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1 Introduction

This paper presents new empirical evidence on the behavior of individual stock volatil-

ity risk premia and examines the quantitative implications of this behavior in the two

canonical tasks in finance: cross-sectional asset pricing and stock market forecasting. We

focus on the “total” volatility risk premium of individual stocks, which we define as the dif-

ference between the risk-neutral and physical expectations of return volatility (Bollerslev,

Tauchen, and Zhou, 2009), and the “good” and “bad” premia, which capture the com-

pensation for realized volatility in positive and negative returns (Kilic and Shaliastovich,

2019). We document three key findings. First, the volatility risk premia of US firms are

synchronized. Second, only exposure to the common bad volatility risk premium is priced

into the cross-section of stocks. Third, the common total (bad) volatility risk premium pre-

dicts excess market returns with statistically significant coefficients at all horizons up to 24

months (longer horizons from 6 months).

Although a large body of research focuses on higher-moment premiums in the equity

index market, the stock-level volatility risk premium (VRP) is much less well understood.1

The main contribution of this paper is to examine commonalities in firm-level VRPs across

a cross-section of US firms. We begin our empirical investigation by constructing the daily

volatility risk premium of 507 stocks over the period from January 2000 to December 2020.

For each stock, we decompose its total volatility premium into good and bad components.

Panel A in Figure 1 shows a cross-sectional distribution of annualized volatility risk pre-

mia. We observe a strong synchronicity in the dynamics of the individual premia. The first

principal component explains about 60% (80%) of the time variation in daily firm-level to-

tal and good (bad) VRPs. Panels B and C further show that the commonality is even more

pronounced within size and industry groups, clearly suggesting a strong factor structure

in firms’ volatility risk premia.

We then compare the common factors with the corresponding counterparts on the mar-

ket index. Although the common and market volatility risk premiums exhibit similar dy-

namics, the comovement is far from perfect. Bakshi and Kapadia (2003) have already doc-

umented this wedge between firm-level volatility risk premiums and those extracted from

1Bollerslev et al. (2009) document a variance premium in the US equity index market, whereas Kozhan,
Neuberger, and Schneider (2013) find a skew premium.
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index options. This phenomenon is shown to be attributable to correlation risk (Driessen,

Maenhout, and Vilkov, 2009), investor disagreement (Buraschi, Trojani, and Vedolin, 2014),

and the default premium (González-Urteaga and Rubio, 2016). We complement this ev-

idence by showing that the commonality in bad volatility risk premiums of individual

firms is strongly associated with the commonality in the idiosyncratic risk of firms and

households. Using the data from Compustat, we demonstrate that the mean and various

percentiles of firm-level employment growth share a strong negative correlation with a

common component of individual bad volatility risk premiums. Using the data from the

National Income and Production Account and the Federal Housing Financing Agency, we

further show a strong negative comovement between shocks to common bad volatility risk

premium and changes in the cross-sectional mean and the distribution of earnings and

house price growth. The correlations appear much weaker for the market volatility risk

premium. Thus, the idiosyncratic risk of firms and households captured by the common

bad component is unrelated to the aggregate market.

We then link the common factor in firm-level total, good, and bad volatility risk pre-

mia
(
CVRPT , CVRPG , CVRPB

)
to the cross-section of asset returns and the time-series

predictability of aggregate market returns. We start by examining the link between the

firms’ sensitivities to common volatility risk premia and differences in expected returns.

We show this association for stocks in the Center for Research in Security Prices (CRSP)

over a period spanning 2000-2020. We estimate the firms’ betas on CVRPT , CVRPG ,

and CVRPB whilst controlling for the exposure to market volatility premium. The cross-

sectional analysis demonstrates that the common bad volatility risk premium is negatively

priced in the cross-section of stock returns in both economic and statistical terms. The top

CVRPB-beta quintile earns average raw returns of 6.48% and 7.32% per annum lower than

the bottom quintile for equal- and value-weighted portfolios, respectively. In contrast, the

firms in the top CVRPG-beta quintile outperform those in the bottom quintile on average

by 6.48% and 6.00% for the two weighting schemes, but the performance differential is

statistically weak. We find no evidence of statistical or economic significance of portfolio

return spreads formed on CVRPT -betas.

Furthermore, we show that the significance of expected return differences is not driven

by firms’ exposure to market bad volatility risk premium (Kilic and Shaliastovich, 2019),
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innovations to the VIX index (Ang, Hodrick, Xing, and Zhang, 2006), common idiosyncratic

volatility (Herskovic, Kelly, Lustig, and Van Nieuwerburgh, 2016), or common bad implied

volatility (Babiak, Barunik, Bevilacqua, and Ellington, 2023). The differences in average

returns of extreme CVRPB-beta quintiles generate significant alphas relative to the five-

factor model of Fama and French (2015) and six factors that add momentum of Jegadeesh

and Titman (1993). In addition, we estimate significant risk premiums for the CVRPB

factor using the Fama-MacBeth regression and three-pass regression procedure (Giglio

and Xiu, 2021) using a set of one- and two-way portfolios sorted on CVRPB-betas and

sensitivities to other key variables and firm-characteristics.

We next conduct in- and out-of-sample regression analyses to explore the relationships

of commonalities among firm-level VRPs with stock market returns. Our analysis pro-

duces three key results. First, we show that common total and bad volatility risk premi-

ums strongly predict stock market returns. The in-sample predictive power of CVRPT

is statistically significant at all horizons considered up to 24 months, while CVRPB is a

strong predictor at longer-term horizons starting from 6 months. The common good com-

ponent weakly predicts the stock market returns only one month ahead. Quantitatively,

the monthly in-sample R2 statistics of univariate regressions with CVRPT and CVRPG

increase monotonically with the horizon to 20% and 24% in the 24-month horizon case.

Second, a strong predictive power holds in out-of-sample estimation using only his-

torical returns. The monthly out-of-sample R2 statistics are positive at all horizons and

monotonically increase to 17% and 19% when predicting two-year market returns. These

values surpass those from corresponding statistics when using market volatility premia

whose total and bad components also generate some out-of-sample benefits. Furthermore,

our findings are in stark contrast to the extant predictors in Welch and Goyal (2008) that

tend to produce a sound in-sample performance, which vanishes in an out-of-sample test.

Third, the bivariate regression analysis shows that common total and bad components

of firm-level VRPs provide incremental predictive power relative to the market volatility

risk premia whose total (good and bad) component is shown to predict the stock market

returns at shorter (longer) horizons (Bollerslev et al., 2009; Kilic and Shaliastovich, 2019).

The predictive coefficients on CVRPT and CVRPB remain significant when we control
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for other volatility-related variables and the existing predictors.

Our paper links to several strands of the literature. We connect with the studies on the

common factors in physical and risk-neutral return volatility. Ang et al. (2006) considers

the pricing of aggregate volatility risk proxied by the VIX index in the cross-section of stock

returns. Chen and Petkova (2012) decomposes aggregate market variance into an average

correlation component and an average variance component, showing that only the latter

commands a negative price of risk in the cross-section of portfolios sorted on idiosyncratic

volatility. Christoffersen, Fournier, and Jacobs (2018) document a strong factor structure

in the equity volatility levels, skews, and term structures. Our paper is the closest to

Herskovic et al. (2016) and Babiak et al. (2023) documenting that the common factor in

idiosyncratic volatility and downside option-implied volatility is priced in the cross-section

of stocks. We contribute to this literature by documenting a strong factor structure in

firms’ volatility risk premia. The common factor in spreads between risk-neutral and

physical volatilities has additional information for the cross-section of asset returns relative

to innovations in realized, option-implied, or residual volatility based on different factor

models. Further, none of these other studies document a predictive power of common

factors in volatilities for the stock market predictability.

We contribute to the literature on second-moment risk premia at the stock level. Driessen,

Maenhout, and Vilkov (2009) attribute the differences between the index and individual

stock variance premia to heterogeneous exposures to market-wide correlation shocks and

connect this evidence to expected option returns. Buraschi et al. (2014) show that investor

disagreement significantly drives the wedge between firms’ and market volatility premi-

ums. Focusing on stocks in the S&P 100 index, González-Urteaga and Rubio (2016) show

that the difference in exposures of stock-level volatility risk premia to the market volatility

premium can be explained by the default risk. We complement these studies by show-

ing that the commonality in bad volatility risk premiums is strongly associated with the

commonality in employment, earnings, and house prices. Furthermore, we study the im-

plications of common factors of stock-level volatility risk premia for both individual stock

returns and aggregate market predictability.

Our paper is also related to Bali and Hovakimian (2009) and Han and Zhou (2012), who
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connect the second-moment risk premium at the stock level to expected returns.2 They do

not consider the common factor in volatility risk premia, a central driver of asset prices in

this paper, and do not examine the implications for stock market forecasting. While in this

paper cross-sectional asset pricing predictability is driven by the exposure to the common

factor, it only arises from the commonalities in bad volatility risk premia, highlighting the

importance of asymmetric components of volatility risk premium. Further, our conclusions

apply to the whole cross-section of CRSP firms and are not limited to optionable stocks.

Finally, our paper is, to the best of our knowledge, the first study to examine the good and

bad components of volatility premia at the firm level.

Our article relates to a plethora of research on the market variance risk premium. In

relation to our focus on market return predictability, the market variance risk premium

predicts aggregate market returns up to six months (Bollerslev et al., 2009; Bekaert and

Hoerova, 2014), while the good and bad components possess a long-term predictive power

(Feunou, Jahan-Parvar, and Okou, 2018; Kilic and Shaliastovich, 2019). Bollerslev, Todorov,

and Xu (2015) decomposes the total variance into its continuous- and jump-variance com-

ponents and finds that much of this predictability is attributable to jump (tail) risk. Holl-

stein and Simen (2020) decomposes the market variance risk premium into the VRP of

individual equities and the correlation risk premium (CRP) factors and shows that the two

factors improve the predictability of the S&P 500 excess returns. We contribute to this

literature by showing that the common factors in firms’ volatility risk premia yield higher

predictability for market returns both in-sample and out-of-sample. Unlike the market

second-moment premia, the predictive power of common volatility premiums is incremen-

tal to existing predictors. Further, we provide novel evidence that this is the commonality

in the firms’ bad volatility premium, which is priced in the cross-section of stocks.

Finally, our work directly builds on the literature that examines the information con-

tent of decomposed volatility risk measures, primarily uncovering the important role of

downside risk for asset pricing and return predictability.3 We also relate to the literature

2It is worth emphasizing that Bali and Hovakimian (2009) use the average implied volatility across all
eligible options, which is different from the model-free implied volatility. Thus, their predictor is arguably
different from the variance risk premium.

3A non-exhaustive list includes Ang, Chen, and Xing (2006), Barndorff-Nielsen, Kinnebrock, and Shep-
hard (2010), Bollerslev, Todorov, and Xu (2015), Segal, Shaliastovich, and Yaron (2015); Patton and Sheppard
(2015), Farago and Tédongap (2018), Bollerslev, Li, and Zhao (2020), Baruník, Bevilacqua, and Tunaru (2022).
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showing superior predictive information of option prices for stock returns.4 Using op-

tions data to measure the volatility risk premium at the firm level, our key contribution is

to provide the first examination of the common factor among firms’ volatility premia and

study the implications for the cross-sectional predictability of stock returns and time-series

forecastability of aggregate market returns.

The rest of the paper proceeds as follows. Section 2 describes the data. Section 3 re-

ports the cross-sectional asset pricing implications of common volatility risk premia using

portfolio and regression analyses. Section 4 investigates the predictive power of common

volatility risk premia for market returns. Section 5 concludes. Additional results are rele-

gated to the Appendix.

2 The factor structure in volatility risk premia

2.1 Data

We compute firm-level implied volatilities using daily data from OptionMetrics over the

sample from January 03, 2000, to December 31, 2020.5 We include all stocks from their IPO

and listing with good options data coverage (we require stocks to have data spanning more

than 5 years of continuous data). We exclude stocks due to i) bankruptcy; ii) delisting; and

iii) mergers and acquisitions.6

We apply common options filtering rules to further exclude stock options with i) miss-

ing deltas; ii) missing implied volatility; iii) bid prices equal to 0; iv) nil volume; v) nil open

interest; vi) negative bid-ask spread; and that vii) violate arbitrage conditions (Bakshi, Ka-

padia, and Madan, 2003; Carr and Wu, 2011; Christoffersen, Jacobs, and Ornthanalai, 2012).

Following these filtering criteria, we remove options with less than 4 contracts on a specific

day and are left with 507 firms.7 Approximately 90% of these firms are large-cap, with the

4A voluminous literature includes Dennis and Mayhew (2002), Xing, Zhang, and Zhao (2010), Cremers
and Weinbaum (2010), An, Ang, Bali, and Cakici (2014), Muravyev, Pearson, and Pollet (2022), among others.

5This period allows us to have good data coverage, which was insufficient to compute implied semi-
variances before January 2000.

6Examples of bankruptcies are General Motors, Lehman Brothers, and Merrill Lynch; examples of M&As
are Raytheon and United Technologies, Dow Chemical and DuPont, and Walt Disney Company and 21st
Century Fox.

7Most of these data filters are common in the option pricing literature. The volume and open interest
constraints ensure genuine interest in the option contract. Options close to maturity are removed (Carr
and Wu, 2011; Christoffersen, Jacobs, and Ornthanalai, 2012). We remove options with a negative bid-ask
spread and those that violate no-arbitrage constraints, as these option prices are invalid and inconsistent

7



remaining 10% being mid-cap stocks. Most stocks in our sample appear as a constituent

of the S&P500 throughout our sample. Other stocks come from the Russell 1000, for which

there is sufficient data coverage. To proxy the market volatility risk premium, we use the

same filtering criteria for S&P500 index options.

Each day t, our data sample contains daily stock options observations for which we

can calculate values of the implied variance and semi-variance measures. We consider call

and put option prices with a maturity of around 30 days, considering all available strikes

for each option. We keep implied variance measures within 23 and 37 days of maturity

to represent a proxy of investor expectations of the one-month ahead fluctuations in the

underlying asset.

In addition to option prices, we also use 5-minute returns from Kibot to construct the

realized variance measures for all stocks that estimate physical expected variance. We

use a 5-minute sampling frequency with an optimal trade-off between the precision of the

estimators and the impact of microstructure noise (Liu, Patton, and Sheppard, 2015).

2.2 Implied variances

We use the methods in Bakshi and Madan (2000) and Bakshi et al. (2003) to extract

variance measures from the cross-section of option prices in a model-free manner. We

consider the price of a variance contract that pays the squared logarithm of the return at

time t + 1, corresponding to a fixed horizon of the next 30 days. Let si,t denote the natural

logarithm of the price Si,t of the i-th asset at time t. The payoff of the variance contract is

r2
i,t+1 = (si,t+1 − si,t)

2 and we define the total implied variance, IVT
i,t, as the price of the

contract:

IVT
i,t ≡ e−r f

t E
Q
t

[
r2

i,t+1

]
(1)

where E
Q
t [ · ] is the expectation operator under the risk-neutral measure conditional on

time t information and r f
t is the risk-free rate. Kilic and Shaliastovich (2019) and Baruník

et al. (2022) decompose the total implied variance measure given by Equation (1) into

two components associated with positive and negative returns of the variance contract,

respectively. In the absence of arbitrage, the sum of these components is the total implied

with theory. Finally, we remove ITM contracts, as they tend to be more illiquid than OTM and ATM options
(Christoffersen et al., 2012).
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variance. One obtains the prices of these components from OTM call and put options.

Implied variance measures the expectations of fluctuations in the underlying asset over

a given horizon. Furthermore, Bakshi and Madan (2000) and Bakshi et al. (2003) show that

one can compute IVT
i,t from the prices OTM call and put options:

IVT
i,t =

∫ ∞

Si,t

2(1 − log(K/Si,t))

K2 C(t, t + 1, K)dK︸ ︷︷ ︸
IVG

i,t

+
∫ Si,t

0

2(1 + log(Si,t/K))
K2 P(t, t + 1, K)dK︸ ︷︷ ︸

IVB
i,t

,

(2)

where C( · ) and P( · ) denote the prices at time t of a call and put contract with a time

to the expiration of one period and a strike price of K. Call option prices reflect a good

state for the stock, while the prices of a put option reflect a bad state for the stock. The

two states, most of the time, relate to contrasting investors’ future expectations (Buraschi

and Jiltsov, 2006). OTM puts are usually linked with hedging and insurance against equity

market drops (Han, 2008), whereas OTM calls are commonly associated with optimistic

beliefs (Buraschi and Jiltsov, 2006).

