler (1996), and Koshevoy
(1997)) provide an elegant geometric interpretation of the linear convex order by
generalizing the concept of Lorenz Curve to the multi-dimensional setting.

This paper proposes two rankings of experiments by their informativeness
based on the linear convex order: Posterior-Mean (PM) order and Linear-Blackwell
(LB) order. The PM and LB orders provide simpler and more tractable charac-
terizations compared to Blackwell order.

Consider the case in which the states θ0, . . . , θn ∈ R, with θ0 < . . . < θn. An
experiment F dominates G in PM order if, for each prior q, the posterior mean
(conditional expectation of the state based on the realized signal) generated by
F dominates that generated by G in the convex order. Note that the posterior
mean is a random variable and can be derived as a linear combination of either
the likelihood-ratio vector or the posterior-belief vector. PM order is founded on
the principle that more information leads to greater dispersion in the posterior
mean. There is a growing literature that models the concept of more information
in this way (e.g., Ganuza and Penalva (2010), Gentzkow and Kamenica (2016),
and Ravid et al. (2022)). These studies focus on the situation in which the prior
is fixed. In contrast, PM order is defined for all possible priors. We show that
PM order is preserved over all real values assigned to the state space satisfying
θ0 ≤ . . . ≤ θn, i.e., only the ordinal ranking of the state space is relevant.

An experiment F dominates G in Linear-Blackwell (LB) order if the random
vectors of the likelihood ratios and the posterior beliefs generated by F dominate
those generated by G in the linear convex order.2 We show that F dominates G
in LB order if and only if F dominates G in PM order for each ordinal ranking

2Chencking the random vectors of likelihood ratios is equivalent to checking the random
vectors of posterior beliefs.
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imposed on the state space.
When the state space is binary, Blackwell order, Lehmann order,3 LB order,

and PM order are equivalent. In cases with more than two states, Blackwell order
implies LB order, but not vice versa in general. We show that an experiment F
dominates G in LB order if and only if, for each weighted dichotomy constructed
on the state space,4 the experiment F dominates G in Blackwell order. This find-
ing enables us to generalize established results in the binary-state case regarding
Blackwell order to the multi-state cases regarding LB order. Furthermore, we
show that when both F and G satisfy the Monotonic Likelihood Ratio Property
(MLRP), the experiment F dominates G in PM order if and only if F dominates
G in Lehmann order. Hence, PM order generalizes Lehmann order without re-
lying on MLRP. The MLRP assumption imposes a stringent requirement on the
correlation between the signal and the state and lacks a solid microfoundation, as
shown by Mensch (2021).

We apply PM order and LB order to compare experiments in decision problems.
Consider a decision problem in which the DM chooses an action a ∈ A and receives
payoff u(a, θ) if the realized state is θ. The DM is uncertain about the state with
prior q and can choose to observe a signal from either F or G, then updates her
belief according to Bayes’ Rule and chooses the action that maximizes her expected
payoff. Blackwell’s theorem states that F dominates G in Blackwell order if and
only if in each decision problem, the DM receives a higher ex ante expected payoff
under F than under G.

We show that F dominates G in LB order if and only if, in each decision
problem with |A| = 2, i.e., in each binary-action decision problem, the DM receives
a higher ex ante expected payoff under F than under G. Furthermore, given the
ordinal ranking of the state space, the experiment F dominates G in PM order if
and only if, in each binary decision problem satisfying the single-crossing property,
the DM receives a higher ex ante expected payoff under F than under G.

The results above extend to the decision problems that aggregate payoffs over
a collection of binary-action decision problems. Specifically, a decision problem is
binary-decomposable if its value function5 equals the sum of the value functions of a
collection of binary-action decision problems.6 We show that a sufficient condition

3Lehmann (1988) compares experiments satisfying the Monotonic Likelihood Ratio Property
(MLRP). Lehmann’s order is based on how strongly the signal is correlated with the state.

4As will be demonstrated, each weighted dichotomy corresponds to a binary-state space.
5The value function maps the DM’s belief to her maximal expected payoff.
6de Oliveira et al. (2023) is the first paper to study this decomposition problem. They show

that in the binary-state case, all decision problems are binary-decomposable. However, this
result does not hold when there are more than two states.
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for a decision problem to be binary-decomposable is that there exists an ordinal
ranking of the action space A such that, for each belief, the DM’s expected payoff
is quasi-concave in a. Furthermore, under this quasi-concavity condition, there
exists an ordinal ranking of Θ such that the decision problem can be decomposed
into a collection of binary decision problems satisfying the single-crossing property.
Finally, the quasi-concavity condition holds if the DM’s optimal action is always
continuous in her belief.

We also apply LB order to compare statistical experiments in moral hazard
problems under the framework of Grossman and Hart (1983): An agent privately
chooses a costly action (state) from Θ = {θ0, . . . , θn}, and a principal observes
one signal correlated with this action from a statistical experiment. The principal
writes a contract with the agent that maps signals to payments for the agent. The
agent is risk-averse and his utility is additively separable in the payment and the
cost of the chosen action, while the principal is risk-neutral.

We show that a statistical experiment F dominates G in LB order if and
only if, for each mixed action7 δ ∈ ∆(Θ), whenever it is implementable under G
with an incentive-compatible contract, it is also implementable under F with a
lower expected payment. We prove this result by first establishing strong duality
using the geometric illustration of the linear convex order from Koshevoy and
Mosler (1996), then applying the conjugate duality approach introduced by Jewitt
(2007). We further strengthen the informativeness principle in Holmström (1979)
by showing that an additional signal is not valuable if and only if, given the existing
signal, the additional signal is uninformative in the sense of LB order and also
Blackwell order. This paper contributes to the literature on comparing statistical
experiments in agency problems (e.g., Gjesdal (1982) and Kim (1995)). Most
of the literature focuses on situations where the agent’s action is a continuous,
one-dimensional effort variable. These studies also assume that the statistical
experiments satisfy MLRP and that the first-order approach is valid. However,
this situation is restrictive since it relies exclusively on the binary-action (high-
and low-effort) case, as noted by Hart and Holmstrom (1986), and the first-order
approach is only valid in very special cases.

This paper proceeds as follows: Section 2 presents the preliminary notions
regarding the statistical experiments, the convex order, and the linear convex
order. Section 3 introduces Posterior-Mean order and Linear-Blackwell order,
and compares them with Blackwell order and Lehmann order. Section 4 applies

7The mixed strategies model the situation in which the principal would like the agent to
allocate time among multiple tasks.
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Posterior-Mean order and Linear-Blackwell order to compare statistical experi-
ments in decision problems. Section 5 applies Linear-Blackwell order to compare
statistical experiments in moral hazard problems. Section 6 concludes.

2 Preliminaries

2.1 Statistical Experiments

Let Θ = {θ0, . . . , θn} ⊂ R be the set of states in which

θ0 < . . . < θn.

The decision-maker (DM) holds a prior belief q = {q1, . . . , qn} with

qi ∈ [0, 1],∀i ∈ {1, . . . , n},

n∑
i=1

qi ≤ 1.

She believes that with probability qi, the realized state is θi.8

A statistical experiment F consists of (i) a set of signals X, in which x denotes
a generic signal, and (ii) a collection of probability measures {F (·|θ0), . . . , F (·|θn)}
defined over X, in which F (A|θ) represents the probability of observing A ⊂ X in
state θ ∈ Θ. Similarly, for another statistical experiment G, let Y be the signal
space and y be a generic signal.

