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Abstract

This paper explores the dynamics of U.S. sectoral producer prices in a large Bayesian vec-
tor autoregressive (BVAR) model with prior that incorporates information from the Input-
Output (IO) matrix to structure the long-run relationships between these time series. The
forecasts of headline inflation generated with this model have accuracy comparable to those
from the Survey of Professional Forecasters (SPF) and greater than the ones generated by
a standard BVAR with Minnesota priors, confirming that the IO matrix long-run prior con-
veys relevant information about the data. We analyze the effects of different types of shocks
on sectoral prices and aggregate inflation, identified via external instruments – a sectoral
shock (cereal price), an aggregate shock (monetary policy) and oil supply shock – to gain
insight into the role of production networks in price dynamics, studying the sectoral sources
of inflation fluctuations, as well as the propagation through the production network of ag-
gregate shocks. Our findings contribute to understanding the role of production networks
in price dynamics, the sectoral sources of inflation fluctuations, and the implications for
monetary and fiscal policy in an economy with heterogeneous sectoral price adjustments. It
offers insights for monetary and fiscal policy decisions in the face of inflationary pressures.

1 Introduction

The rapid increase in inflation since early 2021 in the U.S. and mid-2021 in the European Union
can be explained by several concomitant factors. One part of the story lies in the fast reopening
of economies after the COVID-19 crisis, leading to an increase in demand that could not be
met with the reduced supply capacity following the pandemic lockdowns, such as in shipping
and semiconductors. Demand was further boosted by the stimulative fiscal policies enacted
by governments in response to the pandemic. In addition, companies adjusted their prices in
response to rising energy and commodity costs, which, further exacerbated by the war in Ukraine,
reached extraordinary levels and spread to other sectors, amplifying headline inflation.

While economists broadly agree on these drivers (see, e.g., Guerrieri et al. (2023)), there
is far less consensus on the relative importance of these factors in shaping inflation dynamics.
Indeed, the lively debate between Team Transitory - economists who argued that inflation was
primarily driven by supply-side disruptions and would fade as shortages eased - and Team
Persistent - economists who suggested that overheating demand caused by the fiscal stimulus,
rather than supply-side issues were to blame - is not yet fully settled.
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In this paper we aim to shed light on this question by modeling the transmission of sectoral
and aggregate shocks to prices in different sectors as well as headline inflation. In particular, we
study what contributes to the pass-through and persistence of such shocks in different prices.
We do so by modeling sectoral producer price dynamics with a Bayesian autoregressive (BVAR)
model the incorporates prior information from the Input-Output matrix. We identify three key
shocks using external instruments: a cereal price shock (micro-level), an oil price shock (meso-
level), and a monetary policy shock (macro-level). Our results confirm that sectoral linkages
play a significant role in the transmission of inflationary shocks, highlighting the importance of
production networks in shaping price dynamics. Moreover, we document each sector’s role in the
transmission of shocks, highlighting how the contribution of some sectors to headline inflation
is more persistent than that of other sectors.

Comovement of price indices across different sectors of the economy has traditionally been
attributed to aggregate shocks. The lion’s share of the literature studying headline or sectoral
price dynamics indeed decomposes inflation volatility into aggregate and sector-specific origins
as done, among others, in Altissimo et al. (2006), Maćkowiak, Moench, and Wiederholt (2009)
or Boivin, Giannoni, and Mihov (2009).1 However, these approaches typically rely on dynamic
factor models, which decompose inflation series into a common component and an idiosyncratic
component, without distinguishing between sectoral shocks that spill over to other sectors and
aggregate shocks. In such a framework, the sum of sectoral shocks across all sectors appears
indistinguishable from a common shock, making it difficult to separate sectoral transmission
mechanisms from macro-level inflation drivers.

The recognition that micro shocks can have macro consequences has led to the development
of macroeconomic models embedding production networks information (e.g. Gabaix (2011),
Foerster, Sarte, and Watson (2011), Acemoglu et al. (2012) Baqaee and Farhi (2019)) and models
that formally describe this cascade effect of sectoral price shocks, also called pipeline pressures. It
is the case of the dynamic stochastic general equilibrium models presented in Smets, Tielens, and
Van Hove (2019), Carvalho, Lee, and Park (2021) or Pasten, Schoenle, and Weber (2021), which
enable to capture these pipeline pressures or inflation spillovers across sectors. These models
have shown that pipeline pressures, depending on the production architecture, take more or less
time to materialize and contribute to inflation volatility and persistence. The heterogeneity in
nominal rigidity changes the sectors from which aggregate fluctuations originate. This leads
to important policy implications as the most important sectors for GDP and aggregate price
volatility differ in a sticky price economy from a frictionless economy.

This paper builds on this literature by investigating how different types of shocks, rang-
ing from sectoral disturbances to aggregate macroeconomic shocks, affect price dynamics across
sectors and headline inflation. While sector-specific shocks, such as a cereal price shock, prop-
agate through production linkages and affect downstream prices, economy-wide shocks, such
as monetary policy shocks, influence sectoral inflation primarily by altering aggregate demand
and financing conditions. But in both cases, the heterogeneity across sectors has important
implications for monetary or fiscal policy. Understanding how different sectors respond to a
micro shock that propagates to the economy and whether a monetary policy tightening affects

1More recently in De Graeve and Walentin (2015) or Andrade and Zachariadis (2016)
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the sectoral prices in a homogeneous or heterogeneous way should enable a better response to a
possible surge in inflation in the future.

Recent studies, such as Ferrante, Graves, and Iacoviello (2023) and Di Giovanni and
Hale (2022), have examined how monetary policy shocks or demand reallocation shocks in-
fluence inflation through input-output interactions and nominal rigidities. Notably, Di Giovanni
and Hale (2022) decomposes the transmission of U.S. monetary policy into direct and network
effects, showing that production linkages amplify monetary policy effects, with the network com-
ponent contributing to nearly 70% of the total transmission. Moreover, as emphasized by La’O
and Tahbaz-Salehi (2022), sectoral technological differences influence the efficiency of monetary
policy, challenging the assumption that monetary shocks affect all firms uniformly.