We follow Kilic and Shaliastovich (2019) and decompose the payoff from the variance

contract into two intuitive measures of expectations of good and bad events for the stock:

IVT
i,t ≡ e−r f

t E
Q
t

[
r2

i,t+1I{ri,t+1>0}

]
︸ ︷︷ ︸

IVG
i,t

+ e−r f
t E

Q
t

[
r2

i,t+1I{ri,t+1≤0}

]
︸ ︷︷ ︸

IVB
i,t

(3)

Intuitively, good and bad components of the payoff add to the total, and we can obtain

the prices of its components in a model-free manner from a bundle of option prices upon

a discretization of Equation (2). Appendix provides details of the procedure. The total

implied variance is the weighted sum of option prices, and its components are identifiable

by claims that have payoffs relating to the sign of the realized return. Good (bad) implied

variance is identifiable from call (put) options that pay off when we realize a positive (

negative) return. Consequently, the first (second) term in Equation (2) refers to a positive

(negative) component of the payoff of the variance contract. Taking the square roots of re-

spective implied variances gives us total implied volatility
√
IVT

i,t, good implied volatility√
IVG

i,t, and bad implied volatility
√
IVB

i,t.
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2.3 Realized variances

In addition to the risk-neutral variance measures, we construct measures of the phys-

ical expected variance based on high-frequency data. Let qi,k,t denote the high-frequency

logarithmic return of an asset i over the k-th time interval within some fixed time period

t. In our case, k is fixed to a 5-minute time interval with N such intervals available over

a day t. Following Andersen, Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen

et al. (2010), we construct the realized variance of returns on a given trading day t for a

given stock i as RVT
i,t = ∑N

k=1 q2
i,k,t. We add the squared intraday log returns (difference in

log prices when the market opens and closes). Similarly, we decompose realized variance

into good and bad realized variances as:

RVG
i,t =

N

∑
k=1

q2
i,k,t1(qi,k,t>0) ∧ RVB

i,t =
N

∑
k=1

q2
i,k,t1(qi,k,t≤0) (4)

Intuitively, the good and bad realized variance measures capture information about

time variation in the positive and negative components of the physical distribution of

stock returns. By construction, the cumulative realized variance adds up the cumulative

good and bad realized variances. Barndorff-Nielsen et al. (2010) provide the theoretical

underpinning of this decomposition based on a jump-diffusion process for a stock price,

and under general assumption demonstrate that with N → ∞ both good and bad vari-

ances converge to half of the Gaussian diffusion in the returns and positive and negative

quadratic jump variation, respectively.

2.4 Firm-level volatility risk premia

Our analysis resonates with Bakshi and Kapadia (2003), one of the first papers exam-

ining the differences between the firm-level and market volatility risk premiums, and a

recent study on the determinants of the cross-sectional variation of volatility risk premia

by González-Urteaga and Rubio (2016). This article complements the extant literature by

examining the commonalities in volatility risk premia of individual firms and their in-

cremental information relative to the market volatility premium through the asset pricing

context. In addition, this paper examines the good and bad components of volatility pre-

mia at the firm level.

To formalize the discussion, we define the total, good, and bad volatility risk premiums
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Figure 1. The cross-sectional distribution of volatility risk premia

The figure plots annualized total (left plots), good (middle plots), and bad (right plots) volatility risk premia
(VRP) averaged within VRP (Panel A), size (Panel B), and industry groups (Panel C). At the end of each
month, we divide all stocks into four equal groups based on the VRP (market equity) quartiles. Panels A and
B demonstrate the within-group averages of volatility risk premia for the two cases. We also divide stocks
into five industry groups based on the standard industry classification (SIC). Panel C illustrates the average
volatility risk premia within each group.

Panel A: Volatility risk premium groups

Panel B: Size groups

Panel C: Five industry groups

of an asset i at time t as:

VRPX
i,t =

√
IVX

i,t −
√

30 ×RVX
i,t, X ∈ {T ,G,B} (5)

where IVX
i,t and RVX

i,t denote the daily estimates of the corresponding implied and real-

ized variances. Figure 1 further illustrates the cross-sectional distribution of annualized

volatility risk premia. Panel A presents the daily averages of the total, good, and bad

time series within quartiles formed on each day. Although we observe a high degree of

variation and differences in the magnitude of firms’ volatility premia, the averages for the

four groups exhibit an extraordinary comovement at the daily frequency. To quantify this
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Table 1. Firm-level volatility risk premia

This table presents summary statistics (Panel A) and one-factor regression results (Panel B) of daily firm-level
volatility risk premia. For each firm, we compute the sample mean, standard deviation, skewness, kurtosis,
and autocorrelation of total, good, and bad volatility risk premiums. Panel A reports the cross-sectional
averages and percentiles of these statistics. The mean and standard deviation are expressed in annual terms,
whereas other statistics are based on daily series. For each firm, we also estimate a univariate time-series
regression of the firm’s volatility risk premia on the corresponding common factor – an equal-weighted cross-
sectional average of individual time series. Panel B reports the cross-sectional averages and percentiles of
intercepts, slopes, and R2s. The numbers in shaded rows are Newey-West adjusted t-statistics of regression
coefficients. The last row in Panel B shows the R2 statistics from a pooled regression. The sample is from
January 2000 to December 2020.

Total Good Bad

Mean 5% 50% 95% Mean 5% 50% 95% Mean 5% 50% 95%

Panel A: Summary statistics

Mean 4.69 0.45 4.35 10.39 0.21 −2.52 0.19 3.57 6.36 2.17 5.99 11.85
Std 9.11 4.41 8.29 16.89 7.11 3.64 6.42 12.52 7.77 3.45 7.24 14.06
Skew −0.72 −2.55 −0.78 1.28 −2.33 −4.66 −2.05 −0.64 0.57 −1.16 0.42 2.78
Kurt 8.96 3.45 7.54 19.14 14.80 3.94 11.08 34.92 7.88 3.23 6.43 18.38
AR(1) 0.22 −0.10 0.19 0.55 0.24 −0.07 0.22 0.59 0.33 −0.03 0.32 0.72

Panel B: One-factor regression results

Intercept 0.00 −0.05 0.00 0.06 0.00 −0.03 0.00 0.03 0.00 −0.06 0.00 0.06
−0.10 −4.38 −0.25 4.00 −0.15 −5.28 0.08 4.68 0.14 −3.81 0.17 4.28

Slope 1.00 0.35 0.96 1.89 0.99 0.48 0.94 1.71 0.98 0.19 0.88 2.16
5.98 1.87 5.45 11.76 7.34 2.11 6.64 14.29 5.73 1.73 5.12 11.99

R2 (univar) 0.22 0.04 0.21 0.44 0.33 0.07 0.31 0.59 0.27 0.03 0.25 0.56
R2 (pooled) 0.13 0.22 0.17

commonality, the first principal component explains around 80% (60%) of the variation in

daily bad (total or good) VRPs. Panel B shows the mean volatility risk premia within the

quartiles formed on the market capitalization, whereas Panel C reports the averages within

five industries based on the standard industry classification (SIC). There are even smaller

differences in the time-series dynamics across different size and industry groups.

Panel A in Table 1 reports summary statistics of individual time series. The firm-level

volatility risk premiums are, on average, positive with a bad (good) component having a

larger (smaller) average value. This evidence is consistent with positive average volatility

premiums extracted from index options. Note that the bad and good components do not

sum up to the total quantity because we work with the volatility risk premium similar

to Bakshi and Kapadia (2003), Driessen et al. (2009), and González-Urteaga and Rubio

(2016), among others. There is a considerable time-series variation in firm-level VRPs,

resulting in a wide range of volatility estimates. On average, the volatility of the total

(good and bad) VRPs tends to be higher (lower), consistent with the evidence on the

12



market volatility premium and its components reported by Kilic and Shaliastovich (2019).

Finally, the individual bad (total and especially bad) VRPs tend to have a positive (negative)

skewness and appear to be more (less) persistent.

We now measure the degree of common variation in firm-level volatility risk premiums

using the regression analysis. Following the definition of a common factor in firms’ id-

iosyncratic volatility of Herskovic et al. (2016), we define the common total, good, and bad

volatility risk premium factors as the equal-weighted average of individual total, good, and

bad time series, respectively. For each firm, we then estimate a univariate regression of its

volatility risk premium on the common factor. Panel B in Table 1 demonstrates the results

of this one-factor regression analysis. The average R2 statistic from univariate regressions

for the total volatility risk premium is 22% and increases to 27% and 33% for the bad and

good component cases, respectively. The pooled (OLS) regression reaches lower R2 statis-

tics ranging from 13% to 22%. In sum, the one-factor model fit is quite strong given the

daily frequency of data and non-overlapping periods used to compute the firm-level VRPs,

reinforcing our conclusion that individual time series possess a significant common time

variation.

3 Common volatility risk premia and expected stock returns

We now examine the asset pricing implications of common volatility risk premia in

the cross-section of stocks. Following the extant literature, we conduct our analysis on a

monthly frequency. For this reason, we construct the monthly version of the common to-

tal, good, and bad volatility risk premium factors. We first take the average of firms’ daily

total, good, or bad volatility risk premiums within each month to obtain the monthly ob-

servations. Then, we compute the equal-weighted cross-sectional average of the monthly

total, good, or bad volatility risk premiums across firms. This procedure follows the con-

struction of the monthly common idiosyncratic volatility of Herskovic et al. (2016).

3.1 Common and market volatility risk premiums

As a natural start, we compare the common volatility risk premium factors with the

market total, good, and bad volatility risk premiums
(
MVRPT ,MVRPG ,MVRPB

)
.

Figure 2 plots the time series of common and market volatility risk premia and the pair-

wise correlations based on a rolling 60-month window. The corresponding series co-move
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Figure 2. Common and market volatility risk premia

The figure compares common (CVRP) and market (MVRP) volatility risk premia. The top-left, bottom-
left, and bottom-right panels illustrate the total, good, and bad components of the volatility risk premia time
series, respectively. The top-right panel shows the correlations between the corresponding quantities based
on a rolling 60-month window.

throughout the sample, however, the commonality is far from perfect. Focusing on the

total and bad premiums, correlations are high, around 0.5 and 0.6 at the beginning of

our sample, and decline over time, reaching the values of around 0.2 and 0.3 at the end.

The correlation between good components is generally higher and exceeds 0.6 in some

months. Notably, the correlations computed for total and bad volatility risk premiums

declined sharply at the onset of the Financial Crisis and the COVID recession. The key

takeaway is that the common factors based on firm-level volatility risk premia are distinct

from the market volatility risk premia.

3.2 Connection with the firm and household risks

This section examines the sources of a high degree of comovement in firm-level volatil-

ity risk premiums. We start by retrieving Compustat data for the annual numbers of em-

ployees for US firms to proxy employment risk. Then, we download annual earnings by

place of work from the National Income and Product Accounts (NIPA) to measure income

risk. For household wealth, Herskovic et al. (2016) note that a large share of household

wealth is invested in residential estate and. Thus, shocks to home value transmit fluctua-

14



Table 2. Employment, earnings, and wealth

This table presents the correlations between innovations in common (market) volatility risk premiums and
changes in cross-sectional measures of employment (Panel A), earnings (Panel B), and house price (Pan-
els C and D) growth. The statistics include the cross-sectional measures of dispersion (an interquartile
range, a difference between the maximal and minimal values, a standard deviation), selected percentiles
(20%, 40%, 60%, 80%), and the cross-sectional average. The sample is from January 2000 to December 2020.

CVRPT CVRPG CVRPB MVRPT MVRPG MVRPB

Raw Orthog Raw Orthog Raw Orthog Raw Orthog Raw Orthog Raw Orthog

Panel A: Annual employment growth

75% − 25% −0.04 −0.17 −0.33 −0.39∗ 0.22 0.11 0.15 0.19 −0.18 −0.01 0.29 0.25
max−min −0.12 −0.06 0.08 0.17 −0.16 −0.11 −0.16 −0.16 −0.06 −0.15 −0.17 −0.12
std −0.52∗∗∗ −0.45∗∗ −0.42∗ −0.23 −0.16 −0.02 −0.45∗∗ −0.39∗ −0.53∗∗∗ −0.50∗∗ −0.29 −0.30

20% −0.55∗∗∗ −0.44∗∗ 0.36 0.59∗∗∗ −0.78∗∗∗ −0.62∗∗∗ −0.53∗∗∗ −0.48∗∗ −0.03 −0.33 −0.68∗∗∗ −0.41∗

40% −0.58∗∗∗ −0.48∗∗ −0.06 0.09 −0.48∗∗ −0.29 −0.52∗∗∗ −0.47∗∗ −0.24 −0.32 −0.56∗∗∗ −0.44∗∗

60% −0.58∗∗∗ −0.45∗∗ 0.28 0.55∗∗∗ −0.74∗∗∗ −0.58∗∗∗ −0.56∗∗∗ −0.51∗∗ −0.15 −0.45∗∗ −0.66∗∗∗ −0.41∗

80% −0.65∗∗∗ −0.60∗∗∗ 0.10 0.34 −0.67∗∗∗ −0.57∗∗∗ −0.50∗∗ −0.42∗ −0.23 −0.44∗∗ −0.53∗∗∗ −0.28

Average −0.63∗∗∗ −0.54∗∗∗ 0.23 0.48∗∗ −0.75∗∗∗ −0.62∗∗∗ −0.53∗∗∗ −0.46∗∗ −0.14 −0.40∗ −0.62∗∗∗ −0.36

Panel B: Annual earnings growth

75% − 25% 0.38∗ 0.49∗∗ −0.18 −0.09 0.46∗∗ 0.47∗∗ 0.09 −0.01 −0.24 −0.24 0.25 0.03
max−min 0.01 0.15 −0.17 −0.04 0.13 0.24 −0.19 −0.24 −0.29 −0.32 −0.08 −0.20
std 0.31 0.44∗∗ −0.07 0.05 0.31 0.36 0.00 −0.09 −0.20 −0.26 0.11 −0.06

20% −0.57∗∗∗ −0.55∗∗∗ 0.09 0.21 −0.60∗∗∗ −0.49∗∗ −0.41∗ −0.33 −0.08 −0.19 −0.50∗∗ −0.29
40% −0.57∗∗∗ −0.49∗∗ 0.08 0.25 −0.58∗∗∗ −0.45∗∗ −0.48∗∗ −0.41∗ −0.17 −0.32 −0.54∗∗∗ −0.35
60% −0.51∗∗ −0.41∗ 0.03 0.22 −0.49∗∗ −0.41∗ −0.47∗∗ −0.42∗ −0.22 −0.37∗ −0.49∗∗ −0.34
80% −0.40∗ −0.28 −0.05 0.15 −0.33 −0.20 −0.42∗∗ −0.40∗ −0.29 −0.41∗ −0.40∗ −0.32

Average −0.46∗∗ −0.42∗∗ 0.07 0.20 −0.47∗∗ −0.39∗ −0.35 −0.29 −0.11 −0.23 −0.40∗ −0.24

Panel C: Monthly house price growth (nine areas, seasonally adjusted series)

75% − 25% 0.06 0.04 0.09 0.06 0.01 −0.02 0.05 0.03 0.04 0.01 0.05 0.04
max−min 0.03 0.01 0.05 0.01 −0.01 −0.03 0.05 0.04 0.05 0.04 0.04 0.04
std 0.03 0.00 0.05 0.01 −0.01 −0.05 0.06 0.06 0.06 0.05 0.06 0.06

20% −0.09 −0.11∗ −0.05 −0.09 −0.10 −0.12∗ 0.06 0.09 0.05 0.07 0.06 0.09
40% −0.11∗ −0.13∗∗ −0.06 −0.10 −0.14∗∗ −0.14∗∗ 0.06 0.09 0.05 0.08 0.04 0.09
60% −0.09 −0.12∗ −0.03 −0.08 −0.13∗∗ −0.15∗∗ 0.08 0.10∗ 0.06 0.08 0.08 0.12∗

80% −0.04 −0.10∗ 0.03 −0.07 −0.11∗ −0.18∗∗∗ 0.16∗∗ 0.17∗∗∗ 0.14∗∗ 0.14∗∗ 0.16∗∗ 0.19∗∗∗

Average −0.09 −0.13∗∗ −0.02 −0.10 −0.13∗∗ −0.17∗∗∗ 0.11∗ 0.14∗∗ 0.10 0.12∗ 0.11∗ 0.14∗∗

Panel D: Quarterly house price growth (100 largest Metropolitan areas, seasonally adjusted series)

75% − 25% −0.18∗ −0.16 −0.07 −0.10 −0.20∗ −0.14 −0.08 −0.01 0.02 0.07 −0.13 −0.02
max−min 0.02 0.04 0.03 0.08 −0.01 0.01 −0.07 −0.07 −0.06 −0.10 −0.05 −0.04
std −0.14 −0.11 −0.02 −0.03 −0.18∗ −0.12 −0.09 −0.04 0.00 0.02 −0.14 −0.04

20% 0.02 −0.05 0.20∗ 0.09 −0.18∗ −0.23∗∗ 0.23∗∗ 0.22∗∗ 0.27∗∗ 0.21∗ 0.12 0.21∗

40% −0.04 −0.07 0.19∗ 0.11 −0.25∗∗ −0.24∗∗ 0.11 0.12 0.21∗ 0.14 −0.01 0.12
60% −0.06 −0.10 0.15 0.08 −0.25∗∗ −0.25∗∗ 0.12 0.14 0.19∗ 0.14 0.02 0.15
80% −0.14 −0.17 0.11 0.01 −0.31∗∗∗ −0.31∗∗∗ 0.12 0.17 0.20∗ 0.19∗ 0.01 0.17

Average −0.06 −0.11 0.17 0.07 −0.26∗∗ −0.28∗∗∗ 0.17 0.19∗ 0.22∗∗ 0.18 0.06 0.19∗

tions in the wealth of individuals. For this reason, we use seasonally adjusted house price

data from the Federal Housing Financing Agency as a proxy for household wealth risk.