We assume that the signal spaces X and Y are one-dimensional with

X = Y = [0, 1],

under which F (·|θ) and G(·|θ) are cumulative distribution functions (c.d.f) over
[0, 1] for each θ. This assumption is unnecessary but simplifies the exposition. We
further assume that:

Assumption 1. (Continuity) The c.d.fs F (·|θ) and G(·|θ) are continuous in x ∈
[0, 1] and y ∈ [0, 1] for each θ ∈ Θ. There exist density functions f(·|θ) and g(·|θ)
such that

F (x|θ) =
∫ x

0
f(t|θ)dt,

G(y|θ) =
∫ y

0
g(t|θ)dt.

8We omit the prior belief for θ0, allowing the prior beliefs of other states to move freely.
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Assumption 2. (Bounded Density) There exists a constant a > 0 such that for
each x, y ∈ [0, 1] and θ ∈ Θ,

1
a
< f(x|θ) < a,

1
a
< g(y|θ) < a.

As shown in Lehmann (1988), Assumption 1 is without loss of generality. As-
sumption 2 ensures bounded likelihood ratios between any two states, though we
can extend definitions and results to cases in which unbounded likelihood ratios
are allowed.

Given a prior belief q and a statistical experiment F , let Fq(x) and fq(x)
denote the marginal distribution function and density of x, respectively. For a
signal x is drawn from Fq(·), the DM’s posterior belief

pF (x; q) = {pF
1 (x; q), . . . , pF

n (x; q)}

is defined as
pF

i (x; q) = qi · f(x|θi)/fq(x),∀i ∈ {1, . . . , n}

by Bayes’ Rule. Furthermore, the conditional expectation of the realized state θ
given x (posterior mean) mF (x) is defined as

mF (x; q) = E(θ|x;F, q).

The random variable (signal) x drawn from Fq(·) generates the random vector of
posterior beliefs pF (x; q) and the random variable of posterior mean mF (x; q).
We omit x and denote them as pF (q) and mF (q). Similarly, the random vector
of posterior beliefs and random variable of posterior mean under G are denoted
as pG(q) and mG(q), respectively.

Conditional on state θ0, for a signal x drawn from F (·|θ0), the (conditional)
likelihood-ratio vector

ℓF (x) = {lF1 (x), . . . , lFn (x)}

is defined as
lFi (x) = f(x|θi)/f(x|θ0),∀i ∈ {1, . . . , n}.

The random variable x drawn from F (·|θ0) generates the random vector of likeli-
hood ratios ℓF (x). We omit x and denote the random vector as ℓF . Similarly, the
random vector of likelihood ratios under G is denoted as ℓG.
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2.2 Convex Order and Linear Convex Order

Consider two real-valued random vectors µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn)
with

E[µi] = E[νi] < ∞,∀i ∈ {1, . . . , n}.

The convex order is used to compare their dispersion:

Definition 1. The random vector µ dominates ν in the convex order, i.e.,

µ
cx
≻ ν,

if for each convex function C : Rn → R,

E[C(µ)] ≥ E[C(ν)].

When n = 1, the convex order has a simple characterization since the set
of univariate convex functions can be represented as a one-parameter family of
extremal rays. That is, the random variable µ dominates ν in the convex order if
and only if9

E
[
(µ− t)+

]
≥ E

[
(ν − t)+

]
∀t ∈ R. (1)

The convex order is equivalent to majorization, Lorenz order, and second-order
stochastic dominance. The condition (1) is equivalent to the pointwise comparison
of the indefinite integral of distribution functions.10

The convex order over multi-dimensional random vectors is more stringent and
lacks a simple characterization. The set of multivariable convex functions is too
intricate for a practical characterization. There is a growing statistical literature
examining a weaker order over random vectors for comparing their dispersion:

Definition 2. The random vector µ dominates ν in the linear convex order,
i.e.,

µ
lcx
≻ ν,

if for all b ∈ Rn,
b′µ

cx
≻ b′ν.

In contrast to the convex order, the linear convex order compares all linear
combinations of two random vectors, thereby simplifying the problem to a uni-

9(µ − t)+ = max(µ − t, 0)
10That is, compare

∫ x

−∞ Fµ(t)dt and
∫ x

−∞ Fν(t)dt for each x where Fµ(·) and Fν(·) are c.d.fs
of µ and ν, respectively.
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variate comparison and enabling a more straightforward characterization. The
convex order implies the linear convex order, but not vice versa in general.

3 Ranking Experiments

3.1 Posterior-Mean Order

We first compare experiments by the dispersion of their posterior means:

Definition 3. The experiment F dominates the experiment G in Posterior-
Mean (PM) order, i.e.,

F
P M
≻ G,

if
mF (q)

cx
≻ mG(q) ∀q.

Note that the posterior means mF (q) and mG(q) are random variables that can
be expressed as linear combinations of the likelihood-ratio vector (or, equivalently,
the posterior-belief vector). Consider a vector b = (b1, . . . , bn) satisfying the single-
crossing property, i.e., for each pair of i < j, if bi > 0, then bj ≥ 0. Construct two
random variables b′lF and b′lG with c.d.fs Fb and Gb respectively.

Lemma 1. F
P M
≻ G if and only if for each b ∈ Rn satisfying the single crossing

property, ∫ k

−∞
Fb(t)dt ≥

∫ k

−∞
Gb(t)dt ∀k > 0.

Hence, a sufficient condition for F to dominate G in PM order is that, for each
b ∈ Rn satisfying the single crossing property, the random variable b′lF dominates
b′lG in the convex order.

Furthermore, Lemma 1 implies that PM order is preserved over all real values
assigned to the state space satisfying

θ0 ≤ . . . ≤ θn,

i.e., only the ordinal ranking of the state space is relevant since it determines the
single-crossing property. Specifically, for each increasing function ψ, let mF (q, ψ)
and mG(q, ψ) denote the the conditional expectation of ψ(θ) given the signal
realizations under the marginal distributions Fq and Gq, respectively.

Proposition 1. F
P M
≻ G if and only if mF (q, ψ)

cx
≻ mG(q, ψ) for each prior q and

each increasing function ψ.
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Lemma 2 demonstrates the cases regarding combinations of experiments.

Lemma 2. Consider experiments F1, F2, G1, and G2 such that

F1
PM
≻ G1 and F2

PM
≻ G2.

1. The product experiment satisfies

F1 ⊗ F2
PM
≻ G1 ⊗G2,

which corresponds to the case in which the DM receives two conditionally
independent signals from each experiment, respectively.

2. The mixture experiment satisfies

tF1 + (1 − t)F2
PM
≻ tG1 + (1 − t)G2 ∀t ∈ [0, 1],

which corresponds to the case in which the DM receives a signal from the first
experiment with probability t and from the second experiment with probability
1 − t.

3.2 Linear-Blackwell Order

Definition 4. The experiment F dominates the experiment G in Linear-Blackwell
(LB) order , i.e.,

F
LB
≻ G,

if
lF lcx

≻ lG.

A prior q is interior if

qi ∈ (0, 1),∀i ∈ {1, . . . , n},

n∑
i=1

qi < 1.

We can also characterize LB order using the random vectors of posterior beliefs.

Lemma 3. The following statements are equivalent:

1. F
LB
≻ G;

2. pF (q)
lcx
≻ pG(q), ∀q;
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3. There exists an interior q such that pF (q)
lcx
≻ pG(q).

