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1 Introduction

Neonatal complications and acute respiratory infections (ARI) are the two leading causes of

under-5 mortality (Perin et al. 2022). They accounted for half of all child deaths in 2019. The

Global Burden of Disease study estimates that 20% of deaths from neonatal complications and

45% of under-5 deaths from ARI are due to air pollution (Institute for Health Metrics and

Evaluation 2022). These estimates are corroborated by a rich literature which documents the

causal effects of air pollution on child health and early-life mortality (Chay and Greenstone

2003; Currie and Neidell 2005; Jayachandran 2009; Greenstone and Hanna 2014; Arceo, Hanna,

and Oliva 2016; Knittel, Miller, and Sanders 2016; Rangel and Vogl 2019). Curbing air pollution

could thus save many young lives every year, especially in developing countries where most child

deaths occur. Among the public policy options which can be considered to achieve this goal,

the promotion of less polluting cooking solutions is often seen as a priority. Indeed, half of

the world population mainly relies on solid fuels such as wood, charcoal, or dung, to cook its

meals (Energy Sector Management Assistance Program 2020) and the combustion of these fuels

contributes to a large share of ambient air pollution in sub-Saharan Africa and in South-Asia

in particular (Chafe et al. 2014).

After several decades of effort to promote improved biomass stoves which provided marginal

combustion efficiency gains but were often seen as failing to deliver on pollution reduction, the

focus of the international development community recently shifted to so-called “clean” cooking

fuels and technologies (World Health Organization 2014; Morrison 2018). This wording gen-

erally refers to gas, ethanol and electricity powered stoves (World Health Organization 2014).

Liquefied petroleum gas (LPG, also known as bottled gas) in particular has been receiving re-

newed attention due to its relative ease of deployment. In 2013, the United Nations’ Sustainable

Energy for All initiative co-signed a pledge to transition 1 billion people from solid fuels to LPG

with the World LP Gas Association (WLPGA), the global industry organization for LPG. With

this pledge, the two organizations claimed to acknowledge: “the role of LP Gas for cooking

and heating solutions that will tackle the catastrophic health, safety and environmental damages

caused by traditional cooking practices” (Sustainable Energy for All 2013).

One of the key arguments put forward in support of LPG is that this fuel has the capacity

to reduce emissions of fine particles (PM2.5), one of the most hazardous pollutants released by

biomass combustion, by a factor of at least ten relative to wood and charcoal stoves in laboratory

conditions (Shen et al. 2018). However, the combustion of LPG emits other toxic pollutants in

large amounts, in particular nitrogen dioxide (NO2): a gas which has been shown to be causally

linked to the development and exacerbation of asthma through controlled human exposure

studies (US EPA 2016). The evidence for a causal effect of NO2 on asthma also supports a

likely causal link with other respiratory conditions such as chronic obstructive pulmonary disease

(COPD) and respiratory infections, as suggested by the epidemiologic literature (Hasselblad,

Eddy, and Kotchmar 1992; Lin, Brunekreef, and Gehring 2013; World Health Organization

2021). This evidence base has led NO2 emissions from natural gas and LPG stoves to become

a matter of public concern in the United States. In January 2023 the U.S Consumer Product
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Safety Commission released a statement announcing that it was looking for ways to reduce the

indoor air quality hazards caused by emissions from gas stoves (U.S. Consumer Product Safety

Commission 2023).

The fact that LPG is being actively promoted as a clean source of energy in developing coun-

tries while federal authorities consider gas stoves to be a public health concern for U.S. citizens

stands as a paradox. If LPG cooking appliances represent a threat to the health of populations

in high-income countries, is it advisable to market them as health-improving technologies in

developing countries? This question is hard to answer solely on the basis of laboratory tests

because the change in exposure induced by the adoption of LPG stoves depends in a large part

on behavioral and contextual factors which need to be studied in the field. Pollutant concentra-

tion studies in test-homes show that NO2 exposure from indoor sources is likely to vary greatly

with fuel stacking habits, preferences for indoor or outdoor cooking, kitchen size, or access to

ventilation systems such as range hoods for instance (Spengler et al. 1983; Singer et al. 2017). If

LPG is immediately adopted as the sole source of cooking and heating energy in replacement of

wood or charcoal, the health benefits to be derived from the reduction in PM2.5 exposure may

well dominate the health costs associated with NO2 emissions from LPG1. However, in many

contexts households tend to stack LPG with traditional fuels and may end up adding a new

source of NO2 emissions in their homes without significantly reducing their exposure to PM2.5.

In addition, the fact that LPG is misleadingly marketed as a clean fuel is an issue on its own

because it can induce risk averse households to abandon their air pollution mitigation strategies

as they adopt LPG. Such households might start cooking indoors, stop ventilating their kitchen

or pay less attention to keeping their children away from the cooking area because they wrongly

believe that LPG combustion is safe for their health. The extent to which the promotion of LPG

in replacement of solid fuels such as wood or charcoal can contribute to reducing the burden of

disease from household air pollution in populations is thus an empirical question which deserves

rigorous evaluation.

In this study, I estimate the impact of the introduction of LPG subsidies targeting low-income

households on early-childhood health and mortality in Peru. I exploit a nationwide initiative

launched in 2012 which subsidizes half of the cost of a LPG cylinder every month for eligible

households. 90% of these households cooked with wood at baseline. The program claimed 1.8

million registered users at the end of 2020 (Fondo de Inclusión Social Energético 2022b). It is

one of the largest LPG conversion programs to date, after those implemented in Indonesia and

India (Imelda 2020; Afridi, Debnath, and Somanathan 2021). I combine administrative data

on the location and year of registration of LPG retailers authorized to exchange the discount

vouchers with data on early childhood mortality and respiratory health from Peru’s Continuous

Demographic and Health Survey (Peru Continuous DHS)2.

I match the retailer data and the DHS data at the district level and rely on the progressive

1. This is certainly the scenario that the promoters of LPG envision when they showcase LPG as a life-saving
technology (see World LPG Association 2023, for instance).

2. The Peru Continuous DHS is managed by the Instituto Nacional de Estad́ıstica e Informática (INEI) and
known locally under the name “Encuesta Demográfica y de Salud Familiar” (ENDES, see Instituto Nacional de
Estad́ıstica e Informática (2020))
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roll-out of authorized retailers across districts to study the effect of the subsidies on LPG adop-

tion and on child health. The study uses a staggered difference-in-differences (DID) design in

which districts are considered “treated” when they receive their first authorized LPG retailers.

I compare observations from treated districts to individuals or households residing in not-yet

and never treated districts over the sixteen-year period going from 2005 to 2020. To do so, I

apply econometric tools developed as part of the recent DID methods revolution (Chaisemartin

and D’Haultfœuille 2022; Roth et al. 2022) which are robust to the presence of heterogeneous

treatment effects. I conduct the analysis in the sample of households which satisfied the eli-

gibility criteria of the program at the time of the survey. A key feature of the intervention is

that its implementation was entirely sub-contracted to several electricity distribution companies

(Empresas de Distribución Eléctrica, or EDEs). Thus, although the Peruvian government set

some criteria for the targeting of districts, the decentralized management of program activities

added a degree of randomness to the roll-out. I show that treated and not-yet treated districts

followed parallel trends on the outcomes of interest during pre-treatment periods conditional on

a set of basic covariates.

My baseline results show that the subsidy program had a large impact on the adoption of

LPG as a primary cooking fuel. Eligible households in treated districts are on average 10.9

percentage points more likely to mainly cook with LPG than they would have been absent the

treatment. This represents 1.5 times the pre-treatment usage rate. Unfortunately, the effect

of this large fuel switch on health indicators is the opposite of what LPG promoters generally

anticipate. I find that infant mortality and acute respiratory infections in under-5 children both

increased as a result of the policy. The increase amounts to 4.3 deaths per 1,000 live births for

infant mortality, 15% of the pre-treatment mortality rate, and to 2.6 percentage points for ARI,

14% of the pre-treatment incidence.

I explore several potential channels which could explain these negative health effects. I

rule out the possibility that the program had an impact on infant mortality through changes

in breastfeeding and through a decrease in water disinfection by boiling. A falsification test

also shows no effect on diarrheal diseases or on the prevalence of wasting in under-5 children,

suggesting that the effect of the LPG subsidies on respiratory health is not confounded by

environmental or economic shocks. Instead, I show that the intervention led to a large reduction

in the proportion of households which report cooking outdoors and that the effects on most

air pollution related health outcomes are concentrated in households which cook in kitchens

without ventilation. This suggests that air pollution is most likely the main channel linking

the fuel switch to negative health outcomes. The fact that the impact of the policy varies

with access to kitchen ventilation in particular is consistent with a rich literature showing that

indoor concentrations of pollutants such as NO2 and PM2.5 can be greatly reduced by the use

of a ventilation system (Zhang et al. 2010; Grabow, Still, and Bentson 2013; Singer et al. 2017;

Zhao and Zhao 2018; Lenz et al. 2023). The large effect of the intervention on respiratory

symptoms (ARI) also points to air pollution as the main culprit.

I interpret my results as indicating that the introduction of LPG stoves in a population of

4



wood users caused an increase in total exposure to air pollutants: first because LPG adoption

led to the addition of a new source of indoor emissions in poorly ventilated dwellings, and second

because women and their children started spending more time indoors in their polluted homes

as a result of the introduction of LPG stoves.

Several other results and robustness checks support the hypothesis that the switch to LPG

led to higher levels of exposure to air pollution. Most importantly, the treatment also caused

an increase in the prevalence of moderate and severe anemia among adult women, a health

condition which is known to be positively associated with exposure to high concentrations of

both fine particles and nitrogen dioxide (Honda et al. 2017; Elbarbary et al. 2019; Morales-

Ancajima et al. 2019; Mehta et al. 2021). In addition, I verify that the treatment effects on

child health are not due to differences in access to healthcare or to selective migration, that

they are only found in the group of eligible households, and that they are robust to controlling

for additional covariates, to using a definition of treatment which accounts for the potential

contamination of untreated districts by treated units, and to dropping observations from the

year 2020 in which a significant share of the data was collected by phone due to the COVID-19

epidemic. Finally, I also show that the results are not sensitive to my choice of estimator and

provide suggestive evidence that they are not driven by composition effects.

This article makes several important contributions. First, it fills a gap in the literature on

the health impacts of clean cooking solutions, and in particular of transitions from solid fuels to

cleaner cooking fuels. While many evaluations of improved biomass cookstove programs have

been published (Smith et al. 2011; Bensch and Peters 2015; Hanna, Duflo, and Greenstone 2016;

Mortimer et al. 2017; Jeuland et al. 2020; LaFave et al. 2021), the evidence on the impacts of so-

called “clean” fuels is scarcer. Regarding the effects of LPG on respiratory health and associated

mortality in particular, evidence from large-scale studies is limited to Imelda (2020) who finds

that the conversion of Indonesian households from kerosene to LPG led to a decline in infant

mortality. Cesur, Tekin, and Ulker (2017) consider a slightly different fuel and study the effect

of the replacement of charcoal by natural gas networks in Turkey. They also conclude to a

decrease in infant mortality. Finally, Ye et al. (2022) report that conversion to LPG caused

an increase in gestational blood pressure among a large sample of pregnant women in a field

experiment conducted simultaneously in Guatemala, India, Peru and Rwanda, a negative health

impact which they suggest could be caused by nitrogen dioxide emissions from LPG.

Thus, this paper reports results from the first large-scale evaluation of the impacts of the

conversion of domestic users from wood fuel cooking to LPG cooking on early-childhood mortal-

ity and health. This contribution is important because wood is still the primary cooking fuel for

35% of the world population (Energy Sector Management Assistance Program 2020)3 and the

effects of a fuel switch are likely to vary significantly by type of baseline cooking fuel. Charcoal

and kerosene, for instance, are more likely to be used indoors than wood so that the transition

from one of these fuels to LPG would not necessarily result in the decrease in outdoor cooking

that I observe in Peru. This may be one of the reasons why my results differ so markedly from

3. By contrast, charcoal, coal, and kerosene together account for only 10% of the global primary cooking fuel
mix.
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those published by Imelda (2020) and Cesur, Tekin, and Ulker (2017). Considering that current

efforts to promote LPG in developing countries are likely to target a large proportion of wood

users, the findings of this study may be of interest for the decision makers in charge of these

policies. They suggest that the health effects of gas stove adoption are likely to be context

specific and that early-stage evaluations of LPG promotion programs are needed to address the

risk of negative health outcomes. These evaluations should not be entirely focused on PM2.5

exposure as is frequently the case and should also take other pollutants, including NO2, into

account.