Specifically, we download monthly indices of house prices for nine regions in the US and

more granular quarterly data on house prices in the 100 largest Metropolitan areas.

We construct (monthly, quarterly, or annual) employment, earnings, and house price

growth rates and compute the cross-sectional measures of dispersion (an interquartile

range, a difference between the maximal and minimal values, and a standard deviation),

selected percentiles (20%, 40%, 60%, 80%), and the cross-sectional average. Note that these
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cross-sectional measures are likely to be correlated with market volatility risk premiums

due to their comovement with common factors. We disentangle the common correlation

between the index and firm-level volatility risk premiums through two orthogonalizations.

First, we regress the monthly common total, good, and bad factors on the corresponding

market time series. The residuals from these univariate regressions capture the common

factors orthogonalized to market-based volatility risk premia. Second, in a similar man-

ner, we obtain the market premia orthogonalized to the common factors extracted from

individual firms. We aggregate the monthly series of common and market volatility risk

premiums to a quarterly (annual) frequency by taking the average of monthly observations

within a quarter (a year).

Table 2 presents the correlations between innovations in common (market) volatility risk

premium and changes in cross-sectional measures of employment, earnings, and house

price growth rates. Innovations in CVRPB have a strong negative correlation with changes

in selected percentiles and the cross-sectional average of the variables. This relationship

tends to be statistically significant at the 5% confidence level (and even at the 1% con-

fidence level in many cases), while only one out of twenty estimates is insignificant at

the 10% confidence level. The market bad volatility risk premium exhibits a similar de-

gree of comovement with employment and earnings growth, while the correlation with

house price growth becomes insignificant. Furthermore, once the marker bad volatility

risk premium is orthogonalized to the corresponding common factor, all correlations with

earnings growth measures become insignificant at the 10% confidence level, whereas the

relationship with employment growth becomes substantially weaker. In contrast, the cor-

relations of employment and earnings growth with CVRPB orthogonalized to MVRPB

become slightly weaker but remain highly significant. Interestingly, the orthogonalized

MVRPB exhibits a stronger comovement with house price growth. In case of CVRPT

and MVRPT , we observe similar patterns in correlations with employment and earnings

growth, but there is no clear relationship with house price growth. This weak associa-

tion is primarily driven by the insignificant correlations with the good component of the

premiums.

In sum, our empirical analysis suggests the commonality in bad volatility risk pre-

miums of individual firms is strongly associated with the commonality in employment,
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earnings, and wealth growth, whereas the common factor in good volatility risk premi-

ums is unrelated to the cross-sectional distribution of employment, earnings, and wealth

growth. The economic interpretation is that the volatility risk premium, associated with

negative firm performance, is a proxy for fundamental risk faced by firms and households.

Since the correlations are much stronger for CVRPB than MVRPB, this risk is idiosyn-

cratic and unrelated to the aggregate market. Interestingly, the insignificant correlations

with various measures of dispersion in employment, earnings, and wealth growth (see

the top row in each panel in Table 2) indicate that the idiosyncratic risk captured by the

common bad volatility risk premium is distinct from idiosyncratic return volatility, which

is strongly associated with the cross-sectional dispersion in household income.

3.3 Firms’ exposure to the common volatility risk premium factors

We now study the quantitative asset pricing implications of the common volatility risk

premium factors. We take all common stocks (a share code 10 or 11) listed on the New York

Stock Exchange, NASDAQ, and AMEX from the Center for Research in Security Prices. At

the end of each month t, we estimate loadings onto CVRPT , CVRPG , and CVRPB from

the following regressions using a 60-month rolling window:

ri,t = β0
i + βCVRPX

i CVRPX
t + βMVRPT

i MVRPT
t + ϵi,t, X ∈ {T ,G,B} (6)

in which ri,t is the stock i’s excess returns and MVRPT is the market total volatility

risk premium. In the estimation above, we require the stock to have all monthly return

observations in the 60-month estimation window and its price at the end of the month

t to be higher than $5 (Bollerslev et al., 2020). We control for the market total volatility

premium in the computation of a firm’s exposures to common volatility risk premia factors

in the spirit of Herskovic et al. (2016). Specifically, the loading βCVRPX
i from a multivariate

regression given by Equation (6) is equivalent to estimating a univariate regression of a

stock’s excess returns on CVRPX
t orthogonalized to MVRPT

t . For this reason, we label

the obtained loadings as orthogonalizing to the market total volatility risk premium. We

also consider replacing the market volatility premium with innovations to the VIX index

(Ang et al., 2006), common idiosyncratic volatility (Herskovic et al., 2016), and common

bad implied volatility (Babiak et al., 2023) as well the market bad volatility risk premium

(Kilic and Shaliastovich, 2019).
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Having estimated the loadings, we implement single-sorted portfolios using equal- and

value-weighting schemes. At the end of each month, we sort stocks into quintile portfolios

based on their loadings to common volatility premia factors
(

βCVRPT
i , βCVRPG

i , βCVRPB
i

)
,

compute returns over the next month, and repeat this process for all months in our sample.

Along with the excess expected returns for quintile portfolios, we also report risk-adjusted

returns that are the alphas relative to the five factors of Fama and French (2015) or the six

factors with momentum of Jegadeesh and Titman (1993).8 The risk-adjusted returns allow

us to control for other factors known to affect stock returns.

3.4 CVRP-beta sorted portfolios

Table 3 shows results from single portfolio sorts using loadings on common total (Panel

A), good (Panel B), and bad (Panel C) volatility risk premiums. In general, quintile portfo-

lios sorted on CVRPT -betas and CVRPG-betas exhibit monotonically increasing returns;

although the spread portfolio excess and risk-adjusted returns are statistically insignificant.

Consistent with economic rationale, the average excess returns of CVRPB-beta quintiles

are monotonically decreasing in both equal- and value-weighted specifications. As a re-

sult, spread portfolios formed on CVRPB-betas generate statistically and economically

significant average returns and alphas. Focusing on a value-weighting scheme, the average

excess return on the spread portfolio is −7.32% per annum (t-ratio = −2.93), and annual-

ized five- and six-factor alphas (α5, α6) are −9.00% (t-ratio = −2.86) and −9.24% (t-ratio

= −3.35). Turning to an equal-weighting scheme, the annualized average excess return,

α5, and α6 slightly shrink in absolute values to −6.48% (t-ratio = −2.41) ,−6.24% (t-ratio

= −2.73), and −6.48% (t-ratio = −3.64), respectively, but all remain highly significant in

economic and statistical terms.

Table 4 reports analogous portfolio sorts where we obtain loadings by orthogonaliz-

ing to innovations to the VIX index (∆VIX). The key conclusions remain the same. We

observe monotonically increasing (decreasing) returns for portfolios we form on CVRPG-

betas (CVRPB-betas). For portfolios formed on exposures to common good volatility risk

premium, excess returns for value-weighted portfolios become now statistically significant

and economically meaningful with an annualized excess return of 8.64%. However, the

Fama-French factors and momentum subsume this strong performance as shown by in-
8We retrieve the factors from Kenneth French’s Data Library.
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Table 3. Portfolios formed on CVRP-beta: orthogonalization to MVRP
This table presents the average excess returns (RET-RF) and alphas (α5, α6) expressed in monthly percentages
for equal-weighted and value-weighted quintile portfolios (Pi : i = 1, . . . , 5) and a long-short strategy (P5−1)
formed on loadings to common total (Panel A), good (Panel B), and bad (Panel C) volatility risk premia
whilst controlling for the exposure to market total volatility risk premium (MVRPT ). Specifically, we
estimate common volatility risk premia (CVRP)-betas from bivariate regressions of monthly excess returns
on CVRP and MVRPT using a rolling 60-month window. The portfolio P1(P5) comprises stocks with the
lowest (highest) CVRP-betas. The long-short strategy buys P5 and sells P1. α5 is the alpha from the five-
factor Fama-French model including the market, size, book-to-market, investment, and profitability factors.
α6 is the alpha relative to the five Fama-French factors and momentum. The numbers in shaded rows
are Newey-West adjusted t-statistics of average returns and alphas. The sample is from January 2000 to
December 2020.

Equal-Weighted Value-Weighted

P1 P2 P3 P4 P5 P5−1 P1 P2 P3 P4 P5 P5−1

Panel A: CVRPT -beta portfolios

RET-RF 0.67 0.75 0.84 0.83 0.84 0.16 0.71 0.73 0.77 0.80 0.92 0.21
1.91 2.28 2.27 2.00 1.73 0.93 2.48 2.65 2.41 2.13 1.82 0.74

α5 0.06 0.13 0.14 0.01 −0.08 −0.15 0.11 0.02 −0.04 −0.06 −0.14 −0.25
0.75 3.04 2.85 0.18 −1.60 −1.41 0.94 0.40 −0.76 −0.96 −1.00 −1.12

α6 0.06 0.14 0.14 0.02 −0.07 −0.13 0.11 0.02 −0.04 −0.06 −0.13 −0.25
0.75 2.97 2.81 0.25 −1.34 −1.49 0.94 0.37 −0.89 −0.92 −0.96 −1.09

Panel B: CVRPG -beta portfolios

RET-RF 0.49 0.68 0.85 0.88 1.02 0.54 0.57 0.66 0.80 1.06 1.07 0.50
1.42 2.01 2.27 2.11 1.98 1.61 2.14 2.40 2.42 2.70 2.12 1.44

α5 −0.05 0.08 0.15 0.07 0.01 0.06 0.02 −0.05 −0.03 0.12 0.08 0.06
−0.41 1.03 2.70 1.37 0.14 0.30 0.20 −0.78 −0.42 2.37 0.62 0.29

α6 −0.06 0.08 0.15 0.08 0.04 0.10 0.01 −0.06 −0.04 0.13 0.10 0.09
−0.62 1.04 2.58 1.47 0.53 0.63 0.13 −0.88 −0.44 2.45 0.83 0.42

Panel C: CVRPB-beta portfolios

RET-RF 1.09 0.87 0.74 0.67 0.55 −0.54 1.08 1.05 0.63 0.70 0.46 −0.61
2.55 2.40 2.01 1.75 1.28 −2.41 2.77 3.26 2.05 1.95 1.08 −2.93

α5 0.28 0.19 0.04 0.00 −0.24 −0.52 0.28 0.31 −0.17 −0.06 −0.46 −0.75
2.73 4.59 0.68 0.01 −2.23 −2.73 1.94 4.14 −3.22 −0.61 −3.00 −2.86

α6 0.30 0.20 0.04 0.00 −0.25 −0.54 0.30 0.32 −0.17 −0.07 −0.48 −0.77
3.36 4.43 0.68 −0.01 −2.65 −3.64 2.14 4.38 −3.26 −0.72 −3.46 −3.35

significant risk-adjusted returns. Turning to portfolios sorted on CVRPB-betas, one can

observe a significantly negative return spread, though the statistical significance becomes

weaker on a risk-adjusted basis. Nevertheless, the magnitudes of the average excess re-

turns and alphas are comparable to those reported in Table 3. In sum, the innovations

to the VIX index account for some fraction of the return spread between stocks with the

strongest and weakest exposure to common downside volatility premiums. However, this

effect cannot completely explain a substantial return differential.

Another possibility is that our common factors capture firms’ volatility risk stemming
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Table 4. Portfolios formed on CVRP-beta: orthogonalization to ∆VIX

This table presents the average excess returns (RET-RF) and alphas (α5, α6) expressed in monthly percentages
for equal-weighted and value-weighted quintile portfolios (Pi : i = 1, . . . , 5) and a long-short strategy (P5−1)
formed on loadings to common total (Panel A), good (Panel B), and bad (Panel C) volatility risk premia
whilst controlling for the exposure to shocks to the VIX index (∆VIX) of Ang et al. (2006). Specifically, we
estimate common volatility risk premia (CVRP)-betas from bivariate regressions of monthly excess returns
on CVRP and ∆VIX using a rolling 60-month window. The portfolio P1(P5) comprises stocks with the
lowest (highest) CVRP-betas. The long-short strategy buys P5 and sells P1. α5 is the alpha from the five-
factor Fama-French model including the market, size, book-to-market, investment, and profitability factors.
α6 is the alpha relative to the five Fama-French factors and momentum. The numbers in shaded rows
are Newey-West adjusted t-statistics of average returns and alphas. The sample is from January 2000 to
December 2020.

Equal-Weighted Value-Weighted

P1 P2 P3 P4 P5 P5−1 P1 P2 P3 P4 P5 P5−1

Panel A: CVRPT -beta portfolios

RET-RF 0.82 0.82 0.78 0.80 0.70 −0.13 0.81 0.74 0.89 0.73 0.81 0.00
2.12 2.25 2.21 2.04 1.54 −0.81 2.36 2.43 2.96 2.13 1.87 0.00

α5 0.07 0.11 0.10 0.07 −0.09 −0.17 0.15 0.02 0.11 −0.07 −0.16 −0.31
0.86 2.73 1.84 0.84 −0.93 −1.00 0.84 0.24 2.40 −0.73 −1.08 −1.00

α6 0.08 0.11 0.11 0.08 −0.09 −0.17 0.16 0.02 0.11 −0.07 −0.16 −0.33
0.97 2.63 1.79 0.84 −0.90 −1.06 0.95 0.35 2.42 −0.92 −1.14 −1.10

Panel B: CVRPG -beta portfolios

RET-RF 0.49 0.66 0.81 0.94 1.02 0.52 0.54 0.61 0.80 0.98 1.25 0.72
1.41 1.78 2.24 2.29 2.09 1.88 1.89 1.90 2.82 2.56 2.76 2.44

α5 −0.11 0.03 0.12 0.15 0.08 0.19 −0.05 −0.11 0.08 0.05 0.25 0.30
−0.98 0.30 2.38 2.74 0.86 0.98 −0.40 −1.38 1.08 0.56 2.34 1.58

α6 −0.13 0.02 0.13 0.16 0.10 0.22 −0.06 −0.11 0.07 0.05 0.26 0.33
−1.31 0.28 2.27 2.71 1.40 1.53 −0.47 −1.39 1.01 0.55 2.72 1.74

Panel C: CVRPB-beta portfolios

RET-RF 1.15 0.89 0.79 0.62 0.47 −0.69 1.10 1.01 0.83 0.65 0.43 −0.67
2.42 2.44 2.13 1.65 1.09 −2.03 2.48 3.04 2.85 1.81 1.00 −2.22

α5 0.25 0.16 0.12 −0.03 −0.22 −0.47 0.23 0.24 0.04 −0.11 −0.41 −0.64
1.64 3.16 1.73 −0.31 −1.47 −1.60 1.35 2.41 0.57 −1.08 −2.18 −1.91

α6 0.27 0.17 0.12 −0.04 −0.24 −0.50 0.25 0.25 0.04 −0.12 −0.43 −0.68
2.32 3.44 1.68 −0.37 −1.77 −2.14 1.65 2.97 0.60 −1.28 −2.50 −2.30

not from the global volatility – the VIX index – but the idiosyncratic component of stock

return. We test this hypothesis by controlling for innovations in common idiosyncratic

volatility (∆CIV) proposed by Herskovic et al. (2016) in the exposure computations.9 Table

5 reports the results. The CVRPB sort still remains associated with a statistically and

economically significant (abnormal) return spread.