Lemma 1 implies that if F
LB
≻ G, then F

P M
≻ G holds for each ordinal ranking

imposed on the state space. Conversely, the reverse implication is also true.

Proposition 2. F
LB
≻ G if and only if F

P M
≻ G for each permutation Θ̂ of the

state space Θ.

Analogous to Lemma 2,

Lemma 4. Consider experiments F1, F2, G1, and G2 such that

F1
LB
≻ G1 and F2

LB
≻ G2.

1. The product experiment satisfies

F1 ⊗ F2
LB
≻ G1 ⊗G2.

2. The mixture experiment satisfies

tF1 + (1 − t)F2
LB
≻ tG1 + (1 − t)G2 ∀t ∈ [0, 1].

Lipnowski et al. (2020) and Wu (2023) quantify informativeness through the
convex hull of the set of posterior beliefs. Let PF,q be the set of possible posterior
beliefs generated by F given prior q, and conv(PF,q) be its convex hull. Based on
Wu (2023),

Lemma 5. F
LB
≻ G =⇒ PG,q ⊂ conv(PF,q), ∀q.

Koshevoy and Moseler in a series of papers (Koshevoy (1995), Koshevoy and
Mosler (1996), and Koshevoy (1997)) generalize Lorenz Curve to multi-dimensional
settings and construct Lorenz Zonotope to illustrate the linear convex order. We
follow their approach and provide a geometric illustration of LB order. Consider
the set of functions

H = {h|h : [0, 1] → [0, 1]}.

Under experiment F , each h ∈ H maps to a point in Rn+1:

zF (h) =
(∫ 1

0
h(x)dF (x|θ0), . . . ,

∫ 1

0
h(x)dF (x|θn)

)
.

The Lorenz Zonotope of experiment F is the set

Z(F ) = {zF (h)|h ∈ H}.
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Consider the DM faces a decision problem with a binary action set A = {a0, a1}.
The Lorenz Zonotope Z(F ) is the feasible set of F . It specifies the set of action
distributions conditional on each state, that can be obtained by some choice of
strategy. Specifically, each h ∈ H corresponds to a strategy

σh : [0, 1] → ∆(A),

in which h(x) is the probability of choosing a0 upon observing x. Using Theorem
3.1 in Koshevoy (1997), we demonstrate that increased information under LB order
expands the feasible set.

Proposition 3. F
LB
≻ G ⇐⇒ Z(G) ⊂ Z(F ).

3.3 Relation to Blackwell Order and Lehmann Order

Blackwell et al. (1951) compares experiments in terms of their informativeness by
examining the dispersion of the likelihood-ratio vectors and the posterior-belief
vectors.

Definition 5. The experiment F dominates the experiment G in Blackwell or-
der, i.e.,

F
B
≻ G,

if the following conditions hold:

1. lF cx
≻ lG,

2. pF (q)
cx
≻ pG(q) ∀q;

3. There exists an interior q such that pF (q)
cx
≻ pG(q).

These three conditions are equivalent.

Since the convex order implies the linear convex order, it follows that

F
B
≻ G =⇒ F

LB
≻ G =⇒ F

P M
≻ G

In the binary-state case,

F
B
≻ G ⇐⇒ F

LB
≻ G ⇐⇒ F

P M
≻ G.

Furthermore, two experiments F and G are Blackwell-equivalent, i.e.,

F
B∼ G,
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if they mutually dominate each other in Blackwell order. Similarly, two experi-
ments F and G are LB-equivalent, i.e.,

F
LB∼ G,

if they mutually dominate each other in LB order. Using Theorem 4.1 in Koshevoy
and Mosler (1996),

Lemma 6. F B∼ G ⇐⇒ F
LB∼ G.

Consider a weighted dichotomy

W = {W0,W1, P0(·), P1(·), ω0, ω1}

constructed on the state space Θ. The sets W0 and W1 form a partition of Θ
satisfying

W0 ∪W1 = Θ,

W0 ∩W1 = ∅.

The weighting functions P0 and P1 assign non-negative weights to each state in
W0 and W1, respectively, such that

∑
θ∈W0

P0(θ) = 1,

∑
θ∈W1

P1(θ) = 1.

The partition and the weighting functions generate a dichotomy, or equivalently, a
binary-state space {ω0, ω1} in which an experiment F on Θ maps to an experiment
FW on {ω0, ω1} defined by

FW(x|ω0) =
∑

θ∈W0

P0(θ)F (x|θ),

FW(x|ω1) =
∑

θ∈W1

P1(θ)F (x|θ).

Proposition 4. F
LB
≻ G if and only if FW B

≻ GW for each weighted dichotomy
W.

A weighted dichotomy

W = {W0,W1, P0(·), P1(·), ω0, ω1}

12



is monotone if the partitions {W0,W1} are monotone on Θ.

Proposition 5. F
P M
≻ G if and only if FW B

≻ GW for each monotone weighted
dichotomy W.

Proposition 4 and Proposition 5 offer another tractable way to compare ex-
periments in LB order and PM order by leveraging the simple characterization of
Blackwell order in the binary-state case (see Appendix A for details). Further-
more, we can use Proposition 4 and Proposition 5 to address the complexity in the
multi-dimensional setting and to generalize known results in the binary case re-
garding Blackwell order to the multi-state case regarding LB order and PM order.
In Appendix B, we extend the results in Börgers et al. (2013) on complementarity
and substitutability of experiments.

In Appendix C, we consider the discrete-signal case and show that Blackwell
order is equivalent to LB order when the probability matrix is full rank, i.e., there
is no redundant signal.

Lehmann (1988) compares experiments satisfying the Monotonic Likelihood
Ratio Property (MLRP). Specifically, an experiment F satisfying MLRP if for
each θ < θ′, the likelihood ratio f(x|θ′)

f(x|θ) is increasing in x. Lehmann’s order is based
on how strongly the signal is correlated with the state.

Definition 6. The experiment F dominates the experiment G in Lehmann or-
der , i.e.,

F
L
≻ G,

if
F−1 (G(y|θ)|θ) ≤ F−1 (G(y|θ′)|θ′) ∀θ < θ′ and y ∈ [0, 1].

Proposition 6. If the experiments F and G satisfy MLRP,

F
P M
≻ G ⇐⇒ F

L
≻ G.

Therefore, PM order generalizes Lehmann order without relying on MLRP.
Although mathematically convenient, the MLRP assumption imposes a stringent
requirement on the correlation between the signal and the state. For example,
consider a local experiment in which the signal x = θ+ ϵ. The MLRP assumption
requires the noise ϵ to be one-dimensional and unimodal, which is violated in many
situations (e.g., Rauh and Seccia (2005) and Cheynel and Levine (2020)). Fur-
thermore, Mensch (2021) demonstrates that the MLRP assumption lacks a solid
micro-foundation by showing that a DM acquires information satisfying MLRP

13



only if she has attention costs proportional to entropy reduction. Jewitt (2007),
Di Tillio et al. (2021), and Kim (2023) relax the MLRP assumption and general-
ize Lehmann order. In Appendix D, we examine how PM order relates to these
alternative rankings and establish additional conditions for PM order.

Figure 1 illustrates the relations among Lehmann order, PM order, LB order,
and Blackwell order.