My second key contribution is to present new evidence on the role of outdoor cooking and

ventilation quality in mitigating exposure to air pollution. This evidence is relevant not only to

the clean cooking literature but also more broadly to the rich literature on the health effects of

air pollution (Chay and Greenstone 2003; Currie and Neidell 2005; Jayachandran 2009; Chen

et al. 2013; Greenstone and Hanna 2014; Ebenstein et al. 2015; Ebenstein et al. 2017; Arceo,

Hanna, and Oliva 2016; Knittel, Miller, and Sanders 2016; Sheldon and Sankaran 2017; Beach

and Hanlon 2018; Deryugina et al. 2019; Rangel and Vogl 2019; He, Liu, and Zhou 2020; Hanlon

2022). My results provide support for the argument previously made by Langbein, Peters, and

Vance (2017) that the effectiveness of clean cooking policies in developing countries could be

greatly improved by taking cooking location and ventilation into account. They also suggest

that the promotion of simple ventilation systems in countries where the use of solid fuels is

still widespread could bring about significant health benefits. This idea is supported by recent

epidemiological evidence from China which shows that the use of ventilation is associated with

lower mortality in both solid fuel and clean fuel users (Yu et al. 2020).

Third, this paper conducts the first large-scale evaluation of Peru’s national LPG conversion

program. Although previous contributions have documented the effects of this policy (Calzada

and Sanz 2018; Pollard et al. 2018), these studies exploit data from small samples collected in

a single department or a single province of Peru. They cover a shorter period of time than I

do. They thus have external validity limitations. Some of them also report associational rather

than causal estimates of the impacts of the program (Pollard et al. 2018). Their conclusions

point to a lack of effect of the program rather than to the negative impacts that I identify. This

contrast might be explained by differences in statistical power, in identification strategies, or in

geographic areas and time periods covered.

This paper is organized as follows. Section 2 provides background information on Peru’s na-

tional LPG conversion program. Section 3 describes the data. Section 4 discusses my empirical

strategy. Results and robustness checks are presented in Section 5. Section 6 concludes.

2 Background

Peru’s economy experienced three decades of rapid growth between the downfall of the Shining

Path terrorist group at the beginning of the 1990s and the start of the COVID-19 epidemic in

2020. More than a third of the population escaped poverty during this period (World Bank

2022). However, it took time for this improvement in living standards to induce a change in
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the cooking fuel choices of the population. In 2000, 39% of Peruvian households cooked with

firewood, charcoal or animal dung. A decade later, this proportion was nearly unchanged:

more than 36% of the population was still primarily cooking with one of these three solid

fuels4. Importantly, the persistence of solid fuels was associated with a high incidence of lower

respiratory infections in children. These were among the top three causes of under-5 deaths,

accounting for nearly 20% of mortality in this age group (Hirschhorn et al. 2020).

It is approximately at this time that transitioning households to LPG cooking became a

priority for the Peruvian authorities. The National Family Cookstove Program “Cocina Peru”

was initiated in 2009 in a context of governmental effort to curb cocaine production5. The

program anticipated on a ban on the sale and use of kerosene which would be enacted in

2010 in order to reduce the access of drug traffickers to one of the key inputs for coca paste

production (Peruvian Times 2009). It aimed to offer an alternative cooking fuel to existing

kerosene users (only 2% of the population at the time), and to households interested in switching

from biomass to a more modern cooking fuel. To apply for a kit, households had to be classified

as poor or extremely poor in the national household poverty classification database (SISFOH),

a poverty index based on principal component analysis (Osinergmin 2014). The program ended

up equipping more than 870,000 low-income households, approximately 10% of the country’s

population, with free LPG cooking kits between 2009 and 2016 (Ramı́rez-Candia, Curt, and

Domı́nguez 2022).

In 2012, the Peruvian authorities added a second pillar to their LPG conversion policy

with the creation of the Fondo de Inclusión Social Energético (FISE), a social fund in charge

of increasing the penetration of clean and efficient energy solutions in Peru. The fund’s first

mission was to implement a program of targeted subsidies promoting LPG consumption among

low-income populations. These subsidies were to be financed by surcharges on the electricity

bills of industrial customers and on sales of liquid hydrocarbon products and natural gas to final

consumers (Asia-Pacific Economic Cooperation 2015).

FISE’s LPG subsidy scheme was piloted between July and November of 2012. Scale-up

started early in 2013 (Asia-Pacific Economic Cooperation 2015). The program’s main opera-

tional rules were refined progressively during the course of 2013 and remained nearly unchanged

until the end of 20206. During this period, eligible beneficiaries who had enrolled in the program

received a monthly voucher worth 16 soles (approximately 5.5 USD in 2013) which they could

use to purchase a 10kg LPG refill from an authorized LPG retailer (Osinergmin 2014). The

voucher covered approximately 50% of the cost of the refill, with some variation between regions

due to differences in local LPG prices.

Importantly, FISE delegates the implementation of its subsidy scheme to local electricity

distribution companies (EDEs) which are in charge of recruiting and training LPG retailers in

the program’s target districts. EDEs are also responsible for identifying eligible households,

distributing the monthly FISE-vouchers to enrolled beneficiaries, and conducting promotional

4. Author’s calculations using Peru DHS 2000 and Peru Continuous DHS 2009.
5. The program was initially known as Project NINA and was renamed “Cocina Peru” in 2010.
6. The value of the subsidy and some of the eligibility criteria were adjusted in 2021.
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activities for the program such as airing radio spots and video advertisement, holding public

meetings, and distributing flyers and pamphlets (Osinergmin 2014). The vouchers are dis-

tributed as a code printed on the beneficiary’s monthly electricity bill or sent via text message

on their mobile phone. Paper vouchers are also printed for the households which do not have

access to electricity and cannot receive their vouchers on a mobile phone (Osinergmin 2021).

FISE uses a multidimensional poverty assessment strategy to select its beneficiaries. EDEs

have access to a census of eligible households within their concession area (Calzada and Sanz

2018). During the study period covered in this paper, households were deemed eligible if they

belonged to the five poorest categories of the SISFOH index and if their annual income did not

exceed 18,000 soles (approximately 6,200 USD in 2013). In addition, they had to live in a house

made of precarious materials and, if they had access to the electricity grid, their consumption

could not exceed 30kWh per month. Households were also excluded from the program if they

lived in an area where connection to the natural gas network was possible7.

At the end of 2020, FISE reported 1.8 million registered beneficiaries, almost 6,000 au-

thorized LPG retailers, and more than 60 million vouchers exchanged since its launch (Osin-

ergmin 2021). This represents between 270 and 330 million USD invested in LPG subsidies

for low-income households over a period of 9 years8, making it one of the largest clean cooking

interventions to date.

The program faced some operational challenges during its first years of implementation.

First, the initial reimbursement period for the sums advanced by the retailers frequently ex-

ceeded 15 days which led some retailers to charge extra costs for FISE beneficiaries and slowed

the recruitment of new retailers (Calzada and Sanz 2018). This motivated the introduction of

digital vouchers sent by text message in mid-2013, a solution which enables FISE to pay the re-

tailers instantly. However, beneficiaries without access to a cell phone may still be discriminated

in their access to FISE subsidies. Second, it seems that households which did not satisfy all

the eligibility criteria nevertheless received the vouchers due to coordination difficulties between

local authorities and EDEs (Nuño Mart́ınez, Mäusezahl, and Hartinger 2020). Contamination

of the target population by less vulnerable population groups might therefore have occurred

in some areas. Finally, there is also anecdotal evidence that the increase in demand for LPG

which followed the introduction of the subsidies led to occasional shortages of 10kg cylinder

refills (Marticorena 2015). These implementation issues and their potential implications for the

identification strategy are discussed further in the next sections of this paper.

3 Data and descriptive statistics

The analysis combines sixteen waves of the Peru Continuous DHS and a database of authorized

FISE retailers. The full dataset contains repeated cross-sectional data on 390,769 households

7. In this case, they could apply for financial support from FISE’s Bonogas program which finances part of
the cost of connection to the gas network.

8. Depending on the exact exchange rate used.
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whose members were interviewed between 2005 and 2020. I exploit mortality data on 469,094

children born to the women who were surveyed in the sample of households. These births

occurred over a period of two decades, from 2000 to 2020. Data on childhood respiratory health

is available for 189,965 children who were less than 5 years old at the time of the survey.

3.1 Administrative data and assignment to treatment

Data on retailers come from the database of authorized FISE retailers which is publicly available

on FISE’s website9. This database contains the postal address and the unique identifier of the

district of operation of all the LPG retailers who accept FISE vouchers as partial payment for

LPG refills, along with their date of entry in the program. The boundaries of some districts

changed during the course of the study period. A few of these districts were divided into

several smaller ones between 2012 and 2020. To address this issue, I use a fixed definition of

district boundaries for the whole study period and assign households and retailers to a district

of residence or operation based on the 2008 map of Peruvian districts. Using this definition, the

database contained 5,900 unique retailer addresses operating in 952 of Peru’s 1,834 districts at

the end of December 202010. To the best of my knowledge, this is the first time that this data

is used to study the impact of FISE’s LPG subsidy program.

I use the subscription dates of the retailers to map the progressive roll-out of the subsidy

scheme between July 2012 and December 2020. More specifically, I consider that a district starts

being affected by the policy when it receives its first authorized FISE retailer. The motivation

for this treatment definition is that EDEs managed both the demand-side and the supply-side

activities of FISE’s LPG promotion program in a given district (Pollard et al. 2018). This

suggests that the registration of the first retailers and the introduction of the vouchers were

often coordinated at the district level. In many instances, the date of registration of the first

retailer in a district is therefore likely to provide a relatively good approximation of the date at

which households started receiving vouchers in that district. Even if voucher distribution also

occurred in districts which were not served by an authorized retailer, the cost of travelling to a

neighboring district to find a retailer who would accept the voucher certainly limited the effect

of the subsidy on LPG uptake in these cases.

In other words, the identification strategy in this paper exploits the fact that the program’s

ability to affect its beneficiaries’ fuel choices largely depended on the development of its last

mile distribution network at the district level. A district is considered treated when this last

mile network finally reaches it. While FISE already claimed that more than 90% of Peruvian

districts were covered by the subsidy scheme at the end of 2013 (Osinergmin 2014), using

the above definition of the program roll-out suggests a much more progressive scale-up. As

illustrated in Figure 1, less than 20% of Peruvian districts had an authorized retailer at the end

9. See Fondo de Inclusión Social Energético (2022a). I combine several versions of this database downloaded
in different years for a more comprehensive coverage of the retailer network.
10. I treat retailers with the same name and the same postal address but a different registration date as duplicates

except when one of the records corresponds to a delivery vehicle. Records with different names but a shared
postal address are also treated as duplicates. For all duplicates, I keep the earliest record in the final database of
5,900 addresses.
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Figure 1: Change in FISE coverage and growth of LPG use rate among eligible
households (2005-2020)
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authorized FISE retailers (Fondo de Inclusión Social Energético 2022a).
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of 2013, approximately 30% in 2015, and 51.5% at the end of 2020. This means that nearly half

of Peru’s districts are never treated during the study period and serve as a pure comparison

group in the analysis11.

Of course, this treatment definition leaves space for potential contamination of the not-yet

treated and never treated districts by the intervention in cases where EDEs went on to distribute

vouchers in districts which were not served by an authorized retailer. The extent of this issue

is reflected in the large mismatch between the coverage rates claimed by FISE early in the

implementation period and the actual coverage rates suggested by the supply-side definition

of treatment that I use. I address this concern in the robustness checks section of this paper

by replicating my main results using an alternative treatment definition in which districts are

also considered treated if a treated district exists within a 15km radius of the centroid of the

district of interest in the year of observation. This allows districts to be treated in time periods

when they did not host a FISE retailer so long as there is an active retailer within a reasonable

distance of the district.

Finally, I differentiate between districts exposed to a high intensity of treatment and those

which are treated with a low level of intensity based on the number of authorized retailers per

one-hundred square kilometers in the district at the end of the study period. I define districts as

high intensity if they hosted more than 1.3 retailers per one-hundred square kilometers in 2020.

This threshold corresponds to the median concentration in the treated districts. Districts with

a concentration below the median are classified as low intensity districts. Figure 2 shows the

geographic location of treated districts along with their intensity of treatment. High intensity

districts tend to be concentrated at the extreme south of Peru where the subsidy program was

initially piloted in 2012. Low intensity districts dominate in the east of Peru which corresponds

to the Amazonian forest region where districts are much larger and less dense than in the rest of

the country. I use this categorization to evaluate the effect of the intensive margin of treatment

with the DID imputation estimator since the estimator only allows binary treatment variables

(Borusyak, Jaravel, and Spiess 2022).