We further assess the significance of the CVRPB-beta return spread by testing whether

9We download the time series of common idiosyncratic volatility and respective tradable factors from
Bernard Herskovic’s website.
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Table 5. Portfolios formed on CVRP-beta: orthogonalization to ∆CIV

This table presents the average excess returns (RET-RF) and alphas (α5, α6) expressed in monthly percentages
for equal-weighted and value-weighted quintile portfolios (Pi : i = 1, . . . , 5) and a long-short strategy (P5−1)
formed on loadings to common total (Panel A), good (Panel B), and bad (Panel C) volatility risk premia whilst
controlling for the exposure to shocks to common idiosyncratic volatility (∆CIV) of Herskovic et al. (2016).
Specifically, we estimate common volatility risk premia (CVRP)-betas from bivariate regressions of monthly
excess returns on CVRP and ∆CIV using a rolling 60-month window. The portfolio P1(P5) comprises stocks
with the lowest (highest) CVRP-betas. The long-short strategy buys P5 and sells P1. α5 is the alpha from
the five-factor Fama-French model including the market, size, book-to-market, investment, and profitability
factors. α6 is the alpha relative to the five Fama-French factors and momentum. The numbers in shaded
rows are Newey-West adjusted t-statistics of average returns and alphas. The sample is from January 2000
to December 2020.

Equal-Weighted Value-Weighted

P1 P2 P3 P4 P5 P5−1 P1 P2 P3 P4 P5 P5−1

Panel A: CVRPT -beta portfolios

RET-RF 0.85 0.79 0.80 0.83 0.65 −0.20 0.78 0.82 0.76 0.76 0.71 −0.06
2.05 2.29 2.30 2.06 1.49 −1.53 2.16 2.94 2.41 2.22 1.63 −0.35

α5 0.10 0.12 0.12 0.10 −0.17 −0.27 0.06 0.09 0.01 −0.05 −0.23 −0.29
1.27 2.95 2.38 1.26 −2.27 −2.20 0.51 1.30 0.23 −0.88 −1.58 −1.19

α6 0.11 0.12 0.13 0.10 −0.17 −0.28 0.06 0.09 0.01 −0.05 −0.23 −0.30
1.39 2.94 2.32 1.21 −2.04 −2.27 0.58 1.28 0.14 −0.80 −1.63 −1.27

Panel B: CVRPG -beta portfolios

RET-RF 0.57 0.69 0.84 0.89 0.94 0.37 0.58 0.63 0.76 1.07 0.97 0.40
1.46 1.94 2.33 2.19 1.99 1.45 1.83 1.94 2.63 2.73 2.21 1.55

α5 −0.09 0.04 0.15 0.12 0.04 0.12 −0.06 −0.08 −0.03 0.16 0.11 0.17
−0.79 0.52 2.37 2.21 0.38 0.64 −0.57 −1.26 −0.64 1.70 1.02 0.94

α6 −0.10 0.04 0.15 0.13 0.06 0.16 −0.07 −0.09 −0.03 0.16 0.13 0.21
−1.13 0.51 2.25 2.37 0.86 1.17 −0.66 −1.46 −0.66 1.73 1.31 1.12

Panel C: CVRPB-beta portfolios

RET-RF 1.08 0.87 0.77 0.64 0.56 −0.51 1.06 0.99 0.75 0.61 0.53 −0.53
2.37 2.35 2.13 1.71 1.34 −2.05 2.49 2.97 2.63 1.82 1.23 −2.17

α5 0.23 0.17 0.09 −0.03 −0.20 −0.43 0.23 0.23 −0.02 −0.12 −0.38 −0.60
1.98 3.68 1.59 −0.38 −1.76 −2.01 1.67 2.57 −0.30 −1.52 −2.21 −2.25

α6 0.25 0.18 0.10 −0.04 −0.20 −0.46 0.24 0.24 −0.02 −0.13 −0.39 −0.63
2.67 3.67 1.56 −0.43 −2.08 −2.72 2.02 2.69 −0.28 −1.73 −2.56 −2.81

this cross-sectional predictive power can be captured by other variables pertaining to

volatility risk in negative returns. Specifically, we consider the market bad volatility risk

premium and innovations to commonalities in firm-level implied volatilities as alterna-

tive control variables in the CVRPB-beta estimation. The former allows us to distin-

guish the information content within co-movement among firm-level and market volatil-

ity risk premiums in negative individual stock and market returns. The latter indicates

whether changes to down implied semi-variance measures drive the observed effect. Ta-

ble 6 presents the results. Panel A shows that average excess and risk-adjusted returns
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Table 6. Portfolios formed on CVRPB-beta: additional single-sorted portfolios

This table presents the average excess returns (RET-RF) and alphas (α5, α6) expressed in monthly percentages
for equal-weighted and value-weighted quintile portfolios (Pi : i = 1, . . . , 5) and a long-short strategy (P5−1)
formed on loadings to common total (Panel A), good (Panel B), and bad (Panel C) volatility risk premia
whilst controlling for the exposure to market bad volatility risk premium (MVRPB) of Kilic and Shalias-
tovich (2019) or shocks to common bad implied volatility (∆CIVOLB) of Babiak et al. (2023). Specifically, we
estimate common volatility risk premia (CVRP)-betas from bivariate regressions of monthly excess returns
on CVRP and MVRPB (∆CIVOLB) using a rolling 60-month window. The portfolio P1(P5) comprises
stocks with the lowest (highest) CVRP-betas. The long-short strategy buys P5 and sells P1. α5 is the alpha
from the five-factor Fama-French model including the market, size, book-to-market, investment, and prof-
itability factors. α6 is the alpha relative to the five Fama-French factors and momentum. The numbers in
shaded rows are Newey-West adjusted t-statistics of average returns and alphas. The sample is from January
2000 to December 2020.

Equal-Weighted Value-Weighted

P1 P2 P3 P4 P5 P5−1 P1 P2 P3 P4 P5 P5−1

Panel A: Orthogonalization to MVRPB

RET-RF 1.00 0.86 0.77 0.72 0.58 −0.43 1.05 0.94 0.67 0.70 0.52 −0.53
2.42 2.45 2.14 1.81 1.31 −2.25 2.88 2.88 2.07 1.93 1.14 −2.43

α5 0.21 0.17 0.09 0.01 −0.22 −0.43 0.24 0.20 −0.13 −0.10 −0.42 −0.66
2.66 4.52 1.67 0.18 −2.59 −3.16 1.85 2.32 −2.18 −1.01 −3.05 −2.87

α6 0.22 0.18 0.09 0.01 −0.22 −0.44 0.25 0.20 −0.13 −0.10 −0.42 −0.68
2.75 4.09 1.66 0.19 −2.65 −3.65 2.00 2.29 −2.17 −1.06 −3.20 −3.12

Panel B: Orthogonalization to ∆CIVOLB

RET-RF 1.07 0.88 0.81 0.64 0.52 −0.55 1.01 1.02 0.79 0.65 0.49 −0.52
2.40 2.38 2.29 1.67 1.20 −2.13 2.40 3.02 2.87 1.84 1.15 −2.17

α5 0.22 0.19 0.13 −0.03 −0.24 −0.47 0.20 0.27 0.01 −0.10 −0.40 −0.60
1.95 4.34 2.11 −0.35 −1.97 −2.07 1.36 3.06 0.13 −1.10 −2.47 −2.13

α6 0.24 0.20 0.13 −0.04 −0.25 −0.49 0.22 0.27 0.01 −0.11 −0.41 −0.62
2.65 5.10 2.07 −0.40 −2.23 −2.69 1.57 3.42 0.14 −1.28 −2.80 −2.49

for CVRPB-beta portfolios that orthogonalize to MVRPB are statistically significant and

economically meaningful. Indeed, the t-statistics of return estimates exceed 2 in absolute

values with the annualized spread in average returns ranging from −5.16% to −6.60% and

the annualized alphas ranging from −5.16% to −8.16%. This suggests that commonalities

in firm-level bad volatility risk premiums are not driven by the same information content

we take from the market index bad volatility premium or co-movement among innovations

in firm-level bad implied volatilities.

We now investigate double-sorted portfolios whilst controlling for other characteristics

following the procedure in Ang et al. (2006) and Herskovic et al. (2016). We first sort stocks

into quintiles using the characteristic of interest, then within each quintile, we sort stocks

into equal-weighted quintile portfolios based on CVRPB-betas. We finally take the equal-
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Table 7. Portfolios formed on CVRPB-beta controlling for other characteristics

At the end of each month, we conditionally double-sort stocks based on common bad volatility risk premium
(CVRPB)-beta after controlling for various variables. The control variables include market capitalization
(MCAP), market total (MVRPT ) and bad (MVRPB) volatility risk premia of Kilic and Shaliastovich (2019),
shocks to the VIX index (∆VIX) of Ang et al. (2006), common idiosyncratic volatility (∆CIV) of Herskovic
et al. (2016), and common bad implied volatility (∆CIVOLB) of Babiak et al. (2023). In each case, we first
sort stocks into quintiles using the control variable, then within each quintile, we sort stocks into quintile
portfolios based on CVRPB-beta so that P1 (P5) is the portfolio of stocks with the lowest (highest) CVRPB-
betas. This table presents average returns across the five control quintiles to produce quintile portfolios
with dispersion in CVRPB-beta but with similar levels of the control variable. The spread portfolio P5−1
is the difference between P5 and P1. This table presents the average excess returns (RET-RF) and alphas
(α5, α6) expressed in monthly percentages for equal-weighted portfolios. α5 is the alpha from the five-factor
Fama-French model including the market, size, book-to-market, investment, and profitability factors. α6 is
the alpha relative to the five Fama-French factors and momentum. The numbers in shaded rows are Newey-
West adjusted t-statistics of average excess and alphas. The sample is from January 2000 to December 2020.

P1 P2 P3 P4 P5 P5−1 P1 P2 P3 P4 P5 P5−1

MCAP MVRPT

RET-RF 1.07 0.86 0.79 0.67 0.54 −0.53 1.06 0.87 0.77 0.68 0.55 −0.51
2.55 2.37 2.13 1.72 1.21 −2.10 2.52 2.37 2.04 1.78 1.28 −2.27

α5 0.25 0.17 0.13 −0.03 −0.25 −0.50 0.28 0.17 0.07 −0.03 −0.21 −0.49
2.11 3.77 1.70 −0.30 −2.11 −2.25 2.83 3.99 1.10 −0.35 −2.05 −2.65

α6 0.27 0.17 0.14 −0.03 −0.26 −0.53 0.29 0.17 0.07 −0.03 −0.22 −0.51
2.91 3.52 1.66 −0.36 −2.45 −2.98 3.56 3.82 1.10 −0.38 −2.44 −3.58

∆VIX ∆CIV

RET-RF 1.11 0.89 0.78 0.68 0.47 −0.64 1.07 0.86 0.79 0.69 0.52 −0.55
2.50 2.36 2.08 1.80 1.10 −2.20 2.49 2.26 2.14 1.79 1.26 −2.42

α5 0.25 0.16 0.09 −0.02 −0.22 −0.46 0.25 0.14 0.11 −0.02 −0.21 −0.47
2.10 3.40 1.38 −0.20 −1.48 −1.85 2.54 3.33 1.90 −0.19 −2.09 −2.51

α6 0.27 0.17 0.10 −0.02 −0.23 −0.49 0.27 0.15 0.11 −0.02 −0.22 −0.49
2.76 4.26 1.38 −0.26 −1.76 −2.42 3.33 3.30 1.89 −0.21 −2.41 −3.32

MVRPB ∆CIVOLB

RET-RF 1.00 0.88 0.78 0.71 0.56 −0.44 1.06 0.88 0.81 0.67 0.51 −0.55
2.42 2.45 2.10 1.84 1.29 −2.17 2.50 2.32 2.15 1.75 1.22 −2.23

α5 0.22 0.17 0.09 −0.01 −0.20 −0.42 0.25 0.17 0.09 −0.03 −0.21 −0.46
2.91 4.51 1.63 −0.15 −2.26 −2.96 2.53 4.12 1.52 −0.36 −1.77 −2.27

α6 0.23 0.18 0.09 −0.01 −0.21 −0.44 0.27 0.18 0.09 −0.03 −0.22 −0.49
3.16 4.19 1.61 −0.15 −2.41 −3.63 3.17 4.66 1.50 −0.42 −2.02 −2.91

weighted average returns across five control groups to generate dispersion in CVRPB-

betas with similar levels of control variables. This neutralizes the quintile portfolios formed

on loadings to the common bad volatility risk premium from the characteristic of interest.

We consider a set of controls including market capitalization, the market total and bad

volatility risk premium as well as innovations to the VIX index, common idiosyncratic

volatility, and common firm-level bad implied volatility.
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Table 8. Double-sorted portfolios formed on CVRPB-beta and other characteristics

At the end of each month, we conditionally double-sort stocks based on common bad volatility risk premium
(CVRPB)-beta after controlling for various variables. The control variables include market capitalization
(MCAP), market total (MVRPT ) and bad (MVRPB) volatility risk premia of Kilic and Shaliastovich (2019),
shocks to the VIX index (∆VIX) of Ang et al. (2006), common idiosyncratic volatility (∆CIV) of Herskovic
et al. (2016), and common bad implied volatility (∆CIVOLB) of Babiak et al. (2023). In each case, we first
sort stocks into quintiles using the control variable, then within each quintile, we sort stocks into quintile
portfolios based on CVRPB-beta so that P1 (P5) is the portfolio of stocks with the lowest (highest) CVRPB-
betas. This table presents the average excess returns of the twenty-five double-sorted portfolios. The spread
portfolio P5−1 is the difference between P5 and P1. The numbers in shaded rows and columns are Newey-
West adjusted t-statistics of average returns. The sample is from January 2000 to December 2020.

