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Abstract

In a globalized world, modeling macro-financial interconnections is fundamental
for meaningful inferences. Global Vector Autoregressive models (GVARs) offer an
easy and intuitive framework to deal with foreign information when modeling local
markets/economies. Local VARs are augmented by the weighted average of foreign
counterparts, employing pre-specified distance matrices (W ) justified by economic
theory, but not empirically tested. We therefore design a Likelihood Ratio Test for the
validity of the proposed distance proxy. In the empirical application regarding euro
area sovereign bond yields, we show that existing literature neglected a fundamental
feature, the sign of the interconnection. Interestingly, the non-rejected matrix outlines
the presence of contagion and flight-to-quality mechanisms in the euro area sovereign
bond market well before the euro area debt crisis.
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1 Introduction

In a globalized world, local economies/markets are strongly interconnected. Interconnec-

tions can result from various sources, common risk factors, shared resources, cross-border ef-

fects, spillovers, contagion, flight-to-quality. Global Vector Autoregressive models (GVARs)

offer a simple but coherent way to address these features, allowing for economic interpreta-

tion of the interconnection channels. GVAR builds on local Vector Autoregressive (VAR)

models, augmented by the so-called star variable, that is, the weakly exogenous weighted

average of foreign variables, resulting in local VARX∗ models (Harbo et al., 1998; Pesaran

et al., 2000). Once estimated, local systems are solved simultaneously to obtain a large

reduced form VAR representation of the world, useful for forecasting, scenario analysis,

and describing shock diffusion.

Since the seminal contribution of Pesaran et al. (2004), GVAR models have been em-

ployed in forecasting macroeconomic and financial variables (Pesaran et al., 2009; Greenwood-

Nimmo et al., 2012), in credit risk modeling (Pesaran et al., 2006; Castrén et al., 2010), in

identifying the interconnection between uncertainty and economic activity (Cesa-Bianchi

et al., 2020), as well as in studying international macroeconomic linkages (Dees et al.,

2007; Favero et al., 2011). For an extensive literature review, see Di Mauro and Pesaran

(2013), Pesaran (2015), or Chudik and Pesaran (2016). Moreover, theoretical justifica-

tions regarding GVAR models have been provided, both from an econometric perspective

- Dees et al. (2007) show that GVAR local models represent a suitable approximation of

global factor models, while Chudik and Pesaran (2011) derive the conditions under which

high-dimension VAR models’ unknown parameters would deliver local models in a GVAR

fashion - and from a macro-financial perspective - Dees et al. (2009) show that in the

context of New Keynesian Phillips Curves, the global perspective provides several advan-

tages compared with the standard statistical procedures employed in the literature such as
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Hodrick-Prescott filters (Hodrick and Prescott, 1997) for the estimation of steady states.

However, a central discussion on GVAR models regards the correct specification of the

links among market-/country-specific blocks. Traditionally, the underlying assumption in

GVAR modeling is that the more two markets/countries interact in terms of trade, the

more interconnected they are. However, this assumption has been challenged in empiri-

cal literature. Lane and Shambaugh (2010) show how, in financial applications, weighting

schemes based on financial asset exposures perform better than trade based ones. Favero

and Missale (2012) and Favero (2013) show how, in the context of sovereign yields modeling,

fiscal fundamentals better reflect investors’ expectations compared with traditional chan-

nels. Gross et al. (2018) modify GVAR models including several different weighting schemes

for macro-financial analyses. Moreover, Gross (2019) shows how different estimated GVAR

weights are when compared to trade based ones in macroeconomic applications.

The choice of different weighting schemes leads to different inferences, structural anal-

yses, and forecasts. Hence, the key question raised by these studies is how to adequately

determine GVAR weights and/or test for the validity of the proposed ones. To the best of

our knowledge, no formal test to resolve this issue exists.

Specification tests in GVAR literature (see, for example Dees et al., 2007) regard pa-

rameters’ stability and lag length decisions once the weighting scheme has been chosen.

Cross-sectional dependence tests (Bailey et al., 2016) only guide the choice between sparse

or dense interaction matrices, and outline the correct estimation procedure to follow (see,

Elhorst et al., 2021). However, they do not propose a validation test, thus not distinguishing

between empirically valid sparse or dense interconnections.

In this paper, we propose a formal test for the empirical validity of the proposed channel

of interconnection (summarized in the weights employed in each local VARX ∗, collected

in the so-called W matrix). Exploiting the specific estimation procedure in GVAR model-

ing, we can test the reduced form GVAR representation of the world as a W -dependent-
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restricted estimation procedure of reduced form VAR, and build a Likelihood Ratio (LR)

test for the restrictions imposed by the GVAR setting. Therefore, we offer a testing strategy

for the validity of the proposed set of weights derived from the economic literature. The

finite sample properties (size and power) of this new test are assessed via Monte Carlo sim-

ulations, proving that the test distribution indeed converges to the typical χ2
(m) distribution

where m represents the number of restrictions imposed by the GVAR setting.

In the empirical application, we consider the euro area sovereign bond yields example

in the pre-sovereign debt crisis period as in Favero (2013), which provides an interesting

framework to reveal the importance of the choice of the channel of interconnection.

As a preview of our results, we first show that the existing specification strategy based

on the goodness-of-fit to justify the proposed interconnection matrix does not rule out näıve

W matrices. Moreover, we show that existing literature has designed weights focusing on

whether the interconnection among nodes is strong or weak, neglecting the importance of

the sign of the interconnection. Specifically, in our empirical setting, the sign offers useful

insights regarding the degree of spillover (see, for example, Afonso et al., 2012) in the euro

area and on the potential “flight-to-quality” or “contagion” effects observed during the

subsequent sovereign debt crisis (Beber et al., 2009; Metiu, 2012).

Interestingly, we find signs of both mechanisms in euro area sovereign bond market well

before the outburst of the sovereign debt crisis. This result allows reexamining existing

literature on financial integration in the euro area in the period preceding 2010 (Baele et al.,

2004).

The paper proceeds as follows, Section 2 addresses the methodology. It describes the

GVAR representation and its local-to-general estimation procedure. It also develops the LR

test for the validity of the W matrix and evaluates the finite and large samples properties

(size and power) of the validity test using Monte Carlo methods. Section 3 describes the

empirical illustration, Section 4 presents the results, and Section 5 concludes the paper.
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2 Methodology

2.1 Local VARX* estimation, and the Global VAR solution

Following Pesaran et al. (2004), let us consider a system of N nodes, representing countries

or regions, indexed by i = 1, 2, . . . , N , observed over a certain period T , indexed by t =

1, 2, . . . , T . Each node features ki local variables collected in the ki × 1 vector Yi,t. We

can collect all the node-specific variables in the k × 1 vector Yt = (Y ′
1t, . . . , Y

′
Nt)

′ with

k =
∑N

1 ki. Local Vector Autoregressions get augmented by the the so-called star variables

Y ∗
i,t of dimension k∗

i ×1. Star variables are built as weighted averages of foreign counterparts’

variables for each node i. The objective is to obtain small scale country specific conditional

models to estimate.

Foreign weighted averages are of the form,

Y ∗
i,t = W̃iYt. (1)

The matrix W̃i has dimension k∗
i × k and collects the country specific weights,1 each row-

element-sum is equal to 1, and it measures the ex ante defined interaction of each node

with the foreign counterparts. Typically, in Global VAR literature, trade shares between

countries are assumed to be the channel of transmission, assuming hence that the more

two countries trade, the more interconnected they are.2

The resulting local Vector Autoregressive augmented models are of the following form,3

Yi,t = ΦiYi,t−1 + Λi0Y
∗
i,t + Λi1Y

∗
i,t−1 + ϵi,t, (2)

where ϵi,t
i.i.d.∼ (0,Σi) is the ki × 1 idiosyncratic residual term for node i with variance-

1The weights are assumed to be non-negative.
2Weights can also be variable specific (for example, trade shares for macro variables and financial flows

for financial variables) or time varying (see, for example, Cesa-Bianchi et al., 2012).
3For ease of explanation, we abstract here from deterministic components, time trends, and additional

lags.
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covariance matrix Σi of dimension ki×ki, Φi is the ki×ki matrix of lagged coefficients, and

Λi0 and Λi1 are the ki × k∗
i matrices collecting the coefficients associated with the foreign

variables.

It is worth noting that the estimation takes place at the local level in (2). Thus, to

obtain the GVAR representation of the global economy, we need to simultaneously solve for

all the domestic variables. Therefore, by stacking all local Vector Autoregressive augmented

models in (2) we obtain the equivalent representation,

Yt = Φ̃Yt−1 + Λ̃0Y
∗
t + Λ̃1Y

∗
t−1 + ϵt, (3)

where Y ∗
t = (Y ∗′

1,t, . . . , Y
∗′
N,t)

′ is the k∗ × 1 vector collecting all the node specific star vari-

ables, with k∗ =
∑N

i=1 k
∗
i , Φ̃ = diag(Φ1, . . . ,ΦN) is of dimension k×k, Λ̃0 = diag(Λ10, . . . ,ΛN0)

and Λ̃1 = diag(Λ11, . . . ,ΛN1) are of dimension k × k∗, and ϵt = (ϵ′1,t, . . . , ϵ
′
N,t)

′ is the k × 1

vector obtained by stacking all the country specific residual terms from (2).