Lehmann
order

PM order LB order
Blackwell

order
no MLRP all ordinal

rankings
lcx to cx

Figure 1: Relations among Lehmann order, PM order, LB order, and Blackwell order.
PM order extends Lehmann order by relaxing the MLRP assumption. LB order is
equivalent to PM order with respect to all ordinal rankings of the state space. Blackwell
order is more stringent than LB order since it is based on the convex order instead of
the linear convex order. LB order is equivalent to Blackwell order on each weighted
dichotomy.

4 Decision Problem

4.1 Basic Setting

A decision problem {A, u} consists of (i) a set of actions A with a denoting a
generic action, and (ii) a payoff function

u : A× Θ → R

such that the DM receives payoff u(a, θ) when choosing a in state θ.
Given a belief p over the state space Θ, denote the expected payoff of choosing

a as
u(a,p) = Ep[u(a, θ)].

Denote the set of optimal actions under p as

A(p) = argmaxa∈Au(a,p).

Denote the value function, i.e., the maximal payoff the DM can receive under p

as
V (p) = max

a∈A
u(a,p).
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An experiment F and a prior q induce a distribution over posterior beliefs.
Given this distribution, denote the ex ante expected payoff as

V F (q) = E[V (pF (q))].

Under experiment F , the DM’s strategy is characterized by a mapping

σF : [0, 1] → ∆(A).

Let σF (x, a) denote the probability (or density) that the DM chooses action a

when receiving signal x. Denote the expected payoff generated by strategy σF in
state θ as

u(σF , θ) =
∫ 1

0

∫
A
σF (x, a)u(a, θ)f(x|θ)dadx.

Given an ordinal ranking of A, i.e., A ⊂ R, a decision problem satisfies the
single-crossing property if for each pair of a < a′ and each pair of θ < θ′,

u(a′, θ) > u(a, θ) =⇒ u(a′, θ′) ≥ u(a, θ′).

4.2 Binary-Action Case

We show that F dominates G in LB order if and only if for each decision problem
with |A| = 2, i.e., for each binary-action decision problem, the DM receives a
higher ex ante expected payoff under F than under G.

Theorem 1. F
LB
≻ G if and only if for each decision problem {A, u} with |A| = 2,

V F (q) ≥ V G(q) ∀q.

PM order applies to binary-action decision problems satisfying the single-
crossing property.

Theorem 2. F
P M
≻ G if and only if for each decision problem {A, u} with |A| = 2

satisfying the single-crossing property,

V F (q) ≥ V G(q) ∀q.

In a binary decision problem, the ex ante expected payoff V F (q) is given by
the sum of ∫ 1

0

[
n∑

i=0
∆ui · qi · f(x|θi)

]
+
dx (2)

15



and a constant K, in which ∆ui is the payoff difference between two actions in
state θi. We rewrite (2) in the same form as (1) and compare linear combinations
of random vectors of likelihood ratios generated by F and G, thereby allowing us
to prove Theorem 1 and Theorem 2.

Furthermore, we strengthen Theorem 1 by Proposition 3 that increased in-
formation under LB order expands the feasible set in each binary-action decision
problem.

Theorem 3. F
LB
≻ G if and only if, in each decision problem {A, u} with |A| = 2,

for each strategy σG under G, there exists a strategy σF under F such that

u(σF , θ) ≥ u(σG, θ) ∀θ.

Theorem 3 demonstrates that the DM with the maxmin expected utility (MEU)
preferences (Gilboa and Schmeidler (1989)) prefers F to G in each binary-action
decision problem, i.e.,

max
σF

min
θ
u(σF , θ) ≥ max

σG
min

θ
u(σG, θ).

This result can be further extended to a broader family of ambiguity preferences
characterized by Cerreia-Vioglio et al. (2011) using the proof in Li and Zhou
(2020).

4.3 Binary-Decomposablility

We extend the results in Section 4.2 to decision problems that aggregate payoffs
over a collection of binary-action decision problems.

Definition 7. A decision problem {A, u} is binary-decomposable (BD) if for
its value function V (·), there exists a collection of binary-action decision problems
{{At, ut}}t∈[0,1] with value functions {Vt(·)}t∈[0,1] such that

V (p) =
∫ 1

0
Vt(p)dt ∀p.

Definition 8. A decision problem {A, u} is monotonic-binary-decomposable
(MBD) if for its value function V (·), there exists a collection of binary-action
decision problems {{At, ut}}t∈[0,1] satisfying the single-crossing property with value
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functions {Vt(·)}t∈[0,1] such that

V (p) =
∫ 1

0
Vt(p)dt ∀p.

Corollary 1. F
LB
≻ G if and only if for each BD decision problem,

V F (q) ≥ V G(q) ∀q.

Corollary 2. F
P M
≻ G if and only if for each MBD decision problem,

V F (q) ≥ V G(q) ∀q.

Corollary 3. F
LB
≻ G if and only if in each BD decision problem {A, u} with

|A| < ∞, for each strategy σG under G, there exists a strategy σF under F such
that11

u(σF , θ) ≥ u(σG, θ) ∀θ.

de Oliveira et al. (2023) demonstrates that if the state space is binary, i.e.,
|Θ| = 2, all decision problems are BD. However, not all decision problems are
BD if |Θ| > 2. Figure 2 provides examples of both a BD decision problem and a
non-BD decision problem.

The left panel of Figure 2 shows a BD decision problem {A, u} with A =
{a0, a1, a2}. Note that the indifference line between a0 and a1 does not intersect the
one between a1 and a2. For each belief, if a0 is preferred to a1, it is also preferred
to a2. Conversely, if a2 is preferred to a1, it is also preferred to a0. Consider
two binary-action decision problems {u1, A1} and {u2, A2} with A1 = {a0, a1} and
A2 = {a1, a2} such that

u1(a, θ) = u(a, θ) ∀a ∈ A1, θ ∈ Θ,

u2(a1, θ) = 0, u2(a2, θ) = u(a2, θ) − u(a1, θ) ∀θ ∈ Θ.

For each belief, the value function of the original problem equals the sum of the
value functions of these two binary-action decision problems.

The right panel of Figure 2 shows a non-BD decision problem since the indif-
ference line between a0 and a1 intersects at P ∗ with the indifference line between

11Such σF may not exist because we are considering a decision problem that, in terms of value
functions, is payoff-equivalent to a collection of binary-action decision problems rather than one
that explicitly comprises a collection of binary-action decision problems. By Theorem 2 in Cheng
and Borgers (2023), the existence of such σF is guaranteed when the action space is finite.
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a1 and a2. In this case, if a0 is preferred to a1, it does not necessarily follow that
a0 is preferred to a2.

p2

p1

0

1

1
p2

p1

0

1

1

P ∗

Figure 2: BD and non-BD decision Problems. Let Θ = {θ0, θ1, θ2}. Consider a decision
problem with A = {a0, a1, a2}. It is characterized by a partition of the belief simplex
{(p1, p2)|p1 + p2 ≤ 1, p1 ≥ 0, p2 ≥ 0} into three regions corresponding to different
preferred actions. The dark grey area is the set of beliefs under which a0 is preferred
by the DM. The light grey area is the set of beliefs under which a1 is preferred. The
white area is the set of beliefs under which a2 is preferred. The left panel illustrates a
BD decision problem, while the right panel illustrates a non-BD decision problem.

We generalize the example above and establish a sufficient condition for a
decision problem {A, u} to be BD: there exists an ordinal ranking of the action
space, i.e., A ⊂ R, such that for each belief, every local optimum is also a global
optimum. That is, when A is discrete, an action is optimal under a belief if it is
preferred to its adjacent actions; when A is an interval of R, an action is optimal
under a belief if it satisfies the first-order condition. This condition is equivalent
to requiring that the decision problem be quasi-concave.