P1 P2 P3 P4 P5 P5−1 P1 P2 P3 P4 P5 P5−1

MCAP MVRPT

P1 0.92 0.70 0.75 0.41 0.41 −0.51 −2.02 0.79 0.61 0.56 0.58 0.47 −0.31 −1.21
P2 1.11 0.82 0.58 0.73 0.60 −0.51 −1.69 1.13 0.73 0.87 0.68 0.50 −0.63 −2.57
P3 1.14 0.95 0.86 0.71 0.63 −0.51 −1.77 1.11 0.84 0.68 0.79 0.65 −0.45 −2.13
P4 1.17 0.89 0.90 0.69 0.57 −0.60 −2.10 1.13 1.02 0.86 0.66 0.45 −0.68 −2.43
P5 0.99 0.92 0.88 0.80 0.48 −0.51 −2.02 1.14 1.13 0.87 0.70 0.65 −0.49 −1.74
P5−1 0.07 0.22 0.13 0.38 0.07 0.35 0.53 0.30 0.12 0.18

0.30 1.25 0.76 2.80 0.38 1.20 1.81 1.25 0.46 0.97

∆VIX ∆CIV

P1 0.98 0.88 0.70 0.74 0.52 −0.47 −1.21 1.12 1.01 0.89 0.80 0.73 −0.40 −1.25
P2 1.25 1.03 0.98 0.69 0.49 −0.75 −2.23 1.31 1.09 0.98 0.80 0.45 −0.85 −2.76
P3 1.24 0.89 0.86 0.76 0.60 −0.64 −1.92 1.16 0.86 0.87 0.67 0.63 −0.53 −2.04
P4 1.18 0.91 0.72 0.73 0.44 −0.75 −2.32 1.01 0.73 0.69 0.65 0.45 −0.57 −2.40
P5 0.89 0.73 0.65 0.47 0.29 −0.61 −2.52 0.73 0.60 0.53 0.52 0.34 −0.39 −2.07
P5−1 −0.09 −0.15 −0.06 −0.28 −0.23 −0.40 −0.40 −0.36 −0.29 −0.39

−0.25 −0.45 −0.21 −0.95 −0.83 −1.07 −1.27 −1.07 −0.93 −1.68

MVRPB ∆CIVOLB

P1 1.03 1.05 0.80 0.72 0.64 −0.39 −1.25 1.11 1.09 0.91 0.76 0.71 −0.40 −1.10
P2 1.07 0.88 0.86 0.66 0.59 −0.48 −1.92 1.22 0.93 0.98 0.70 0.50 −0.71 −2.06
P3 1.03 0.85 0.82 0.79 0.59 −0.44 −2.18 1.28 0.87 0.84 0.71 0.62 −0.66 −2.13
P4 1.05 0.76 0.76 0.79 0.50 −0.55 −2.48 0.97 0.92 0.82 0.61 0.48 −0.49 −2.27
P5 0.83 0.85 0.68 0.55 0.48 −0.35 −1.74 0.72 0.59 0.49 0.55 0.25 −0.47 −2.11
P5−1 −0.20 −0.20 −0.12 −0.17 −0.16 −0.39 −0.50 −0.42 −0.20 −0.46

−0.61 −0.68 −0.61 −0.80 −0.90 −0.86 −1.28 −1.21 −0.66 −1.50

Table 7 reports the results. In all cases, we observe significant excess returns for spread

portfolios that range from annualized values of −7.68% to −5.28%. The alphas are also

statistically significant and of similar magnitudes with annualized estimates ranging from

−6.36% to −5.04%. Table 8 augments the previous results by reporting the average excess

returns for 5 × 5 double sorts using the same characteristics. For each control, the highest

CVRPB-beta stocks earn substantially lower returns within each control characteristic’s

quantile. The majority of these economically substantial spreads (nineteen out of thirty

cases) are also statistically significant at the 5% confidence level. In contrast, controlling for

the CVRPB-beta spread, all but one return spread based on control variables are abysmal

both economically and statistically.
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In sum, the commonalities in firm-level volatility risk premia relating to anticipated

future downward price movements can predict future returns. Stocks with higher (lower)

CVRPB-betas generate lower (higher) returns. This holds after accounting for a battery

of alternative factors including the market volatility risk premia and various alternative

proxies for volatility risks. Intuitively, this finding can be explained by the fact that, in

equilibrium, investors are willing to accept lower returns for stocks that load strongly

on CVRPBas they act as hedging devices for adverse changes to investment opportunities

(Campbell et al., 2018; Farago and Tédongap, 2018). Although our results for CVRPG-beta

portfolios are statistically insignificant, they are consistent with the positive link between

good market variance risk premium and future stock returns in Kilic and Shaliastovich

(2019).10

3.5 Pricing CVRP-beta sorted portfolios

Here, we conduct a two-stage Fama and MacBeth estimation to explore the pricing

implications of commonalities among firm-level volatility risk premia. We obtain factor

betas in the first stage by regressing monthly excess returns of each test asset on constant

and asset pricing factors. The second stage is a single cross-sectional regression for the

average excess returns for all test assets on the factor betas and a constant. In what follows,

we report the risk-premia estimates from the second stage. We use Newey-West t-statistics

with 12 lags that adjust for errors in variables as in Shanken (1992). We also report the

adjusted R-squared statistics, R2
adj, from each of the second-stage regressions.

Our test assets stem from the same estimates we use to obtain the monthly portfo-

lio returns in Section 3.4. We proxy the corresponding common volatility risk premium

factors using the long-short strategies (P5−1) for CVRPT /G/B-beta portfolios from Table

3. We consider various asset pricing factors to price CVRPT /G/B-beta portfolios. Our

baseline utilizes the five factors of Fama and French (2015) and one of the CVRPT /G/B

factors. Then, we sequentially add momentum (MOM), market volatility risk premium(
MVRPT /G/B

)
and tradable long-short portfolios formed on exposure to ∆VIX, ∆CIV,

10Appendix B reports additional robustness analysis. Table A1 shows portfolio sorts on CVRPT -,
CVRPG -, and CVRPB-beta portfolios with no orthogonalization. These convey the same message as Ta-
ble 3. Table A2 shows analogous results for portfolios we form on MVRPT -, MVRPG -, and MVRPB-
beta portfolios. These results show no pattern across quintile portfolios and no evidence of significant excess
or risk-adjusted returns.
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Table 9. Fama-MacBeth analysis: decile portfolios formed on CVRP-beta

This table shows the Fama-MacBeth two-pass regression analysis for decile portfolios formed on loadings to
common total (CVRPT ), good (CVRPG ), and bad (CVRPB) volatility risk premia. For each set of test assets,
we first control for a tradable long-short portfolio formed on the CVRP-beta and the five Fama-French factors
– market, size, book-to-market, investment, and profitability. Then, we augment the independent variables
by including, one at a time, momentum and tradable long-short portfolios formed on the corresponding
market volatility risk premia (MVRP)-beta and loadings on the VIX, common idiosyncratic volatility, and
corresponding common implied volatility innovation. The numbers in shaded rows are Newey-West adjusted
t-statistics of coefficients. The bottom row reports the adjusted R-squared. The sample is from January 2005
to December 2020.

CVRPT CVRPG CVRPB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

λ0 0.27 0.43 1.58 0.50 0.36 0.37 0.45 0.54 0.46 0.42 0.28 0.45 1.80 1.56 1.81 0.38 1.97 0.24
0.57 0.90 0.15 0.80 0.76 0.38 0.86 0.75 0.75 0.74 0.20 0.67 0.72 0.63 0.72 0.14 0.78 0.09

λCVRPT /G/B 0.16 0.16 0.78 0.16 0.15 0.16 0.48 0.48 0.48 0.48 0.48 0.48 -0.48 -0.48 -0.48 -0.50 -0.49 -0.49
0.85 0.83 1.37 0.83 0.81 0.85 1.45 1.45 1.45 1.45 1.45 1.45 -2.10 -2.11 -2.09 -2.11 -2.11 -2.10

λMkt 1.01 1.03 1.18 1.48 1.59 1.05 0.75 0.54 0.72 0.75 1.25 0.75 -3.06 -2.50 -3.15 0.24 -2.24 0.16
0.90 0.92 -1.67 1.22 1.29 0.88 0.95 0.46 0.71 0.95 0.30 0.89 -0.66 -0.54 -0.68 0.05 -0.49 0.03

λSMB -0.45 -0.76 -1.39 -1.43 -1.34 -0.66 0.39 0.48 0.41 0.44 0.07 0.39 2.58 2.04 2.67 -0.26 0.84 0.12
-0.43 -0.69 -1.14 -0.84 -1.09 -0.31 0.79 0.90 0.71 0.68 0.02 0.69 0.88 0.69 0.91 -0.07 0.27 0.04

λHML -0.52 -1.01 -1.11 -0.91 -1.12 -0.57 -3.22 -2.96 -3.22 -3.27 -3.74 -3.22 1.30 1.39 1.49 2.03 1.93 1.96
-0.53 -0.93 0.57 -0.77 -1.02 -0.49 -2.97 -1.72 -2.94 -2.72 -0.89 -2.91 1.41 1.59 1.33 2.33 2.28 1.99

λRMW 0.78 0.56 1.63 0.43 0.51 0.72 2.46 2.30 2.44 2.48 2.70 2.46 0.17 0.07 0.22 0.40 0.54 0.50
2.13 1.58 0.46 0.67 1.36 1.11 3.51 2.63 3.44 3.28 1.20 3.58 0.36 0.17 0.53 0.79 0.93 1.04

λCMA 1.09 0.37 0.61 0.68 0.85 0.98 -1.14 -1.08 -1.15 -1.15 -1.17 -1.14 0.98 0.23 0.27 0.37 0.68 0.49 0.74
1.54 0.42 0.66 1.15 0.77 -2.04 -1.66 -1.99 -1.96 -1.98 -1.94 0.38 0.43 0.60 1.03 0.77 1.12

λMOM -1.85 2.37 -1.62
-1.17 2.70 -0.92

λMVRPT /G/B 2.00 0.26 -0.64
2.27 0.38 -1.97

λ∆VIX -0.64 -0.47 -1.27
-2.03 -0.72 -0.73

λ∆CIV -1.47 0.45 -2.02
-1.76 0.24 -1.06

λCIVOLT /G/B -0.43 -0.71 -0.92
-1.04 -1.30 -0.57

R2
adj 0.57 0.79 0.97 0.48 0.82 0.43 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.96 0.99 0.99 0.98

and ∆CIVOLT /G/B. We have 6 alternative pricing models for each set of test assets.

Table 9 reports the risk premia estimates for decile portfolios formed on CVRP-betas.

We use decile portfolios here to ensure we have enough of a cross-section to include addi-

tional asset pricing factors. Columns 1–6 show results for CVRPT -beta decile portfolios,

meanwhile columns 7–12, and 13–18 contain estimates for the CVRPG-beta and CVRPB-

beta decile portfolios, respectively. The risk premia estimates for CVRPT and CVRPG are

statistically insignificant. Turning to risk premia estimates for CVRPB, however, the annu-

alized risk premia estimates range from −6% to −5.76%. The coefficients are economically

meaningful and are consistent with the spread portfolio returns in Table 3. Note also that

the estimates are robust across all specifications even after accounting for MVRPT /G/B

and other alternative volatility risk proxies. The adjusted R-squared values are high, par-

ticularly for CVRPB-beta decile portfolios.

Table 10 considers three additional groups of test assets: i) 25 double-sorted portfolios
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Table 10. Fama-MacBeth analysis: double-sorted portfolios formed on CVRP- and
MVRP-beta

This table shows the Fama-MacBeth two-pass regression analysis for twenty-five conditionally double-sorted
portfolios based on common volatility risk premium (CVRP)-beta and market volatility risk premium
(MVRP)-beta. In each case, we first sort stocks into quintiles based on MVRP-beta, then within each
quintile, we sort stocks into quintile portfolios based on CVRP-beta so that P1 (P5) is the portfolio of stocks
with the lowest (highest) CVRP-betas. For each set of test assets, we first control for a tradable long-short
portfolio formed on the CVRP-beta and the five Fama-French factors – market, size, book-to-market, invest-
ment, and profitability. Then, we augment the independent variables by including, one at a time, momentum
and tradable long-short portfolios formed on the corresponding market volatility risk premia (MVRP)-beta
and loadings on the VIX, common idiosyncratic volatility, and corresponding common implied volatility in-
novation. The numbers in shaded rows are Newey-West adjusted t-statistics of coefficients. The bottom row
reports the adjusted R-squared. The sample is from January 2005 to December 2020.

25 double-sorted on CVRPT and MVRPT 25 double-sorted on CVRPG and MVRPG 25 double-sorted on CVRPB and MVRPB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

λ0 1.01 0.99 1.03 1.34 1.05 1.16 0.77 0.78 0.83 0.67 0.78 0.72 1.34 1.31 1.39 1.38 1.33 1.36
3.22 3.19 3.54 3.82 3.46 3.82 1.85 1.86 2.00 1.48 1.90 1.43 3.03 3.26 3.44 3.72 3.03 3.14

λCVRPT /G/B 0.19 0.17 0.18 0.15 0.14 0.15 0.47 0.47 0.43 0.46 0.47 0.48 -0.52 -0.52 -0.52 -0.52 -0.52 -0.52
0.93 0.82 0.92 0.71 0.74 0.81 1.40 1.38 1.36 1.37 1.43 1.48 -2.33 -2.23 -2.33 -2.33 -2.24 -2.33

λMkt 0.04 0.12 -0.02 -0.25 -0.05 -0.15 0.11 0.10 -0.02 0.19 0.10 0.17 -0.56 -0.54 -0.56 -0.59 -0.55 -0.60
0.07 0.21 -0.04 -0.40 -0.09 -0.32 0.17 0.15 -0.04 0.28 0.17 0.29 -1.10 -0.97 -1.09 -1.15 -1.06 -1.24

λSMB -0.30 -0.48 -0.27 -0.44 -0.38 -0.35 -0.18 -0.17 -0.07 -0.13 -0.17 -0.19 -0.06 -0.04 -0.09 -0.06 -0.05 -0.04
-0.96 -1.51 -0.87 -1.38 -1.16 -1.05 -0.59 -0.55 -0.23 -0.47 -0.61 -0.69 -0.16 -0.13 -0.27 -0.19 -0.14 -0.13

λHML -0.50 -0.38 -0.38 -0.28 -0.03 -0.18 0.11 0.11 0.05 0.04 0.09 0.08 0.07 0.11 -0.10 0.10 0.05 0.17
-0.59 -0.44 -0.66 -0.34 -0.05 -0.32 0.23 0.24 0.10 0.10 0.18 0.15 0.11 0.20 -0.22 0.14 0.08 0.29

λRMW 0.41 0.37 0.39 0.37 0.35 0.36 0.41 0.41 0.39 0.40 0.41 0.42 -0.01 -0.01 -0.02 0.02 -0.01 0.02
1.33 1.17 1.35 1.18 1.20 1.24 1.90 1.94 1.66 1.82 1.92 1.84 -0.03 -0.04 -0.07 0.06 -0.05 0.07

λCMA -0.44 -0.39 -0.47 -0.39 -0.50 -0.47 -0.17 -0.18 -0.36 -0.17 -0.19 -0.12 0.25 0.27 0.21 0.26 0.25 0.29
-1.29 -1.17 -1.30 -1.13 -1.44 -1.36 -0.41 -0.36 -0.96 -0.42 -0.59 -0.36 0.72 0.90 0.71 0.72 0.71 0.83

λMOM -1.09 -0.43 -0.24
-1.17 -0.64 -0.27

λMVRPT /G/B 0.28 0.48 -0.08
1.25 1.61 -0.22

λ∆VIX -0.38 0.01 0.27
-0.99 0.02 0.59

λ∆CIV -0.51 -0.23 0.00
-1.26 -0.60 0.01

λCIVOLT /G/B -0.20 -0.26 0.23
-0.47 -0.59 0.47

R2
adj 0.69 0.77 0.68 0.71 0.77 0.70 0.77 0.76 0.77 0.77 0.76 0.76 0.92 0.91 0.91 0.91 0.91 0.91

formed on CVRPT - and MVRPT -betas in columns 1–6; ii) 25 double-sorted portfolios

formed on CVRPG- and MVRPG-betas in columns 7–12; and iii) 25 double-sorted port-

folios on CVRPB- and MVRPB-betas in columns 13–18. The CVRPT and CVRPG risk

premia estimates are not significantly different from zero, while CVRPB risk premium es-

timates are economically meaningful and statistically significant with similar magnitudes

reported before.

We now focus on additional test assets constructed on CVRPB-beta and other controls.

Table 11 reports risk premium estimates for 25 portfolios double-sorted on CVRPB-betas

and exposures to ∆VIX in columns 1–6; 25 portfolios double-sorted on CVRPB-beta and

exposures to ∆CIV in columns 7–12; and 25 portfolios double-sorted on CVRPB-betas

and exposures to ∆CIVOLB in columns 13–18. All risk premia estimates for CVRPB are
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Table 11. Fama-MacBeth analysis: additional double-sorted portfolios

This table shows the Fama-MacBeth two-pass regression analysis for twenty-five conditionally double-sorted
portfolios based on common volatility risk premium (CVRP)-beta and loadings on shocks to the VIX index,
common idiosyncratic volatility, and common bad implied volatility. In each case, we first sort stocks into
quintiles based on control variables, then within each quintile, we sort stocks into quintile portfolios based
on CVRP-beta so that P1 (P5) is the portfolio of stocks with the lowest (highest) CVRP-betas. For each
set of test assets, we first control for a tradable long-short portfolio formed on the CVRP-beta and the five
Fama-French factors – market, size, book-to-market, investment, and profitability. Then, we augment the
independent variables by including, one at a time, momentum and tradable long-short portfolios formed on
the corresponding market volatility risk premia (MVRP)-beta and loadings on the VIX, common idiosyn-
cratic volatility, and corresponding common implied volatility innovation. The numbers in shaded rows are
Newey-West adjusted t-statistics of coefficients. The bottom row reports the adjusted R-squared. The sample
is from January 2005 to December 2020.