Moreover, from (1), we can re-write the vector Y ∗
t in terms of the local variables’ vector

Yt as

Y ∗
t = W̃Yt, (4)

with W̃ = (W̃ ′
1, . . . , W̃

′
N)

′ being k∗ × k-dimensional matrix.

Therefore, we can specify (3) in terms of the local variables as

Yt = Φ̃Yt−1 + Λ̃0W̃Yt + Λ̃1W̃Yt−1 + ϵt. (5)

Re-arranging the terms we obtain

[Ik − Λ̃0W̃ ]Yt = [Φ̃ + Λ̃1W̃ ]Yt−1 + ϵt. (6)

We can define G = Ik − Λ̃0W̃ , and H = Φ̃ + Λ̃1W̃ , and express (6) as

GYt = HYt−1 + ϵt. (7)
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The matrix G is generally full rank and hence non-singular (Pesaran et al., 2004).4 There-

fore, we can express the GVAR representation of the world as the reduced form VAR

Yt = G−1HYt−1 +G−1ϵt, (8)

or, equivalently,

Yt = ΠYt−1 + ηt, (9)

Π = G−1H, (10)

ηt = G−1ϵt. (11)

The GVAR estimation at the local level of the parameters characterizing (2), and the

subsequent representation in (6) and (8), offers an interesting avenue for evaluating the

validity of the ex ante specified interconnection matrix W̃ .

Indeed, let’s first consider the case of a typical Structural VAR representation of the

form,

B0Yt = B1Yt−1 + ωt, (12)

with B0 and B1 being k×k matrices. B1 collects the autoregressive slope coefficients, while

B1 the instantaneous relation among target variables. The k×1 vector ωt is assumed to be

white noise, with its elements mutually uncorrelated with non-singular diagonal covariance

matrix Σω. The reduced form representation is of the form,

Yt = B−1
0 B1︸ ︷︷ ︸
A1

Yt−1 +B−1
0 ωt︸ ︷︷ ︸
vt

. (13)

Compared with the GVAR procedure outlined above, the parameters A1 and vt are typ-

ically estimated in the reduced form VAR, and subsequently, the matrix B0 (or B−1
0 ) is

identified from economic theory, institutional knowledge, or other external constraints.5

4The case of rank deficient matrix G is discussed in Pesaran (2015).
5For an extensive treatment of Structural VAR and identification strategies, see Kilian and Lütkepohl

(2017).
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The Likelihood level (whether considered at the structural or reduced form) reached by es-

timating A1 and vt is not structure-specific as, whatever assumption is made with regards

to the structure of the system, B−1
0 B1 = A1 and B−1

0 ωt = vt.

Conversely, in the GVAR case, in order to obtain the parameters G, H, and ϵt, first

local parameters in (2) are estimated, and only subsequently, the reduced form VAR rep-

resentation in (8) is retrieved. Therefore, each specification of the ex ante proposed matrix

W̃ implies different estimated local parameters and thus final reduced form representation.

It is important to underline that compared with standard Structural VARs, the local

VARX∗ specifications do not require Σi to be diagonal (in (13) Σω is required to be diago-

nal). Therefore, the residual terms ϵi,t cannot be considered structural shocks in the sense

that each of the k variables is driven by k distinct unidentified shocks.

2.2 Testing Strategy: the Likelihood Ratio Test

By looking at the GVAR reduced form representation in (9), we can exploit the specific

local-to-general estimation procedure for testing any W̃ matrix employed empirically. The

reduced form GVAR representation in (9) assumes that the ex ante-imposedW matrix, and

the subsequently estimated parameters, once the model is solved, maps the local VARX∗

systems into a valid global reduced form VAR representation.

Our objective is to design a testing strategy for H0 : W̃ = W vs H1 : W̃ ̸= W , with W

indicating the specific matrix employed for the local estimation. We exploit the intuition

that each W matrix proposed implies a different level of the reduced form log-Likelihood

function once the local parameters are estimated. Such a testing logic is not possible in the

Structural VARs’ framework as the identification strategy does not affect the level of the

log-Likelihood.6 Specifically, the reduced form VAR serves as the general representation of

6In particular, first the unrestricted parameters are estimated, the identification assumptions are then

proposed and the model solved to arrive to the interconnected local specifications.
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the world that the GVAR model estimates, once the specific channel of interconnection is

specified.

GVAR is therefore a W -specific nested model of the reduced form VAR, that represents

the unrestricted benchmark for evaluating the GVAR assumptions regarding the channel of

interconnections. If indeed the interconnection channel proposed is empirically valid, the

log-Likelihood value attained by the GVAR estimation and the value obtained by directly

estimating the reduced form VAR will not be statistically different from each other.

Assuming that the probability density function of the process is known, we indicate

with lnL(θu) the log-Likelihood function of the reduced form VAR representation of the

system characterized in (9) with no restrictions on the parameters’ space θu = {Π,Ση}. The

log-Likelihood function of the GVAR system as in (6) is indicated as lnLT (θr) with θr =

{W̃ , Φ̃, Λ̃0, Λ̃1,Σϵ}. We include W̃ among the parameters to explicitly give evidence that

the specific channel of interconnections proposed impacts the log-Likelihood as outlined

before.7 After the estimation, the model is solved to arrive to the reduced form specification

in (9) featuring (10) and (11). It is therefore clear that the validity of the interconnection

matrix can be assessed through the Likelihood Ratio Test (LRT) statistic computed as,

LR = −2T [lnL(θ̂r|W̃ = W )− lnL(θ̂u)], (14)

with lnL(θ̂r|W̃ = W ) being the log-Likelihood level attained after the estimation of the

GVAR parameters once the interconnection channel has been specified. The unrestricted

VAR maximum log-Likelihood level is lnL(θ̂u). Wilks (1938) result for large-sample distri-

bution of the Likelihood Ratio Test statistic ensures that such a LRT statistic is asymp-

totically distributed as a χ2
(m). The degrees of freedom, m, are computed as the difference

in the parameters’ spaces of the unrestricted VAR, and the GVAR models.

The proposed LR test in (14) is an asymptotic test. The unrestricted VAR to estimate,

7In fact, Gross (2019) estimates the interconnection channel jointly with the other parameters.
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and the GVAR solution to derive, feature a number of parameters that would result in

over-rejecting the true interaction matrix W̃ (if correctly identified) in empirical exercises.

As outlined in the following simulation section, the over-rejection increases the larger the

number of items/nodes, and the shorter the time series. It thus becomes fundamental to

consider LR test corrections in finite samples.

Importantly, existing literature offers solutions to address the short sample distortions

through (i) bootstrapping techniques (Kilian, 1998; Kim, 2014), (ii) applying a Bartlett

correction, also possible jointly with bootstrapping techniques (see, for example, Lagos

and Morettin, 2004; Canepa and Godfrey, 2007), and/or (iii) applying high-dimensional

corrections (see, for example, Bai et al., 2009, 2013).

2.3 Size and Power Analyses

To analyze the behavior of the validity test in finite samples, size and power analysis is

proposed via Monte Carlo simulations. The aim is to provide evidence that indeed, GVAR

models are W -dependent restricted procedures to estimate global reduced form VARs.

Once the empirical convergence in large sample to the asymptotic significance level of the

correspondent theoretical χ2 is verified, we propose the size-adjusted power. The power will

be verified for two sets of errors in the identification of the interconnection channel, when

half of the weights are wrongly identified and when all the weights are wrongly identified.

The average identification errors proposed are small in size, in order to verify the capability

of the test of rejecting small departures from the theoretically correct model.

2.3.1 Size analysis

The level of significance of our test is assessed through Monte Carlo methods. Therefore, we

simulate several draws of the data generating processes (DGPs) under the null hypothesis.

For each draw, the GVAR model is estimated under the assumption that the correct W̃
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matrix of interactions is employed. We then estimate the unrestricted VAR model and

compute the LR test.8 Several DGPs are considered to evaluate the behavior of our

validity test under the null hypothesis. The specific parameters employed are available in

the Supplementary Material.

The first DGP (DGP1) corresponds to a stationary 4-nodes GVAR model. Given the

low number of countries, no contemporaneous weighted average interconnection is allowed

(as it would violate the weak exogeneity condition). The parameters are randomly drawn

such that the roots of the lag polynomial strictly lie within the unit circle. Local errors are

normally distributed with zero mean and 0.5 variance. In such a setting, the unrestricted

VAR admits 16 slope parameters to estimate, while the GVAR specification admits 8 (i.e.,

the elements of the diagonal matrices Λ̃1 and Φ̃). Therefore, the degrees of freedom of the

validity LR test are 8, given that no restrictions are imposed on the estimated covariance

matrix of the errors.

DGP2 corresponds to a stationary 10-nodes GVAR model. We still do not allow for

any contemporaneous term (this assumption will be relaxed in DGP4). The parameters are

randomly drawn such that the roots of the lag polynomial strictly lie within the unit circle.