3.2 Demographic data

All demographic data are from the Peru Continuous DHS. While standard DHS surveys collect

fertility and health data for a nationally representative sample of households at five-year inter-

vals, the Continuous DHS methodology is designed to increase the frequency at which data are

available by conducting yearly surveys on a sample representing roughly one-fifth of the size

of a standard DHS sample (Rutstein and Way 2014)12. In the case of Peru however, govern-

mental health reporting requirements led to a rapid increase in survey size compared to what

was originally envisioned. The sample size went from 6,837 households in 2005 to 18,445 in

2008 and to more than 35,000 from 2015 onward. I assemble these large annual cross-sectional

surveys over the period 2005 – 2020. Each survey is nationally representative and records basic

11. For the districts which are covered by the sampling frame.
12. Typically, around 30,000 households.
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Figure 2: Outreach of FISE’s LPG subsidy program

Source: Author’s calculations using the public database of authorized FISE retailers (Fondo de Inclusión
Social Energético 2022a).
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socio-demographic information as well as a complete birth and child mortality history for all

women aged 15-49 in the randomly selected households. Self-reported health data, anthropo-

metric measurements, and results of hemoglobin tests are also reported for children. A list

of surveys with information on sampling frames and sample sizes for each year is available in

Appendix Table A.1.

3.2.1 Eligible households

To take the program’s targeting strategy into account, I conduct most of the analysis with the

sub-sample of households which satisfy the program eligibility criteria which I can observe in

the data. More specifically, I define as eligible the households which belonged to the first three

deciles of the DHS wealth index and who lived in a house in which the floor or the walls were

made of traditional materials at the time of the survey. I use the first criterion as a proxy to

select the households which satisfy FISE’s annual income limit of 18,000 soles. Indeed, this

income level approximately corresponds to the third decile of Peru’s income distribution during

the study period (Instituto Nacional de Estad́ıstica e Informática 2019). The second criterion

is a direct application of FISE’s rule regarding housing characteristics. Finally, I also exclude

visitors from the analysis because their district of residence is unknown. The resulting analytical

sample includes 146,371 households, 197,135 childbirths, 71,674 living children aged less than 5

at the time of the survey, and 80,081 adult women who were tested for anemia as part of the

survey.

Importantly, in the case of birth related outcomes such as birthweight or infant mortality,

income level and housing characteristics might have changed between the date of birth and the

survey date. Unfortunately, each household is only observed once in the dataset and the analysis

therefore makes the assumption that the eligibility status of the household remained unchanged

over time. This source of measurement error in the eligibility status of respondents is likely

to result in the contamination of the sub-sample of interest by observations from households

which were ineligible to receive subsidies at the time of birth, and ultimately in attenuation

bias affecting the coefficients of interest (Wooldridge 2010). In this situation, point estimates

will likely be underestimated. A similar measurement error problem is caused by the fact that

electricity consumption levels, one of FISE’s key eligibility criteria, are unobserved in the data.

Again, this will most likely result in ineligible households contaminating the sub-sample of

interest and therefore in downward biased coefficients.

3.2.2 Household-level data, fuel choices and cooking habits

The household questionnaire records the cooking fuel which households report using most fre-

quently (primary cooking fuel), along with a second less frequently used cooking fuel if relevant

(secondary cooking fuel). I use this information to evaluate the effect of LPG subsidies on the

extensive and intensive margins of LPG use. More specifically, I estimate the impact of the

intervention on the probability of using LPG to cook, on the likelihood that LPG is adopted

as the primary cooking fuel, and on the probability of cooking with LPG exclusively. I report
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similar outcomes for wood fuel in order to document the effect of the subsidies on traditional

fuel use. Appendix Figure B.1 reports the distribution of primary cooking fuels for households

satisfying FISE’s eligibility criteria and for would-be ineligible households in 2008, before the

start of Cocina Peru, and in 2019, before the onset of the COVID-19 epidemic. It shows that

the uptake of LPG as a primary cooking fuel was rare at the start of the study period in the

group of vulnerable households corresponding to FISE’s target population. Twelve years later,

the situation was radically different with more than a third of eligible households reporting LPG

as their primary cooking fuel, a sevenfold increase compared to the baseline situation. Almost

all of the increase seems attributable to households abandoning wood for LPG. While, LPG

use also increased in the ineligible group, the increase was more modest in absolute terms and

compared to the baseline situation. Importantly, the use of electricity as a primary source of

energy for cooking remained stable and close to zero in both groups over the study period, so

that the analysis in this paper is unlikely to confound the effect of access to LPG with the effect

of access to electricity on exposure to air pollution from domestic sources.

3.2.3 Mortality and health data

My main outcome of interest is infant mortality. I also report results for neonatal, post-neonatal

and mortality before age three. I follow Jayachandran (2009) in referring to the latter as “early-

life mortality” rather than child mortality to avoid any confusion with the standard definition of

child mortality as mortality between ages 1 and 4 (Croft, Marshall, and Allen 2018). I focus on

infant mortality, defined as mortality during the first 12 months of life, because there is a rich

causal literature documenting the large effect of exposure to air pollution on mortality in this

age group (Chay and Greenstone 2003; Currie and Neidell 2005; Jayachandran 2009; Greenstone

and Hanna 2014; Arceo, Hanna, and Oliva 2016; Knittel, Miller, and Sanders 2016; Rangel and

Vogl 2019; Heft-Neal et al. 2020). If pro-LPG public policies had an effect on respiratory health

and mortality in the Peruvian population, I therefore expect this effect to be exacerbated and

easier to identify among infants. This literature also shows that in-utero exposure during late-

pregnancy is an important mechanism behind air pollution induced infant mortality. As a result,

mortality from smoke exposure tends to be particularly concentrated during the first month of

life. I conduct separate analyses for neonatal and post-neonatal mortality in order to provide

an understanding of the role of prenatal exposure in explaining my findings. Finally, I present

results for mortality before age 3 to give a broader picture of the impacts of targeted LPG

subsidies on early-life mortality in Peru. It would have been preferable to produce estimates

for mortality before age 5. However, this would require that all children who had not reached

the age of five at the time of being surveyed be excluded from the analysis because the DID

imputation estimator does not handle censoring bias. Such sample restriction would result in

a significant loss of power and would limit my ability to estimate the long-term effects of the

policy by reducing the number of post-treatment time periods which could be included in the

analysis.

I explore the effect of the policy on three dimensions of child health which are known to
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be affected by exposure to air pollution and especially to fine particulate matter: birthweight,

acute respiratory infections (ARI) and anemia. The size of my analytical sample is much smaller

for these health variables than in the case of mortality data because the child health module of

the Peru Continuous DHS questionnaire only collects information on the health condition of the

three last births in the 5 years preceding the survey for each woman aged 15-49. In addition,

hemoglobin tests are only conducted among children between 6 and 59 months of age and these

tests were not conducted in 2006.

I use the probability of being born with a low birthweight as an indicator of health at birth.

I follow the standard DHS definition of low birthweight and classify all children whose weight

at birth is reported as less than 2.5 kilograms as cases of low birthweight (Croft, Marshall, and

Allen 2018). There is a large body of evidence showing that in-utero exposure to household

air pollution from cooking fuels increases the risk of low birthweight (see Li et al. 2017, for a

review). Several PM2.5 constituents are suspected to contribute to this effect including metals,

sulfur constituents, and polycyclic aromatic hydrocarbons, a product of wood and charcoal

combustion (Berkowitz et al. 2003; Basu et al. 2014; Jo et al. 2022). A limitation of my analysis

for this variable is that birthweight data is missing for approximately 14% of the sample of

births. However, the probability of missing birthweight is exactly the same among observations

from treated and from never-treated districts so that unobserved birthweights are unlikely to

bias my estimates.

My second health variable of interest is the probability of having experienced symptoms

of acute respiratory infection (ARI) during the two weeks preceding the survey among chil-

dren under 5. Symptoms of ARI are defined by DHS as “short, rapid breathing which was

chest-related and/or [. . . ] difficult breathing which was chest-related” (Croft, Marshall, and

Allen 2018). Childhood exposure to pollution from biomass combustion is consistently associ-

ated with acute respiratory infections in the public health literature (Dherani et al. 2008; Po,

FitzGerald, and Carlsten 2011). It is suspected that air pollution affects the immune response

to respiratory viruses (Loaiza-Ceballos et al. 2022) and increases the expression of the primary

cellular receptors of some of these viruses (Spannhake et al. 2002; Lee et al. 2015).

Finally, I also assess the effect of the intervention on the probability of moderate or severe

anemia among children. I define as moderately or severely anemic children whose hemoglobin

level is inferior to 10 grams per deciliter after adjustment for altitude13. Exposure to air pollution

is suspected to affect blood cell production through chronic systemic inflammation (Honda

et al. 2017). There is empirical evidence associating particulate matter and nitrogen dioxide

exposure with anemia and this relationship has recently been documented in the case of under-5

children in Peru (Honda et al. 2017; Elbarbary et al. 2019; Morales-Ancajima et al. 2019; Mehta

et al. 2021). In terms of physiological mechanism, the chronic systemic inflammation caused by

exposure to air pollution is suspected to reduce the production of red blood cells (erythrocytes)

by the bone marrow and to decrease the average lifespan of erythrocytes (Mehta et al. 2021).

13. I use the standard DHS adjustment formula as described in Croft, Marshall, and Allen (2018).
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3.2.4 Summary statistics

Appendix Table C.1 provides child-level and household-level descriptive statistics by treatment

status of the district of residence before the start of governmental LPG promotion. It shows that

FISE-eligible households were significantly different in treated districts and in the districts which

would remain unexposed to FISE until 2020. In particular, households from treated districts

were more likely to be urban and less likely to use wood for cooking. However, they were 6.7

percentage points less likely to have access to electricity than households in untreated districts

(see Panel A of Table C.1). This reflects FISE’s strategy of targeting households with a low

electricity consumption or without access to electricity. Table C.1, Panel B reports individual

characteristics for all the children born in the 5 years preceding the survey to the women residing

in FISE-eligible households. The infant mortality rates and under-3 mortality rates presented

in this panel indicate that children from treated districts had a significantly lower risk of early

life mortality. These differences will not be a threat to my identification strategy, which is based

on the parallel trends assumption.

4 Empirical strategy

4.1 Choice of estimator

I exploit the progressive deployment of authorized FISE retailers across Peruvian districts and

estimate the impact of FISE subsidies using a difference-in-differences design with staggered

adoption of treatment. My main specification uses the following event-study model:

yidt = αd + λt +
∑
l

µl1{t− Ed = l}+X ′
idtθ + ϵidt (1)

where yidt is the outcome variable of interest for unit i in year t and in district d. t is the year

of birth when the outcome of interest is related to mortality or health at birth14 and the year

of observation otherwise. αd and λt are district and year fixed effects. Ed is the year in which

a district receives its first FISE retailer and l, the relative time, corresponds to the distance in

years between the year of birth or observation and the year when treatment starts. l is negative

for units observed in pre-treatment years. I refer to units belonging to districts which share the

same initial treatment year as “cohorts”, following Sun and Abraham (2021). Finally, X ′
idt is a

set of exogenous control variables.

Estimation of Equation (1) via Ordinary Least Squares (OLS) will lead to biased results

in the presence of heterogeneous treatment effects across cohorts. It could potentially return

coefficients with the wrong sign (Chaisemartin and D’Haultfœuille 2020; Goodman-Bacon 2021;

Sun and Abraham 2021; Borusyak, Jaravel, and Spiess 2022). Several alternative estimators

have been proposed to address this issue (Chaisemartin and D’Haultfœuille 2020; Sun and

Abraham 2021; Borusyak, Jaravel, and Spiess 2022). In what follows, I use the “imputation

14. i.e. for neonatal, post-neonatal, infant and early-life mortality, for the probability of low birthweight, and
for the number of months of breastfeeding.
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estimator”developed by Borusyak, Jaravel, and Spiess (2022) to estimate the average treatment

effect across cohorts for each non-negative relative time-period l (l ≥ 0). I also compute stan-

dard overall treatment-on-the-treated (ATT) coefficients which provide an unbiased estimate

of the average treatment effect across all cohorts and all relative time periods, again following

Borusyak, Jaravel and Spiess. For all the estimations, I report standard errors clustered at

the treatment level (i.e. the districts) for both pre-treatment coefficients and ATTs. This is an

intention-to-treat analysis since eligible households in treated districts had to register with their

electricity provider or through the local office of the Peruvian Ministry of Energy (MINEM) to

benefit from the program. I do not observe who registered and who did not in the data.

My choice of estimator is motivated by the fact that Borusyak, Jaravel, and Spiess (2022)

explicitly discuss the application of the imputation estimator to repeated cross-sectional data

while most alternative estimators are best suited for panel data analysis (Sun and Abraham

2021; Chaisemartin and D’Haultfoeuille 2022). Callaway and Sant’Anna (2021) also propose

a staggered DID estimator which allows for cross-sectional data. However, this estimator is

challenging to implement in datasets with many time periods and a large number of treated

groups as is the case here. A limitation of the imputation estimator is that it drops the ob-

servations corresponding to districts which are observed an insufficient number of years in the

pre-treatment period because district and year fixed-effects cannot be computed for these dis-

tricts. This corresponds to approximately 8% of the households in the present case. To address

this issue I re-estimate my main model using a standard two-way-fixed-effects (TWFE) estima-

tor in the robustness checks section of this paper and show that the findings are qualitatively

similar when observations from less frequently surveyed districts are included in the analysis,

although coefficients are generally smaller when estimated via TWFE due to the inherent bias

of this estimator in staggered DID designs.