Definition 9. A decision problem {A, u} with A ⊂ R is quasi-concave (QCC)
if for each belief p, the expected payoff u(a,p) is quasi-concave in a.

Kolotilin et al. (Forthcoming) considers a similar condition named aggregate
single-crossing, and applies it to analyze the Bayesian persuasion problems.

Proposition 7. A QCC decision problem is BD.

Furthermore, for each QCC decision problem, we can find an ordinal order of
the state space and establish the single-crossing property.

Lemma 7. If a decision problem is QCC, there exists a permutation Θ̂ of Θ under
which the decision problem is MBD.
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Finally, consider a continuous decision problem {A, u} in which (i) A is an
interval of R, and (ii) u(a, θ) is continuous and differentiable in a for each θ.

Lemma 8. A continuous decision problem {A, u} is QCC if the set of optimal
actions A(p) is an interval or a singleton for each belief p.

In the left panel of Figure 2, the optimal action changes incrementally as the
belief moves continuously from one point to another, while in the right panel,
the optimal action may jump directly from a1 to a3. Lemma 8 generalizes this
observation by using Berge’s maximum theorem to ensure the continuity of A(p).

Persico (2000) studies the continuous decision problems and derives the marginal
value of information using the envelope theorem. In Appendix E, we generalize
the approach in Persico (2000) and strengthen the results in Di Tillio et al. (2021)
concerning the informativeness of order statistics.

When MLRP holds, PM order applies to all decision problems satisfying the
single-crossing property since it is equivalent to Lehmann order by Proposition 6.
Without MLRP, PM order further requires decision problems to be MBD. This is
because, when MLRP holds, the posterior belief evolves along a single trajectory as
the one-dimensional signal increases. We can eliminate actions that are dominated
under each belief on the trajectory and construct a QCC decision problem that
is payoff-equivalent to the original one (See Jewitt (2007), Quah and Strulovici
(2009), and Di Tillio et al. (2021)). However, without MLRP, this approach fails
since the beliefs are not restricted to a single trajectory.

5 Moral Hazard Problem

5.1 Discrete Action Space

Consider a moral hazard problem (i.e., a hidden-action agency model) between
a principal and an agent, in the state-space formulation introduced by Wilson
(1967), Spence and Zeckhauser (1971), and Ross (1973). The agent privately
chooses an action (state) θ ∈ Θ with Θ = {θ0, . . . , θn}, incurring a cost c(θ).
Conditional on the chosen action, a public signal x ∈ [0, 1] is drawn according
to a statistical experiment F . The principal’s problem is to construct a contract
(reward scheme) s(x) that maps signals to payments for the agent. We follow
Grossman and Hart (1983) and assume that the agent is risk-averse and his utility
is additively separable in payment and cost. Specifically, when the agent chooses
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action θ and the realized signal is x, his total utility is

u(s(x)) − c(θ),

in which u is a continuous concave function.
We assume that the principal can only offer bounded contracts, i.e., there exists

u, ū ∈ R such that for each contract s(x) offered,12

u ≤ u(s(x)) ≤ ū ∀x ∈ [0, 1].

The principal cannot offer contracts with unbounded punishments or rewards.
A contract s(·) implements an action θ ∈ Θ under F if it satisfies the incentive

compatibility (IC) constraints,

E[u(s(x))|θ;F ] − c(θ) ≥ E[u(s(x))|θ′;F ] − c(θ′) ∀θ′ ∈ Θ,

and the individual rationality (IR) constraint,

E[u(s(x))|θ;F ] − c(θ) ≥ 0.

Let SF (θ) denote the set of contracts implementing θ under F . An action θ is
implementable under F if SF (θ) is not empty.

Consider the cost-minimization problem of a risk-neutral principal who seeks to
implement θ. Let W F (θ) denote the infimum of the expected payments generated
by the contracts implementing θ under F ,

W F (θ) = inf
s(·)∈SF (θ)

E[s(x)|θ;F ].

If SF (θ) is empty, i.e., the principal’s minimization problem is not feasible, let

W F (θ) = ∞.

We apply LB order to compare statistical experiments in the moral hazard
problem described above.

Theorem 4. If the statistical experiment F dominates another statistical experi-
ment G in LB order, then W F (θ) ≤ WG(θ) for each θ, each utility function u(·),
and each cost function c(·).

12In the discrete-signal case, it suffices to assume that u(s(x)) ≥ u for each x ∈ [0, 1].
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Theorem 4 is based on Proposition 13 in Jewitt (2007). We complete the
proof by showing that if the principal’s minimization problem is feasible under
G, then it is feasible under F , thereby validating the strong duality using Slater’s
condition.13

We now provide a sketch of the proof. Instead of choosing a contract s(x)
mapping from the realized signal to the payment for the agent, let the principal
choose a contract v(x) mapping from the realized signal into the agent’s utility, in
which

v(x) = u(s(x)).

Rewrite the cost-minimizing problem of the principal as

inf
v(·)

E[u−1(v(x))|θ;F ],

with the IC constraints,

E[v(x)|θ;F ] − c(θ) ≥ E[v(x)|θ′;F ] − c(θ′) ∀θ′ ∈ Θ,

and the IR constraint,
E[v(x)|θ;F ] − c(θ) ≥ 0.

Lemma 9. Let F
LB
≻ G. For each utility function u(·), cost function c(·), and

action θ, if θ is implementable under G, then it is implementable under F .

Proof. Consider a contract v(·) implementing θ under G. Let

v = inf
y∈[0,1]

v(y),

v̄ = sup
y∈[0,1]

v(y).

By Proposition 3, there exists a contract v′(·) under F whose range is a subset of
[v, v̄] such that

E[v′(x)|θ;F ] = E[v(y)|θ;G] ∀θ.

Therefore, the contract v′(·) under F satisfies the IC and IR constraints and
implements θ.

Let LF (v,λ, γ; θ) be the Lagrangian of the principal’s minimization problem for
implementing θ under F , in which λ = {λ0, . . . , λn} are the Lagrange multipliers

13See the discussion in Chi and Choi (2023).
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for the IC constraints such that λi corresponds to the IC constraint between θ and
θi, and γ is the Lagrange multiplier for the IR constraint. It follows that

W F (θ) = inf
v(·)

sup
λi,γ≥0

LF (v,λ, γ; θ).

When θ is implementable under F , i.e., the principal’s problem is feasible, Slater’s
condition is satisfied since (i) u−1(·) is convex, and (ii) the IC and IR constraints
are linear in v(·). Hence, strong duality holds with

inf
v(·)

sup
λi,γ≥0

LF (v,λ, γ; θ) = sup
λi,γ≥0

inf
v(·)

LF (v,λ, γ; θ). (3)

It follows that

inf
v(·)

LF (v,λ, γ; θ) = γc(θ)+
∑

i

λi[c(θ)−c(θi)]−
∫ 1

0
π

(∑
i

λi

(
1 − f(x|θi)

f(x|θ)

)
+ γ

)
f(x|θ)dx,

where π(·) is a convex function defined by

π(t) = sup
v∈[u,ū]

[tv − u−1(v)].