Local errors are normally distributed with zero mean and 0.5 variance. The unrestricted

VAR slope parameters to estimate are 10 × 10 = 100 while the GVAR parameters’ space

features 10× 2 = 20 elements (i.e., the elements of the diagonal matrices Λ̃1 and Φ̃). The

degrees of freedom of the validity LR test are thus 80.

DGP3 corresponds to the 10-nodes vector error correction model proposed by Favero

(2013). The parameters chosen are the ones reported in Favero (2013), the weights used are

fixed and obtained from the average of the time-varying weights employed in the original

paper. It is worth noting that two separate W̃ s are employed. Local errors are normally

distributed with zero mean and 0.5 variance. The unrestricted VEC slope parameters

8Codes in R are available from the authors upon request.
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to estimate are 10 × 10 = 100 while the GVEC parameters’ space features 10 × 3 = 30

elements (i.e., the elements of the two diagonal matrices Λ̃1, as two interconnection matrices

are employed, and Φ̃). The degrees of freedom of the validity LR test are thus 70.

DGP4 corresponds to a stationary 11-nodes GVAR model. Instantaneous GVAR in-

terconnection is present, and the parameters are randomly drawn such that the roots of

the lag polynomial strictly lie within the unit circle. Local errors are normally distributed

with zero mean and unit variance. The unrestricted VAR slope parameters to estimate are

11× 11 = 121 while the GVAR parameters’ space features 11× 3 = 33 elements (i.e., the

elements of the diagonal matrices Λ̃0, Λ̃1, and Φ̃). The degrees of freedom of the validity

LR test are 88.

To derive the empirical size of this test, 10, 000 replications per DGP are generated, and

we report in Table 1 the rejection frequencies in percentage points of the null hypothesis.

Several sample sizes are considered: T = 100, 150, 200, 500, 1, 000. We discard 100 burn-in

observations included to ensure that the rejection frequencies are free of any initial value

dependence.

The rejection frequencies for the 4-node DGP1 are very close to the nominal size even

when the sample size is very small (T = 100). When increasing the number of nodes and

allowing for nonstationarity (DGP2 and DGP3), the rejection frequency grows in short

samples. It also appears that the convergence speed to 5% is slower and the nominal size is

reached only when the sample size is very large (T > 1, 000). Similar findings are observed

when including a contemporaneous term. For the latter cases, a bootstrap version of the

LR test is suggested, especially since the test statistic is pivotal.9

9The bootstrap procedure is presented in the Supplementary Material.
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Table 1: Rejection frequencies under the null hypothesis. This table shows the

rejection frequencies, as a %, of the null hypothesis considering several DGP s. DGP1 cor-

responds to the 4-node stationary case, DGP2 corresponds to the 10-node stationary case,

DGP3 corresponds to the non-stationary case proposed by Favero (2013), and DGP4 cor-

responds to the 11-country stationary case with a contemporaneous term. Simulations are

performed with sample size T = 100, 150, 200, 500, 1, 000. For each sample size and DGP ,

10, 000 simulations are performed for a sample size of T + 100. The first 100 observations

are discarded to avoid potential bias due to initial value dependence.

T 100 150 200 500 1,000

DGP1 6.89 6.40 6.02 5.35 5.19

DGP2 19.38 12.53 10.36 6.75 5.89

DGP3 45.00 27.92 18.92 9.54 6.91

DGP4 47.18 32.63 25.98 12.36 5.85

2.3.2 Power analysis

For the power analysis, the four previous DGPs are retained along with their param-

eters. Instead of simulating under the null hypothesis, alternative W s are employed.

Several misspecifications are considered. For DGP1, W is simply composed of equal

weights (i.e., 0.33). For DGP2, DGP3, and DGP4, we randomly draw the alternative

matrices.10 To highlight the magnitude of the difference between the W matrix consid-

ered and that under the null hypothesis (W̃ ), we compute the average absolute distance

(dist(W,W̃) = 1
#ofweigths

∑N
i=1

∑N
j=1 |wij − w̃ij|). The same 5 sample sizes considered in

10The specific matrices employed are available in the Supplementary Material. We employ a different

scheme for DGP1 to ensure that the distance from the null hypothesis is comparable in magnitude to that

of the other DGP s.
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the previous section are considered to evaluate the impact of the number of observations

on the power. Simulations are performed under the same conditions regarding replications

(10, 000) and burn-in dimension (100 observations) as in the case of the size. Rejection

frequencies, which correspond to the size-adjusted power, are reported in Table 2.

Table 2: Rejection frequencies under alternative hypotheses. This table shows

the rejection frequencies as a % of the null hypothesis when simulating several DGP s

with different misspecified transmission matrices (W̃ ). DGP1 corresponds to the 4-node

stationary case, DGP2 corresponds to the 10-node stationary case, DGP3 corresponds to

the non-stationary case proposed by Favero (2013), and DGP4 corresponds to the 10-node

stationary case with a contemporaneous term. Half (All) indicates that the misspecification

is imposed for half (all) of the weights. The distance to the null hypothesis is calculated

as dist(W,W̃) = 1
#ofweigths

∑N
i=1

∑N
j=1 |wij − w̃ij|. Simulations are performed with sample

size T = 100, 150, 200, 500, 1, 000. In each case, 10, 000 simulations are performed, for a

sample size T + 100. The first 100 observations are discarded to avoid the potential bias

due to initial value dependence.

dist(W,W̃) T=100 T=150 T=200 T=500 T=1,000

Half All Half All Half All Half All Half All Half All

DGP1 0.048 0.084 34.45 52.13 52.96 73.54 68.68 88.08 99.18 99.98 100.00 100.00

DGP2 0.041 0.079 8.66 11.78 11.45 18.12 14.18 24.23 39.94 69.99 82.43 98.47

DGP3 0.040 0.080 6.59 14.27 7.45 21.86 9.50 33.56 20.54 88.10 48.00 99.97

DGP4 0.032 0.060 6.86 9.90 8.15 13.74 9.49 18.55 20.15 55.33 46.62 94.28

As expected, the size-adjusted power is positively linked to the sample size. For the

one-node system without contemporaneous term inDGP1, the rejection frequency increases

quickly and reaches 0.99 from T = 500. When the number of parameters increases, rejection

decreases. In the finite sample, the power is fairly low, indicating that the null hypothesis

of validity is often not rejected in small samples. This result is coherent with the literature
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considering corrections to the short sample problems of asymptotic tests, as outlined in

Subsection 2.2.

The size-adjusted power also depends on the characteristics of the DGP considered.

The rejection frequency reaches its maximum for DGP1, followed by DGP2 and DGP3.

DGP4 contains a contemporaneous term that deteriorates the power, whereas DGP3 is

nearly non-stationary, also impacting the rejection frequency. Coherently, the power is

also linked to the distance to the null hypothesis. The cases in which only half of the W

elements deviate from the null hypothesis (i.e., lower dist(W,W̃)) always exhibit a lower

power than in the case in which all the weights are misspecified (i.e., higher dist(W,W̃)).

3 Empirical Analysis

To illustrate the importance of the proposed testing strategy in GVAR modeling, we con-

sider the case of the sovereign bond spreads of the euro area countries. Modeling govern-

ment bonds has become very popular since the onset of the European sovereign debt crisis.

Analysts have sought to identify the respective shares of local specific factors, based on

fiscal fundamentals and growth, and common factors, corresponding to global appetite for

risk. Studies based on local VAR representations (see, for example, Sgherri and Zoli, 2009;

Favero and Missale, 2012) have measured these shares. In a seminal analysis, Favero (2013)

demonstrated the superiority of GVAR models based on fiscal fundamentals, as they allow

us to quantify a third factor, in line with the uncovered interest rate parity condition, the

expectations of exchange rate fluctuations associated with the risk of the dissolution of the

euro area. This factor has been crucial since the European sovereign debt crisis outburst.

Indeed, in a GVAR framework, sovereign bonds’ interdependence is well captured by con-

sidering each country’s spread as a function of the other European government bond spreads
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via the interconnection matrix W .11 In addition, this framework easily accommodates the

presence of other fundamental factors, such as time-varying global risk aversion (see, for

example, Codogno et al., 2003; Geyer et al., 2004), without overlooking the importance of

local factors.

3.1 Data description

The empirical exercise concerns 10-year sovereign bond interest rate spreads on German

Bunds for Austria, Belgium, Finland, France, Greece, Ireland, Italy, the Netherlands, Por-

tugal, and Spain. Data are extracted from Datastream, are of monthly frequency, and

cover the period from January 2000 to December 2009 (120 observations). The sample

corresponds to the period before the sovereign debt crisis to match the data used in Favero

(2013). The euro area sovereign crisis period that began at the end of 2009, and the post-

crisis period are excluded. The US corporate long-term Baa − Aaa spreads are extracted

from the FRED database of the Federal Reserve Bank of St. Louis.12 Figure 1 illustrates

the evolution of the interest rate spreads for the countries over time. It is noticeable that

that EA sovereign bond interest rates share similar path, supporting hence the idea of

a nominal convergence as promoted by the Maastricht treaty. The dispersion tends to

increase at the edge of the sovereign debt crisis. The period of investigation is therefore

limited to the pre-crisis period.