I conduct the analysis at the household level for the outcomes related to cooking fuel choices,

to the characteristics of the cooking area, and to the probability of boiling water for disinfection.

In the household-level imputations, I restrict the list of controls to an indicator for the type of

area of residence (urban or rural) and to survey month dummies. These survey month dummies

are replaced by birth month dummies for early-life mortality outcomes. In the imputations

where the outcome variable is related to child health or to early-life mortality, I add controls

for female children, for twin births, for the mother’s age at birth, for mothers aged less than

18, and for mothers who report smoking at the time of the survey. I also control for the child’s

age in months where relevant. Analyses in the sample of adult women are restricted to the

effects of the treatment on the probability of moderate or severe anemia and control for the

woman’s age, body mass index (BMI) and smoking status in addition to the household-level

control variables listed above. As previously discussed, when the unit of analysis is a birth,

some of the control variables might have changed between the year of birth and the year of

observation. This is particularly the case if the household moved between the birth and the

year of observation which could affect its area of residence or its access to electricity. In Section

5.6, I re-estimate my main specification after the observations which moved to a new residence
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between the year of treatment and the survey year have been dropped from the sample. This

addresses part of the concerns associated with time-varying control variables along with the

issue of selection into treatment through migration. I also probe the sensitivity of the results

to the inclusion of additional control variables in this section.

4.2 Testing for parallel trends

Similar to the estimation of DID designs via OLS, the DID imputation estimator relies on the

assumption that potential outcomes without treatment would follow parallel trends. Borusyak,

Jaravel, and Spiess (2022) provide an empirical test for this assumption in which the following

model is estimated via OLS for the untreated observations only:

yidt = αd + λt +
−1∑

l=−L

µl1{t− Ed = l}+X ′
idtθ + ϵidt (2)

In this model, the observations from districts which will be treated 1 to L years later are

compared to all the observations from never treated districts or from districts which will be

treated more than L years later. This approach differs from the conventional test of pre-trends

used with TWFE models in which placebo coefficients for the “lead” periods are estimated

jointly with the “lags” corresponding to the treatment effects. Borusyak, Jaravel, and Spiess

(2022) highlight two key benefits of this placebo test. First, and most importantly, the test

does not suffer from the bias which results from the practice of conditioning the analysis on the

results of a test of pre-trends in which the treatment effect and the pre-treatment estimates are

correlated (see Roth 2022, for a detailed exposition). Second, it improves the power of treatment

effects estimation because all the untreated observations can be included in the control group

for the imputation of the ATT coefficients. However, this second advantage comes at the cost

of relatively low power in the placebo test. In practice, the model estimated for the test of

pre-trends is almost always a linear probability model because most of the outcome variables

used in the analysis are binary.

In the next sections of this article, I use the approach to pre-trends testing recommended

by Borusyak, Jaravel, and Spiess (2022). Although the placebo test is performed separately, I

present evidence of parallel trends jointly with the ATT coefficients in a single graph, as is usually

done for conventional event studies. The fact that the main intervention, the introduction of

FISE subsidies for LPG refills, was preceded by the distribution of free LPG cookstoves in some

areas through the Cocina Peru program represents a challenge for the analysis, in particular

because these two programs shared some eligibility criteria15. To take this fact into account,

I follow Bismarck-Osten, Borusyak, and Schönberg (2022) and allow for anticipatory effects

of treatment up to two years before the registration of a first authorized LPG retailer in a

district. Concretely, this means that the indicator variables in Equation (1) are redefined as:∑L
l=−2 µl1{t−Ed = l} where L corresponds to the last post-treatment relative period for which

there are observations in the sample. The choice of a relatively short anticipation period of 2

15. see Section 2 above.

18



years reflects the fact that there was some coordination between the two programs and that

Cocina Peru was more likely to operate in districts where EDEs were actively preparing the

extension of the FISE retailer network.

To allow for similar anticipatory effects in the placebo test of parallel trends, I rewrite the

indicator variables in Equation (2) as:
∑−3

l=−L µl1{t−Ed = l}. When testing for parallel trends,

I set L = 7 for household-level outcomes and child health outcomes and L = 10 for mortality

and birth related outcomes. This choice is motivated by efficiency concerns: setting L > 7 for

the first group of outcomes results in excessively large confidence intervals because the number

of pre-treatment relative time periods, and thus the number of untreated observations, is lower

when the time unit is the year of observation than when it is the year of birth.

5 Results

5.1 Effect of FISE subsidies on cooking fuel choices

I start by assessing the success of the subsidy program in converting Peruvian households to

LPG, its primary operational objective. In Panel (a) of Figure 3 I display a kernel-weighted local

polynomial smooth of the proportion of households using LPG as their primary cooking fuel

by treatment cohort. I exclude the year 2020 in this figure because it corresponds to the year

of the COVID-19 epidemic. LPG use decreased in most groups in 2020 due to the associated

economic crisis and the proportion of LPG users in 2019 is therefore a more accurate indicator

of the penetration of LPG in each cohort at the end of the study period. For most cohorts,

the trends start diverging in 2009, the year in which Cocina Peru started distributing LPG

cookstoves to low-income households. There are some signs of anticipation for the 2012 cohort

which suggests that the program was piloted in districts in which the LPG market was already

more dynamic. The graph shows that LPG use grew rapidly in all groups after 2012, including

in never treated districts. However, growth was faster in treated districts and the difference

in LPG use rate relative to never treated areas is much larger in 2019 than in 2012 for all

treatment cohorts. In addition, for some cohorts, there is an upward shift in trend in the year

corresponding to the introduction of the FISE subsidies or in the two years preceding it. This

shift is particularly visible for the 2012, 2014 and 2015 cohorts. Finally, the difference in the

proportion of households which report using LPG as their primary cooking fuel at the end of

the period of observation is generally larger in the earliest treated cohorts, which suggests that

it could be a function of the duration of exposure to the program.

To confirm these initial findings, I plot coefficients for treatment effects estimated by the

imputation method of Borusyak, Jaravel, and Spiess (2022) as well as 95% confidence intervals in

Panel (b) of Figure 3 (the green dots). Pre-trend coefficients estimated by OLS are also reported

(the grey squares). The figure shows that the LPG subsidies had a large impact on the adoption

of LPG as a primary cooking fuel. All the pre-trend coefficients are small and the corresponding

95% confidence intervals always include zero. On the other hand, the treatment coefficients are

all statistically significant and increase in size over time. In the districts which have been
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exposed to the FISE subsidies for more than 5 years, eligible households are twenty percentage

points more likely to report that LPG is their main cooking fuel than similar households in

not-yet-treated treated districts.

Columns (1) to (3) of Appendix Table C.2 report treatment effects averaged over ten years

(from year -2 to year 7). In addition to the average effect on the use of LPG as a primary cooking

fuel (column (2)), I also present results for the probability that LPG is one of the household’s

two main cooking fuels (column (1)) and for the probability of cooking with LPG exclusively

(column (3)). The results for the whole sample of FISE-eligible households are presented in

Panel A and show that the program had a larger effect on the intensive margin than on the

extensive margin of LPG use. Indeed, the coefficient in Panel A, column (1), indicates that the

overall effect of the program across all cohorts on the adoption of LPG as one of the household’s

two main cooking fuels is 6.8 percentage points. This corresponds to 40% of the pre-treatment

average in treated districts. The overall effect on the use of LPG as a primary cooking fuel is

10.9 percentage points, 150% of the pre-treatment average in the treated group. Interestingly,

I find that LPG subsidies also had a large overall effect on the probability of exclusively using

LPG for cooking. Households in treated districts are 7.9 percentage points more likely to report

doing so than households from the comparison group, almost twice the pre-treatment average.

This finding contradicts results from previous studies covering a shorter time period and using

a smaller sample size, which generally conclude that most FISE beneficiaries stack LPG with

other fuels (Pollard et al. 2018; Calzada and Sanz 2018, see). All coefficients are statistically

significant at the 1% level.

In columns (1)-(3) and panels B and C of Table C.2, I explore the heterogeneity of the

results by treatment intensity. Panel B compares households in districts which were exposed

to a high intensity of treatment to households residing in never treated districts. Panel C

conducts a similar comparison for households in districts which were exposed to a low intensity

of treatment. For each of the three outcomes, the coefficients are larger in high intensity districts.

This suggests that the effectiveness of FISE’s intervention depended in part on the density of

the last-mile LPG distribution network. Once again, all coefficients are statistically significant

at the 1% level.

Finally, I repeat the analysis from the first three columns of Table C.2 for wood fuel. The

results are presented in columns (4) to (6) and show that most of the increase in LPG use is due

to changes among wood users. In particular, treated households are on average 6 percentage

points less likely to list wood as one of their two main cooking fuels and 7.5 percentage points

less likely to report that wood is their primary cooking fuel (Panel A, columns (4) and (5)).

There is no effect on the probability of cooking with wood exclusively (Panel A, column (6)).

I interpret this result as an indication that the program was most effective among households

which were already mixing several types of fuels (wood and charcoal for instance). The effects

on wood use are slightly larger in low intensity districts than in high intensity districts (panels

B and C, columns (4) and (5)). This might reflect the fact that the baseline fuel mix differed

in these two groups. As shown in columns (4) and (5) of panels B and C, the proportion of
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Figure 3: Impact of FISE subisidies on LPG adoption
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(b) DID Imputation Estimates

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005-2019 for Panel (a)).
Sample: FISE-eligible households. Notes: Panel (a) shows a kernel-weighted local polynomial
smooth of the proportion of households using LPG as their primary cooking fuel by treatment
cohort. The local mean smoothing uses an Epanechnikov kernel function. Vertical dashed lines
correspond to the year in which treatment switches on for each cohort. Panel (b) displays treatment
effects estimated using the Borusyak, Jaravel, and Spiess (2022) imputation estimator (green dots,
following Equation (1)), along with pre-trend coefficients estimated via OLS (grey squares, following
Equation (2)). The dependent variable is a dummy variable equal to one if the household reports
that LPG is its primary cooking fuel. Relative time periods are defined as the number of years since
the registration of the first FISE retailer in the district at the time of the survey. In addition to
district and year fixed effects, the covariates include dummies for survey months and urban residence.
Standard errors are clustered at the district level and 95% confidence intervals are reported. Distant
lags not shown due to small number of observations.
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treated households which used wood as a primary or secondary cooking fuel was 6 percentage

points higher in low intensity districts at baseline.

Overall, FISE achieved its main goal of converting low-income Peruvian households to LPG

and decreasing the proportion of the population which mainly relies on wood for cooking.

The magnitude of its impact is large for both the extensive and the intensive margin of LPG

cooking. Using the coefficients from Figure 3 and district populations from the 2017 census of

the Peruvian population to conduct a back of the envelope calculation, I estimate that 362,000

households adopted LPG as their main cooking fuel as a result of FISE’s LPG promotion

program. Based on the conservative estimate of 270 million USD disbursed in LPG subsidies

between the launch of FISE and the end of 2020, this represents an expenditure of 745 USD

per converted household. Was this investment effective in improving child health? I investigate

this question in the remainder of this article.

5.2 Effects on early-life mortality

In Figure 4, I report the imputation coefficients and OLS pre-trend coefficients for neonatal

mortality, post-neonatal mortality, infant mortality, and early-life mortality. Note that the

number of reported lags is reduced for post-neonatal mortality, infant mortality and under-

3 mortality because I drop the children who had not reached the corresponding age at the

time of the survey. The treatment effects on neonatal mortality in Panel (a) and on post-

neonatal mortality in Panel (b) are generally positive but few of the coefficients are statistically

significant. Looking at the results for the first twelve months of life in Panel (c) confirms that

the intervention had a positive effect on mortality in infancy. Here, the point estimates are large

and positive for all treatment periods except the first anticipatory period. A majority of the

coefficients are also significant at the 5% level. The pre-trend coefficients are generally much

smaller and never statistically different from zero which indicates that the empirical strategy

is valid. The results for mortality during the first three years of life in Panel (d) also suggest

a positive effect of LPG subsidies on early-life mortality although I only observe them for four

time periods after the registration of the first FISE retailer.