25 double-sorted on CVRPB and ∆VIX 25 double-sorted on CVRPB and ∆CIV 25 double-sorted on CVRPB and CIVOLB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

λ0 0.75 1.02 0.69 1.02 0.70 0.69 0.44 0.63 0.31 1.07 1.14 1.17 0.48 0.76 0.45 1.70 0.98 1.78
2.38 2.78 2.03 2.78 1.90 2.03 1.38 1.81 0.79 2.00 2.33 1.99 1.68 2.51 1.23 3.88 2.97 4.41

λCVRPB -0.68 -0.68 -0.63 -0.68 -0.68 -0.63 -0.63 -0.60 -0.62 -0.65 -0.54 -0.66 -0.75 -0.70 -0.74 -0.71 -0.60 -0.80
-2.58 -2.57 -2.58 -2.57 -2.73 -2.58 -2.45 -2.41 -2.43 -2.48 -2.26 -2.48 -2.63 -2.59 -2.88 -2.59 -2.39 -2.70

λMkt -0.02 -0.24 -0.12 -0.24 0.00 -0.12 0.78 0.35 0.98 -0.01 -0.26 -0.02 0.00 -0.34 0.01 -1.04 -0.49 -0.95
-0.06 -0.46 -0.28 -0.46 0.00 -0.28 1.54 0.66 2.01 -0.02 -0.42 -0.04 0.00 -0.73 0.02 -1.69 -0.94 -1.84

λSMB 0.13 0.03 0.36 0.03 0.17 0.36 -0.56 -0.43 -0.61 -0.51 -0.23 -0.60 0.40 0.35 0.42 -0.04 0.30 -0.24
0.33 0.07 0.78 0.07 0.33 0.78 -1.66 -1.31 -1.80 -1.55 -0.69 -1.74 1.17 1.04 1.02 -0.12 0.92 -0.69

λHML -0.15 -0.19 -0.45 -0.19 -0.12 -0.45 -0.33 0.12 -0.53 0.12 0.06 -0.02 0.41 0.57 0.41 0.48 0.48 0.31
-0.32 -0.41 -0.97 -0.41 -0.26 -0.97 -0.57 0.25 -0.99 0.25 0.12 -0.04 1.09 1.47 1.09 1.27 1.22 0.81

λRMW 0.93 0.85 0.44 0.85 0.93 0.44 0.28 0.32 0.37 0.24 0.23 0.23 0.94 0.85 0.94 0.74 1.12 0.82
1.85 2.00 1.13 2.00 1.83 1.13 0.81 0.90 0.98 0.71 0.65 0.66 2.59 2.35 2.59 2.02 3.11 2.24

λCMA -0.68 -0.68 -0.65 -0.68 -0.68 -0.65 -1.00 -0.41 -1.00 -0.75 -0.56 -0.85 -0.15 0.19 -0.13 -0.08 0.16 -0.26
-2.08 -2.08 -1.99 -2.08 -2.06 -1.99 -3.26 -1.39 -3.27 -2.93 -2.29 -3.20 -0.42 0.62 -0.40 -0.24 0.53 -0.70

λMOM -0.12 -2.06 -1.96
-0.43 -2.08 -2.23

λMVRPB -1.20 -0.54 -0.69
-1.87 -1.40 -1.25

λ∆VIX -0.12 -0.35 -0.37
-0.43 -1.20 -1.29

λ∆CIV 0.12 -0.60 -0.76
0.27 -2.07 -1.93

λCIVOLB -1.20 -0.42 -0.38
-1.87 -1.24 -1.15

R2
adj 0.82 0.82 0.85 0.82 0.81 0.85 0.82 0.88 0.81 0.85 0.90 0.84 0.78 0.81 0.76 0.84 0.84 0.83

negative and significant with annualized estimates ranging from −9.60% to −7.20%. The

cross-sectional adjusted R-squared statistics are similar to decile CVRPB−beta portfolios

and 25 portfolios double-sorted on CVRPB-betas and MVRPB-betas.

Overall, the two-stage Fama-MacBeth regression analysis is consistent with the results

based on portfolio sorts. Our findings conform with the economic rationale that stocks

with higher sensitivities to common downside volatility risk premium factor tend to ap-

preciate during times of high uncertainty and hence act as hedging instruments, earning

lower average returns in the future. In turn, investors are willing to accept lower future

average returns of the highest CVRPB-beta stocks to hedge against commonalities in bad

volatility risk premia.
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3.6 Three-pass regression analysis

Two-stage Fama-MacBeth regressions suffer from omitted variable bias. We, therefore,

investigate the asset pricing implications of CVRPB using the three-pass regression ap-

proach in Giglio and Xiu (2021). Under this framework, we need not specify or observe all

factors within a pricing model. This is because it relies on principal components analysis

(PCA) of test assets to recover the factor space and additional regressions to proxy risk

premia. In what follows, we present results from pricing models that contain our CVRPB

factor and the market risk premium.

We exploit two benefits of the Giglio and Xiu (2021) approach. First, holding test as-

sets constant, the risk-premia estimates and model fit do not change as you start adding

additional pricing factors. Thus, we can consider multiple dimensions of robustness to

our main results with brevity. Second, we can test the null hypothesis that a factor is a

weak pricing factor. This enables us to understand whether the test assets capture well the

variation in the pricing factor itself, whilst being able to recover the risk-premia estimates

of potentially strong factors, which means we can interpret inference reliably.

Table 12 reports the three-pass regression results using various different test assets

using CVRPB-beta portfolios. The first column considers decile portfolios formed on

CVRPB-betas. Columns 2–5 contain results for 25 double-sorted portfolios formed on var-

ious alternative proxies of volatility risk. These include double sorts formed on CVRPB-

and MVRPB-betas, CVRPB- and ∆VIX-betas, CVRPB- and ∆CIV-betas, and CVRPB-

and CIVOLB-betas. Below the risk premium estimates, we report the Newey-West t-

statistics and the p-values for the Wald tests of the null hypothesis that the factor is a weak

pricing factor. The bottom two rows report the adjusted R-squared, R2
adj, and the number

of PCA factors required to span the factor space. Across each set of test assets, the risk pre-

mium estimates for CVRPB are negative and significant ranging from annualized values

of −6.60% to −5.40%. We reject the null hypothesis that the CVRPB factor is a weak pric-

ing factor. All specifications have large cross-sectional R-squared statistics and the number

of PCA factors is either 2 or 3. In conclusion, our estimates for CVRPB risk premium are

consistent with those obtained from either portfolio sorting exercises or two-pass regres-

sions. This approach reveals that we can reject the null hypothesis that commonalities in

bad firm-level volatility risk premium is a weak pricing factor.
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Table 12. Three-pass regression analysis

This table shows the three-pass regression analysis of Giglio and Xiu (2021). The test assets are decile
portfolios formed on loadings to common bad volatility risk premia (CVRPB), twenty-five conditionally
double-sorted portfolios based on CVRPB-beta and one of four controls: loadings on market bad volatility
risk premium (MVRPB), shocks to the VIX index (∆VIX), common idiosyncratic volatility (∆CIV), and
common bad implied volatility (∆CIVOLB). For double-sorted portfolios, we first sort stocks into quintiles
based on control variables, then within each quintile, we sort stocks into quintile portfolios based on CVRPB-
beta so that P1 (P5) is the portfolio of stocks with the lowest (highest) CVRPB-betas. For all cases, the
independent variables are the tradable long-short portfolio formed on CVRPB-beta and the market excess
return. We report t-statistics in shaded rows under risk premia estimates. The Wald (p-value) entries are
p-values from the null hypothesis that the asset pricing factor is a weak pricing factor. Rejection of the null
implies the factor is a strong pricing factor. R2

adj is the adjusted R-squared and No. Factors is the number of
PCA factors the model requires to recover the factor space. The sample is from January 2005 to December
2020.

Deciles MVRPB ∆VIX ∆CIV CIVOLB

λ0 -0.27 1.34 1.32 1.82 1.38
-0.19 13.18 7.81 8.00 6.95

λCVRPB -0.49 -0.48 -0.55 -0.45 -0.47
-2.18 -2.10 -1.94 -2.01 -2.00

Wald p-value 0.00 0.00 0.00 0.01 0.00
λMkt 0.85 -0.46 -0.43 -0.77 -0.46

0.70 -1.37 -1.23 -2.13 -1.30
Wald p-value 0.00 0.00 0.00 0.00 0.00
R2

adj 0.95 0.91 0.75 0.84 0.76
No. factors 3 3 2 2 2

4 Common volatility risk premia and stock market return predictability

We now examine the predictive power of commonalities among firm-level volatility

risk premia for market returns. The literature on market return predictability is vast.

Some studies document that predictive relationships change over time with key financial

ratios being successful in certain periods (Fama and French, 1988) or at specific periods of

business cycles (Dangl and Halling, 2012). Another observation from earlier work is that

well-known predictors contain little information at horizons below 6 months (Fama and

French, 1988). In the context of a second-moment risk premium, Bollerslev et al. (2009)

shows that variance risk premium can predict market returns at short horizons. Kilic and

Shaliastovich (2019) demonstrate that good and bad variance premia have a long-term

predictive power. Subsequent studies show that a variety of variance risk proxies contain

information for future stock market returns (Pyun, 2019; Han and Li, 2021; Lochstoer and

Muir, 2022; Fan et al., 2022).

Following Fama and French (1988) and Han and Li (2021), we implement multi-period
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univariate and bi-variate predictive regressions of the excess log market return, rm
t,t+H, as

H

∑
h=1

rm
t+h
H

≡ rm
t,t+H = a + bXt + ϵt,t+H (7)

rm
t,t+H = a +

N

∑
i=1

biXi,t + ϵt,t+H (8)

where we use the CRSP value-weighted return index to proxy the market return, rm
t,t+H. In

Equation (7), a is a constant, b is a slope coefficient, Xt is a predictor variable. In Equation

(8), a is a constant, bi are slope coefficients and Xi,t are the predictor variables. This allows

us to understand the additional information CVRPT /G/Bcarries over and above existing

predictors. In both cases, H = {1, 3, 6, 12, 18, 24} stands for the predictive horizon in

months. For each predictive regression, we use Newey West standard errors with H − 1

lags. We present coefficient estimates along with t-statistics that test the null hypothesis

H0 : bi = 0 against the alternative H1 : bi ̸= 0, and adjusted R-squared values, R2
adj.

Table 13 reports the results from univariate predictive regressions. In Panel A, we con-

sider volatility premia type predictors, and in Panel B we show results from the Welch

and Goyal (2008) predictors. Panel A provides substantial evidence that CVRPT and

CVRPBcontain information regarding future stock returns at all horizons up to 24 months

ahead. A one percent increase in CVRPB
(
CVRPT

)
predicts an increase in average ex-

cess market returns of 0.18% (0.22%) next month, 0.10% (0.11%) next quarter, 0.13% (0.11%)

over the next 6 months, 0.16% (0.15%) over the next 12 months, and 0.14% (0.12%) over the

next two years. The corresponding t-statistics are 1.69 (3.75), 1.45 (3.44), 4.04 (3.51), 4.51

(5.50), and 4.26 (4.21), respectively. When using MVRPT /G/B, we find similar results in

terms of significance and magnitude. With the exception of Welch and Goyal (2008)’s stock

variance, svar, other volatility premia-related proxies contain little relevant information for

future market returns. Notably, the adjusted R-squared values at long horizons are highest

when using CVRPB.

Turning to Panel B, the financial variables – book to market ratio (bm), dividend price

ratio (dp), and dividend payout ratio (de); government bonds and bills: short-term treasury

bills (tbl), long-term yields (lty), and the term spread (tms); corporate bond spreads: dfr

and dfy; and inflation – contain information about future stock returns. For variables that

predict stock returns, the adjusted R-squared values are highest at longer horizons.
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Table 13. Univariate predictive regressions

This table reports summary statistics of univariate predictive regressions. The dependent variable is the
average monthly market excess return over various predictive horizons (1, 3, 6, 12, 18, and 24 months). We
use the CRSP value-weighted return as a proxy for the market return. The independent variables include
volatility risk premia-related predictors (Panel A) and the common predictors of Welch and Goyal (2008)
(Panel B). We report Newey-West adjusted t-statistics in shaded rows under the slope coefficients. R2

adj is the
adjusted R-squared. The sample is from January 2000 to December 2020.

Panel A: Volatility risk premia-related predictors

1 3 6 12 18 24 1 3 6 12 18 24

CVRPT 0.22 0.11 0.11 0.15 0.13 0.12 MVRPT 0.12 0.15 0.11 0.08 0.08 0.08
3.75 3.44 3.51 5.50 4.19 4.21 0.99 2.33 2.84 2.40 2.97 3.47

R2
adj 0.04 0.03 0.06 0.16 0.17 0.20 R2

adj 0.01 0.05 0.06 0.05 0.07 0.09

CVRPG 0.15 0.07 0.03 0.07 0.06 0.04 MVRPG 0.12 0.11 0.03 0.03 0.03 0.01
2.06 0.83 0.55 1.24 0.98 0.74 0.57 0.88 0.54 0.62 0.71 0.48

R2
adj 0.02 0.01 0.00 0.04 0.03 0.02 R2

adj 0.01 0.02 0.00 0.00 0.00 0.00

CVRPB 0.18 0.10 0.13 0.16 0.14 0.14 MVRPB 0.13 0.17 0.16 0.12 0.12 0.12
1.69 1.45 4.04 4.51 3.61 4.26 1.24 3.85 3.48 2.68 3.61 3.90

R2
adj 0.02 0.02 0.06 0.15 0.17 0.24 R2

adj 0.01 0.06 0.09 0.08 0.11 0.16

∆VIX -0.11 -0.02 0.00 -0.01 0.00 -0.01 ∆CIV 0.03 0.00 0.00 -0.01 0.00 0.00
-1.68 -0.57 0.05 -0.65 -0.43 -1.01 1.12 -0.27 0.20 -1.25 -0.49 -0.62

R2
adj 0.02 0.00 0.00 0.00 0.00 0.00 R2

adj 0.01 0.00 0.00 0.00 0.00 0.00

CIVOLB -0.30 0.05 0.01 0.00 0.02 -0.04 svar 0.02 -0.05 0.23 0.20 0.18 0.24
-0.76 0.21 0.13 -0.02 0.25 -0.92 0.02 -0.08 0.82 1.12 1.32 1.92

R2
adj 0.01 0.00 0.00 0.00 0.00 0.00 R2

adj 0.00 0.00 0.01 0.01 0.01 0.02

Panel B: The Welch and Goyal (2008) predictors

1 3 6 12 18 24 1 3 6 12 18 24

dp 0.04 0.04 0.04 0.04 0.04 0.03 lty -0.64 -0.60 -0.61 -0.56 -0.56 -0.52
1.67 2.19 3.42 5.44 5.62 5.91 -3.96 -3.94 -3.95 -4.00 -4.21 -4.25

R2
adj 0.03 0.09 0.19 0.33 0.41 0.46 R2

adj 0.04 0.10 0.18 0.25 0.35 0.39

ep 0.00 0.00 0.00 0.00 0.00 0.00 ltr 0.08 0.02 0.04 0.01 0.00 0.00
0.31 0.12 0.07 0.27 -0.08 -0.32 1.44 0.23 1.23 0.39 0.13 0.06

R2
adj 0.00 0.00 0.00 0.00 0.00 0.00 R2

adj 0.00 0.00 0.01 0.00 0.00 0.00

de 0.00 0.01 0.01 0.01 0.01 0.01 tms -0.02 0.03 0.09 0.25 0.37 0.45
0.56 1.00 1.46 1.84 2.93 2.80 -0.12 0.14 0.53 1.77 2.60 3.56

R2
adj 0.00 0.01 0.03 0.04 0.08 0.11 R2

adj 0.00 0.00 0.00 0.06 0.18 0.34

bm 0.13 0.14 0.15 0.13 0.12 0.10 dfy -0.13 0.18 0.61 0.78 0.88 0.92
4.86 6.28 7.15 7.91 7.48 5.75 -0.13 0.22 1.04 2.48 3.06 3.55

R2
adj 0.04 0.13 0.26 0.44 0.50 0.48 R2

adj 0.00 0.00 0.02 0.06 0.11 0.16

ntis 0.12 0.15 0.14 0.09 0.00 -0.01 dfr 0.12 0.01 0.04 0.06 0.05 0.04
0.49 0.62 0.65 0.53 0.01 -0.08 0.80 0.06 0.39 1.30 1.14 1.23

R2
adj 0.00 0.01 0.02 0.01 0.00 0.00 R2

adj 0.00 0.00 0.00 0.01 0.01 0.01

tbl -0.38 -0.38 -0.40 -0.43 -0.47 -0.47 infl 0.08 0.27 -0.60 -0.75 -0.44 -0.46
-2.76 -3.09 -3.56 -4.39 -5.28 -7.97 0.09 0.31 -1.52 -2.38 -2.54 -2.68

R2
adj 0.02 0.07 0.14 0.30 0.52 0.70 R2

adj 0.00 0.00 0.01 0.04 0.02 0.03

Tables 14 and 15 show results from bi-variate predictive regressions that always contain

CVRPT and CVRPB, respectively. In each regression, we add a volatility-related pre-

mium or Welch and Goyal (2008) predictor. The top left panel of each table reports the

results from corresponding univariate predictive regressions for ease of comparison. The
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results provide convincing evidence that CVRPT and CVRPB contain information over

and above existing predictors the literature commonly uses and other volatility premia-

type proxies. It is clear that the coefficient estimates are robust when controlling for other

predictors and the statistical significance of the CVRPT
(
CVRPB

)
coefficient is always

present. In general, the adjusted R-squared statistics increase, particularly from bi-variate

predictive regressions with two significant predictors.