The condition that F
LB
≻ G implies that the random vector of likelihood ratios

under F is more dispersed in the sense of the linear convex order. Therefore, for
each pair of λ and γ,

∫ 1

0
π

(∑
i

λi

(
1 − f(x|θi)

f(x|θ)

)
+ γ

)
f(x|θ)dx ≥

∫ 1

0
π

(∑
i

λi

(
1 − g(y|θi)

g(y|θ)

)
+ γ

)
g(y|θ)dx.

Hence,
sup

λi,γ≥0
inf
v(·)

LF (v,λ, γ; θ) ≤ sup
λi,γ≥0

inf
v(·)

LG(v,λ, γ; θ).

Consider the case in which θ is implementable under G. By Lemma 9, it must
also be implementable under F . Thus, by (3),

W F (θ) = inf
v(·)

sup
λi,γ≥0

LF (v,λ, γ; θ) ≤ inf
v(·)

sup
λi,γ≥0

LG(v,λ, γ; θ) = WG(θ),

which completes the proof.

5.2 General Case

Hart and Holmstrom (1986) proposes a more general framework than the state-
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space formulation in Section 5.1, in which the agent directly chooses the signal
distribution from a set of feasible distributions P.14 Because the agent can ran-
domize, the set P is convex, and so is his cost function.

Specifically, we consider a modification of the basic model in Section 5.1: The
agent privately chooses an action

δ = (δ0, . . . , δn) ∈ ∆[0, 1]n+1.

He incurs a cost c(δ) that is convex in δ. Given the agent’s action, a public signal
x ∈ [0, 1] is drawn according to a statistical experiment F with

F (x|δ) =
n∑

i=0
δiF (x|θi).

The agent is risk-averse and his utility is additively separable in payment and cost.
The model above can also be interpreted as a situation in which the agent has

multiple tasks and needs to decide how to allocate time among them, which is
related to Holmstrom and Milgrom (1991).

Analogously to Section 5.1, we consider the cost-minimization problem of a
risk-neutral principal who seeks to implement δ. Let W F (δ) denote the infimum
of the expected payments generated by the contracts implementing δ under F . If
δ is not implementable, let

W F (δ) = ∞.

We generalize Theorem 4 and show that LB order dominance is a necessary
and sufficient condition for comparing statistical experiments in this case.

Theorem 5. F
LB
≻ G if and only if W F (δ) ≤ WG(δ) for each action δ, utility

function u(·), and cost function c(·).

Furthermore, consider a situation in which the principal observes a signal x
from F , and can additionally receive a signal y from G, which is potentially corre-
lated with x. When is the additional statistical experiment G valuable? Let F×G

be the experiment combining F and G, which characterizes the joint distribution
of the pair of signal (x, y). By Theorem 5, the additional statistical experiment G
provides no value to the principal if and only if F ×G

LB∼ F . By Lemma 6,

Corollary 4. Given the existing statistical experiment F , an additional statistical
experiment G provides no value to the principal if and only if F ×G

B∼ F .
14See also Georgiadis and Szentes (2020), Georgiadis (2022), and Georgiadis et al. (2024).
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Corollary 4 strengthens the informativeness principle in Holmström (1979),
which applies to the binary action case and to cases in which the first-order ap-
proach is valid. It also completes the results in Gjesdal (1982) and Grossman and
Hart (1983) obtained using Blackwell order.

6 Concluding Remarks

This paper contributes to the literature on comparisons of statistical experiments
pioneered by Blackwell et al. (1951). While we consider the situation in which the
DM observes a single signal, Moscarini and Smith (2002) and Mu et al. (2021)
examine the situation in which the DM observes a large number of signals through
repeated sampling. Mu et al. (2021) considers the binary-state case and show that
an experiment is more informative than another in large samples if and only if it
has higher Rényi divergence. The multi-state case remains unresolved due to the
complexity of convex order in multidimensions, suggesting a natural extension
to analyze LB and PM orders in large samples and their connection to Rényi
divergence.

Appendices
The appendices proceed as follows:

1. Appendix A presents a characterization of Blackwell order in the binary-
state case.

2. Appendix B discusses complementarity and substitutability concerning two
experiments.

3. Appendix C demonstrates a sufficient condition under which LB order is
equivalent to Blackwell order when the signal space is discrete.

4. Appendix D provides relations between PM order and several variations of
Lehmann order.

5. Appendix E discusses the marginal value of information and its application
to informativeness of order statistics.

6. Appendix F presents omitted proofs.
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Appendix A Blakcwell order in the Binary-State
Case

Let Θ = {θ0, θ1}. Consider two experiments F and G. Without loss of general-
ity, assume that F and G satisfy MLRP by ordering signals based on the likelihood
ratio.

For each t ∈ [0, 1], select x(t) such that

x(t) = inf
x∈[0,1]

{x|F (x|θ0) = t}.

Define the Lorenz curve LF : [0, 1] → [0, 1] by

LF (t) = F (x(t)|θ1).

Note that LF is convex due to MLRP. Let LG denote the Lorenz curve of G.
Based on Lehmann order—and noting that in the binary-state case, Lehmann

order is equivalent to Blackwell order,15

Lemma 10. F
B
≻ G ⇐⇒ LF (t) ≤ LG(t),∀t ∈ [0, 1].

Appendix B Complementarity and Substitutabil-
ity of Experiments

B.1 Basic Setting

Börgers et al. (2013) introduces novel notions of complementarity and sub-
stitutability of two experiments in the spirit of Blackwell order. Consider two
experiments F and G with generic signals, x and y respectively. Let F ×G be the
experiment combining F and G, which characterizes the joint distribution of the
pair of signals (x, y). Based on the definition of the value function in Section 4.1,
Definition 10. An experiment F complements another experiment G if for each
decision problem,

V F (q) − V ∅(q) ≤ V F ×G(q) − V G(q), ∀q.

Definition 11. An experiment F substitutes another experiment G if for each
15See Jewitt (2007).
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decision problem,

V F (q) − V ∅(q) ≥ V F ×G(q) − V G(q), ∀q.

Note that V ∅(q) is the value function in the case where the principal has no
information and chooses the action solely based on her prior belief.

Börgers et al. (2013) provides necessary and sufficient conditions for comple-
mentarity and substitutability of two experiments in the binary-binary case, where
both the state space and the signal space are binary. We provide necessary and
sufficient conditions in the case where the state space is binary, and extend the
results to the case with more than two states in the spirit of LB order and PM
order.

B.2 Binary-State Case

Consider Lorenz curves LF and LG of experiments F and G, respectively. Let
ψF and ψG be the right derivatives of LF and LG such that

LF (t) =
∫ t

0
ψF (k)dk,

LG(t) =
∫ t

0
ψG(k)dk.

Since both LF and LG are increasing and convex, both ψF and ψG are non-negative
and increasing. Define ψF ⊕G by

ψ−1
F ⊕G(k) = 1

2ψ
−1
F (k) + 1

2ψ
−1
G (k),∀k ∈ [0, 1].

where
ψ−1(k) = inf{t|ψ(t) = k}.

Define LF (t) ⊕ LG(t) by

LF (t) ⊕ LG(t) =
∫ t

0
ψF ⊕G(k)dk,∀t.

Let L∅(t) = t for each t ∈ [0, 1]. Based on Lemma 10,
Proposition 8. An experiment F complements another experiment G if and only
if

LF (t) ⊕ LG(t) ≤ LF ×G(t) ⊕ L∅(t),∀t ∈ [0, 1].
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Proposition 9. An experiment F substitutes another experiment G if and only if

LF (t) ⊕ LG(t) ≥ LF ×G(t) ⊕ L∅(t),∀t ∈ [0, 1].