Appendix Table C.3 presents coefficients for the average yearly effect of FISE subsidies on

each of the four mortality outcomes. The coefficient in Panel A, column (3), confirms that the

intervention had a large positive effect on infant mortality, causing an extra 4.3 infant deaths

per 1,000 live births in treated districts relative to not-yet treated districts on average. This

represents 15% of the pre-treatment infant mortality rate in treated areas. This result is signifi-

cant at the 1% level. Given the take-up rate of 11%, the coefficient implies that taking-up LPG

as a primary fuel resulted in 39 surplus infant deaths per 1,000 births in newly converted house-

holds, 1.4 times the pre-treatment mortality rate. This might at first glance seem unrealistically

large. However, the medical literature shows that the effects of small changes in exposure to

air pollutants on mortality can also be very large. In the latest meta-analysis commissioned by

the World Health Organization (WHO), the pooled effect sizes for the relative risk of all-cause

mortality are 1.0072 and 1.0065 for every 10 µg/m3 increase in 24-hour outdoor concentrations
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Figure 4: Impact of FISE subisidies on mortality in infancy and during early-life
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(a) Neonatal mortality
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(b) Post-neonatal mortality
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(c) Infant mortality
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(d) Under 3 mortality

Source: Author’s calculations using Peru Continuous DHS 2005-2020. Sample: live births registered
between 2000 and 2020 to mothers residing in FISE-eligible households. Notes: Graphs display
treatment effects estimated using the Borusyak, Jaravel, and Spiess (2022) imputation estimator
(green dots, following Equation (1)), along with pre-trend coefficients estimated via OLS (grey
squares, following Equation (2)). The dependent variable is a dummy equal to one if the child died
(a) before the age of 1 month, (b) at ages 1 to 11 months, (c) at ages 0 to 11 months, and (d) before
reaching the age of 3 years. Children who did not reach the corresponding age by the time of survey
are dropped from the sample. Relative time periods are defined as the number of years since the
registration of the first FISE retailer in the district at the time of birth. In addition to district and
year fixed effects, the covariates include the mother’s age at birth, as well as dummies for female
children, for multiple births, for children born to mothers aged less than 18 and for children born to
mothers who report smoking. The estimation procedure also controls for the set of household-level
control variables defined in Figure 3. Standard errors are clustered at the district level and 95%
confidence intervals are reported. Distant lags not shown due to small number of observations.
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of NO2 and PM2.5 respectively (Orellano et al. 2020). This implies that a 55 µg/m3 increase in

concentrations of either NO2 or PM2.5 would be sufficient to cause an increase in mortality of

the magnitude observed among infants in LPG-adopting households16. This potential increase

in concentrations can be compared to the 24-hour average NO2 kitchen concentrations of 180

µg/m3 measured by Kephart et al. (2020) in a sample of 97 households of the Peruvian Andes17.

Columns (1) and (2) of Panel A show that the effect on infant mortality is due to increases

in neonatal and post-neonatal mortality, which suggests that both in-utero exposure and early

childhood exposure to air pollution might have increased as a result of the policy. The overall

effect on infant mortality is larger in the sub-sample of births registered in districts exposed to

a high intensity of treatment (Panel B, column (3)) than in the districts treated with a lower

intensity (Panel C, column (3)). This is what I would expect if the observed impacts were caused

by the joint effect of the subsidies and of the last-mile network of authorized LPG retailers. This

finding is once again reassuring regarding the validity of the identification strategy. Finally, the

overall effect on under-3 mortality is not statistically significant in the entire sample of births

(Panel A, column (4)) but note that this may in part be due to the fact that I observe a

smaller number of treatment lags for this outcome. In addition, there is a large and statistically

significant effect on early-life mortality in high-intensity districts (Panel B, column (4)). In this

sub-sample, I estimate that the program caused 6 additional deaths before the age of 3 per

1,000 live births.

Overall, the evidence clearly points in the direction of a large increase in infant mortality as

a result of the national effort to convert Peruvian households from wood to LPG. As previously

mentioned, recent impact evaluations of large-scale fuel switches from charcoal or kerosene to

LPG concluded to a decrease in infant mortality rates (Cesur, Tekin, and Ulker 2017; Imelda

2020). To find out why a similar policy led to opposite effects in the case of Peru, I start by

evaluating the effects of FISE’s LPG promotion program on several child health outcomes which

are known to be associated with air pollution from cooking fuels.

5.3 Effects on health at birth and during childhood

I consider three key health outcomes which are associated with in-utero and early childhood

exposure to air pollution in the literature: the probability of low birthweight, cases of acute

respiratory infections among under-5 children, and the incidence of moderate or severe anemia

in children aged 6 to 59 months. If the level of exposure to air pollution among beneficiary

households was affected by LPG subsidies, I expect this to be reflected in these air pollution-

sensitive outcomes. The results are displayed in Figure 5 and in Table C.4. Figure 5, Panel (a),

suggests that there is no significant effect of the policy on the probability of low birthweight,

16. I use all-cause mortality across all age groups as a proxy for infant mortality because recent meta-analyses
for infant mortality from exposure to air pollutants are missing. Heft-Neal et al. (2018) provides recent estimates
of the effect of outdoor concentrations of PM2.5 on infant mortality in 30 African countries and show that the
mortality rate increases by 9.2% for every 10 µg/m3 increase in concentration which corresponds to 6.5 additional
infant deaths per 1,000 births in this context, suggesting that the effect sizes for all-cause mortality provided by
Orellano et al. (2020) are likely to be good proxies.
17. Effect size converted from parts per billion (ppb) to µg/m3 using a conversion factor of 1.88.
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Figure 5: Impact of FISE subisidies on health at birth and during childhood
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(a) Low birthweight
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(b) Symptoms of ARI
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(c) Moderate or severe anemia

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005 and 2007-2019 for Panel (c)).
Sample: live births in 5 years preceding the survey to women residing in FISE-eligible households (Panel (a))
or under-5 children whose mother resides in a FISE-eligible household (panels (b) and (c)). Notes: In Panel
(c), observations from year 2006 are missing and observations from 2020 are dropped because interviews
scheduled after March 16 were conducted by phone. The sample is trimmed at the 1st and 99th percentile of
hemoglobin level in this panel. Graphs display treatment effects estimated using the Borusyak, Jaravel, and
Spiess (2022) imputation estimator (green dots, following Equation (1)), along with pre-trend coefficients
estimated via OLS (grey squares, following Equation (2)). The dependent variable is a dummy equal to one
if the child (a) weighed less than 2.5 kg at birth, (b) experienced symptoms of ARI in the 15 days preceding
survey, and (c) has an hemoglobin count lower than 10 grams/deciliter. Hemoglobin level only measured for
children aged 6 to 59 months. Relative time periods are defined as the number of years since the registration
of the first FISE retailer in the district at the time of birth (Panel (a)) or at the time of survey (panels (b) and
(c)). In addition to district and year fixed effects, the covariates include the child’s age in months (except in
Panel (a)), the mother’s age at birth, as well as dummies for female children, for multiple births, for children
born to mothers aged less than 18 and for children born to mothers who report smoking. The estimation
procedure also controls for the set of household-level control variables defined in Figure 3. Standard errors
are clustered at the district level and 95% confidence intervals are reported. Distant lags not shown due to
small number of observations.
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except for distant lags. However, the coefficients for the overall effect on the probability of

low birthweight reported in column (1) of Appendix Table C.4 give a slightly different picture.

Although the coefficient is statistically insignificant for the whole sample of births (Panel A,

column (1)), the results are in fact quite heterogeneous and the point estimate for districts

exposed to a high treatment intensity shows that the probability of low birthweight is 1.5

percentage points higher on average in these districts in the post-treatment period (Panel B,

column (1)). This result is significant at the 5% level.

Turning to health during childhood, the results in Panel (b) of Figure 5 show a large and

statistically significant effect of the subsidies on respiratory infections starting three years after

the registration of the first authorized FISE retailer. The effect persists over time until the

end of the study period. The average yearly effect in the whole sample of under-5 children

amounts to 2.6 additional percentage points, a result which is significant at the 5% level (Table

C.4, Panel A, column (2)). This is 14% of the pre-treatment probability of ARI symptoms

in treated districts. The effect is found in both high treatment intensity and low treatment

intensity districts. However, the coefficient is close to twice larger in districts exposed to a high

intensity of treatment (Table C.4, panels B and C, column (2)).

Finally, there is no evidence of an effect of the treatment on the incidence of moderate or

severe anemia in children (Figure 5, Panel (c), and Table C.4, column (3)). However, note

that anemia is not measured for children aged less than 6 months, the age group which is

most sensitive to air pollution. Despite the absence of effect on anemia, the evidence from the

analysis of child health outcomes is consistent with a scenario in which exposure to air pollution

increased in treated districts as a result of a greater access to LPG. The large effect on the

probability of reporting symptoms of ARI for children under 5 in particular is an indication

that the incidence of respiratory infections increased in the treated group, a fact which could

explain the impact of the program on infant mortality.

5.4 Effects on anemia in adult women

The richness of the Peru Continuous DHS data allows me to also study the impact of FISE sub-

sidies on the health of adult women, the population group in charge of most cooking activities.

In particular, the DHS survey measured hemoglobin levels for all the women who answered the

individual questionnaire over the period 2005-2019 except in 2006. I am therefore able to esti-

mate treatment effects on anemia in adult women. This is relevant because the risk of anemia

increases significantly with age (Patel 2008). The effects of the increase in air pollution which

seems associated with the intervention may thus be easier to identify in adults than in children,

and especially in the group of adults which is most exposed to this pollution.

Appendix Figure B.2 and Table C.5 confirm this intuition. Women who reside in treated

districts have a 1 percentage point higher probability of anemia than they would absent the

treatment (Appendix Table C.5, Panel A, column (1)). This effect is entirely driven by women

aged 35 to 49 for whom the treatment effect amounts to 2.2 percentage points, a third of the

baseline incidence rate of anemia in this group (Table C.5, Panel A, column (3)). The effect is
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found in both high treatment intensity districts and low treatment intensity districts. However,

the magnitude of the effect is once again much larger in high treatment intensity areas (Table

C.5, panels B and C, column (3)). There is no treatment effect on women aged less than 35 in

the whole sample (Table C.5, Panel A, column (2)). However, there is one for women aged less

than 35 in low treatment intensity districts, which explains that the overall coefficient in low

treatment intensity districts is statistically significant (Table C.5, Panel C, column (1)). There

is thus a causal effect of the treatment on anemia in adult women and more particularly on

women aged 35 and more. The sign of this effect is the one we would expect if these women were

exposed to more air pollution as a result of the intervention. This is consistent with the findings

from previous sub-sections which all point to a negative effect of treatment on air pollution and

associated health outcomes.

5.5 Mechanisms

How could a switch from wood fuel cooking to cooking with LPG result in an increase in

exposure to air pollution? In what follows, I argue that this unwanted outcome was caused

by three facts. First, as mentioned earlier in this article, the common description of LPG as

a “clean” fuel is somewhat misleading since its combustion emits nitrogen dioxide, a pollutant

which is known to increase the susceptibility of respiratory infections (Jarvis et al. 2010). A

recent field experiment conducted in Peru shows that kitchen area concentrations of nitrogen

dioxide exceed the WHO hourly guideline 1.3 hours per day on average in households which

cook exclusively with LPG (Kephart et al. 2021). Second, LPG stoves tend to be used mainly

indoors whereas Peruvian households traditionally cook both indoors and outdoors when they

use firewood (Rhodes et al. 2014). It is therefore very likely that the adoption of LPG resulted

in a significant increase of the time spent indoors by mothers and their children. Third, in

the homes made of traditional materials in which FISE-eligible households live, indoor cooking

areas are rarely equipped with a modern ventilation system. Kitchens without windows are not

uncommon (Kephart et al. 2021). Using LPG stoves in such kitchens would result in very high

concentrations of nitrogen dioxide, a phenomenon which could be worsened by the fact that

households believe LPG to be harmless18.

The combined effect of these three factors is potentially dramatic. For the households which

entirely stopped burning wood as a result of FISE subsidies, the change in ventilation quality

would partially offset the benefits of the fuel switch. In this case, the reduction in exposure to

fine particles caused by the adoption of LPG would come at the cost of an increase in exposure

to nitrogen dioxide due to the indoor combustion of LPG in a poorly ventilated area. The

consequences would be much worse in the case of households stacking LPG with wood. In this

case, both the exposure to particulate matter and to nitrogen dioxide could increase as a result of

the higher frequency of indoor cooking. In a different context, Bensch and Peters (2015) report

that the dissemination of an improved cookstove which facilitated outdoor cooking resulted in

18. The fact that LPG is misleadingly presented as a non-polluting fuel could lead households to abandon their
kitchen ventilation habits for instance.
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Figure 6: Impact of FISE subisidies on outdoor cooking, water disinfection and breastfeeding
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(a) Cook outdoors
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(b) Boil water
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(c) Months breastfed

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005-2015 for Panel (a)). Sample:
FISE-eligible households (panels (a) and (b)) or live births in the 5 years preceding the survey to women
residing in FISE-eligible households (panel (c)). Notes: Graphs display treatment effects estimated using
the Borusyak, Jaravel, and Spiess (2022) imputation estimator (green dots, following Equation (1)), along
with pre-trend coefficients estimated via OLS (grey squares, following Equation (2)). In panels (a) and (b),
the dependent variable is a dummy equal to one if the household (a) reports that its primary cooking area
is located outdoors, or (b) declares that it boils water for disinfection. In Panel (c), the dependent variable
is the number of months of breastfeeding reported by the mother for children above 40 months of age at
the time of survey. Relative time periods are defined as the number of years since the registration of the
first FISE retailer in the district at the time of survey (panels (a) and (b)) or at the time of birth (Panel
(c)). In addition to district and year fixed effects, the covariates include the set of household-level control
variables defined in Figure 3. In Panel (c), the estimation also controls for the mother’s age at birth, as well
as dummies for female children, for multiple births, for children born to mothers aged less than 18 and for
children born to mothers who report smoking. Standard errors are clustered at the district level and 95%
confidence intervals are reported. Distant lags not shown due to small number of observations.
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a reduction in smoke-related disease symptoms.