Within this context, this paper aims to study inflation spillovers of sectoral and aggregate
shocks into U.S. producer prices. Sectoral producer prices have been less studied than consumer
prices. Yet, they influence consumer prices and are of great interest to track cost-push mecha-
nisms. As they reflect the average change over time in the selling prices received by domestic
producers for their output, producer prices are directly in relation with the production network.
However, there is not an obvious representation of sectoral inflation spillovers.

Schneider (2023) addresses a similar problem for the dynamics of personal consumption
expenditures (PCE) inflation. The paper shows across a range of different DSGE models that
the rankings of the sectors’ responses (in magnitude) are similar. The paper thus opts for
a factor-augmented Vector autoregressive (FAVAR) model that uses the theoretically-driven
ranking to identify the sectoral shocks. Bilgin and Yilmaz (2018) opts for a VARX model and
uses the Diebold and Yilmaz Connectedness Index to represent a network of inflation spillover.
While such a framework can show useful results it is subject to many issues such as the poor
estimation of classical VARs for large panels of data. Finally many empirical models that
address the effects of idiosyncratic shocks on other time series rely on a factor analysis to clean
for common comovement and, as stressed before in this discussion, end up with only the direct
effect of sectoral shocks (i.e. show no propagation at all).

The latter elements motivate our choice to study sectoral producer prices dynamics via a
hierarchical Bayesian vector autoregressive (BVAR) model. Hierarchical BVARs have already
shown very good forecasting performances and enable to at least partially solve some of the
issues when one wishes to analyse producer prices dynamics empirically. First of all, the Bayesian
approach is known for its ability to overpass the curse of dimensionality issue, when dealing with
a large number of variables relative to the number of observations as prior information can act
as a regularization mechanism. Second, such a model still indirectly captures common factors
by the inclusion of a large set of variables. Finally, BVARs still offer a large set of identification
strategies to recover the impacts of structural shocks on the model variables. Specifically, we
employ the Prior for the Long Run (PLR) BVAR framework developed by Giannone, Lenza, and
Primiceri (2019), which allows for flexible long-run relationships between the variables of the
model. Unlike traditional BVARs, the PLR prior explicitly incorporates economic restrictions
on long-run behavior.

This approach is particularly useful for studying sectoral price spillovers, as it enables us
to impose economically meaningful priors based on the Input-Output matrix, ensuring that
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intersectoral linkages are reflected in the estimated model while still allowing for flexibility in
the data-driven estimation of the coefficients.

Unlike the approach of Schneider (2023) that builds on similarities in rankings between
different theoretical modelings, our approach allows to test for different assumptions for con-
structing the prior for the long run, for example testing whether the Leontief inverse built from
the Input-Output matrix allows for better forecasting performances.

Our contribution is also close to the work of Mlikota (2023). The author builds a Network
VAR model : a vector auto-regression in which innovations transmit cross-sectionally via bi-
lateral links only. For example, concerning the dynamics of sectoral prices, the Network VAR
(NVAR) model takes the following form xτ = δ1Axτ−1 + ...+ δpAxτ−p+ ντ where the A matrix
is fixed to the input-output matrix while the δi coefficients are estimated. While our model
shares the idea of using production linkages to structure inflation dynamics, the use of the prior
for the long run BVAR offers a much more flexible way to incorporate production information
in the model, compared to the NVAR in which the network transmission of shocks is directly
determined by sectoral linkages. Instead of forcing sectoral propagation to match Input-Output
relationships as in NVAR, the PLR prior allows the production network to guide, but not rigidly
constrain, the estimation of sectoral interactions. The PLR prior shrinks the coefficient matrices
toward economically plausible long-run values but does not force sectoral interactions to follow
a fixed propagation matrix.

Finally, our contribution shares features with Yilmazkuday (2023) that estimates the pass-
through of different shocks into different U.S. prices but does not include disaggregated price
series. The pass-through of a shock is defined as the ratio between the cumulative impulse
response of a price variable and the cumulative impulse response of the shock variable to its
own shock. His analysis provides suggestions for monitoring consumer prices, which can be
completed by the responses of sectoral prices that are presented in this paper.

2 Theoretical model framework

2.1 Hierarchical BVAR with a long run prior

We model sectoral producer prices dynamics with a hierarchical Bayesian Vector Autoregressive
(BVAR) model enriched with a long run prior, adopting the approach of Giannone, Lenza, and
Primiceri (2019). Such a model allows to represent a large number N of variables as following
a vector autoregressive process with p lags, with prior information on the long run relationships
between variables. The long run prior developed by Giannone, Lenza, and Primiceri (2019)
is conjugate and can be implemented using Theil mixed estimation, i.e. by adding a set of
artificial (or dummy) observations to the original sample. It can thus be added to the more
classic flat or Minnesota BVARs. Before delving into the details of the long-run prior, we first
review the Minnesota BVAR, which serves as the foundation to which the long-run prior will be
incorporated.
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Letting Yt represent the N -dimensional vector of (transformed) variables, a reduced-form
VAR model writes as

Yt = a+A1Yt−1 + · · ·+ApYt−p + et (2.1)

where Ap is the p-th lag coefficient matrix and et is a Normally-distributed multivariate white
noise process, with covariance matrix Σ. Bayesian VARs allow to explicitly provide prior in-
formation for the distributions of the parameters a, Ai(i ∈ 1, ..., p) and Σ. As in Giannone,
Lenza, and Primiceri (2015) we use a conjugate prior for our parameters : the Normal-Inverse
Wishart prior. Such a prior assumes an inverse Wishart distribution for the covariance ma-
trix Σ and a multivariate Normal distribution for the coefficient matrices Ai. If we define
β = vec([a,A1, ..., Ap]

′),

Σ ∼ IW (Ψ, d)

β|Σ ∼ N(b,Σ⊗ Ω)
(2.2)