11W indicates the specific matrix employed, not to be confounded with W̃ which is the valid intercon-

nection matrix.
12Baa and Aaa are two of the ratings assigned by the rating agency Moody’s to long term corporate

bonds reflecting credit worthiness. Aaa is given to an obligor with extremely strong capacity to meet its

financial commitments, Baa to an obligor with adequate capacity. The wider the differential between Baa

and Aaa long term rates, the more risk averse investors are (Favero and Missale, 2012).
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Figure 1: Long-term sovereign bond spreads over the German Bund. This fig-

ure shows the behavior of 10-Year sovereign bond spreads over the German benchmark

from January 2000 to December 2009, in % points. The countries under analysis are Aus-

tria (OE), Belgium (BG), Finland (FN), France (FR), Greece (GR), Ireland (IR), Italy

(IT), the Netherlands (NL), Portugal (PT), and Spain (ES). Frequency: Monthly. Source:

DataStream.

3.2 Modeling sovereign bond spreads: The choice of W

Our aim is to evaluate the validity of the W matrices employed to model sovereign yield

spreads, taking into account the importance of non-local, European risk factors. The

purpose is twofold. On the one hand, we show that, based on existing empirical evaluations,

we cannot conclusively rule out näıve W matrices. On the other hand, we seek to assess

the empirical validity of the matrices of interactions proposed by existing literature, and

the empirical capability of rejecting matrices that are not valid.

The starting point is represented by a VEC(1) model that does not allow for spillovers

among country blocks. In this case, sovereign bond spreads are modeled as time-varying
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long-run local equilibrium-reverting processes of the form,

∆Yi,t = βi0 + βi1Yi,t−1 + βi2(Baat−1 − Aaat−1) + βi3∆(Baat − Aaat) + ei,t, (15)

where ∆Yi,t = Yi,t − Yi,t−1, Yi,t is the 10-year sovereign yield spread between country i and

Germany (the usual reference in the euro area), ei,t is the white noise residual term for

country i with finite variance, Baa− Aaa represents the time varying global risk aversion

as measured by the long term US Baa − Aaa corporate bond spreads. This framework is

employed in Favero (2013) as a benchmark to assess the relevance of foreign information,

as it does not include any weighted average of foreign counterparts. We will refer to it as

basic model.

As anticipated, Favero (2013) proposes to augment the specification in (15) in a GVAR

fashion. Specifically, he identifies wij,t as time-varying weights corresponding to the distance

between countries i and j at time t, in terms of differences in fiscal fundamentals. In other

words, he considers the public debt-to-GDP ratio and deficit-to-GDP ratio of each country

i. For each fiscal indicator, a distance is built as the absolute difference between the values

of countries i and j normalized by the value imposed by the Maastricht criteria (i.e., 3% for

deficit, and 60% for debt). The deficit- (defi,t) and debt-to-GDP (debti,t) ratios are taken

as a simple average of the actual values and the forecasts (as known at time t) published

by the European Commission to reflect also the importance of the future fiscal outlook. It

is then possible to build two distance matrices as follows,

wk
ji,t =

w∗,k
ji,t∑

j ̸=iw
∗,k
ji,t

, w∗,k
ji,t =

1

distkji,t
, with k = {def, debt},

distdefji,t = |defj,t − defi,t|/3,

distdebtji,t = |debtj,t − debti,t|/60,
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Favero (2013)’s model is thus the following,

∆Yi,t = βi0 + βi1Yi,t−1 + βi2(Baat−1 − Aaat−1) + βi3∆(Baat − Aaat)

+ βi4(debti,t − debtbd,t) + βi5(defi,t − defbd,t) (16)

+ βi6Y
∗,debt
i,t−1 + βi7Y

∗,def
i,t−1 + ei,t,

where Y ∗,k
t =

∑
j ̸=i w

k
ji,tYj,t with k = {def, debt}, ∆(Baat − Aaat) = (Baat − Aaat) −

(Baat−1−Aaat−1). The intuition would be that the more two countries are similar in terms

of fiscal fundamentals, the more interdependent they are. Note that Favero (2013) also

includes debt- and deficit-to-GDP ratios as explanatory variables in the model, expressed

as distances from the German values (in (16), bd indicates Germany).

In order to show that existing strategies regarding model adequacy in GVAR models

are not capable of conclusively rejecting näıve W matrices, we consider a Global model

including the country ranking maintained by the International Federation of Association

Football in 2020 as interconnection channel.13 The elements of W are based on the inverse

of the absolute difference in points in the ranking between countries i and j. Weights are

then normalized to sum to 1.14 The model thus has the following form,

∆Yi,t = βi0 + βi1Yi,t−1 + βi2(Baat−1 − Aaat−1) + βi3∆(Baat − Aaat)

+ βi4Y
∗,F IFA
i,t−1 + ei,t, (17)

where Y ∗,F IFA
i,t =

∑
j ̸=i w

FIFA
ij Yj,t. The näıve intuition would be that the more two countries

will behave similarly (at least 10 years in the future) in terms of men’s national football

team performance, the more they are interdependent today. This W matrix is assumed to

have almost no effect on the transmission effect among government bond spreads.

13We consider the men’s ranking. Original data are downloaded from https://www.fifa.com/fifa-world-

ranking/ranking-table/men/ on June, 1, 2020.
14W matrices are reported in the Supplementary Material.
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3.2.1 Assessing Model Adequacy using the Goodness-of-fit

Typically, the relevance of including foreign information in country specific systems is

assessed by comparing the basic model in (15) vis-à-vis the specific GVAR model proposed.

In Table 3, we report the Adjusted R-squared for the basic model, the näıve global model

featuring FIFA-ranking based weigths along with Favero (2013) debt- and deficit-to-GDP

ratio based weights described above. The adjusted R-squared measure of the goodness-of-

fit ensures that simply adding a larger number of covariates does not imply automatically

a better performance of a model.

Table 3: Adjusted R-squared for the country systems. This table reports the Ad-

justed R2 values calculated for the different models (Basic, FIFA ranking, Favero, 2013).

The largest adjusted R2 per country are in bold. The basic model is the one with no

spillovers among country blocks.

Country
Adj. R2

Basic FIFA Favero (2013)

Belgium 0.06 0.08 0.08

Spain 0.15 0.12 0.12

Finland 0.15 0.18 0.19

France 0.13 0.17 0.14

Greece 0.16 0.19 0.31

Ireland 0.28 0.29 0.36

Italy 0.23 0.25 0.20

Netherlands 0.25 0.29 0.27

Austria 0.19 0.21 0.37

Portugal 0.16 0.23 0.30
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First, employing the Adjusted R-squared to compare the FIFA-ranking GVAR model

with the basic one, we would directly admit that a W matrix based on (future) football

performance is a good indicator of the interconnections observed in the euro area. This

reasoning is though biased. Specifically, in a setting such as the one of the European

Monetary Union, where countries are structurally interconnected, comparing a framework

that admits no interconnections with one that admits interconnections, we risk to obtain

misleading results. In fact, such a comparison can only testify the rejection of the basic

model in favour of any model admitting interconnections.

Second, when comparing the goodness-of-fit measures of the FIFA-ranking-based inter-

connections with the debt- and deficit-to-GDP ratio as in Favero (2013), we can outline the

second drawback of such a model adequacy decision. Specifically, although numerically the

Adjusted R-squared is larger for more countries in the case of the framework proposed by

Favero (2013), the FIFA ranking exhibits better performances for relevant countries such

as France, Italy, and the Netherlands, while exhibiting the same performance for Spain

and Belgium. This testing strategy for the interconnection channel does not even rule out

näıve matrices. Its capability of rejecting one interconnection channel compared to another

one in competitive models is very limited. Therefore, it appears necessary the design of a

testing procedure for the empirical validity of the interconnection channel.

3.2.2 Estimating interconnections and the sign dilemma

Before introducing the results from our testing strategy in the empirical exercise, it is worth

noting that it is possible, in GVAR modeling, to estimate the interconnection weights.

Specifically, Gross (2019) proposes to estimate the W matrix jointly with the local

GVAR coefficients. The procedure starts from local models of the form,

∆Yi,t = βi0 + βi1Yi,t−1 + βi2

∑
i ̸=j

wijYj,t−1 + ei,t, (18)
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and estimates the weights together with the local parameters according to the following

constrained optimization problem,

min
Γi,wij

T∑
t=1

e2i,t (19)

subject to, wij ≥ 0 for i ̸= j, wii = 0 and
∑N

j=1wij = 1. Γi is the vector collecting all the

local parameters of (18), and wij are the measures of the tightness of the interconnection

between countries in a standard GVAR framework. Note that each wij is constrained to

be non-negative. The estimated W matrix then forces the transmission mechanism from

foreign countries to be uniquely in one direction (either positive or negative, based on the

sign of the estimated βi2). Therefore, only the relative intensity of foreign counterparts

in the W matrix is estimated through this procedure (the larger the weight, the more

interdependent the countries are, given the global effect on the local economy).