To confirm this interpretation, I start by assessing the effect of the intervention on the

proportion of households whose primary cooking area is located outdoors. Unfortunately, the

Peru Continuous DHS questionnaire does not collect information on secondary cooking areas or

on the frequency of indoor and outdoor cooking. Nevertheless, the findings for the main cooking

area are likely to reflect a broader trend which would also affect secondary cooking areas and

the overall frequency of outdoor cooking. Another limitation of the Peru Continuous DHS data

is that information on the location of the main cooking area was only collected until 2015. As

a result, I can only report treatment effects for the first four relative time periods after the

registration of the first authorized FISE retailer.

I also test two alternative hypotheses which could explain the effect of LPG adoption on

infant mortality. First, I evaluate the effect of the fuel switch on the practice of boiling drinking

water for disinfection. More than 70% of households from treated districts report that they boil

their drinking water in the pre-treatment period. If this practice became less frequent as a result

of the intervention, it could have affected infant mortality through diarrheal diseases. Second,

I test the hypothesis that LPG adoption led to a reduction in the duration of breastfeeding as

a result of the greater ease of preparing meals for children. Changes in breastfeeding practices

could have affected the nutritional status of children which, in turn, could be a cause of increased

early-life mortality. I estimate Equation (1) for the duration of the breastfeeding period in

months for the sub-sample of births which occurred more than 40 months before the survey

date. The 40-month recall period corresponds to the 99th percentile of breastfeeding duration.

The results of this analysis are presented in Figure 6. They provide support for the hypoth-

esis that a change in the frequency of outdoor cooking might explain the negative effects LPG

subsidies on child health and on early-life mortality. Panel (a) shows that the proportion of

households which report cooking outdoors decreases continuously in the years which follow the

registration of the first authorized FISE retailer in a district. The OLS pre-trend coefficients

support the parallel trends assumption. On the other hand, there is no evidence of an effect

of the intervention on water boiling and breastfeeding practices (Figure 6, panels (b) and (c)).

The average yearly coefficients reported in Appendix Table C.6 show that the proportion of

households whose main cooking area is located outdoors decreased by 3.6 percentage points

as a result of LPG subsidies. This result is significant at the 1% level. Although the magni-

tude of this change may seem relatively small compared to the large treatment effects on LPG

adoption, notice once again that I only observe the location of the main cooking area and that

the frequency of outdoor cooking might have decreased in households which previously used a

secondary outdoor cooking area. In addition, the treatment effect would most likely be larger if

additional time periods could be included in the analysis. The heterogeneity analysis in panels

B and C of Table C.6 shows that the treatment effect on outdoor cooking is mainly driven by

households from high treatment intensity districts.

To provide additional support for the finding that the treatment effects on child health and

infant mortality are due to an increase in total exposure to indoor air pollutants, I study the
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Table 1: Average yearly effect of FISE subsidies on mortality and health outcomes
- By kitchen ventilation quality, DID imputation estimates

(1) (2) (3) (4) (5)
Infant

mortality
Low

birthweight
Symptoms
of ARI

Anemia
in children

Anemia
in women

Panel A: All solid fuel users

Exposed to FISE 0.0032 0.0083 0.024 0.011 0.011
(0.0017) (0.0058) (0.0099) (0.011) (0.0059)

Unit of observation Birth Birth Child Child Woman
Mean of ouctome 0.027 0.089 0.158 0.153 0.065
Mean (treatment, pre) 0.028 0.093 0.181 0.168 0.071
N 157581 51729 55646 42878 68182

Panel B: Solid fuel users - Home without ventilation

Exposed to FISE 0.0030 0.017 0.032 0.011 0.017
(0.0023) (0.0077) (0.012) (0.012) (0.0075)

Unit of observation Birth Birth Child Child Woman
Mean of ouctome 0.028 0.090 0.168 0.155 0.069
Mean (treatment, pre) 0.029 0.095 0.189 0.162 0.071
N 99379 33260 37204 28569 43481

Panel C: Solid fuel users - Home with ventilation

Exposed to FISE 0.0023 0.0024 -0.0076 0.0080 -0.0031
(0.0027) (0.0097) (0.018) (0.016) (0.0089)

Unit of observation Birth Birth Child Child Woman
Mean of ouctome 0.025 0.089 0.137 0.150 0.059
Mean (treatment, pre) 0.027 0.090 0.157 0.185 0.069
N 58179 18032 17090 13264 23668

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005 and 2007-2019 for
columns (4)-(5)). Sample: live births registered between 2000 and 2020 to women residing
in FISE-eligible households (column (1)), live births registered in the 5 years preceding the
survey to women residing in FISE-eligible households (column (2)), under-5 children whose
mother resides in a FISE-eligible household (columns (3)-(4)) or women residing in FISE-eligible
households (column (5)). Notes: In columns (4) and (5), observations from year 2006 are
missing and observations from 2020 are dropped because interviews scheduled after March 16
were conducted by phone due to the covid crisis. The sample is trimmed at 1st and 99th
percentile of hemoglobin level. Each column reports the coefficient of interest from a separate
imputation. The dependent variable is a dummy equal to one if the child (1) died at ages 0 to
11 months, (2) weighed less than 2.5 kg at birth, (3) experienced symptoms of ARI in the 15
days preceding the survey, or (4) has an hemoglobin count lower than 10 grams per deciliter. In
column (5), the dependent variable is a dummy equal to one if the women has an hemoglobin
count lower than 11 grams per deciliter (10 grams for pregnant women). Hemoglobin level is
only measured for children aged 6 to 59 months. In Panel A, the imputation is conducted for the
whole sample of FISE-eligible observations. In Panel B, the sample is restricted to observations
in homes without ventilation. In Panel C, the sample is restricted to observations in homes
with ventilation. In addition to district and year fixed effects, columns (1)-(4) control for the
mother’s age at birth, as well as dummies for female children, for multiple births, for children
born to mothers aged less than 18 and for children born to mothers who report smoking. In
columns (3)-(4), the child’s age in months is added to the list of individual controls. In column
(5), individual controls include the woman’s age, BMI, and smoking status. All imputations
also control for the set of household-level control variables defined in Table C.2. Standard errors
clustered at the district level between parentheses.
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heterogeneity of the results by ventilation quality of the kitchen19. I define houses equipped

with a hood or a chimney as houses “with ventilation”. Houses or apartments which have no

hood and no chimney are classified as houses “without ventilation”. I expect health outcomes

to differ between households with and without access to ventilation because a rich literature

shows that ventilation greatly reduces kitchen concentrations of pollutants emitted by gas stoves

(Zhang et al. 2010; Singer et al. 2017; Zhao and Zhao 2018).

I conduct this analysis for infant mortality, for child health outcomes and for anemia in

women. The results should be interpreted with caution due to several data limitations. First,

the information on ventilation quality is only available for the years 2009 to 2020. Second, this

information is only recorded for the households which report using at least one solid fuel (i.e.

wood, charcoal, dung or agricultural waste). This means that I do not observe the ventilation

quality of the dwelling for the households which cook exclusively with LPG. This is a source

of selection bias. The results presented in Table 1 nevertheless provide additional suggestive

evidence regarding the role of cooking area ventilation as a key mechanism explaining the

negative effect of LPG adoption on infant mortality. The treatment effects on the probability

of low birthweight, on symptoms of ARI and on anemia in adult women are concentrated in

the households which have no access to ventilation (Panel B, columns (2), (3) and (7)). The

coefficient on infant mortality is insignificant in both sub-samples, but it is 1.5 times larger for

the households without ventilation (panels A and B, column (1)). There is no effect of treatment

on child anemia overall and in each of the sub-samples.

Taken together, the results from Table C.6 and Table 1 draw a picture in which new LPG

adopters reduced the frequency at which they cooked outdoors and started spending more

time in poorly ventilated dwellings which could be polluted by nitrogen dioxide from LPG

combustion, or by wood smoke from indoor cooking and heating. Such a scenario would also

explain why the impact of the switch to gas cooking on infant mortality was different in Peru

and in the other countries where a similar transition was evaluated. In Indonesia, Imelda (2020)

evaluates the effect of a switch to LPG in a population which mainly cooked with kerosene at

baseline and finds that the introduction of LPG led to a decrease in infant mortality. Kerosene

stoves tend to be adapted to indoor cooking, just like LPG stoves. Imelda does not discuss

the effect of the intervention on the choice of cooking area but a switch from kerosene to LPG

seems less likely to induce a shift towards more indoor cooking than a transition from wood

to LPG. If Indonesian kerosene users simply replaced a polluting fuel by a less polluting one

while ventilation quality remained constant, it is not surprising to find that the change had a

positive effect on exposure to air pollution and related health outcomes. Similarly, in the case of

Turkey, Cesur, Tekin, and Ulker (2017) find that the replacement of charcoal by natural gas was

followed by a decrease in infant mortality. Charcoal is also more suited to indoor cooking than

wood and the intervention seems less likely to have induced major changes in choices of cooking

19. This is important because only 7% of eligible households in treated areas reported primarily cooking outdoors
in the pre-treatment period as shown in Panel A of Appendix Table C.6, suggesting that the switch to indoor
cooking is one of several mechanisms leading to the large observed increase in infant mortality. Another potential
mechanism is the fact that the adoption of LPG resulted in higher average exposure to air pollutants whenever
it took place in a kitchen which lacked ventilation.

31



area than in the case of Peru. This interpretation of the heterogeneous impacts of gas cooking

adoption across countries is supported by previous work by Langbein, Peters, and Vance (2017)

who review the literature on particulate matter concentration in the cooking area and report

that for a given biomass cooking technology, the concentration can be 40 to 80% lower when

cooking takes place outdoors rather than indoors.

In addition, the policies implemented in Indonesia and Turkey were less likely to result in the

stacking of gas stoves with the baseline technology than is the case in Peru. In Indonesia, the

promotion of LPG was combined with a gradual reduction in the supply of kerosene in target

areas (Imelda 2020). Such a supply-side intervention would have been harder to implement in

Peru because the primary baseline fuel was wood, a fuel which can be collected by households.

In Turkey, the expansion of natural gas connections mainly took place in collective housing in

which the stacking of several cooking and heating technologies is difficult (Cesur, Tekin, and

Ulker 2017).

5.6 Robustness checks and additional results

5.6.1 Falsification test

To provide additional evidence in support of the main results presented in previous sections, I

conduct a falsification test in which I evaluate the effect of the treatment on the incidence of

diarrheal diseases and of acute malnutrition. These two health conditions are unlikely to be

directly caused by air pollution. Consumption of unsafe water and oral contacts with contami-

nated objects are the main routes of transmission of diarrheal diseases to young children (Zwane

and Kremer 2007). A change of cooking fuel is also unlikely to induce cases of acute malnutri-

tion and obtaining significant coefficients for this outcome would suggest that identification is

confounded by unobserved exogenous shocks. In Panel (a) of Appendix Figure B.3, I present

imputation estimates of treatment effects on the probability of reporting an event of diarrhea in

the two weeks preceding the survey for children aged less than 5. Panel (b) of Figure B.3, shows

estimates of treatment effects on the probability of being wasted at the time of survey for the

same sub-sample. I use the standard definition of wasting as having a weight-for-height z-score

less than minus 2 standard deviations below the mean of the WHO Child Growth Standards

(Croft, Marshall, and Allen 2018). The results suggest that there is no effect of the intervention

on these two outcomes. This is confirmed by the overall coefficients presented in Appendix

Table C.7 which are both statistically insignificant and close to zero. Thus, the intervention

seems to only affect health outcomes which are known to be induced by air pollution.

5.6.2 Concurrent changes in access to health care

Concurrent changes in access to health care could represent a threat to identification if they

affected treated and untreated districts differently during the study period. To test for the

presence of such concurrent changes, I estimate Equation 1 for two outcomes which are likely

to reflect local trends in access to maternal health care: the place of birth and the presence of
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a health professional during delivery. The coefficients are estimated for the sample of under-5

children for whom detailed health at birth data were collected as part of the DHS survey. The

results presented in Appendix Figure B.4 do not support the hypothesis that differential trends

in access to maternal or perinatal healthcare are the main driver behind the relative increase

in infant mortality in treated areas. Treatment coefficients are statistically insignificant for all

relative time periods but one in the case of institutional delivery (Figure B.4, Panel (a)) and

for all coefficients when the dependent variable is the probability that the delivery was assisted

by a health professional (Figure B.4, Panel (b)).