We fix the degrees of freedom of the Wishart distribution d to N + 2, the minimum that
guarantees the existence of the mean of Σ. Regarding the scale matrix Ψ, we depart from
Giannone, Lenza, and Primiceri (2015) and opt for the more classical approach that considers
this matrix as diagonal with the N × 1 vector fixed using sample information. For the other
parameters b and Ω, the Minnesota prior assumes the following moments for the coefficient
matrices :

E[(As)ij |Σ] =

{
1 if i = j and s = 1

0 otherwise
(2.3)

Cov[(As)ij , (Ar)hm|Σ] =

{
λ2 Σih

s2ψj
if m = j and s = r

0 otherwise
(2.4)

As shown in the second moment of the coefficient matrices, the hyperparameter λ controls
for the tightness of the prior. Indeed, for λ = 0, the posterior equals the prior mean while as
λ → ∞ the posterior coincides with the OLS estimates. Adopting the hierarchical approach, we
do not fix the hyperparameter λ. Instead, it is well known that for such a model, the marginal
likelihood is available in closed form as a function of the hyperparameter. It is thus possible to
estimate the hyperparameters by maximizing the marginal likelihood of the data as a function
of these hyperparameters. Then, conditionally on a value for the hyperparameters, draw the
VAR coefficients from their posterior distributions.

Adding the long run prior to the Minnesota BVAR. Turning now to the long run prior
proposed in Giannone, Lenza, and Primiceri (2019), the authors show that the VAR model
presented above can be re-written in terms of level and differences as:

∆Yt = a+ΠYt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + et
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where:

• Π = (A1 + · · ·+Ap)− IN is a coefficient matrix of cointegration relationships

• Γj = −(Aj+1 + · · · + Ap) with j = 1, ..., (p − 1) are the coefficient matrices of the lags of
the differenced variables

This rewriting of the model is the vector error correction (VECM) representation of the VAR
and is used for data where the underlying variables are possibly cointegrated. The Γj parameters
of the model are often referred to as the short-run parameters, and Πyt−1 is sometimes called
the long-run part of the model. This is because if the rank of Π is a constant r > 0 and there
exist two N × r matrices α and β such that Π = αβ′, then Yt is cointegrated of order r, meaning
that some long-run cointegration relationships exist between the variables. The matrix β then
represents these long-run equilibrium cointegration relationships between the variables while α

denotes the loading matrix, which indicates the speed at which the system corrects deviations
from these equilibria.

In their paper, Giannone, Lenza, and Primiceri (2019) aim to elicit a prior for the Π matrix
that is centered around zero but has a covariance matrix that is guided by economic theory. To
reach such a goal, they propose to rewrite the model as:

∆Yt = a+ ΛỸt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + et

where:

• Ỹt−1 = HYt−1 is an n × 1 vector containing n linearly independent combinations of the
variables Yt−1

• Λ = ΠH−1 is an n×n matrix of coefficients capturing the effect of these linear combinations
on ∆Yt

In this setup, the construction of a reasonable prior for Λ depends on the H matrix, that plays
a crucial role. Indeed, HYt−1 represents a set of linear combinations of the variables (each line
is a linear combination), that can help to guide the elicitation of a good prior for Λ and thus
for Π. For example, if a specific linear combination is completely irrelevant for the estimation
of ∆Yt, a reasonable prior for the corresponding column in the Λ matrix should be a vector of
zero values.

In their paper, Giannone, Lenza, and Primiceri (2019) show how this formulation of the
VAR can be used to elicit a prior for the VAR that provides guidance on the joint dynamics of the
time series in the long run. Indeed, economic theory can provide useful information for choosing
a matrix H for which we know a priori that the linear combinations formed by the variables
will be useful or not to model ∆Yt. For example, given that the variables are log-transformed,
investment minus output (It − Yt) represents a ratio that is expected to be stationary while
investment plus output (It + Yt) is likely to have a common trend. In this 2-variables example,
we see that it is thus possible to build a prior for the Λ matrix that is economically grounded.
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The possibility to do so depends on the H matrix, which in this example would be the
simple 2× 2 following matrix.

H =

[
1 1

−1 1

]
.

Given an H matrix that makes sense economically, and to then elicit a prior for the Λ

matrix, Giannone, Lenza, and Primiceri (2019) propose a specific a priori distribution for the
columns of the Λ matrix:

Λ·i|Hi·,Σ ∼ N(0, ϕ̃i(Hi·)Σ)

The idea is that the following prior indeed allows to push towards zero values the column
of Λ related to linear combinations of variables that do not play a role in explaining ∆Yt. This
is done by pushing towards zero the ϕ̃i(Hi·) value. The proposed reference value for ϕ̃i(Hi·) is
the following:

ϕ̃i(Hi·) ∼
ϕ2
i

(Hi·Ȳ0)2

where ϕi is a scalar hyperparameter controlling the standard deviation of the prior on the
elements of Λ·i, and Ȳ0 is a column vector containing the average of the initial p observations
of each variable of the model. The key element of the prior for the columns of Λ is thus the
ϕi hyperparameters (one for each column of Λ). As ϕi gets closer to zero, it is equivalent to
assuming that the corresponding linear combination does not help in explaining ∆Yt.

However, the authors to not impose a specific value for the hyperparameters ϕi but instead
adopt a hierarchical interpretation of the model. As shown in their paper, this prior being
conjugate, its marginal likelihood can be written in closed form and it is thus possible to express
the marginal likelihood of the model in terms of its hyperparameters. Maximizing the marginal
likelihood thus leads to an optimization of the hyperparameters, hence of the ϕi values.

We notice that, in the Giannone, Lenza, and Primiceri (2019) framework described above,
even the non-stationary linear combinations provided in the H matrix inform the model. To
show this, let us use the 2-variables example again. A reasonable prior for Λ would be that Λ·,1

should be tight around zero while Λ·,2 should be less tight around zero, hence allowing for the
error-correction mechanism from the stationary linear combination (Yt − It). The inclusion of
the trend (Yt+It) represented by the first line of the matrix is however also informative. Indeed,
this will then shape the prior for Π = ΛH.