However, central to the discussion regarding sovereign bonds in the euro area is the con-

temporaneous presence of two different mechanisms, “contagion” and “flight-to-quality”.

Intuitively, the diffusion of a shock via the country-specific blocks is asymmetric and could

exhibit either positive or negative spillovers. In the case of shock transmission in the

context of euro area sovereign bonds, allowing for such a mechanism is crucial. Beber

et al. (2009) and Candelon and Tokpavi (2016) found that shock into a particular coun-

try’s sovereign yield can decrease core European countries’ sovereign bond yields due to

outflows of money from peripheral countries in the euro zone and inflows to financially

sounder countries. This effect is labelled the “flight-to-quality”. Moreover, rising yields

in one country might lead to higher yield levels for other peripheral countries in the euro

zone, usually labeled “contagion” (Favero and Missale, 2012).

In order to account for such heterogeneity while keeping the weights non-negative, it

would be important to split the interaction matrix into two different matrices, one collecting

the relative intensity of interconnection with foreign countries positively impacting local
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economies, and the other collecting the countries with negative impact.15

To control for this characteristic, and moreover to ensure we have a benchmark to assess

the empirical capability of our test regarding not rejecting a valid matrix, we propose an

additional weighting scheme. Specifically, the unrestricted VEC model (featuring all the

countries and augmented with the US long-term corporate bond spread factor as common

variable) estimation is performed, and the off-diagonal elements (i.e., cross-country coef-

ficients) are tested via simple t − tests. The off-diagonal coefficients’ t − tests provide

important information not only regarding the significance of the specific relationships in

the multivariate linear model (proxies we will use for the magnitude of each wij) but also

regarding the sign of the specific cross-country coefficients. Based on this information, we

can therefore consider two different W matrices, that associated with a negative coefficient

(W−) and that associated with a positive coefficient (W+) in the local V ARX∗ models.

Importantly, we need to make sure that our LR test indeed does not reject a matrix that is

correctly identified, therefore, using the t− test of the unrestricted representation, we make

sure that the weights reflect the desirable characteristics for the cross-country weights. This

GVEC model is thus of the form

∆Yi,t = βi0 + βi1Yi,t−1 + βi2(Baat−1 − Aaat−1) + βi3∆(Baat − Aaat)

+ βi4

∑
i ̸=j

w+
ijYj,t−1 + βi5

∑
i ̸=j

w−
ijYj,t−1 + ei,t. (20)

The proposed split of the transmission matrices allows for an asymmetric transmission of

shocks. However, the existing literature has only focused on one part of the problem, that

is, the identification of the magnitude of the interaction, while overlooking the importance

of the sign.16

15The results do not change if we decide to normalize the weights to sum to 1 in total or by W matrix.
16To the best of our knowledge, only Aquaro et al. (2021) consider, in the context of real estate markets,

the possibility of a positive and a negative interaction matrix.
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4 Results

4.1 Testing näıve vs valid interconnections

In the previous section we described the empirical setting, and the different interconnec-

tion matrices considered for our Likelihood Ratio Test based strategy. In this section, we

present the results from our validity test and outline the importance of such a model ade-

quacy check. The new validity test (14) is implemented for the four different W matrices,

considering both the asymptotic and the bootstrapped critical values at the standard level

of 95%. Table 4 reports the results.

Table 4: W validity test. Näıve vs valid matrices. This table reports the Likelihood

Ratio Test statistics (Test Stat.) calculated for the different W matrices (FIFA, Favero,

2013; Gross, 2019, T-stat based). The asymptotic critical values (Asymp. CV 95%) cor-

respond to the 95% quantile of a χ2 distribution with adequate degrees of freedom. The

bootstrapped critical value (Boot. CV 95%) corresponds to the 95% quantile of the distri-

bution obtained using the sequence presented in the Supplementary Material. When the

null hypothesis is not rejected at a confidence level of 95% at the bootstrapped level, the

test statistic appears in bold.

W Test Stat. Asymp. CV 95% Boot. CV 95%

FIFA 334.40 101.88 257.03

Gross (2019) 290.52 101.88 246.63

T-Stat based 83.42 90.53 175.25

First, the test rejects the null hypothesis of the validity of the W matrix based on the

FIFA ranking. This result is satisfying, as finding evidence that sovereign yield spreads’

interdependence could be based on the future performance of national football teams would
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be puzzling. The Likelihood Ratio Test therefore rejects the näıve W matrix, a requirement

the goodness-of-fit approach outlined in the previous section did not fulfil.

Second, we want to make sure that our test does not reject a matrix that is empirically

valid. Indeed, the partitioned version of W outlined in Section 3.2.2 provides an ideal

setting for checking the empirical performance of our test.17 As expected, the test does not

reject at the 95% confidence level the validity of the unrestricted t− statistics based and

partitioned W matrix as of (20).

The outcome of the test corroborates the idea that the heterogeneity within the euro

zone sovereign bond market was relevant even before the occurrence of the sovereign debt

crisis in late 2009. This is very insightful, as most of the existing literature describes

the period under analysis as financially integrated (Baele et al., 2004). According to this

literature, investors perceived sovereign bonds in the euro area as perfect substitutes, given

the observed co-movements at low levels of government financing rates (see Figure 1). Our

results instead show that symptoms of fragmentation were already relevant in the euro area

sovereign bond market well before the outbreak of the sovereign debt crisis.

From the W matrices reported in the Supplementary Material, we can identify the

features that will constitute the core of the fragmentation argument following the euro

area debt crisis. In our GVAR framework, “contagion” would mean the centrality of large

weights in the W+ matrix of financially fragile economies, characterized by high levels

of debt- and deficit-to-GDP ratios (namely, Greece, Italy, Ireland, Portugal, and Spain).

The “flight-to-quality” mechanism would instead arise if we detected a centrality in the

W− matrix of weights associated with countries belonging to fragile (sound) economies for

sound (fragile) economies.

According to the results, Portugal and Ireland are the countries where contagion is

the most relevant feature of foreign influence (52% and 49%, respectively). Greece was

17The W matrices are reported in the Supplementary Material.
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already showing itself to be the most fragile economy in the euro zone. This country, which

subsequently showed the highest sovereign rates, experienced almost equal influence from

the “contagion” and “flight-to-quality” effects (accounting for 65% of all foreign influence),

with Spain (22%) and Italy (12%) being the highest weighted for the “contagion” effect and

Austria being the highest weighted (29%) for the “flight-to-quality” effect. Spain and Italy

show milder influences of the two effects at this early stage, although 35% of Italian for-

eign influence is represented by a negative relationship with financially sounder economies.

Spain instead shows a close relationship to that of Italy (31% of foreign influence) for the

“contagion” effect.

In the case of financially sounder economies, 36% of the foreign influence for the Nether-

lands comes from the “flight-to-quality” effect, while Austria has the highest weight in the

“flight-to-quality” effect coming from Ireland. Finland has the least influence from the two

effects, being mostly related to core countries (32% from Belgium). Interestingly, among

the financially sounder economies, Belgium and France are related to foreign economies

similarly to financially fragile economies, even if they have been less affected by the debt

crisis afterwards. Whereas in the case of France, it appears that after the outbreak of the

sovereign debt crisis, the specific policies implemented allowed the country to resist the

suggested signs of fragility, in the case of Belgium, we note a “flight-to-quality” effect that

might have improved its financing rates coming from Ireland (27% of foreign influence). It

is thus important to test for the validity of the transmission matrix also from an economic

perspective. Indeed, the non-rejected W matrix provides important insights regarding

sovereign bond spreads spillover effects inside the euro area even before the outburst of the

sovereign debt crisis.

An interesting confirmation regarding the importance of the sign when modeling sovereign

bond spreads in the euro area in a GVAR framework comes from the employment of Gross

(2019) estimation technique. The estimated W should be accurate from an empirical per-
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spective, at the cost of its economic interpretation. However, the test rejects the validity

of this estimated transmission matrix. The reason for such rejection comes from the im-

position of the non-negativity of each element of the estimated interconnection matrix. As

explained in the previous section, such a constraint forces the optimization to choose the

more relevant set of countries on the basis of a single β coefficient responsible for the local

effect of all the foreign counterparts. Intuitively, the coexistence of “fight-to-quality” and

“contagion” effects among countries documented in the literature is not possible. This

constraint constitutes a limitation of Gross (2019) approach causing the rejection of the

estimated W .

4.2 Testing the validity of the proposed interconnections

In the previous subsection we made sure that our testing strategy indeed rejects näıve

interconnection matrices and does not reject valid ones. Moreover, we outlined the im-

portance of sign heterogeneity of the global counterparts when modeling sovereign bond

spreads inside the euro area. It is now time to discuss the debt- and deficit-to-GDP GVAR

framework proposed by Favero (2013).