5.6.3 Selection issues

The treatment effects might result from selection effects induced by the intervention. In partic-

ular, if vulnerable mothers moved to treated districts in order to benefit from LPG subsidies,

the increase in infant mortality and in self-reported symptoms of respiratory infections might

be due to a change in the composition of the population of these districts. In Appendix Figure

B.5, I re-estimate my main specification for these two outcomes after children whose mothers

report having moved to a new address between the district’s initial treatment date and the

survey date have been dropped from the sample. Note that this restriction indifferently drops

children whose mothers moved between districts and children of mothers who moved within the

same district. It is therefore excessively conservative. Unfortunately, the information needed to

differentiate between these two groups was not collected as part of the Peru Continuous DHS.

However, the event study coefficients are generally similar to the initial results for both infant

mortality and symptoms of ARI. The coefficients in columns (1) and (2) of Appendix Table C.8

confirm this visual impression. This is reassuring for the identification strategy and suggests

that selection into treatment through migration is unlikely to bias the results.

5.6.4 Effects on ineligible households

Although my main analysis was performed in the sub-sample of households which satisfied

FISE’s eligibility criteria at the time of the survey, it is important to consider the effect of the

treatment in the group of ineligible households. This is not a placebo test because ineligible

households might have been indirectly affected by the policy through externalities from eligible

households or through general equilibrium effects for instance. Greater demand for LPG refills

in the group of eligible households might have triggered a price increase on non-subsidized refills,

thus decreasing LPG use rates in the ineligible group. On the other hand, informal reselling of

subsidized refills by beneficiary households could also have lowered the price of LPG for some

ineligible households. The effect of the policy on the ineligible group is thus a priori ambiguous.

However, finding similar effects in ineligible and ineligible households would cast doubt on my

main results since most treatment effects should be concentrated in the group which directly

benefited from the intervention.

Appendix Figure B.6 and Table C.9 show that the intervention led to a modest 4 percentage

point decrease in LPG use among ineligible households in treated districts (Table C.9, column
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(1)). This decrease is matched by a very small increase of 1 percentage point in the probability

of primarily cooking outdoors (Table C.9, column (2)). The empirical evidence therefore sup-

ports the hypothesis of a reduced use of LPG among non-targeted households due to general

equilibrium effects. This change in fuel mix is not associated with statistically significant health

effects (Table C.9, columns (3) and (4)). There are a couple of statistically significant coefficients

on infant mortality in Panel (b) of Figure B.6 around the time of treatment start. However,

these effects do not persist over time and decrease continuously towards 0 between period 1

and period 5, which corresponds to the time periods in which ineligible households seem to be

abandoning LPG. Finally, the coefficients on outdoor cooking and on symptoms of ARI are

almost always small and statistically not different from zero (Figure B.6, panel (d)). Generally

speaking, the treatment effects on the main outcomes of interest differ markedly between the

groups of eligible and ineligible households.

5.6.5 Alternative treatment definition

As discussed earlier in this article, the main definition of treatment used in the analysis leaves

space for contamination of the comparison group by households which received FISE LPG

vouchers while residing in districts which did not host any authorized LPG retailer. This would

most likely lead to downward biased treatment coefficients. To assess this issue, I re-estimate

my coefficients with a different treatment definition for the key variables of interest in Appendix

Figure B.7. In these estimates, a district is considered treated in time t if it hosts at least one

authorized LPG retailer or if there is another district with a FISE retailer within a 15km radius

of its centroid. The results are generally qualitatively very similar and, if anything, somewhat

larger than in the initial specification, especially for distant lags. This suggests that the results

obtained with the main definition of treatment are most likely conservative estimates of the

actual treatment effects.

5.6.6 Choice of covariates

Next, I add several additional control variables to my main model to verify that the results are

not sensitive to the choice of covariates. I focus on variables which account for the households’

income level as well as on characteristics which are likely to be correlated with the probability

of being treated, in particular whether households have access to electricity and to a mobile

phone. More specifically, I control for female headed households, for the household’s size, for the

age of the household head, and I add indicators for households belonging to the poorest wealth

quintile, for households with electricity, and for mobile phone ownership. Appendix Figure B.8

shows that the results are robust to these additional controls.

5.6.7 Excluding the covid crisis period

Most of the estimates presented in this article use data collected during 2020, the year of the

covid crisis. Peru is among the countries which were most significantly affected by this epidemic

and, as a result, some of the interviews scheduled in 2020 were conducted by phone. This
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concerns approximately 25% of the sample. Because data quality may be lower in the case of

phone interviews, I drop the observations which correspond to interviews conducted in 2020

and re-estimate my main model with the remaining sub-sample. The results are displayed in

Appendix Figure B.9 for the adoption of LPG as a primary cooking fuel (Panel (a)), infant

mortality (Panel (b)) and symptoms of ARI (Panel (c)). I do not re-estimate coefficients for

outdoor cooking because the data for this outcome are only available for the period 2005-2015.

The results are robust to the sample restriction for the three outcomes of interest.

5.6.8 Composition effects

To test for composition effects, I estimate treatment coefficients for a series of basic socio-

demographic characteristics which are unlikely to be outcomes of the intervention. I conduct

this analysis for the sample of children included in the analysis of treatment effects on infant

mortality because this outcome is central to the paper and is likely to be highly sensitive to

changes in sample composition over time. The test of composition effects focuses on the following

indicators: the probability that a child was born during the rainy season, the type of area of

residence of the mother during childhood (urban or rural), the self-reported ethnicity of the

mother (”Spanish speaker” or ”indigenous”), the sex of the child and whether the birth was

a twin birth. The results presented in Figure B.10 show that eligible children in treated and

untreated districts do not differ along these characteristics suggesting that composition effects

are unlikely to be driving the results.

5.6.9 Results from conventional event study

Finally, I check the robustness of my main results to using an alternative estimation method.

To do so, I estimate the event study model from Equation 1 via OLS. In this case, the test of

pre-trends and the estimation of treatment coefficients are conducted in a single stage, by in-

cluding dummies for pre-treatment periods in the model. The last time-period before treatment

switches on is dropped due to collinearity. I am able to report more pre-treatment time periods

because the placebo test is better powered with this estimation method. The results displayed in

Appendix Figure B.11 are qualitatively similar to those obtained with the imputation estimator

of Borusyak, Jaravel, and Spiess (2022) for all outcomes. However, the treatment coefficients

are generally smaller in magnitude when estimated with the standard TWFE model suggest-

ing that the arbitrary weights on district-period effects tend to bias the estimates downwards

(Borusyak, Jaravel, and Spiess 2022). Nevertheless, this robustness check shows that the main

conclusions of the analysis would not be very different with a more conventional estimator.

6 Conclusion

LPG is being actively promoted as a clean cooking fuel in developing countries, yet we have

limited understanding of the extent to which its adoption might actually benefit the health of

targeted population groups. In this article, I attempt to fill this knowledge gap with a specific
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focus on the implications of LPG adoption for the third of the world population which still

cooks with wood. To do so, I study Peru’s FISE LPG promotion program, one of the largest

LPG conversion programs to date, over a period of ten years (2010-2020). Using data from

16 waves of the Peru Continuous DHS survey, I estimate that the program’s average yearly

effect on the adoption of LPG as a primary cooking fuel amounts to 10.9 percentage points, 1.5

times the usage rate in the eligible group before treatment. Unfortunately, this success did not

translate into health improvements, at least for the youngest beneficiaries. On the contrary,

the incidence of respiratory infections among under-5 children and infant mortality rates both

increased by roughly 15% compared to pre-treatment levels. A back of the envelope calculation

conducted with the treatment effect coefficients from the main estimation suggests that the

policy caused approximately 6,000 additional infant deaths during the whole study period, in a

country which registers less than 600,000 births per year20. Thus, while Peru’s infant mortality

rate dropped by approximately 33% between 2010 and 2020, from 15 to 10 deaths per 1,000

live births (World Bank 2022), it would probably have dropped even faster if the intervention

had been implemented differently.

The evidence presented in this paper suggests that these disheartening results are due to

an increase in total exposure to air pollutants as a result of the adoption of LPG. I show

that the policy led to a decrease in rates of outdoor cooking in treated districts which implies

that women and their children started spending more time indoors after the introduction of

LPG. The increased frequency of indoor cooking likely had disastrous effects on exposure to air

pollution since concentrations of air pollutants can be 40 to 80% lower when cooking takes place

outdoors rather than indoors for a given fuel (Langbein, Peters, and Vance 2017). In addition,

a heterogeneity analysis shows that the detrimental effects of the intervention on several health

outcomes are concentrated in the households which live in homes without ventilation. This

suggests that the adoption of LPG was also detrimental for households which were already

primarily cooking indoors in poorly ventilated kitchens prior to the intervention, most likely

due to the addition of new emissions from the LPG stove.

An important limitation of the analysis is that I do not directly observe personal levels of

exposure to various air pollutants in the sample of eligible households. Thus, I am forced to rely

on indirect evidence to establish that LPG adoption impacted infant mortality rates through

the channel of increased air pollution. However, several findings support my main results. First,

the policy also caused an increase in the incidence of moderate and severe anemia among adult

women. This is what I would expect in a situation of increased exposure to air pollution because

several air pollutants have an inflammatory effect which affects the production of blood cells

and increases the risk of anemia (Honda et al. 2017). Second, I find no effect of treatment

on the most obvious alternative channels through which LPG adoption might have induced an

increase in infant mortality: changes in breastfeeding habits and in children’s nutritional status

or modifications of water boiling habits and of the associated risk of diarrheal diseases. Third,

ineligible households residing in treated districts were much less affected by the policy. And

20. See Appendix D
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fourth, I show that the effects are unlikely to be caused by selective migration of vulnerable

households from untreated to treated districts. Taken together, these results leave little space

for competing explanations of the negative health effects of the LPG promotion program.

Another caveat concerns the fact that the article mainly covers early-childhood health and

mortality outcomes and says relatively little about the effects of the intervention on other age

groups. While this comment certainly warrants further research on Peru’s FISE program, note

that several important observations can be made regarding other age groups with the results at

hand. On the one hand, the positive effect of the intervention on anemia in adult women suggests

that older age groups were also negatively affected by the change in cooking habits associated

with LPG uptake. On the other hand, even if positive health effects of the intervention existed

for some age groups, they would need to be incredibly large to offset the disability-adjusted life

years lost in the youngest population group.

To conclude, the findings of this paper suggest that greater attention should be paid to the

context in which the promotion of gas stoves takes place to ensure that it does not result in

negative health outcomes. The effects of such interventions on the exposure of populations to

air pollutants should be evaluated at an early stage and the evaluations should encompass at

least PM2.5 and NO2 emissions to be informative. In addition, policymakers should adopt strict

regulations regarding the marketing of gas stoves and ensure that new users are informed of the

health risks associated with the air pollutants emitted by the combustion of LPG and natural

gas. In areas where cooking activities frequently take place outdoors or in poorly ventilated

kitchens, it seems essential to combine the promotion of LPG or natural gas with interventions

aimed at optimizing ventilation quality for cooks and their relatives. This could involve selecting

LPG stoves which can easily be used outdoors or advising users to install ventilation systems

in their kitchens for instance.
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Marticorena, Manuel. 2015. “¿Por qué hay tantos problemas con el abastecimiento de GLP?” El Comercio Perú
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FOR ONLINE PUBLICATION

Appendix A - Characteristics of Peru Continuous DHS surveys

Table A.1: Peru Continuous DHS - Survey characteristics by year

Year Sample Number of Number of Domain
frame sample clusters households

2020 2017 census 3,254 37,390 National, urban/rural,
department

2019 2007 census 3,254 36,760 National, urban/rural,
(including 2012-13 update) department

2018 2007 census 3,254 36,760 National, urban/rural,
(including 2012-13 update) department

2017 2007 census 3,175 35,910 National, urban/rural,
(including 2012-13 update) department

2016 2007 census 3,175 35,910 National, urban/rural,
(including 2012-13 update) department

2015 2007 census 3,175 35,900 National, urban/rural,
(including 2012-13 update) department

2014 2007 census 1,558 29,806 National, urban/rural,
department

2013 2007 census 1,426 26,853 National, urban/rural,
department

2012 2007 census 1,426 27,718 National, urban/rural,
department

2011 2007 census 1,132 26,528 National, urban/rural,
department

2010 2007 census 1,132 26,605 National, urban/rural,
department

2009 2007 census 1,132 26,834 National, urban/rural,
department

2008 1/5 of 2000 DHS clusters 720 18,445 National, urban/rural
+ 2005 census (department if merged

with 2007 Cont. DHS)