Our final set of analyses considers stock market return predictability in an out-of-

sample context. We consider univariate regressions using an expanding window. The

initial estimation spans January 2000 to December 2004, while the out-of-sample period is

January 2005 to December 2020. For each month in the out-of-sample period, we estimate a

univariate regression for a specific horizon and make a one-period ahead prediction. Table

16 reports the out-of-sample R-squared statistics for volatility premium-related predictors

in Panel A and the variables in Welch and Goyal (2008) in Panel B.

Focusing on Panel A, the out-of-sample predictive power of CVRPT and CVRPB in

predicting market returns is monotonically increasing with the predictive horizon. Our

results also suggest that market total and bad volatility risk premia also yield out-of-

sample predictive benefits. However, at each horizon, CVRPT (CVRPB) has higher

out-of-sample R-squared statistics than the corresponding measure from index options,

MVRPT (MVRPB). All other volatility risk premia-related variables have a zero or

negative out-of-sample R-squared.

Turning to Panel B, we can see that the only variables containing consistent out-of-

sample predictive power at all horizons are the book-to-market ratio (bm) and the short-

term Treasury bill rate (tbl). Out-of-sample R-squared for bm remains stable at around 0.29

from a 12- to 24-month horizon, whereas we observe a monotonically increasing out-of-

sample R-squared for tbl. We attribute the high values at predictive horizons of 12 months

or more to the fact that short-term interest rates are near zero with very little variation for

7 years of our out-of-sample period. With the exception of bm and tbl, however, CVRPT

and CVRPB have higher out-of-sample R-squared statistics than all other Welch and Goyal

(2008) variables.

Our findings indicate that CVRPT and CVRPBcontain information regarding future
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Table 14. Bivariate predictive regressions: CVRPT and other predictors

This table reports summary statistics of bivariate predictive regressions for common total volatility risk premium (CVRPT ) while
controlling for other predictors, one at a time. The dependent variable is the average monthly market excess return over various
predictive horizons (1, 3, 6, 12, 18, and 24 months). We report Newey-West adjusted t-statistics in shaded rows under the slope
coefficients. R2

adj is the adjusted R-squared. The sample is from January 2000 to December 2020.

1 3 6 12 18 24 1 3 6 12 18 24

CVRPT 0.22 0.11 0.11 0.15 0.13 0.12 CVRPT 0.19 0.12 0.14 0.17 0.15 0.14
3.75 3.44 3.51 5.50 4.19 4.21 3.11 3.79 5.07 6.41 5.61 5.13

R2
adj 0.04 0.03 0.06 0.16 0.17 0.20 ∆VIX -0.05 0.02 0.05 0.04 0.04 0.03

-0.84 0.71 1.89 3.72 3.29 3.12
R2

adj 0.04 0.03 0.07 0.18 0.20 0.22

CVRPT 0.20 0.07 0.09 0.14 0.11 0.10 CVRPT 0.29 0.12 0.14 0.17 0.16 0.14
2.18 2.12 3.14 4.67 3.50 3.34 3.95 4.00 4.41 6.53 6.22 5.75

MVRPT 0.06 0.13 0.09 0.03 0.04 0.04 ∆CIV 0.05 0.01 0.02 0.02 0.02 0.02
0.44 1.96 2.46 0.89 1.39 1.67 2.63 0.53 2.87 3.47 4.36 4.76

R2
adj 0.04 0.06 0.09 0.17 0.19 0.22 R2

adj 0.07 0.03 0.07 0.18 0.21 0.24

CVRPT 0.21 0.09 0.12 0.16 0.14 0.13 CVRPT 0.22 0.11 0.12 0.15 0.13 0.12
2.41 2.82 3.79 5.93 4.60 4.53 3.47 3.45 3.81 5.75 4.54 4.51

MVRPG 0.05 0.08 0.00 -0.04 -0.03 -0.04 CIVOLB 0.00 -0.01 0.01 0.01 0.00 0.01
0.22 0.63 -0.07 -1.05 -0.92 -1.61 -0.05 -0.34 0.34 0.29 0.25 0.62

R2
adj 0.04 0.04 0.06 0.17 0.18 0.21 R2

adj 0.04 0.03 0.06 0.17 0.18 0.21

CVRPT 0.20 0.07 0.08 0.13 0.11 0.09 CVRPT 0.22 0.11 0.12 0.16 0.14 0.13
2.56 2.39 2.99 4.26 3.16 2.99 3.29 3.55 3.92 5.85 4.59 4.59

MVRPB 0.06 0.15 0.14 0.07 0.07 0.08 svar 0.17 0.02 0.30 0.37 0.32 0.37
0.56 3.44 3.03 1.56 2.34 2.66 0.16 0.03 1.30 3.55 3.41 3.67

R2
adj 0.04 0.07 0.11 0.18 0.21 0.27 R2

adj 0.04 0.03 0.07 0.18 0.20 0.24

CVRPT 0.17 0.09 0.09 0.08 0.06 0.06 CVRPT 0.16 0.04 0.05 0.10 0.07 0.07
2.01 1.79 1.77 2.05 2.78 3.88 2.22 0.92 1.27 3.59 3.32 4.14

dp 0.03 0.04 0.04 0.04 0.03 0.03 lty -0.47 -0.56 -0.56 -0.46 -0.48 -0.45
1.00 1.73 2.50 3.80 5.08 6.02 -2.36 -3.37 -3.42 -3.31 -3.78 -4.10

R2
adj 0.05 0.10 0.19 0.37 0.45 0.50 R2

adj 0.06 0.10 0.19 0.31 0.40 0.45

CVRPT 0.22 0.11 0.12 0.15 0.13 0.12 CVRPT 0.22 0.11 0.12 0.15 0.13 0.12
3.88 3.49 3.70 5.88 4.11 3.92 3.73 3.52 3.83 5.44 4.18 4.21

ep 0.01 0.00 0.00 0.00 0.00 0.00 ltr 0.09 0.02 0.05 0.01 0.00 0.00
0.60 0.25 0.18 0.52 0.12 -0.16 1.62 0.26 1.06 0.35 0.07 0.03

R2
adj 0.04 0.03 0.06 0.17 0.18 0.20 R2

adj 0.04 0.03 0.06 0.16 0.18 0.20

CVRPT 0.22 0.10 0.10 0.14 0.11 0.10 CVRPT 0.23 0.11 0.11 0.13 0.10 0.08
3.52 2.46 2.97 4.76 3.50 3.41 4.01 3.38 3.72 5.96 4.21 4.33

de 0.00 0.00 0.01 0.00 0.00 0.01 tms -0.16 -0.04 0.01 0.15 0.28 0.38
-0.07 0.62 1.02 1.05 2.54 2.43 -0.90 -0.24 0.08 1.36 2.25 3.15

R2
adj 0.04 0.03 0.07 0.17 0.21 0.26 R2

adj 0.04 0.03 0.06 0.19 0.27 0.42

CVRPT 0.17 0.08 0.08 0.07 0.06 0.06 CVRPT 0.24 0.11 0.10 0.14 0.11 0.10
2.37 2.13 2.17 3.16 3.33 4.25 3.87 2.75 2.73 4.29 3.72 3.67

bm 0.10 0.13 0.14 0.12 0.11 0.09 dfy -0.73 -0.10 0.34 0.47 0.62 0.69
3.14 5.49 7.38 7.22 7.29 5.91 -0.78 -0.11 0.58 1.59 3.34 4.23

R2
adj 0.06 0.13 0.27 0.47 0.53 0.52 R2

adj 0.04 0.03 0.06 0.18 0.22 0.28

CVRPT 0.22 0.11 0.12 0.15 0.13 0.12 CVRPT 0.22 0.12 0.12 0.16 0.14 0.13
3.75 3.48 3.48 5.12 4.13 4.21 3.43 3.75 4.32 5.69 4.24 4.06

ntis 0.15 0.17 0.16 0.11 0.01 0.00 dfr -0.03 -0.08 -0.04 -0.04 -0.04 -0.04
0.69 0.74 0.79 0.75 0.18 0.06 -0.16 -0.53 -0.45 -0.85 -1.07 -1.12

R2
adj 0.04 0.04 0.08 0.18 0.18 0.20 R2

adj 0.04 0.03 0.06 0.17 0.18 0.21

CVRPT 0.18 0.04 0.04 0.07 0.06 0.05 CVRPT 0.23 0.12 0.11 0.14 0.13 0.12
2.39 0.91 0.98 2.87 2.86 2.35 3.86 3.15 2.91 5.06 3.93 3.92

tbl -0.19 -0.33 -0.36 -0.36 -0.44 -0.45 infl 0.64 0.56 -0.33 -0.40 -0.14 -0.17
-1.18 -2.31 -2.82 -3.56 -4.44 -6.85 0.71 0.62 -0.76 -1.25 -0.78 -1.00

R2
adj 0.04 0.07 0.14 0.33 0.53 0.71 R2

adj 0.04 0.04 0.06 0.17 0.18 0.21
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Table 15. Bivariate predictive regressions: CVRPB and other predictors

This table reports summary statistics of bivariate predictive regressions for common bad volatility risk premium (CVRPB) while
controlling for other predictors, one at a time. The dependent variable is the average monthly market excess return over various
predictive horizons (1, 3, 6, 12, 18, and 24 months). We report Newey-West adjusted t-statistics in shaded rows under the slope
coefficients. R2

adj is the adjusted R-squared. The sample is from January 2000 to December 2020.

1 3 6 12 18 24 1 3 6 12 18 24

CVRPB 0.18 0.10 0.13 0.16 0.14 0.14 CVRPB 0.15 0.10 0.15 0.17 0.15 0.15
1.69 1.45 4.04 4.51 3.61 4.26 1.20 1.23 3.79 4.61 3.78 4.37

R2
adj 0.02 0.02 0.06 0.15 0.17 0.24 ∆VIX -0.08 0.00 0.03 0.02 0.03 0.02

-1.12 0.04 0.93 2.49 3.26 3.01
R2

adj 0.03 0.02 0.07 0.15 0.19 0.25

CVRPB 0.15 0.06 0.11 0.14 0.13 0.13 CVRPB 0.20 0.10 0.14 0.16 0.15 0.15
1.04 0.65 3.05 4.75 3.54 4.26 1.85 1.31 4.14 4.67 3.76 4.29

MVRPT 0.08 0.13 0.09 0.04 0.04 0.04 ∆CIV 0.03 0.00 0.01 0.01 0.01 0.01
0.55 1.66 2.25 1.18 1.77 2.21 1.43 -0.04 0.89 1.19 2.43 2.11

R2
adj 0.03 0.06 0.09 0.15 0.19 0.26 R2

adj 0.03 0.02 0.07 0.15 0.18 0.25

CVRPB 0.19 0.11 0.14 0.16 0.14 0.14 CVRPB 0.26 0.16 0.17 0.20 0.19 0.18
1.86 1.73 3.94 4.58 3.76 4.33 3.07 4.05 4.54 5.61 4.66 4.90

MVRPG 0.13 0.12 0.05 0.02 0.02 0.01 CIVOLB -0.06 -0.04 -0.03 -0.04 -0.03 -0.03
0.68 0.99 0.86 0.62 0.80 0.47 -1.27 -1.29 -1.17 -1.74 -1.75 -1.55

R2
adj 0.03 0.04 0.07 0.15 0.18 0.24 R2

adj 0.04 0.04 0.08 0.20 0.24 0.30

CVRPB 0.15 0.02 0.08 0.13 0.12 0.11 CVRPB 0.21 0.12 0.14 0.17 0.16 0.15
0.96 0.26 2.35 4.18 2.90 3.68 3.12 2.90 3.50 4.28 3.56 4.31

MVRPB 0.05 0.16 0.12 0.05 0.05 0.06 svar -0.45 -0.32 -0.08 -0.23 -0.22 -0.16
0.35 2.19 2.78 1.27 2.02 2.64 -0.42 -0.47 -0.23 -1.33 -1.21 -1.33

R2
adj 0.02 0.06 0.10 0.15 0.19 0.27 R2

adj 0.03 0.03 0.06 0.15 0.18 0.25

CVRPB 0.11 0.00 0.05 0.09 0.08 0.09 CVRPB 0.12 0.04 0.08 0.12 0.11 0.11
0.92 0.06 1.71 2.10 1.96 2.60 1.19 0.59 2.08 3.71 3.53 5.04

dp 0.03 0.04 0.04 0.04 0.03 0.03 lty -0.55 -0.58 -0.55 -0.50 -0.51 -0.46
1.12 2.24 2.54 3.17 4.09 4.21 -2.57 -3.17 -3.33 -3.70 -4.24 -4.69

R2
adj 0.04 0.09 0.19 0.34 0.43 0.49 R2

adj 0.05 0.10 0.20 0.34 0.45 0.54

CVRPB 0.22 0.12 0.16 0.19 0.16 0.16 CVRPB 0.17 0.10 0.13 0.16 0.14 0.15
2.02 1.47 5.12 5.86 4.02 4.43 1.55 1.52 3.79 4.41 3.75 4.48

ep 0.01 0.01 0.01 0.01 0.00 0.00 ltr 0.06 0.00 0.03 -0.01 -0.02 -0.02
0.90 0.45 0.58 1.23 0.90 0.87 0.99 0.05 0.58 -0.50 -0.79 -0.99

R2
adj 0.03 0.03 0.08 0.19 0.20 0.26 R2

adj 0.02 0.02 0.07 0.15 0.18 0.24

CVRPB 0.20 0.08 0.12 0.16 0.13 0.13 CVRPB 0.20 0.10 0.13 0.14 0.10 0.08
1.68 0.87 2.81 4.16 2.76 3.32 1.92 1.50 4.22 4.58 3.25 4.07

de 0.00 0.00 0.00 0.00 0.00 0.00 tms -0.16 -0.05 -0.02 0.12 0.26 0.35
-0.40 0.36 0.40 -0.09 0.99 1.19 -0.82 -0.27 -0.11 0.90 1.99 2.84

R2
adj 0.02 0.02 0.07 0.15 0.18 0.25 R2

adj 0.03 0.02 0.06 0.16 0.25 0.41

CVRPB 0.13 0.04 0.06 0.08 0.07 0.09 CVRPB 0.32 0.14 0.15 0.16 0.12 0.12
1.05 0.41 1.75 3.09 2.22 2.99 2.77 2.08 2.41 2.50 2.13 2.62

bm 0.11 0.13 0.14 0.12 0.11 0.09 dfy -1.89 -0.62 -0.22 -0.08 0.23 0.29
3.58 4.90 6.49 7.24 7.32 5.93 -1.48 -0.59 -0.26 -0.14 0.61 0.99

R2
adj 0.05 0.13 0.28 0.47 0.54 0.56 R2

adj 0.04 0.03 0.06 0.15 0.18 0.25

CVRPB 0.19 0.11 0.14 0.16 0.14 0.14 CVRPB 0.17 0.10 0.13 0.15 0.14 0.14
1.86 1.83 3.48 4.07 3.58 4.27 1.53 1.30 3.80 4.61 3.65 4.16

ntis 0.17 0.18 0.18 0.13 0.03 0.02 dfr 0.07 -0.02 0.00 0.01 0.00 -0.01
0.65 0.73 0.80 0.79 0.35 0.37 0.45 -0.15 0.02 0.29 -0.13 -0.38

R2
adj 0.03 0.03 0.09 0.17 0.18 0.24 R2

adj 0.02 0.02 0.06 0.15 0.17 0.24

CVRPB 0.12 0.02 0.06 0.07 0.06 0.04 CVRPB 0.21 0.12 0.13 0.15 0.14 0.14
1.02 0.30 1.49 2.11 2.71 2.48 2.16 2.30 2.92 4.13 3.73 4.38

tbl -0.26 -0.36 -0.35 -0.37 -0.43 -0.43 infl 0.82 0.71 -0.14 -0.26 0.04 0.04
-1.55 -2.50 -2.80 -3.57 -4.70 -7.13 0.83 0.75 -0.26 -0.82 0.25 0.20

R2
adj 0.03 0.07 0.15 0.33 0.53 0.73 R2

adj 0.03 0.03 0.06 0.15 0.18 0.24
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Table 16. Univariate predictive regressions: out-of-sample performance

This table reports out-of-sample performance statistics of univariate predictive regressions. The dependent
variable is the average monthly market excess return over various predictive horizons (1, 3, 6, 12, 18, and
24 months). We use the CRSP value-weighted return as a proxy for the market return. The independent
variables include volatility risk premia-related predictors (Panel A) and the common predictors of Welch
and Goyal (2008) (Panel B). The in-sample sample is from January 2000 to December 2004. The out-of-
sample sample is from January 2005 to December 2020. For each month in the out-of-sample period, we
estimate a univariate predictive regression for a specific horizon using the historical data and make a one-
period-ahead prediction. The reported numbers are monthly out-of-sample R2 statistics of this expanding
window procedure.