Looking at Table 5, we notice that the fiscal fundamental distance framework gets

rejected by our test.18 Economically, it implies that fiscal indicators (debt- and deficit-to-

GDP ratios) alone are not adequate factors to explain the interdependence among sovereign

yield spreads across euro area countries. However, as proven in the previous subsection,

the rejection might be caused by the non-negativity constraint on the interconnection

18The slow moving debt- and deficit-to-GDP ratios employed by Favero (2013) do not change the char-

acteristics of the LR test. As a matter of fact, if we consider a fixed weights GVAR framework where the

weights are the average of the employed time varying debt- and deficit-to-GDP ratios, the LR test statistic

value is 303.27 (compared with the 303.02 of the time varying specification). The validity of this framework

also gets rejected both considering the asymptotic and the bootstrapped critical values.
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Table 5: W validity test. The sign dilemma. This table reports the Likelihood Ratio

Test statistics (Test Stat.) calculated for the FIFA, and Favero (2013)W matrices, adjusted

by the sign. The asymptotic critical values (Asymp. CV 95%) correspond to the 95%

quantile of a χ2 distribution with adequate degrees of freedom. The bootstrapped critical

value (Boot. CV 95%) corresponds to the 95% quantile of the distribution obtained using

the sequence presented in the Supplementary Material. FIFA Adj. corresponds to a model

that employs the weights based on the FIFA ranking, but featuring two W matrices, one

collecting weights for countries exhibiting a negative sign in the unrestricted VAR, and one

collecting countries exhibiting a positive sign in the unrestricted VAR. Favero (2013) Adj.

corresponds to a model that employs the weights as in Favero (2013), but featuring two W

matrices, one collecting weights for countries exhibiting a negative sign in the unrestricted

VAR, and one collecting countries exhibiting a positive sign in the unrestricted VAR. When

the null hypothesis is not rejected at a confidence level of 95% at the bootstrapped level,

the test statistic appears in bold.

W Test Stat. Asymp. CV 95% Boot. CV 95%

Favero (2013) 303.02 90.53 197.97

FIFA Adj. 281.04 90.53 206.04

Favero (2013) Adj 127.35 67.51 138.87

matrices being too tight for the setting considered. Therefore, we assess the validity of the

interconnection channels proposed when adjusting by the sign. Specifically, we keep the

division of foreign counterparts into positive and negative spillover groups as in (20) while

employing the weights proposed by Favero (2013). Very interestingly, we can see from Table

5 that such a framework does not get rejected at the bootstrapped level. Intuitively, this

result implies that indeed the channels proposed by Favero (2013) are valid interconnection
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proxies. The more two countries are similar in terms of debt- and deficit-to-GDP ratios,

the more interconnected they are. However, the interconnection with foreign counterparts

exhibits an heterogeneous effect. Indeed, the non-rejected framework allows new inferences

related to the coexistence of “fight-to-quality” and “contagion” effects among countries.

It is now important to make sure that the sign is not the only reason why the modified

Favero (2013) framework does not get rejected by the test. We therefore modify the FIFA

ranking accordingly. Again, we divide foreign counterparts into the two groups implied

by the framework in (20), and then apply the weights from the FIFA ranking distance.

As we can see from Table 5, even when adjusted by the sign of the interconnections, the

FIFA ranking gets rejected both at the asymptotic and the bootstrapped level. Therefore,

although central for making sure that the interconnection matrix is valid, the sign inclusion

does not automatically imply the non rejection of the W .

5 Conclusion

GVAR models represent an effective and intuitive econometric framework to analyze global

interdependence in a multi-country/market environment. GVARs rely on a specific inter-

action matrix W , which determines the tightness of the interconnection among units. The

direct interpretability of this channel for the transmission of shocks represents one of the

reasons for its popularity. However, theW matrices employed in this literature are proposed

ad hoc and justified by the economic literature, but never empirically tested.

In this paper, we prove that by exploiting the local-to-general logic of GVAR estimation

process, it is possible to clearly identify the restrictions imposed to characterize the specific

transmission channel. Therefore, we design a novel model adequacy LR test based strategy

to empirically validate the proposed W matrix. The asymptotic properties of the test are

assessed via Monte Carlo methods.
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To demonstrate the importance of empirically validating the assumed matrix of inter-

actions, we apply our new test to the GVAR modeling of sovereign bond yields for the

euro area countries before the outbreak of the sovereign bond debt crisis in late 2009 as in

Favero (2013).

First, we prove that without testing for the matrix of interaction, we cannot rule out

even näıve transmission channels. In fact, we show that when employing existing tests

based on in-sample fit performance, we fail to reject a matrix based on the FIFA rankings

of national football teams. Moreover, when compared to a more economic-based interaction

matrix such as that based on debt- and deficit-to-GDP ratios (as proposed by Favero, 2013),

we cannot conclusively decide which performs better. We conclude that existing tests

are concerned with the rejection of closed economy models (featuring no interdependence

among countries) without checking whether the specific transmission channel proposed is

empirically valid.

Second, by employing our LR test, we reject the W matrix based on FIFA rankings,

thereby excluding any involvement of future football performance as proxy for cross-country

interdependence. Interestingly, our test also rejects the debt- and deficit-to-GDP-based

interaction model proposed by Favero (2013) and the estimated W matrix proposed by

Gross (2019).

We find that the LR test does not reject a matrix featuring a clear distinction between

positive and negative interdependence. As a result, when modeling interconnections among

euro area sovereign bond spreads, we must recognize that a country can be the source of

increasing yields for some countries and of decreasing yields for others. Even if the sample

considered is prior to the sovereign debt crisis, signs of likely “contagion” and “flight-to-

quality” effects were thus already evident.

The new test presented in this paper paves the way for a wide range of economic im-

plementations of GVAR models. Specifically, testing the interaction matrix would preserve
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the intuitive interpretation of the proposed channel for the transmission of shocks among

local markets while ensuring that the restrictions imposed are supported by empirical data.

Inferences based on such a matrix would therefore be both theoretically sound and empir-

ically valid.

SUPPLEMENTARY MATERIAL

Testing for the Interconnection Channel in Global VAR models: Supplemen-

tary Material. The supplementary material to the paper Testing for the Interconnection

Channel in Global VAR models reports the Simulated Data Generating Processes employed

for the simulation exercise, the W matrices tested in the empirical exercise, and the Boot-

strapped Likelihood Ratio test procedure implemented for the empirical exercise.

References

Afonso, A., D. Furceri, and P. Gomes (2012). Sovereign credit ratings and financial mar-

kets linkages: application to European data. Journal of International Money and Fi-

nance 31 (3), 606–638.

Aquaro, M., N. Bailey, and M. H. Pesaran (2021). Estimation and inference for spatial

models with heterogeneous coefficients: an application to US house prices. Journal of

Applied Econometrics 36 (1), 18–44.
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1 Simulated Data Generating Processes

We list the different coefficients and W matrices employed for the simulation exercise, both

for the size and power sections.

The first DGP is a 4-node stationary case with no contemporaneous term. The coefficients

are in tables from 1 to 2. The second DGP is a 10-node stationary case with no contem-

poraneous term. The coefficients are in tables from 3 to 6. The third DGP is based on

the 10-country non-stationary case of Favero (2013). Therefore, it features two different

W matrices (computed here as the averages of the debt- and deficit-to-GDP time varying

fiscal distance proposed in the paper). The coefficients are in tables from 7 to 13. The

fourth DGP is an 11-node case with contemporaneous term. The coefficients are in tables

from 14 to 18.

Table 1: Φ̃ and Λ̃1 of DGP1

Φ̃ 1 2 3 4

1 0.60 0.00 0.00 0.00

2 0.00 0.50 0.00 0.00

3 0.00 0.00 0.66 0.00

4 0.00 0.00 0.00 0.56

Λ̃1 1 2 3 4

1 0.75 0.00 0.00 0.00

2 0.00 0.60 0.00 0.00

3 0.00 0.00 0.36 0.00

4 0.00 0.00 0.00 -0.85

Table 2: W̃ matrices, on the left the correct and on the right the misspecified for DGP1

W̃correct 1 2 3 4

1 0.00 0.31 0.25 0.44

2 0.15 0.00 0.42 0.43

3 0.37 0.25 0.00 0.38

4 0.35 0.45 0.20 0.00

W̃misspecified 1 2 3 4

1 0.00 0.33 0.33 0.33

2 0.33 0.00 0.33 0.33

3 0.33 0.33 0.00 0.33

4 0.33 0.33 0.33 0.00
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Table 3: Φ̃ of DGP2

Φ̃ 1 2 3 4 5 6 7 8 9 10

1 -0.114 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 -0.538 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.310 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 -0.067 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 -0.375 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 -0.250 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.571 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.385 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.249

Table 4: Λ̃1 of DGP2

Λ̃1 1 2 3 4 5 6 7 8 9 10

1 -0.379 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.323 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 -0.494 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.104 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 -0.393 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.218 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.183 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.172
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Table 5: W correct matrix for DGP2