While we refer to Giannone, Lenza, and Primiceri (2019) for more details about the long
run prior, we will now show how the long run prior framework can be used to incorporate
information about the production structure in the BVAR.

2.2 A long run prior driven by the production structure of the economy

The long-run prior framework introduced by Giannone, Lenza, and Primiceri (2019) provides a
interesting way to incorporate information about the production structure of the economy into a
BVAR model studying sectoral prices dynamics. The production structure of an economy defines
how each sector depends on other production sectors through intermediate input linkages. The
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Input-Output (IO) matrix for example summarizes these dependencies, making it a candidate for
specifying economically meaningful long-run relationships in a BVAR model of sectoral producer
price indices. The core idea is to impose an H matrix based on the input-output matrix to test
whether the production linkages defined by the Input-Output matrix indeed allow to better
understand and model the dynamics of sectoral prices.

To understand this, we consider a small-scale vector auto-regression (VAR) model for three
sectoral producer price indices (PPIs):

• PPIA - Price index for Sector A (e.g., Energy),

• PPIB - Price index for Sector B (e.g., Manufacturing),

• PPIC - Price index for Sector C (e.g., Services).

The production structure of the economy is represented by the following 3× 3 IO matrix:

IO =

0.5 0.4 0.1

0.3 0.6 0.1

0.1 0.2 0.7

 . (2.5)

where each element IOij represents the proportion of input costs in sector i that comes directly
from sector j.

Another interesting matrix derived from the Input-Output matrix is its Leontief inverse
(I − IO)−1. The Leontief inverse can be decomposed into

(I − IO)−1 = I + IO + IO2 + IO3 + · · ·

where each nth power of the Input-Output matrix represents the intermediates from one sector to
another via paths of length n. So in the Leontief inverse, each element ((I− IO)−1)ij represents
the proportion of input costs in sector i that comes indirectly from sector j.

For both these matrices, even if the price indices are log-transformed, each entry of the
matrix provides some information about how one sector depends on another sector. Each line of
the matrix defines a linear combination of variables that are linked together through production
linkages so that might be cointegrated. Whether the linear combination formed by a row of the
Input-Output or Leontief inverse matrix is stationary or not does not matter: event if the linear
combination is non-stationary (such as Yt + It) in the previous example from Giannone, Lenza,
and Primiceri (2019), it will help to shrink to zero the corresponding column in the Λ matrix
and thus provides information for the construction of the prior on Π. In our small example, it
appears clearly that sectors A and B are strongly related while sector C shows less dependence
on the other sectors. A shock affecting the sector A (in this example energy) would probably
impact much more sector B than sector C and sectors A and B could even show a common
trend due to this cross-dependence.

This small example motivates the following choices for the H matrix in our long-run prior
BVAR. To the information from the Input-Output matrix, we also add two lines take into account
for the nominal trend shared by inflation and the interest rate. We summarize here below our
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choice of linear combinations on the variables, where the top left 35 × 35 corner with the IO

matrix can also be replaced by the Leontief inverse.

Ỹt =

IO 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1

0 0 −1 0 0 0 0 1


︸ ︷︷ ︸

H



35 sectoral pricest
industrial productiont
headline inflation πt

oil pricet
cereals pricet

inflation expectationst
excess bond premiumt

shadow ratet


︸ ︷︷ ︸

Yt

(2.6)

This choice of linear combinations is only a proposition to better model eventual cointegration
relationships between our variables but for each linear combination i, the hierarchical approach
allows to estimate the corresponding hyperparameter ϕi. We also note that other possibilities
could be considered regarding the choice of linear combinations on aggregate variables. Here
we focus on this simple choice because our interest is mainly to test the use of the Input-
Output matrix. As we do not propose linear combinations on all variables of the models, the H

matrix here above is not full rank so the code automatically completes H with Hcompl which
is constructed as the null space.

2.3 An addition: the Covid-19 correction

Also building on the hierarchical BVAR of Giannone, Lenza, and Primiceri (2015), Lenza and
Primiceri (2022) propose to explicitly model the surge in shock volatility during the pandemic.
Though our model is mainly focused on prices, we also include among our variables the US
industrial production that was indeed greatly impact by the pandemic, especially during the
months of March, April and May 2020. To estimate properly a VAR during the Covid-19 period
and account for the large variance of shocks during that period, Lenza and Primiceri (2022)
modify the standard VAR by adding a scaling vector multiplying the error term. The standard
VAR becomes :

Yt = a+A1Yt−1 + · · ·+ApYt−p + stet (2.7)

Then, the authors assume specific values for st. For all months before March 2020, st is fixed to
1, which does not change the baseline VAR specification. Then for the months of March that we
denote by t∗, April, May and the following months, the authors assume that st∗ = s0, st∗+1 = s1,
st∗+2 = s2 and st∗+j = 1 + (s2 − 1)ρj−2 where [s0, s1, s2, ρ] is a vector of unknown coefficients.
The Covid-19 correction proposed is completely suitable with the hierarchical approach from
Giannone, Lenza, and Primiceri (2015) and with the long run prior. Hence, we include this
modification in our model.
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3 Estimation and identification of the hierarchical BVAR

3.1 Data

We estimate the model using monthly data on the U.S. economy from January 2004 to July 2023.
All sectoral price series are obtained from the Bureau of Labor Statistics (BLS) producer price
data classified by the North American Industry Classification System (NAICS) index codes.
Such price series are available at different levels of aggregation : we opt for a decomposition
in 35 sectors as in Smets, Tielens, and Van Hove (2019) and look at their monthly index from
January 2004 to June 2023. Among the 35 sectoral producer price indices (PPI) included in our
analysis, 7 series did not have a complete data coverage from 2004 onward, starting in 2005 or
2006. To ensure a consistent sample length across all variables and given the little impact of
that specific years and sectors, we backcasted these missing early observations with the help of
an arima model.