Panel A: Volatility risk premia-related predictors

1 3 6 12 18 24 1 3 6 12 18 24

CVRPT 0.04 0.02 0.04 0.14 0.14 0.17 MVRP -0.01 0.04 0.03 0.02 0.04 0.09

CVRPG 0.00 -0.03 -0.04 -0.08 -0.15 -0.24 MVRPG -0.04 -0.03 -0.03 -0.02 0.00 -0.02

CVRPB 0.02 0.02 0.02 0.09 0.12 0.19 MVRPB -0.01 0.03 0.05 0.01 0.03 0.12

∆VIX -0.02 -0.03 -0.02 0.00 0.00 0.00 ∆CIX -0.04 -0.02 -0.02 0.00 0.00 0.00

CIVOLB -0.13 -0.29 -0.12 -0.10 -0.07 -0.02 svar -0.12 -0.08 -0.14 -0.14 -0.12 -0.13

Panel B: The Welch and Goyal (2008) predictors

1 3 6 12 18 24 1 3 6 12 18 24

dp -0.01 -0.09 -0.11 -0.15 -0.16 -0.19 lty 0.01 -0.01 -0.01 -0.06 0.06 0.02

ep -0.05 -0.22 -0.43 -0.46 -0.33 -0.52 ltr -0.01 -0.02 -0.01 -0.01 0.00 -0.01

de -0.04 -0.30 -0.57 -0.20 -0.14 -0.47 tms -0.01 -0.04 -0.09 -0.14 -0.07 0.16

bm 0.03 0.11 0.22 0.29 0.29 0.28 dfy -0.04 -0.23 -0.62 -0.15 -0.37 -0.31

ntis -0.01 -0.06 -0.15 -0.31 -0.47 -0.82 dfr -0.05 -0.06 -0.04 -0.02 0.02 -0.01

tbl 0.01 0.02 0.04 0.20 0.46 0.69 infl -0.01 -0.03 0.01 0.03 0.02 0.01

excess market returns. Our analysis shows that including various other proxies that relate

to volatility risk does not subsume the predictive ability of the common information within

firm-level volatility risk (total and bad).11 Consistent with the literature on the predictabil-

ity of volatility risk, we show that CVRPT and CVRPB positively predict future excess

market returns. Our results also resonate well with the long-horizon predictive power of

the correlation risk premium (CRP) for aggregate excess returns in Hollstein and Simen

(2020). Although their CRP may capture similar information to our CVRPT measure,

we show that commonalities in firm-level VRPs that stem from put options and negative

returns contain relevant information for future market returns both in-sample and out-of-

sample.

11As an additional robust check we conduct the above analysis where we remove all recessions and the
COVID-19 pandemic. These results yield the same conclusions as those we present here and are available
upon request.
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A possible explanation for the positive predictive power of our volatility risk proxies

is mistakes in market participants’ beliefs (Drechsler and Yaron, 2011). Such beliefs show

up in volatility and equity claims which indicates a volatility premium positively forecasts

market returns. Lochstoer and Muir (2022) formalizes this mechanism by incorporating

slow-moving beliefs within an asset pricing model to reconcile this phenomenon.

5 Conclusion

This paper shows that total, good, and bad firm-level volatility risk premia obey a

strong factor structure. We define the “total” volatility risk premium at the stock level

as the difference between the physical and risk-neutral expectations of return volatility.

We compute the “good” and “bad” components of volatility risk premia that capture the

compensation for the realized volatility in positive and negative returns. We explore the

implications of this behavior in both cross-sectional asset pricing and market return pre-

dictability exercises. The portfolio-sort analysis shows that stocks in the lowest CVRPB-

beta quintile earn 7.32% higher average annual returns than those in the highest CVRPB-

beta quintile. This result is robust to controlling for several other factors related to volatility

premia and firm characteristics. Estimating risk premia using Fama-MacBeth two-pass re-

gressions and Giglio and Xiu (2021) three-pass regressions further supports this result and

estimates risk premia of similar magnitude and statistical and economic significance.

Our market return predictability exercises suggest that total and bad commonality in

firm-level volatility risk premia contain relevant information for market returns up to 24

months ahead. We show that CVRPT and CVRPB provide incremental predictive power

over and above a number of key predictors and other volatility premia-related variables.

Out-of-sample R-squared statistics show that the predictive power of CVRPT and CVRPB

increases monotonically with the horizon up to 17% and 19% for 24 months ahead. This is

in stark contrast to the predictors used by Welch and Goyal (2008) and others, which show

good in-sample performance but no out-of-sample predictive power.

Several implications emerge from this paper. First, common firm volatility risk premia

differ from market volatility risk premia. Second, common bad volatility risk premia rep-

resent a priced source of risk: the high CVRPB-beta stocks produce significantly lower

average and risk-adjusted returns relative to the low CVRPB-beta stocks. Intuitively, such
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assets can act as intertemporal hedges against adverse changes in investment opportunities

proxied by higher level of common bad volatility premia. In turn, investors are willing to

accept lower returns for such stocks for hedging purposes. Third, the information content

of total and bad firm-level volatility risk premia is relevant to future market returns. Thus,

we document new market return predictors that practitioners can use in forecasting.
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Appendix for

The Common Factor in Volatility Risk Premia

Abstract

This appendix contains the description of the discretization procedure of model-free
implied variance and additional results not included in the main body of the paper.
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A Discretization Procedure of Model-Free Implied Variance

Considering total implied variance in Equation (1), the discretization is

IVT
i,t =

2
T

n

∑
i=1

∆Ki

K2
i

erTQ(Ki)−
1
T

[
F

K0
− 1

]2

,

where T is time to expiration, F is the forward index level derived from the put-call parity

as F = er f T[C(K, T)− P(K, T)] + K with the risk-free rate r f , K0 is the reference price, the

first exercise price less or equal to the forward level F(K0 ≤ F), and Ki is the i-th OTM

strike price available on a specific date (call if Ki > K0, put if Ki < K0, and both call and

put if Ki = K0). Q(Ki) is the average bid-ask of OTM options with an exercise price equal

to Ki. If Ki = K0, it will be equal to the average of the at-the-money (ATM) call and put

price, relative to the strike price, and ∆(Ki) is the sum divided by two of the two nearest

prices to the exercise price K0, namely, (Ki+1−Ki−1)
2 for 2 ≤ i ≤ n − 1. For further details see

the CBOE VIX white paper available at https://cdn.cboe.com/api/global/us_indices/

governance/Volatility_Index_Methodology_Cboe_Volatility_Index.pdf. Note the stan-

dard CBOE methodology considers an interpolation between the two closest to 30-days

expiration dates. In our data construction, we take into account only one expiration date

closest to 30 days due to options data availability with respect to firm-level stocks.

B Additional Results

Table A1 reports summary statistics of portfolios formed on exposures to common

volatility risk premia without orthogonalization to additional factors. Table A2 reports

summary statistics of portfolios formed on exposures to market volatility risk premia with-

out orthogonalization to additional factors.
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Table A1. Portfolios formed on CVRP-beta: no orthogonalization

This table presents the average excess returns (RET-RF) and alphas (α5, α6) expressed in monthly percentages
for equal-weighted and value-weighted quintile portfolios (Pi : i = 1, . . . , 5) and a long-short strategy (P5−1)
formed on loadings to common total (Panel A), good (Panel B), and bad (Panel C) volatility risk premia
without controlling for the exposure to other variables. Specifically, we estimate common volatility risk
premia (CVRP)-betas from univariate regressions of monthly excess returns on CVRP using a rolling 60-
month window. The portfolio P1(P5) comprises stocks with the lowest (highest) CVRP-betas. The long-
short strategy buys P5 and sells P1. α5 is the alpha from the five-factor Fama-French model including the
market, size, book-to-market, investment, and profitability factors. α6 is the alpha relative to the five Fama-
French factors and momentum. The numbers in shaded rows are Newey-West adjusted t-statistics of average
returns and alphas. The sample is from January 2000 to December 2020.

Equal-Weighted Value-Weighted

P1 P2 P3 P4 P5 P5−1 P1 P2 P3 P4 P5 P5−1

Panel A: CVRPT -beta portfolios

RET-RF 0.67 0.77 0.77 0.89 0.82 0.14 0.73 0.73 0.74 0.88 0.89 0.16
1.96 2.33 2.11 2.12 1.67 0.76 2.50 2.88 2.24 2.36 1.80 0.59

α5 0.07 0.16 0.07 0.08 −0.11 −0.18 0.16 0.03 −0.06 −0.01 −0.17 −0.34
0.76 3.20 1.19 1.24 −1.89 −1.57 1.22 0.52 −1.05 −0.09 −1.21 −1.33

α6 0.06 0.16 0.07 0.09 −0.10 −0.17 0.16 0.02 −0.06 0.00 −0.17 −0.33
0.76 3.20 1.15 1.29 −1.53 −1.54 1.24 0.43 −1.29 −0.06 −1.16 −1.31

Panel B: CVRPG -beta portfolios

RET-RF 0.48 0.68 0.87 0.94 0.96 0.48 0.57 0.66 0.84 1.08 1.00 0.43
1.40 2.05 2.31 2.21 1.86 1.45 2.10 2.41 2.47 2.75 2.07 1.30

α5 −0.05 0.08 0.17 0.11 −0.05 0.00 0.03 −0.05 0.02 0.12 0.02 −0.01
−0.39 1.11 3.05 1.92 −0.48 0.01 0.30 −0.63 0.28 1.72 0.16 −0.05

α6 −0.06 0.08 0.17 0.12 −0.03 0.03 0.02 −0.05 0.02 0.13 0.04 0.01
−0.58 1.11 2.94 1.87 −0.38 0.22 0.22 −0.72 0.26 1.80 0.29 0.07

Panel C: CVRPB-beta portfolios

RET-RF 1.04 0.87 0.82 0.64 0.55 −0.49 1.05 0.98 0.77 0.59 0.50 −0.55
2.46 2.45 2.29 1.60 1.25 −2.12 2.76 3.11 2.54 1.61 1.13 −2.28

α5 0.25 0.18 0.14 −0.05 −0.24 −0.49 0.33 0.21 −0.04 −0.20 −0.44 −0.77
2.39 3.94 2.25 −0.60 −2.19 −2.47 2.03 2.55 −0.62 −1.79 −2.87 −2.61

α6 0.27 0.19 0.14 −0.06 −0.25 −0.52 0.34 0.21 −0.04 −0.22 −0.45 −0.79
3.20 3.78 2.18 −0.67 −2.58 −3.36 2.39 2.64 −0.61 −2.08 −3.16 −3.04
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Table A2. Portfolios formed on MVRP-beta: no orthogonalization

This table presents the average excess returns (RET-RF) and alphas (α5, α6) expressed in monthly percentages
for equal-weighted and value-weighted quintile portfolios (Pi : i = 1, . . . , 5) and a long-short strategy (P5−1)
formed on loadings to market total (Panel A), good (Panel B), and bad (Panel C) volatility risk premia
without controlling for the exposure to other variables. Specifically, we estimate market volatility risk premia
(MVRP)-betas from univariate regressions of monthly excess returns on MVRP using a rolling 60-month
window. The portfolio P1(P5) comprises stocks with the lowest (highest) MVRP-betas. The long-short
strategy buys P5 and sells P1. α5 is the alpha from the five-factor Fama-French model including the market,
size, book-to-market, investment, and profitability factors. α6 is the alpha relative to the five Fama-French
factors and momentum. The numbers in shaded rows are Newey-West adjusted t-statistics of average returns
and alphas. The sample is from January 2000 to December 2020.

Equal-Weighted Value-Weighted

P1 P2 P3 P4 P5 P5−1 P1 P2 P3 P4 P5 P5−1

Panel A: MVRPT -beta portfolios

RET-RF 0.60 0.78 0.82 0.83 0.90 0.30 0.69 0.71 0.80 0.88 1.13 0.44
1.59 2.21 2.25 2.08 1.91 1.30 1.97 2.13 2.63 2.71 2.26 1.19

α5 −0.05 0.11 0.10 0.08 0.03 0.08 0.01 −0.03 0.08 0.05 0.00 −0.01
−0.56 2.05 2.59 1.42 0.29 0.49 0.10 −0.54 1.13 0.60 0.03 −0.04

α6 −0.06 0.11 0.11 0.09 0.03 0.09 0.02 −0.03 0.08 0.04 0.00 −0.02
−0.57 2.14 2.33 1.35 0.33 0.52 0.14 −0.53 1.07 0.58 0.02 −0.06

Panel B: MVRPG -beta portfolios

RET-RF 0.49 0.74 0.80 0.86 1.02 0.53 0.59 0.66 0.98 1.01 1.10 0.50
1.45 2.19 2.17 2.04 2.02 1.74 2.07 2.14 2.93 2.76 2.22 1.52

α5 −0.08 0.11 0.10 0.08 0.07 0.15 −0.03 −0.10 0.20 0.10 0.07 0.09
−0.72 1.67 1.83 1.32 0.73 0.78 −0.23 −1.49 3.00 1.02 0.45 0.38

α6 −0.09 0.11 0.10 0.09 0.09 0.18 −0.04 −0.10 0.20 0.10 0.08 0.12
−0.93 1.70 1.77 1.29 1.03 1.11 −0.31 −1.63 3.12 1.05 0.50 0.44

Panel C: MVRPB-beta portfolios

RET-RF 0.85 0.81 0.82 0.77 0.68 −0.17 0.76 0.86 0.81 0.84 0.78 0.02
1.95 2.15 2.27 2.12 1.55 −0.81 1.68 2.49 2.70 2.78 1.85 0.06

α5 0.04 0.12 0.12 0.06 −0.07 −0.11 −0.01 0.15 0.08 0.07 −0.22 −0.20
0.38 1.95 2.20 0.71 −0.56 −0.51 −0.09 1.66 1.34 0.83 −1.71 −0.82

α6 0.06 0.13 0.12 0.06 −0.08 −0.14 0.01 0.16 0.08 0.06 −0.23 −0.23
0.62 2.35 2.15 0.71 −0.64 −0.71 0.04 2.02 1.37 0.81 −2.00 −1.12

46


	Introduction
	The factor structure in volatility risk premia
	Data
	Implied variances
	Realized variances
	Firm-level volatility risk premia

	Common volatility risk premia and expected stock returns
	Common and market volatility risk premiums
	Connection with the firm and household risks
	Firms' exposure to the common volatility risk premium factors
	CVRP-beta sorted portfolios
	Pricing CVRP-beta sorted portfolios
	Three-pass regression analysis

	Common volatility risk premia and stock market return predictability
	Conclusion
	Discretization Procedure of Model-Free Implied Variance
	Additional Results