1 2 3 4 5 6 7 8 9 10

1 0.000 0.056 0.162 0.029 0.132 0.178 0.080 0.131 0.073 0.160

2 0.219 0.000 0.221 0.014 0.183 0.109 0.002 0.199 0.049 0.004

3 0.228 0.154 0.000 0.153 0.002 0.055 0.138 0.049 0.000 0.221

4 0.006 0.173 0.171 0.000 0.140 0.168 0.111 0.072 0.127 0.031

5 0.062 0.115 0.128 0.016 0.000 0.035 0.109 0.180 0.173 0.182

6 0.133 0.019 0.262 0.064 0.178 0.000 0.108 0.078 0.104 0.054

7 0.153 0.096 0.091 0.205 0.045 0.118 0.000 0.116 0.081 0.095

8 0.104 0.082 0.163 0.127 0.155 0.132 0.160 0.000 0.034 0.042

9 0.079 0.217 0.129 0.048 0.144 0.006 0.150 0.027 0.000 0.200

10 0.115 0.113 0.135 0.155 0.032 0.133 0.064 0.135 0.119 0.000

Table 6: W misspecified matrix for DGP2

1 2 3 4 5 6 7 8 9 10

1 0.000 0.128 0.094 0.000 0.129 0.026 0.162 0.171 0.141 0.150

2 0.000 0.000 0.137 0.152 0.125 0.208 0.141 0.140 0.079 0.018

3 0.060 0.098 0.000 0.102 0.104 0.119 0.087 0.166 0.123 0.142

4 0.046 0.090 0.018 0.000 0.232 0.164 0.115 0.237 0.022 0.077

5 0.091 0.007 0.216 0.053 0.000 0.200 0.215 0.096 0.113 0.008

6 0.182 0.131 0.011 0.070 0.158 0.000 0.144 0.066 0.188 0.050

7 0.035 0.110 0.226 0.011 0.229 0.029 0.000 0.128 0.024 0.208

8 0.181 0.026 0.031 0.160 0.064 0.112 0.182 0.000 0.082 0.162

9 0.116 0.156 0.160 0.103 0.088 0.168 0.072 0.100 0.000 0.038

10 0.182 0.082 0.185 0.015 0.152 0.135 0.034 0.203 0.012 0.000
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Table 7: Φ̃ of DGP3

Φ̃ 1 2 3 4 5 6 7 8 9 10

1 -0.161 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 -0.156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 -0.295 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 -0.415 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 -0.1 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 -0.239 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 -0.279 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.405 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.38 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.28

Table 8: Λ̃1,debt of DGP3

Λ̃1,debt 1 2 3 4 5 6 7 8 9 10

1 0.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.08 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.14 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.068 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.261 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 -0.044 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 -0.059 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.02 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.216 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.235
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Table 9: Λ̃1,deficit of DGP3

Λ̃1,deficit 1 2 3 4 5 6 7 8 9 10

1 -0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 -0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 -0.246 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 0.486 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.185 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.09 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011

Table 10: Wdebt correct matrix for DGP3

1 2 3 4 5 6 7 8 9 10

1 0.000 0.185 0.027 0.043 0.092 0.194 0.057 0.134 0.211 0.058

2 0.222 0.000 0.062 0.049 0.058 0.044 0.231 0.139 0.098 0.097

3 0.127 0.165 0.000 0.072 0.085 0.165 0.083 0.123 0.108 0.070

4 0.044 0.046 0.018 0.000 0.213 0.030 0.291 0.052 0.060 0.245

5 0.087 0.054 0.018 0.222 0.000 0.108 0.220 0.086 0.084 0.122

6 0.204 0.213 0.072 0.049 0.119 0.000 0.046 0.123 0.126 0.049

7 0.050 0.040 0.018 0.273 0.204 0.029 0.000 0.074 0.092 0.220

8 0.159 0.146 0.039 0.069 0.105 0.121 0.084 0.000 0.207 0.071

9 0.237 0.070 0.023 0.076 0.081 0.136 0.098 0.200 0.000 0.079

10 0.061 0.088 0.020 0.262 0.157 0.036 0.253 0.053 0.072 0.000
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Table 11: Wdeficit correct matrix for DGP3

1 2 3 4 5 6 7 8 9 10

1 0.000 0.044 0.039 0.086 0.276 0.040 0.303 0.052 0.071 0.089

2 0.018 0.000 0.349 0.108 0.016 0.111 0.014 0.191 0.113 0.079

3 0.025 0.388 0.000 0.063 0.023 0.228 0.021 0.120 0.062 0.070

4 0.034 0.096 0.034 0.000 0.024 0.039 0.020 0.100 0.261 0.393

5 0.313 0.045 0.037 0.065 0.000 0.037 0.333 0.048 0.060 0.063

6 0.037 0.203 0.306 0.084 0.033 0.000 0.030 0.112 0.095 0.100

7 0.340 0.039 0.034 0.057 0.343 0.035 0.000 0.042 0.053 0.057

8 0.033 0.231 0.121 0.128 0.027 0.024 0.083 0.000 0.191 0.161

9 0.038 0.125 0.047 0.318 0.029 0.061 0.025 0.164 0.000 0.194

10 0.039 0.080 0.045 0.426 0.027 0.055 0.023 0.133 0.172 0.000

Table 12: Wdebt misspecified matrix for DGP3

1 2 3 4 5 6 7 8 9 10

1 0.000 0.092 0.012 0.106 0.172 0.101 0.043 0.066 0.222 0.186

2 0.190 0.000 0.032 0.151 0.221 0.002 0.162 0.137 0.029 0.076

3 0.140 0.067 0.000 0.058 0.167 0.030 0.136 0.184 0.083 0.135

4 0.071 0.156 0.178 0.000 0.180 0.012 0.150 0.089 0.001 0.163

5 0.066 0.005 0.272 0.184 0.000 0.183 0.002 0.066 0.164 0.058

6 0.000 0.150 0.007 0.175 0.172 0.000 0.141 0.169 0.112 0.073

7 0.166 0.040 0.076 0.142 0.158 0.020 0.000 0.044 0.134 0.221

8 0.190 0.199 0.096 0.014 0.190 0.046 0.129 0.000 0.079 0.057

9 0.083 0.043 0.162 0.102 0.096 0.218 0.047 0.125 0.000 0.123

10 0.059 0.069 0.098 0.078 0.154 0.120 0.146 0.125 0.151 0.000
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Table 13: Wdeficit misspecified matrix for DGP3

1 2 3 4 5 6 7 8 9 10

1 0.000 0.061 0.076 0.088 0.242 0.144 0.054 0.160 0.006 0.168

2 0.023 0.000 0.174 0.124 0.121 0.146 0.167 0.034 0.143 0.069

3 0.157 0.138 0.000 0.210 0.036 0.036 0.073 0.117 0.091 0.141

4 0.175 0.064 0.051 0.000 0.147 0.025 0.150 0.181 0.061 0.146

5 0.268 0.180 0.086 0.023 0.000 0.109 0.048 0.077 0.022 0.188

6 0.010 0.166 0.136 0.003 0.209 0.000 0.160 0.061 0.090 0.164

7 0.091 0.069 0.174 0.008 0.176 0.013 0.000 0.162 0.143 0.164

8 0.072 0.242 0.029 0.138 0.004 0.226 0.110 0.000 0.147 0.033

9 0.071 0.079 0.055 0.158 0.031 0.124 0.022 0.236 0.000 0.224

10 0.199 0.007 0.164 0.177 0.123 0.184 0.023 0.073 0.050 0.000
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Table 14: Φ̃ of DGP4

Φ̃ 1 2 3 4 5 6 7 8 9 10

1 -0.095 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 -0.448 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 -0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.258 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 -0.056 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 -0.312 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 -0.208 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.476 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.321 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.208 0.000

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.379
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Table 15: Λ̃0 of DGP4

Λ̃0 1 2 3 4 5 6 7 8 9 10

1 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.323 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 -0.494 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.104 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 -0.393 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 -0.218 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.183 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.172 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.219 0.000

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.314
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Table 16: Λ̃1 of DGP4

Λ̃1 1 2 3 4 5 6 7 8 9 10

1 -0.355 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.162 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.396 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 -0.097 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.158 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 -0.133 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.304 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.422 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.432 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.439 0.000

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.274
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Table 17: W correct matrix for DGP4

1 2 3 4 5 6 7 8 9 10

1 0.000 0.122 0.002 0.223 0.055 0.004 0.228 0.154 0.153 0.002 0.055

2 0.088 0.000 0.031 0.000 0.142 0.006 0.166 0.164 0.134 0.161 0.107

3 0.086 0.152 0.000 0.037 0.069 0.129 0.144 0.018 0.040 0.122 0.202

4 0.177 0.185 0.089 0.000 0.013 0.177 0.043 0.120 0.073 0.053 0.070

5 0.039 0.147 0.092 0.087 0.000 0.197 0.043 0.113 0.112 0.078 0.091

6 0.099 0.079 0.155 0.121 0.148 0.000 0.126 0.153 0.033 0.040 0.047

7 0.181 0.108 0.040 0.120 0.005 0.125 0.000 0.022 0.166 0.118 0.116

8 0.133 0.152 0.031 0.131 0.063 0.133 0.117 0.000 0.179 0.030 0.031

9 0.059 0.095 0.074 0.114 0.189 0.069 0.055 0.158 0.000 0.027 0.162

10 0.194 0.066 0.156 0.198 0.133 0.063 0.017 0.080 0.035 0.000 0.057

11 0.018 0.152 0.010 0.165 0.135 0.003 0.208 0.159 0.060 0.090 0.000
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Table 18: W misspecified matrix for DGP4