To the 35 sectoral PPI indices, we add some key aggregate variables, mostly retrieved from
the Fred’s database : industrial production, consumer price index, oil price, cereals price, the
Michigan inflation expectations, the excess bond premium of Gilchrist and Zakrajšek and the
shadow rate of Wu and Xia.

Our BVAR is hence estimated with a total of 42 variables. Sectoral prices, industrial pro-
duction, cereals and oil prices are log-transformed (yt = 100× log(Yt)). Michigan expectations,
the excess bond premium or the interest rate are in level. The only variable that enters the VAR
in difference is the headline consumer price index as we need the inflation rate to construct the
long run prior linking inflation and the interest rate (πt = diff(100× log(Yt))).

The input-output matrix is constructed using the same methodology as in Schneider (2023),
Smets, Tielens, and Van Hove (2019) or Pasten, Schoenle, and Weber (2021). It is based on
the MAKE and USE tables provided by the Bureau of Economic Analysis (BEA). We use the
investment flow matrix from Smets, Tielens, and Van Hove (2019). The Leontief inverse matrix
is just a transformation of the Input-Output matrix (Leontief matrix = (I − IO)−1) where I is
the identity matrix.

3.2 Forecasting performances

To discriminate between the different priors and assess the validity of using such a level of disag-
gregation in a large BVAR as well as the idea of using a PLR BVAR to incorporate production
network data in modeling sectoral prices dynamics, we look at the forecasting performances of
different models for the aggregate Consumer Price Index, that is one of the key variables of the
BVAR model. Our results are obtained by a pseudo-out-of-sample recursive forecasting exer-
cise. In this exercise, we forecast the aggregate Consumer Price Index at different horizons and
compare our findings with the Survey of Professional Forecasters. To do so, we:

• Use real-time data for the CPI time series, as done in the Survey of Professional Forecasters.
However, we do not have access to real-time data for the sectoral price series.

• Consider all data up to the quarter that precedes the forecast, even though the SPF
forecasts also uses the first month of the first quarter they forecast. For example, in the
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forecasting exercise of 2019-Q1, the SPF already knows the headline inflation for January
2019 while we use data only up to December 2018.

• Use monthly data to estimate our models and forecast and then transform the results
in annualized quarter-on-quarter change, as presented in the SPF documentation. Root-
mean-squared error are computed on the annualized quarter-on-quarter changes, using
today’s known realisations.

We this forecasting exercise, we aim to compare the BVARs with long run priors to the
SPF forecast but also to the Minnesota BVAR without any long run prior. In total, we thus
look at the forecasting performances of six variations of the model.

1. MN: The Minnesota BVAR

2. MN-C: The Minnesota BVAR with the Covid-19 correction

3. LR: The Minnesota BVAR with the Covid-19 correction and with the long run prior
imposing as only linear combinations the two last lines of the H matrix defined above, i.e.
the nominal trend shared by inflation and the interest rate.

4. LR-IO: The Minnesota BVAR with the Covid-19 correction and with the long run prior
defined in the description of the model, i.e using the input-output matrix is the upper left
corner of the left matrix H.

5. LR-L: The Minnesota BVAR with the Covid-19 correction and with the long run prior
defined in the description of the model but using the Leontief inverse in the upper left
corner of the left matrix H.

6. LR-I-IO: The Minnesota BVAR with the Covid-19 correction and with the long run prior
defined in the description of the model but using the difference between the identity matrix
and the IO matrix (I35×35 − IO) in the upper left corner of the left matrix H.

While our first idea is to use directly the Input-Output structure or the Leontief inverse in the
construction of the long run prior, we motivate the idea of testing the sixth model (PLR-I-IO)
as each linear combination is then an approximation of the relation between a sectoral price
index (in log-level) and the weighted sum of the sectoral price indices (in log-level) from which
it directly depends for its inputs.

For each model, we forecast inflation for 15 periods in the future then compute the quarterly
inflation rates to allow for a comparison with the SPF forecast. As our sample is quite limited
(starting only in 2004), we use an iterated forecast exercise. The first iteration uses data from
2004Q1 up to 2017Q4 to forecast the five following quarters (so from 2018Q1 to 2019Q1). The
last iteration uses data from 2004Q1 up to 2021Q1 to forecast the five following quarters (so
from 2021Q1 to 2022Q2). We also present some results in which we only do the iterated forecast
up to 2021Q2 so as to see how the models perform outside of the very high inflation period. As
a reminder, inflation in the US starts early 2021 and the annualized QoQ inflation rate already
reaches 7.5% in 2021Q2.
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The comparisons between the BVARs forecasts and the Survey of Professional Forecasters
are displayed below on tables 1 and 2. As can be seen on the tables, our forecasts often compare
to the ones of the SPF. Moreover, in some cases (in bold in the tables), the BVAR models
perform better than the SPF. Plus, the BVAR with alternative priors often allows to forecast
headline inflation better than the parsimonious specification of the Minnesota prior.

Ratios rmse(BVARs) / rmse(spf) (< 1 → better than spf)

rmse(spf) MN/spf MN-C/spf LR/spf LR-IO/spf LR-L/spf LR-I-IO/spf

h=0Q 0.6100 1.1645 1.0555 1.0576 0.9721 0.9101 1.2597

h=1Q 1.0412 1.1234 1.0423 1.0042 1.1918 1.2014 1.2485

h=2Q 1.1204 1.2812 1.1046 1.2391 1.1006 1.0770 1.0868

h=3Q 1.1379 1.5393 1.3158 2.0237 1.0005 0.9941 0.8811

h=4Q 1.1322 1.2825 1.2918 1.0494 0.9716 0.9584 0.9581

Table 1: RMSE and RMSE ratios for CPI forecasts. BVAR(2)

While we show more details on the forecasting results in the appendix to confirm the
robustness of our results, here we want to stress that with the shortest iterated forecasting
exercise (in which we drop the iterated forecast that try to forecast the very high inflation period),
the BVARs are showing quite good improvements to the Survey of Professional Forecasters as
illustrated by the table 2.