B.3 General Case

We provide a tractable framework to characterize the complementarity and
substitutability of two experiments in the spirit of LB order and PM order.
Definition 12. An experiment F LB-complements another experiment G if for
each BD decision problem,

V F (q) − V ∅(q) ≤ V F ×G(q) − V G(q), ∀q.

Conversely, an experiment F LB-substitutes another experiment G if for each
BD decision problem,

V F (q) − V ∅(q) ≥ V F ×G(q) − V G(q), ∀q.

Definition 13. An experiment F PM-complements another experiment G if
for each MBD decision problem,

V F (q) − V ∅(q) ≤ V F ×G(q) − V G(q), ∀q.

Conversely, an experiment F PM-substitutes another experiment G if for each
MBD decision problem,

V F (q) − V ∅(q) ≥ V F ×G(q) − V G(q), ∀q.

Let Z(∅) denote set {(t, . . . , t)|t ∈ [0, 1]} ⊂ Rn+1. Based on Proposition 3,

Proposition 10. An experiment F LB-complements another experiment G if and
only if

Z(F ) + Z(G) ⊂ Z(F ×G) + Z(∅),

where the operator “+" is the Minkowski sum.

Proposition 11. An experiment F LB-substitutes another experiment G if and
only if

Z(F ×G) + Z(∅) ⊂ Z(F ) + Z(G).

Furthermore, based on Proposition 4 and Proposition 5,
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Proposition 12. An experiment F LB-complements another experiment G if and
only if for each weighted dichotomy W, the experiment FW complements the ex-
periment GW . Conversely, an experiment F LB-substitutes another experiment G
if and only if for each weighted dichotomy W, the experiment FW substitutes the
experiment GW .

Proposition 13. An experiment F PM-complements another experiment G if and
only if for each monotone weighted dichotomy W, the experiment FW complements
the experiment GW . Conversely, an experiment F PM-substitutes another experi-
ment G if and only if for each monotone weighted dichotomy W, the experiment
FW substitutes the experiment GW .

Appendix C Equivalence between Blackwell Or-
der and LB Order

Consider an experiment F with a discrete signal space

X = {x0, . . . , xm}.

The experiment F is characterized by the probability matrix MF = (mF
ij) such

that
mF

ij = Pr(xj|θi;F ).

Without loss of generality, assume that every pair of columns of MF is linearly
independent.

Using Theorem 2 in Wu (2023) and Lemma 5,
Proposition 14. Consider experiments F and G with discrete signal spaces. If
rank(MF ) = min{n+ 1,m}, then F

B
≻ G ⇐⇒ F

LB
≻ G.

Appendix D Variations of Lehmann Order

Jewitt (2007) proposes a ranking, called L-order, based on comparing distri-
butions of likelihood ratios across each dichotomy. Define F

L
≻ G if F dominates

G in L-order.
Proposition 15. (i) F

L
≻ G =⇒ F

P M
≻ G. (ii) If F satisfies MLRP, then

F
L
≻ G ⇐⇒ F

P M
≻ G.

Kim (2023) proposes a ranking, called Monotone-Quasi-Gambling order, based
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on adding reversely monotone noise. Define F
MQG
≻ G if F dominates G in

Monotone-Quasi-Gambling order.

Proposition 16. (i) If F satisfies MLRP, then F
P M
≻ G =⇒ F

MQG
≻ G. (ii) If

G satisfies MLRP, then F
MQG
≻ G =⇒ F

P M
≻ G.

Di Tillio et al. (2021) proposes a ranking, called accuracy order, by extending
Lehmann order to experiments that generate multi-dimensional signals satisfying
the generalized MLRP. Define F

A
≻ G if F dominates G in accuracy order.

Proposition 17. If both F and G satisfy generalized MLRP, then F
A
≻ G =⇒

F
P M
≻ G.

Appendix E Marginal Value of Information

E.1 Basic Setting

Consider a DM who faces a decision problem {A, u} and holds a uniform prior16

q over Θ. The DM observes a signal xη ∈ Xη from an experiment F η chosen from
a family of experiments {F η}η∈[0,1]. For brevity, denote the ex ante expected payoff
V F η(q), as defined in Section 4.1, by V (η). Assume that V (η) is differentiable in
η.

The marginal value of information is defined as

MR(η) := ∂

∂η
V (η).

This section analyzes the marginal value of information in MBD decision problems.
Without loss of generality, consider a binary-choice decision problem with

A = {a0, a1},

that satisfies the single-crossing property. Normalize the payoff such that

u(a1, θi) = 0 ∀ i,

and, for notational simplicity, denote

u(θ) = u(a0, θ).
16This is without loss of generality in this section since varying the prior is equivalent to

varying the payoff intensity of the decision problem.
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There exists a cut-off θ̂ such that

u(θ) ≥ 0, if θ ≤ θ̂,

u(θ) ≤ 0, if θ > θ̂.

Definition 14. The family of experiments {F η}η∈[0,1] is welfare-increasing at
η̂ ∈ [0, 1] if for each MBD decision problems,

MR(η̂) ≥ 0.

Note that if the family of experiments {F η}η∈[0,1] is welfare-increasing at all
η̂ ∈ [0, 1], then for any pair of η′ < η′′, the experiment F η′′ dominates F η′ in the
PM order. Moreover, if both experiments satisfy MLRP, this PM order dominance
is equivalent to dominance in the Lehmann order (See Proposition 6).

E.2 Single Dimension with MLRP

Consider the univariate case with

Xη = [0, 1] ∀η.

Assume that F η satisfies MLRP for each η.
Under the experiment F η, the DM’s optimal strategy is characterized by a

cut-off x̂η such that
n∑

i=0
u(θi)f η(x̂η|θi) = 0. (4)

The DM chooses a0 when x ≤ x̂η and chooses a1 otherwise. It follows that

V η =
n∑

i=0
u(θi)F η(x̂η|θi).

Using envelop theorem and (4),

MR(η) =
n∑

i=0

[
u(θi) · ∂F

η(x|θi)
∂η

∣∣∣∣∣
x=x̂η

]
.

Rewrite it as
MR(η) =

n∑
i=0

[u(θi)f η(x̂η|θi) ·K(x̂η, θi, η)] ,

where
K(x, θ, η) = 1

f η(x|θ)
∂F η(x|θ)

∂η
.
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Using Lemma 1 in Persico (2000),
Proposition 18. The family of experiments {F η}η∈[0,1] is welfare-increasing at
η̂ ∈ [0, 1] if and only if, for each x ∈ [0, 1], the function K(x, θ, η̂) is decreasing in
θ.

E.3 Multi Dimensions with Generalized MLRP

Consider the case in which

Xη = [0, 1]N ∀η,

with N > 1. Assume that F η satisfies generalized MLRP for every η, i.e., for each
pair of vectors x′ and x with x′ > x (componentwise), the likelihood ratio

f(x′|θ)
f(x|θ)

is increasing in θ.
For a binary-action decision problem under the experiment F η, we can partition

the set of signal X into three subsets Dη
1 , D

η
2 and ∆Dη such that

Dη
1 =

{
x|

n∑
i=0

u(θi)f η(x|θi) > 0
}
,

Dη
2 =

{
x|

n∑
i=0

u(θi)f η(x|θi) < 0
}
,

∆Dη =
{
x|

n∑
i=0

u(θi)f η(x|θi) = 0
}
.