1 2 3 4 5 6 7 8 9 10

1 0.000 0.006 0.190 0.016 0.144 0.034 0.165 0.168 0.110 0.109 0.059

2 0.035 0.000 0.054 0.094 0.180 0.190 0.044 0.183 0.150 0.042 0.029

3 0.110 0.150 0.000 0.139 0.122 0.066 0.088 0.147 0.051 0.044 0.083

4 0.173 0.034 0.064 0.000 0.120 0.147 0.069 0.198 0.143 0.043 0.010

5 0.149 0.007 0.001 0.162 0.000 0.174 0.127 0.090 0.143 0.011 0.135

6 0.196 0.078 0.062 0.110 0.057 0.000 0.058 0.201 0.067 0.054 0.116

7 0.128 0.133 0.070 0.052 0.004 0.176 0.000 0.033 0.110 0.081 0.211

8 0.038 0.153 0.119 0.060 0.059 0.105 0.120 0.000 0.150 0.158 0.040

9 0.006 0.124 0.115 0.073 0.119 0.093 0.079 0.083 0.000 0.155 0.153

10 0.035 0.152 0.125 0.195 0.024 0.179 0.104 0.046 0.112 0.000 0.028

11 0.080 0.123 0.029 0.008 0.117 0.149 0.151 0.152 0.067 0.124 0.000
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2 The W Matrices

Table 19: Estimated W matrix using Gross (2019) procedure. This table reports

the estimated W matrix estimated as in Gross (2019). BG stands for Belgium, ES for

Spain, FN for Finland, FR for France, GR for Greece, IR for Ireland, IT for Italy, NL for

the Netherlands, OE for Austria and PT for Portugal.

BG ES FN FR GR IR IT NL OE PT

BG 0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.000 0.938 0.000

ES 0.392 0.000 0.189 0.000 0.000 0.000 0.419 0.000 0.000 0.000

FN 0.967 0.033 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FR 0.503 0.037 0.000 0.000 0.000 0.000 0.379 0.082 0.000 0.000

GR 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

IR 0.000 0.000 0.000 0.000 0.043 0.000 0.790 0.167 0.000 0.000

IT 0.000 0.000 0.000 0.000 0.000 0.431 0.000 0.000 0.239 0.330

NL 0.000 0.000 0.000 0.000 0.000 0.484 0.000 0.000 0.516 0.000

OE 0.613 0.160 0.000 0.000 0.086 0.000 0.000 0.140 0.000 0.000

PT 0.453 0.027 0.000 0.089 0.002 0.000 0.429 0.000 0.000 0.000
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Table 20: W matrix using T-value related weights, negative. This table reports

the estimated W matrix for the negative β coefficients tested by t − stat. BG stands for

Belgium, ES for Spain, FN for Finland, FR for France, GR for Greece, IR for Ireland, IT

for Italy, NL for the Netherlands, OE for Austria and PT for Portugal.

BG ES FN FR GR IR IT NL OE PT

BG 0.000 0.000 0.000 0.000 0.000 0.270 0.000 0.000 0.130 0.066

ES 0.000 0.000 0.000 0.000 0.000 0.163 0.000 0.032 0.020 0.186

FN 0.000 0.000 0.000 0.091 0.000 0.145 0.000 0.070 0.101 0.000

FR 0.000 0.000 0.035 0.000 0.000 0.137 0.000 0.000 0.087 0.113

GR 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.285 0.150

IR 0.000 0.000 0.073 0.041 0.000 0.000 0.000 0.000 0.083 0.180

IT 0.000 0.000 0.100 0.000 0.000 0.159 0.000 0.037 0.217 0.086

NL 0.000 0.066 0.000 0.000 0.016 0.161 0.000 0.000 0.053 0.113

OE 0.000 0.000 0.029 0.073 0.000 0.200 0.000 0.000 0.000 0.112

PT 0.000 0.000 0.010 0.000 0.000 0.231 0.000 0.010 0.000 0.000
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Table 21: W matrix using T-value related weights, positive. This table reports

the estimated W matrix for the positive β coefficients tested by t − stat. BG stands for

Belgium, ES for Spain, FN for Finland, FR for France, GR for Greece, IR for Ireland, IT

for Italy, NL for the Netherlands, OE for Austria and PT for Portugal.

BG ES FN FR GR IR IT NL OE PT

BG 0.000 0.192 0.014 0.022 0.103 0.000 0.127 0.076 0.000 0.000

ES 0.054 0.000 0.142 0.080 0.012 0.000 0.311 0.000 0.000 0.000

FN 0.318 0.181 0.000 0.000 0.044 0.000 0.020 0.000 0.000 0.030

FR 0.121 0.144 0.000 0.000 0.074 0.000 0.191 0.097 0.000 0.000

GR 0.085 0.217 0.000 0.056 0.000 0.000 0.120 0.012 0.000 0.000

IR 0.011 0.190 0.000 0.000 0.109 0.000 0.186 0.127 0.000 0.000

IT 0.237 0.083 0.000 0.067 0.014 0.000 0.000 0.000 0.000 0.000

NL 0.103 0.000 0.138 0.038 0.000 0.000 0.311 0.000 0.000 0.000

OE 0.098 0.112 0.000 0.000 0.157 0.000 0.104 0.116 0.000 0.000

PT 0.131 0.054 0.000 0.086 0.079 0.000 0.391 0.000 0.008 0.000
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Table 22: W matrix using FIFA related weights. This table reports the W matrix

based on the 2020 FIFA ranking. BG stands for Belgium, ES for Spain, FN for Finland,

FR for France, GR for Greece, IR for Ireland, IT for Italy, NL for the Netherlands, OE

for Austria and PT for Portugal.

BG ES FN FR GR IR IT NL OE PT

BG 0.000 0.107 0.036 0.432 0.039 0.050 0.087 0.086 0.054 0.110

ES 0.018 0.000 0.009 0.023 0.010 0.015 0.078 0.071 0.018 0.758

FN 0.031 0.047 0.000 0.034 0.516 0.119 0.054 0.054 0.098 0.047

FR 0.380 0.125 0.035 0.000 0.037 0.049 0.096 0.094 0.054 0.129

GR 0.031 0.048 0.475 0.034 0.000 0.142 0.055 0.056 0.112 0.048

IR 0.033 0.062 0.092 0.037 0.120 0.000 0.076 0.078 0.440 0.060

IT 0.014 0.078 0.010 0.018 0.011 0.019 0.000 0.756 0.023 0.071

NL 0.014 0.072 0.011 0.018 0.012 0.019 0.765 0.000 0.024 0.066

OE 0.035 0.070 0.075 0.040 0.093 0.433 0.091 0.094 0.000 0.069

PT 0.018 0.768 0.009 0.025 0.010 0.015 0.072 0.066 0.017 0.000
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3 Bootstrapped Likelihood Ratio Test

Bootstrapping procedures are widely used when size distortions are encountered, especially

in finite samples. We explain the different steps implemented for the empirical exercise.

1. Estimate

∆Yi,t = β̂iYi,t−1 + λ̂i1Y
∗
i,t−1 + êi,t. (1)

The coefficients (β̂i, λ̂i1) and the residuals êi,t of this VEC models are retrieved using

the seemingly unrelated regression estimator.

2. Once estimated, we can rewrite the global VEC models as follows (abstaining here

from the deterministic components)

∆Yt = B̂Yt−1 + êt, (2)

where B̂ = [diag(β̂1, . . . , β̂N) + diag(λ̂11, . . . , λ̂N1)W̃ ].

3. Draw with replacement a sequence of residuals {ẽ1,t, . . . , ẽN,t}Tt=2. The sequence

of resampled errors with replacement is obtained using the wild bootstrap proce-

dure outlined in Mammen (1993). This method allows robust statistical inference

when unknown forms of heteroskedasticity are present in the data. Specifically,

{ẽ1,t, . . . , ẽN,t}Tt=2 = {ktê1,t, . . . , ktêN,t}Tt=2, with kt being a random sequence with

zero mean and unit variance. The distribution proposed by Mammen (1993) is of the

following form:

kt =


1+

√
5

2
, with probability p =

√
5−1
2
√
5

1−
√
5

2
, with probability 1− p.

4. Generate the bootstrapped data sample Ỹit using the first actual observations as

starting values for the different series. The subsequent bootstrapped observations are
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computed as:

∆Ỹt = B̂Ỹt−1 + ẽt, (3)

with Ỹt−1 = Ỹt−2 +∆Ỹt−1

5. Estimate the unrestricted VEC model and the GVEC model on the bootstrapped

sample, and calculate the LR value L̃R
∗
1.

6. Repeat 3 − 5 a large number of times BOO (in our case, we repeat it 1, 000 times),

and build the distribution of the LRs {L̃R∗
i } of dimension BOO.

7. The α% critical value is the α percentile of {L̃R∗
i }. When the test statistics exceed

this critical value, the null hypothesis of the validity of the W matrix is rejected at

α%.
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