Ratios rmse(BVARs) / rmse(spf) (< 1 → better than spf)

rmse(spf) MN/spf MN-C/spf LR/spf LR-IO/spf LR-L/spf LR-I-IO/spf

h=0Q 0.5684 0.6712 0.8360 0.7379 0.6117 0.6077 1.2860

h=1Q 0.9150 1.2861 1.2071 1.2119 1.0008 1.0086 1.2705

h=2Q 0.9097 0.9966 0.9495 0.9508 0.9300 0.9226 0.9841

h=3Q 0.9241 1.2746 1.1856 0.9541 0.8998 0.8930 0.9750

h=4Q 0.8952 1.6242 1.6240 1.1201 0.9552 0.9420 1.2138

Table 2: RMSE and RMSE ratios for CPI forecasts, shorter iterated forecasting exercise exclud-
ing the four quarters from 2021Q3 to 2022Q2. BVAR(2)

The aim of this forecasting exercise is twofold. We first wanted to validate the idea of using
information from the production network to inform about long-run dynamics of sectoral prices.
The results show that even if the Long-Run BVARs perform so far less good as the number of
lags in the model increase, they always allow to improve over the Minnesota BVAR. Moreover,
on the fifth foretasted quarter, the production network informed Long-Run BVARs allow to
improve over the Survey of Professional Forecasters predictions. The second purpose of the
forecasting exercise was to distinguish between the three production network informed models
(so between LR-IO, LR-L and LR-I-IO). Tables 1 and 2 do not enable to do so as the results
are very similar. However, given the poorer forecasting results of the last model in the iterated
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forecast that excludes the high inflation period, the LR-IO (with the Input-Output matrix) and
LR-L (with the Leontief inverse) models are preferred. We then use these two models for the
analysis of sectoral prices dynamics that follows, in which we look at the responses of our model
variables to three shocks ranging from micro to macro.

3.3 Identification of structural shocks

We identify three types of shocks, going from a micro cereal price shock to a meso oil price shock
and finally to a macro monetary policy shock. We identify each of these shocks using external
instruments.

1. For the cereal price shock we consider as instrument the agricultural supply news surprises
from Jo and Adjemian (2023). The authors construct agricultural supply news surprises
by comparing USDA (United States Department of Agriculture) forecast revisions for crop
production to market expectations derived from futures prices. The surprises are defined
as the difference between the actual USDA revisions and the expected changes implied by
market prices, isolating unexpected supply shocks.

2. For the oil price shock, we use the oil supply news surprises from Känzig (2021). Narrative-
based, Känzig’s oil supply surprises have been widely adopted in macroeconomics, finance,
and energy economics. They are now considered a benchmark measure for exogenous oil
supply shocks.

3. Finally, concerning the monetary policy shock, we test two different instrumental variables:

• The monetary policy surprises from Bauer and Swanson (2023). The authors use
high-frequency asset price changes around FOMC (Federal Open Market Committee)
announcements to isolate unexpected monetary policy shifts.

• The monetary policy surprises from Miranda-Agrippino and Ricco (2021). Also based
on high-frequency movements, the constructed surprises aim to solve for the informa-
tion bias effect by applying a dynamic factor model in order to isolate the component
of financial market movements that reflects true monetary policy innovations.

For each of these shocks, we looked at the responses provided by the LR-IO (Input-Output)
and LR-L (Leontief) informed models but as they are very similar, we only show here the
responses to shocks from the LR-IO BVAR(3) model.

3.3.1 The cereal price shock

While energy price shocks have traditionally been at the center of inflation analysis, the recent
sharp increase in global food prices has highlighted the importance of micro shocks like cereals
price shocks in shaping inflationary pressures. Despite their relevance, cereal price shocks remain
however understudied in the macroeconomic literature, particularly in the context of inflation
dynamics. Here we rely on the surprise series constructed by Jo and Adjemian (2023) to inves-
tigate how a shock in cereals price may transmit to other sectoral or aggregate variables. We
impose a 5% shock in the US cereals price using the surprises described above as the external
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instrument. While all impulse responses are shown in the appendix, here we comment on the
most important variables. We see on figure 1 that the cereals price shock has a quite persistent

Figure 1: Impulse responses to a cereals price shock using Adjemian and Jo surprises in a
BVAR(2) model with Input-Output informed Long-Run prior.

impact on food producer prices. But it is also followed by a rise in oil prices and thus in the oil
and gas sector, oil and coal products sector and also in chemical products or plastics. If the Jo
and Adjemian (2023) instrument is partially correlated with global commodity market condi-
tions, it may capture supply disruptions that affect multiple raw materials, including oil, rather
than isolating a cereal-specific shock. The link between cereal and oil prices could also be driven
by financial market dynamics, where commodities are traded as part of diversified portfolios,
leading to correlated price movements even in the absence of direct sectoral spillovers. Finally,
we see that the consumer price index also increases and in a quite persistent way but it is thus
hard to define whether this comes from a cereal price shock that spills over to the network or
from a broader commodity price shock. Surprisingly, the monetary policy response is negative.
Since our data starts only in 2004, this could be due to the post-2008 period characterized by
low interest rates and unconventional monetary policy. Further work is however needed to better
understand the mechanisms at play. Another interesting graph is the figure 2 that displays the
weighted sum of producer price indices responses through time. This allows two things: compare
the aggregated producer price response to the consumer price response and show which are the
sectors that contribute to the aggregated PPI the most.

On figure 2 as expected the food and beverage sector responds to the cereal price shock (in
light green). Our results however also show surprising aspects such as the high contribution of
the professional and business services sector (in light pink). It also appears that the aggregated
PPI response is almost twice the size of the consumer price response. This could provide support
for the hypothesis that micro shocks in sectors might impact only slightly headline inflation or
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Figure 2: Contributions to aggregated PPI of sectoral PPIs responses to a cereals price shock
using Adjemian and Jo surprises in a BVAR(2) model with Input-Output informed Long-Run
prior. The weighted sum of all the producer prices responses is the black line while the response
of headline consumer price index is the red line. Each color represents a sector that we decided
to highlight (ex: oil and gas extraction in blue) while the non-highlighted sectors are in shades
of grey.

at least that raw material costs increase substantially, but not all of this increase is passed on
to consumers.