The DM’s optimal strategy—i.e., the cutoff rules—is characterized by ∆Dη. Fur-
thermore, the subsets Dη

1 and Dη
2 display a monotonicity property,

x ∈ Dη
1 =⇒ x′ ∈ Dη

1 ∀x′ < x,

x ∈ Dη
2 =⇒ x′ ∈ Dη

2 ∀x′ > x.

Similar to the univariate case,

MR(η) =
n∑

i=0

u(θ) · ∂F
η(D|θi)
∂η

∣∣∣∣∣
D=Dη

1

 .
Because the optimal strategy is no longer characterized by a single cut-off, incor-
porating the first-order condition into the marginal revenue becomes more chal-
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lenging.
For a vector x = (x1, . . . , xn), let x1:k = (x1, . . . , xk) denote the subvector

consisting of the first k components. Denote the marginal density of x1:k by fk.
Proposition 19. The family of experiments {F η}η∈[0,1] is welfare-increasing at
η̂ ∈ [0, 1] if for each k ∈ {1, . . . , N} and each x ∈ [0, 1]N , the ratio

1
f η

k (x1:k|θ)
∂

∂η

[∫ xk

0
f η

k (x1:k−1, t)dt
]

is decreasing in θ.

E.4 General Case

We can interpret the posterior-belief vector p = {p0, p1, . . . , pn} as the signal.
The c.d.f and density remain denoted by F η and f η, respectively. Furthermore,

n∑
i=0

pi = 1,

f(p|θi)∑
i f(p|θi)

= pi,

∑
i

E(pj|θi) = 1 ∀j.

Partition the set of posterior beliefs into three subsets,

Dη
1 =

{
p|
∑

i

u(θi)pi > 0
}
,

Dη
2 =

{
p|
∑

i

u(θi)pi < 0
}
,

∆Dη =
{
p|
∑

i

u(θi)pi = 0
}
.

It follows that

MR(η) =
n∑

i=0

u(θ) · ∂F
η(D|θi)
∂η

∣∣∣∣∣
D=Dη

1

 .
However, we cannot obtain the same result as in Proposition 19 because the anal-
ogous monotonic property does not hold for Dη

1 and Dη
2 .

E.5 Sample Selection

We apply Proposition 18 and Proposition 19 to study sample selection. Con-
sider a signal x ∈ [0, 1] drawn from an experiment F satisfying MLRP. Draw the
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signal N times, with the draws being conditionally i.i.d. Let zi be the ith highest
value among the N draws, and consider a selected sample with size k with k < N ,

zk = {z1, . . . , zk}.

Denote the distribution of zk as FN,k. Does FN,k become more or less informative
as N increases?

Di Tillio et al. (2021) has studied this problem by extending Lehmann order
to the generalized MLRP case in a novel manner. They focus on effectiveness in
statistical decision theory; specifically, an experiment F is more effective than an
experiment G if, for each decision problem and each strategy under G, there exists
a strategy under F that yields a higher expected payoff for any prior.

This section focuses on informativeness in Bayesian decision theory,17. Specif-
ically, one experiment F is more informative than another experiment G if, for
each decision problem and each prior, the optimal strategy under F yields a higher
ex ante expected payoff than the optimal strategy under G. By focusing on the
MBD decision problems, we can always identify the optimal strategy using the
first-order condition, and leverage the envelope theorem to control for the effects
of varying optimal strategies.
Proposition 20. For each k, N , and N ′ such that k ≤ N < N ′, the experiment
FN ′,k dominates FN,k in PM order if −log[F (x|θ)] is log-supermodular.

Proposition 21. For each N and N ′ such that N < N ′, the experiment FN,1

dominates FN ′,1 in PM order if −log[F (x|θ)] is log-submodular.

Appendix F Omitted Proofs

F.1 Proofs of Results in Section 3 and Section 4

From Definition 4 and (1),
Lemma 11. F

LB
≻ G if and only if for each vector b = {b0, b1, . . . , bn} ∈ Rn+1,

∫ 1

0

[
n∑

i=0
bi · f(x|θi)

]
+
dx ≥

∫ 1

0

[
n∑

i=0
bi · g(y|θi)

]
+
dy.

Furthermore,
17Effectiveness in statistical decision theory is a stronger notion than Informativeness in Bay-

seison decision theory. Chi (2014) establishes the equivalence between these two terms for some
special cases.
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Lemma 12. F
LB
≻ G if and only if for each vector b = {b0, b1, . . . , bn} ∈ Rn+1

satisfying the single-crossing property,

∫ 1

0

[
n∑

i=0
bi · f(x|θi)

]
+
dx ≥

∫ 1

0

[
n∑

i=0
bi · g(y|θi)

]
+
dy.

Proof. From Definition 3 and (1), the experiment F
P M
≻ G if and only for each

t ∈ R and each prior belief q = {q0, . . . , qn} ∈ ∆[0, 1]n+1,

∫ 1

0

[
n∑

i=0
(θi − t) · qi · f(x|θi)

]
+
dx ≥

∫ 1

0

[
n∑

i=0
(θi − t) · qi · g(y|θi)

]
+
dy. (5)

Consider a vector b(q, t) with

bi(q, t) = (θi − t) · qi ∀i ∈ {0, . . . , n}.

Note that for each t and each prior belief q, the vector b(q, t) satisfies the single-
crossing property. Conversely, for each vector b satisfying the single-crossing prop-
erty, we can find t, a prior belief q, and K ∈ R+ such that

b = K · b(q, t)

Using Lemmas 11 and 12, we can prove the results in Sections 3 and 4 through
simple algebra.

F.2 Proof of Theorem 5

Let the agent choose the action

δ = (δ1, . . . , δn)

with
δi ∈ [0, 1] ∀i ∈ {1, . . . , n},

n∑
i=1

δi ≤ 1.

The agent incurs a cost c(δ) that is convex in δ. Given the agent’s action, a public
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signal x ∈ [0, 1] is drawn according to a statistical experiment F with

F (x|δ) =
n∑

i=1
δiF (x|θi) +

(
1 −

n∑
i=1

δi

)
F (x|θ0).

Without loss of generality, consider when the principal wishes to implement
an interior action δ̂ with

δ̂i ∈ (0, 1),∀i ∈ {1, . . . , n},

n∑
i=1

δ̂i < 1.

Given a contract v(·), define the agents net-payoff as

U(δ; v) =
∫ 1

0
v(x)dF (x|δ) − c(δ)

We can write the principal’s problem under the experiment F as

inf
v(·)

E[u−1(v(x))|δ̂;F ],

with the IC constraints,
U(δ̂; v) ≥ U(δ′; v) ∀δ′,

and the IR constraint,
U(δ̂; v) ≥ 0.

Note that the agency’s payoff is linear in δ while his cost is convex in δ. Therefore,
his net-payoff U(δ; v) is concave in δ. We can replace the global IC constraints by
local IC constraints,

∂

∂δi

U(δ; v)
∣∣∣∣∣
δ=δ̂

= 0 ∀i ∈ {1, . . . , n}.

That is
E[v(x)|θi;F ] − E[v(x)|θ0;F ] = ∂

∂δi

c(δ)
∣∣∣∣∣
δ=δ̂

.

Therefore, we can prove the sufficiency by using the approach in Section 5.1. The
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necessity is proved by constructing supporting hyperplanes.
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