3.3.2 The oil price shock

Oil price shocks have long been recognized as a major driver of macroeconomic fluctuations,
influencing inflation, output, and monetary policy responses. Unlike cereal price shocks, which
are typically seen as micro shocks, affecting other prices through direct cost pass-through, oil
price shocks have a much broader reach, impacting directly production costs, transportation
but also the financial markets. This is why it can be seen less as a micro shock but as a meso
shock, that shares features both with micro shocks (transmitting through production costs for
example) and macro shocsk. The transmission of oil supply shocks even if widely studied is
complex and deserves attention. To analyze these dynamics, we rely on the oil supply news
surprises constructed by Känzig (2021) to isolate exogenous variations in oil prices. We impose
a 5% oil price shock using these surprises as an external instrument, allowing us to examine
the propagation of energy price shocks across sectoral and macroeconomic variables. As for
the analysis of the responses to a cereals price shock, the impulse responses of all variables
are provided in the appendix, and we highlight the key sectoral and aggregate effects in the
discussion below.

As expected, the rise in oil prices is transmits quite rapidly to the oil and gas extraction
sector and to oil and coal products. We also see that while the oil and gas extraction sector
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response goes back to zero, the responses of the oil and coal products sector is already more
persistent and the ones for the chemical products, plastic or transportation are even more per-
sistent. We also see that a sector like construction can show no response for a few months
and then increase, contributing also to the persistence of the shock in the economy. The re-
sponse of the shadow rate is not very surprising as it is know that policymakers often "look
through" supply-side oil price shocks. The ECB and the Fed have historically stated that they
look through "first-round effects" of energy shocks, focusing instead on whether they lead to
persistent second-round effects (wage-price spirals, inflation expectations, etc.). This is often
motivate by the negative effect such a raise of interest rate can have on production. What is
more surprising is the response of the excess bond premium, and further work would be needed
to fully investigate that question.

Figure 3: Impulse responses to an oil price shock using Kanzig’s surprises in a BVAR(2) model
with Input-Output informed Long-Run prior.

As done with the cereals price shock, we look on figure 4 at the weighted sum of producer
price indices responses through time. A first look at the figure already shows that interestingly
the aggregated PPI response is now very close to the CPI response. This could indicate that
indeed, oil price shocks, because they impact more directly the final consumer prices (for example
through energy prices or fuel), are transmitted not only indirectly via the production network
but also directly. As with the cereal price shock, we find a surprising response for the professional
and business services. We also see as stated above that while the oil and gas extraction sector
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responds rapidly to the oil shock, its contribution fades away while the ones of the petroleum and
coal products or transportation sectors are much more persistent. We also highlight in yellow in
the figure the contribution of the construction sector.

Figure 4: Contributions to aggregated PPI of sectoral PPIs responses to an oil price shock
using Kanzig’s surprises in a BVAR(2) model with Input-Output informed Long-Run prior. The
weighted sum of all the producer prices responses is the black line while the response of headline
consumer price index is the red line. Each color represents a sector that we decided to highlight
(ex: oil and gas extraction in blue) while the non-highlighted sectors are in shades of grey.

The observed lag in price adjustments for some industries, particularly construction, may
indicate the role of contract rigidities, where firms absorb short-term price fluctuations before
passing costs onto consumers. This is in contrast to fuel and energy-intensive goods, where price
adjustments are almost immediate. Understanding these sectoral asymmetries is crucial for
evaluating the broader macroeconomic consequences of energy price shocks, as industries with
slower price adjustments may contribute to inflation persistence, even after the initial shock
dissipates. Another interesting aspect is the quite important response of food producer prices.
While a rise in food producer prices after an oil price shock is not surprising, the response of
food PPI exhibits notable persistence, suggesting that rising energy costs may have prolonged
effects on food production and distribution.

3.3.3 The monetary policy shock

As a final analysis, we then look at the responses of the different sectors to a rise in the interest
rate (here the shadow rate). To do so, we used two different instrumental variables, from Bauer
and Swanson (2023) and from Miranda-Agrippino and Ricco (2021). We start by the impulse
responses of the macro variables of the model leaving aside the sectoral responses. Figures
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5 and 6 show the responses of the main aggregate variables to a 0.25% rise in the shadow
rate. The responses to the shock identified using Bauer and Swanson (2023) monetary policy
surprise seem more natural because of the rise observed in the excess bond premium, which
makes sense as a rise in the interest rate signals tighter financial conditions, which can lead to
higher risk premia to compensate for higher uncertainty. Also, the inflation expectations that
are expected to decrease show in both cases an initial positive response but are then clearly
negative only for the monetary policy shock identified via Bauer and Swanson (2023) surprises.
The initial positive response of inflation expectations in both cases is however unexpected, as
monetary policy tightening is typically associated with lower inflation expectations. A possible
explanation is that financial markets initially interpret the rate hike as a response to rising
inflationary pressures, before expectations decline later. However, both set of responses show
an expected decline in industrial production and in the consumer price index.

Figure 5: Impulse responses to a monetary policy shock using Bauer and Swan surprises in
a BVAR(2) model with Input-Output informed Long-Run prior.

Figure 6: Impulse responses to a monetary policy shock using Miranda-Agrippino and Ricco
surprises in a BVAR(2) model with Input-Output informed Long-Run prior.
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On figure 7 we now show the responses of sectoral producer price indices to the monetary
policy shock identified with Bauer and Swanson (2023) instrument. The objective is to highlight
the heterogeneity in the responses of the different sectors to a rise in the interest rate. While
some sectoral responses remain surprising, such as the positive answer in the vehicles sector,
most of the responses are negative and show that a certain time is needed for the rise in the
interest rate to have an impact on producer prices.

Figure 7: Impulse responses of the sectoral producer prices to a monetary policy shock using
Bauer and Swan surprises in a BVAR(2) model with Input-Output informed Long-Run prior.

Conclusion

This paper explores the transmission of sectoral and aggregate shocks to producer prices using
a Long-Run Prior BVAR framework that incorporates production network information. The
results highlight the significant role of sectoral price spillovers in shaping inflationary dynamics,
reinforcing the idea that sector-specific cost pressures can have broader macroeconomic implica-
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tions. they also show that incorporating production network data in disaggregated models bring
an added value in terms of forecasting performances.

The use of disaggregated producer price indices also allow to show through impulse re-
sponses how micro shocks can transmit to the different sectors, leading to an increase in the
aggregate producer price index. Even though the consumer price index only responds to a lesser
extent to a cereal price shock than the aggregated producer price index, the response of headline
inflation to a cereal price shock is positive and quite persistent. Oil price shocks seem to influ-
ence both producer and consumer prices in a more similar manner. The widespread reliance on
energy across sectors may amplify the inflationary impact of oil price fluctuations.

The analysis of monetary policy shocks reveals that financial conditions play a central
role in the inflation transmission mechanism. A contractionary policy shock leads to a decline
in both inflation and industrial production. Interestingly, the response of inflation expectations
suggests that financial markets may initially interpret policy rate hikes as a reaction to underlying
inflationary pressures, before expectations adjust downward over time. Furthermore, the muted
response of the interest rate to oil price shocks suggests that policymakers "look through"
supply-side disturbances, focusing instead on core inflation and second-round effects.

A deeper examination of sectoral heterogeneity in price responses could provide valuable
insights into which industries drive inflation persistence, refining the framework for policy re-
sponses to inflationary pressures. By incorporating sectoral dynamics into macroeconomic anal-
ysis, this study however contributes to a more nuanced understanding of how inflation evolves
across different layers of the economy.
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Appendix

A. Shorter iterated forecasting exercise for the BVAR(1) and BVAR(3) mod-
els.

Ratios rmse(BVARs) / rmse(spf) (< 1 → better than spf)

rmse(spf) MN/spf MN-C/spf LR/spf LR-IO/spf LR-L/spf LR-I-IO/spf

h=0Q 0.6100 1.1630 1.0732 1.1133 0.9967 0.9736 0.9942

h=1Q 1.0412 1.1613 0.9859 1.0517 1.1424 1.1301 1.0157

h=2Q 1.1204 1.4545 1.0987 1.1872 1.0034 0.9952 0.8984

h=3Q 1.1379 2.0039 1.5951 1.7777 0.9587 0.9538 0.8867

h=4Q 1.1322 1.1950 1.1460 1.0564 0.9358 0.9295 0.9576

Table 3: RMSE and RMSE ratios for CPI forecasts. BVAR(1)

Ratios rmse(BVARs) / rmse(spf) (< 1 → better than spf)

rmse(spf) MN/spf MN-C/spf LR/spf LR-IO/spf LR-L/spf LR-I-IO/spf

h=0Q 0.5684 0.7386 0.7987 0.8156 0.7206 0.7196 0.9830

h=1Q 0.9150 1.2692 1.1784 1.2328 0.9386 0.9597 1.2894

h=2Q 0.9097 0.7823 0.7456 0.7173 0.8576 0.8590 0.8610

h=3Q 0.9241 1.0737 1.0843 1.0377 0.9119 0.9106 0.9007

h=4Q 0.8952 1.6652 1.6651 1.5643 0.9230 0.9069 1.1518

Table 4: RMSE and RMSE ratios for CPI forecasts, shorter iterated forecasting exercise exclud-
ing the four quarters from 2021Q3 to 2022Q2. BVAR(1)

Ratios rmse(BVARs) / rmse(spf) (< 1 → better than spf)

rmse(spf) MN/spf MN-C/spf LR/spf LR-IO/spf LR-L/spf LR-I-IO/spf

h=0Q 0.6100 1.2083 1.1001 1.3144 1.0979 1.0873 1.4168

h=1Q 1.0412 1.1795 1.1010 1.3678 1.2497 1.2045 1.2351

h=2Q 1.1204 1.3224 1.1924 1.3006 1.1840 1.1471 1.1671

h=3Q 1.1379 1.6018 1.4293 1.3275 1.0225 1.0078 0.8769

h=4Q 1.1322 1.2565 1.3363 1.5155 0.9609 0.9506 0.9614

Table 5: RMSE and RMSE ratios for CPI forecasts. BVAR(3)
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Ratios rmse(BVARs) / rmse(spf) (< 1 → better than spf)

rmse(spf) MN/spf MN-C/spf LR/spf LR-IO/spf LR-L/spf LR-I-IO/spf

h=0Q 0.5684 0.6018 0.8375 1.0449 0.7968 0.7908 1.3831

h=1Q 0.9150 1.2698 1.2193 1.4846 1.1182 1.1270 1.1921

h=2Q 0.9097 0.9617 0.9169 1.0597 0.9932 0.9945 1.0200

h=3Q 0.9241 1.2552 1.1494 1.5165 0.9104 0.8992 0.9514

h=4Q 0.8952 1.4929 1.4926 2.1474 0.9555 0.9457 1.1952

Table 6: RMSE and RMSE ratios for CPI forecasts, shorter iterated forecasting exercise exclud-
ing the four quarters from 2021Q3 to 2022Q2. BVAR(3)

B. Impulse response functions of all the variables of the shocks.

Figure 8: Impulse response functions of all the variables to a 5% cereals price shock identified
via Jo and Adjemian (2023) agricultural surprises.
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Figure 9: Impulse response functions of all the variables to a 5% oil price shock identified via
Känzig (2021) oil price supply surprises.
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Figure 10: Impulse response functions of all the variables to a 0.25% monetary policy shock
identified via Bauer and Swanson (2023) monetary policy surprises.
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Figure 11: Impulse response functions of all the variables to a 0.25% monetary policy shock
identified via Miranda-Agrippino and Ricco (2021) monetary policy surprises.
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Input-Output matrix
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