2007 1/5 of 2000 DHS clusters 281 7,188 National, urban/rural

2006 1/5 of 2000 DHS clusters 283 7,226 National, urban/rural

2005 1/5 of 2000 DHS clusters 284 6,837 National, urban/rural

Source: Rutstein and Way (2014) and Instituto Nacional de Estad́ıstica e Informática (2020).
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Appendix B - Supplementary figures

Figure B.1: Primary cooking fuel by FISE eligibility status in 2008 and 2019
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Source: Author’s calculations using Peru Continuous DHS 2008 and 2019..
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Figure B.2: Impact of FISE subisidies on moderate or severe anemia among adult women
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Source: Author’s calculations using Peru Continuous DHS 2005 and 2007-2019. Sample: women
aged 18-49 and residing in FISE-eligible households at the time of survey. Notes: Sample trimmed
at the 1st and 99th percentile of hemoglobin level. The graph displays treatment effects estimated
using the Borusyak, Jaravel, and Spiess (2022) imputation estimator (green dots, following Equation
(1)), along with pre-trend coefficients estimated via OLS (grey squares, following Equation (2)).
The dependent variable is a dummy equal to one if the woman has an hemoglobin count lower
than 11 grams per deciliter (10 grams for pregnant women). Observations from year 2006 are
missing. Observations from year 2020 are dropped because interviews scheduled after March 16 were
conducted by phone due to the covid crisis and hemoglobin levels are missing for these interviews.
Relative time periods are defined as the number of years since the registration of the first FISE
retailer in the district at the time of survey. In addition to district and year fixed effects, the
covariates include the woman’s age, BMI, and smoking status, as well as the set of household-level
control variables defined in Figure 3. Standard errors are clustered at the district level and 95%
confidence intervals are reported. Distant lags not shown due to small number of observations.
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Figure B.3: Falsification test - Impact of FISE subisidies on diarrhea and nutritional status
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(a) Diarrhea in past two weeks
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(b) Wasted

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005 and 2007-2019 for Panel (b)).
Sample: under-5 children whose mother resides in a FISE-eligible household. Notes: Graphs display treat-
ment effects estimated using the Borusyak, Jaravel, and Spiess (2022) imputation estimator (green dots,
following Equation (1)), along with pre-trend coefficients estimated via OLS (grey squares, following Equa-
tion (2)). The dependent variable is a dummy equal to one if the child (a) experienced symptoms of diarrhea
in the 15 days preceding the survey, or (b) is wasted (weight-for-height z-score)<-2). In Panel (b), observa-
tions from year 2006 are missing and observations from year 2020 are dropped because interviews scheduled
after March 16 were conducted by phone due to the covid crisis. Relative time periods are defined as the
number of years since the registration of the first FISE retailer in the district at the time of survey. In
addition to district and year fixed effects, the covariates include the child’s age in months, the mother’s age
at birth, as well as dummies for female children, for multiple births, for children born to mother’s aged less
than 18 and for children born to mothers who report smoking. The estimation procedure also controls for
the set of household-level control variables defined in Table C.2. Standard errors are clustered at the district
level and 95% confidence intervals are reported. Distant lags not shown due to small number of observations.
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Figure B.4: Test for changes in access to maternal health care
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(a) Institutional delivery
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(b) Assisted by a health professional

Source: Author’s calculations using Peru Continuous DHS 2005-2020. Sample: under-5 children whose
mother resides in a FISE-eligible household. Notes: Graphs display treatment effects estimated using the
Borusyak, Jaravel, and Spiess (2022) imputation estimator (green dots, following Equation (1)), along with
pre-trend coefficients estimated via OLS (grey squares, following Equation (2)). The dependent variable is
a dummy equal to one if the delivery (a) took place in a health facility, or (b) was assisted by a health
professional. Relative time periods are defined as the number of years since the registration of the first FISE
retailer in the district at the time of survey. In addition to district and year fixed effects, the covariates
include the mother’s age at birth, as well as dummies for female children, for multiple births, for children
born to mother’s aged less than 18 and for children born to mothers who report smoking. The estimation
procedure also controls for the set of household-level control variables defined in Table C.2. Standard errors
are clustered at the district level and 95% confidence intervals are reported. Distant lags not shown due to
small number of observations.
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Figure B.5: Impact of FISE subisidies on infant mortality and symptoms of ARI - Excluding
recent movers
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(a) Infant mortality
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(b) Symptoms of ARI

Source: Author’s calculations using Peru Continuous DHS 2005-2020. Sample: live births registered between
2000 and 2020 to women residing in FISE-eligible households (Panel (a)), or under-5 children whose mother
resides in a FISE-eligible household (Panel (b)). Observations are dropped from the sample if the mother
reports having moved to a new home between treatment date and survey. Notes: Graphs display treatment
effects estimated using the Borusyak, Jaravel, and Spiess (2022) imputation estimator (green dots, following
Equation (1)), along with pre-trend coefficients estimated via OLS (grey squares, following Equation (2)).
The dependent variable is a dummy equal to one if the child (a) died at ages 0 to 11 months, or (b)
experienced symptoms of ARI in the 15 days preceding the survey. Relative time periods are defined as
the number of years since the registration of the first FISE retailer in the district at the time of birth
(panel (a)) or at the time of survey (panel (b)). In addition to district and year fixed effects, the covariates
include the child’s age in months (only in panel (b)), the mother’s age at birth, as well as dummies for
female children, for multiple births, for children born to mother’s aged less than 18 and for children born to
mothers who report smoking. The estimation procedure also controls for the set of household-level control
variables defined in Figure 3. Standard errors are clustered at the district level and 95% confidence intervals
are reported. Distant lags not shown due to small number of observations.
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Figure B.6: Impact of FISE subisidies on ineligible households
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(a) Primary cooking fuel is LPG
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(b) Cook outdoors
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(c) Infant mortality
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(d) Symptoms of ARI

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005-2015 for Panel (b)). Sample:
FISE-ineligible households (panels (a) and (b)), live births registered between 2000 and 2020 to women
residing in FISE ineligible households (Panel (c)), and under-5 children whose mother resides in a FISE-
ineligible household (Panel (d)). Notes: Graphs display treatment effects estimated using the Borusyak,
Jaravel, and Spiess (2022) imputation estimator (green dots, following Equation (1)), along with pre-trend
coefficients estimated via OLS (grey squares, following Equation (2)). The dependent variable is a dummy
equal to one if the household (a) reports that LPG is its primary cooking fuel, (b) primarily cooks outside,
or if the child (c) died at ages 0 to 11 months, or (d) experienced symptoms of ARI in the 15 days preceding
the survey. In Panel (b), observations from years 2016-2020 are missing. Relative time periods are defined
as the number of years since the registration of the first FISE retailer in the district at the time of survey
(panels (a), (b) and (d)) or at the time of birth (panel (c)). In addition to district and year fixed effects, all
imputations control for the set of household-level control variables defined in Figure 3. Panels (c) and (d)
also control for the mother’s age at birth, as well as dummies for female children, for multiple births, for
children born to mother’s aged less than 18 and for children born to mothers who report smoking. In Panel
(d), the child’s age in months is added to the list of individual controls. Standard errors are clustered at
the district level and 95% confidence intervals are reported. Distant lags not shown due to small number of
observations in panels (a), (c) and (d).
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Figure B.7: Impacts of FISE subisidies - Estimates with alternative treatment definition
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(a) Primary cooking fuel is LPG
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(c) Infant mortality
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(d) Symptoms of ARI

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005-2015 for Panel (b)). Sample:
FISE-eligible households (panels (a) and (b)), live births registered between 2000 and 2020 to women resid-
ing in FISE-eligible households (Panel (c)), and under-5 children whose mother resides in a FISE-eligible
household (Panel (d)). Notes: Graphs display treatment effects estimated using the Borusyak, Jaravel, and
Spiess (2022) imputation estimator (green dots, following Equation (1)), along with pre-trend coefficients
estimated via OLS (grey squares, following Equation (2)). The dependent variable is a dummy equal to
one if the household (a) reports that LPG is its primary cooking fuel, (b) primarily cooks outside, or if the
child (c) died at ages 0 to 11 months, or (d) experienced symptoms of ARI in the 15 days preceding the
survey. In Panel (b), observations from year 2016-2020 are missing. Relative time periods are defined as the
number of years since the registration of the first FISE retailer in any district located within a 15km radius
of the district of residence at the time of survey (panels (a), (b) and (d)) or at the time of birth (panel
(c)). In addition to district and year fixed effects, all imputations control for the set of household-level
control variables defined in Figure 3. Panels (c) and (d) also control for the mother’s age at birth, as well
as dummies for female children, for multiple births, for children born to mother’s aged less than 18 and for
children born to mothers who report smoking. In Panel (d), the child’s age in months is added to the list
of individual controls. Standard errors are clustered at the district level and 95% confidence intervals are
reported. Distant lags not shown due to small number of observations in panels (a), (c) and (d).
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Figure B.8: Impacts of FISE subisidies - Estimates with additional covariates
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(a) Primary cooking fuel is LPG
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(c) Infant mortality
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(d) Symptoms of ARI

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005-2015 for Panel (b)). Sample:
FISE-eligible households (panels (a) and (b)), live births registered between 2000 and 2020 to women resid-
ing in FISE-eligible households (Panel (c)), and under-5 children whose mother resides in a FISE-eligible
household (Panel (d)). Notes: Graphs display treatment effects estimated using the Borusyak, Jaravel, and
Spiess (2022) imputation estimator (green dots, following Equation (1)), along with pre-trend coefficients
estimated via OLS (grey squares, following Equation (2)). The dependent variable is a dummy equal to one
if the household (a) reports that LPG is its primary cooking fuel, (b) primarily cooks outside, or if the child
(c) died at ages 0 to 11 months, or (d) experienced symptoms of ARI in the 15 days preceding the survey.
In Panel (b), observations from year 2016-2020 are missing. Relative time periods are defined as the number
of years since the registration of the first FISE retailer in the district of residence at the time of survey
(panels (a), (b) and (d)) or at the time of birth (Panel (c)). In addition to district and year fixed effects, all
imputations control for the set of household-level control variables defined in Figure 3. Additional controls
are included for the household head’s educational attainment, for households belonging to the poorest wealth
quintile, for households with access to tap water, and for households with access to modern toilet facilities.
Panels (b) and (c) also control for the mother’s age at birth, as well as dummies for female children, for
multiple births, for children born to mother’s aged less than 18 and for children born to mothers who report
smoking. In Panel (c), the child’s age in months is added to the list of individual controls. Standard errors
are clustered at the district level and 95% confidence intervals are reported.
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Figure B.9: Impacts of FISE subisidies - Estimates excluding year 2020
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(a) Primary cooking fuel is LPG
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(b) Infant mortality
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(c) Symptoms of ARI

Source: Author’s calculations using Peru Continuous DHS 2005-2019. Sample: FISE-eligible households
(Panel (a)), live births registered between 2000 and 2020 to women residing in FISE-eligible households
(Panel (b)), and under-5 children whose mother resides in a FISE-eligible household (Panel (c)). Notes:
Graphs display treatment effects estimated using the Borusyak, Jaravel, and Spiess (2022) imputation es-
timator (green dots, following Equation (1)), along with pre-trend coefficients estimated via OLS (grey
squares, following Equation (2)). The dependent variable is a dummy equal to one if (a) the household re-
ports that LPG is its primary cooking fuel, or if the child (b) died at ages 0 to 11 months, or (c) experienced
symptoms of ARI in the 15 days preceding the survey. Relative time periods are defined as the number of
years since the registration of the first FISE retailer in the district of residence at the time of survey (panels
(a) and (c)) or at the time of birth (Panel (b)). In addition to district and year fixed effects, all imputations
control for the set of household-level control variables defined in Figure 3. Panels (b) and (c) also control for
the mother’s age at birth, as well as dummies for female children, for multiple births, for children born to
mother’s aged less than 18 and for children born to mothers who report smoking. In Panel (c), the child’s
age in months is added to the list of individual controls. Standard errors are clustered at the district level
and 95% confidence intervals are reported.
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Figure B.10: Test of composition effects
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(a) Birth during rainy season
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(b) Mother's childhood place of residence: urban
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(c) Mother's ethnicity : Spanish speaker
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(d) Female child

-.02

0

.02

.04

.06

D
iff

er
en

ce
 in

 p
ro

ba
bi

lit
y

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Years since FISE launch

Pre-trend coefficients Treatment effects

(e) Twin birth

Source: Author’s calculations using Peru Continuous DHS 2005-2020. Sample: live births registered be-
tween 2000 and 2020 to women residing in FISE-eligible households . Notes: Graphs display treatment
effects estimated using the Borusyak, Jaravel, and Spiess (2022) imputation estimator (green dots, following
Equation (1)), along with pre-trend coefficients estimated via OLS (grey squares, following Equation (2)).
The dependent variable is a dummy equal to one if: (a) the birth occurred during the rainy season (December
to February), (b) the mother grew up in an urban area, (c) the mother’s self-reported ethnicity is ”Spanish
speaker” (as opposed to ”Quechua”, ”Aymara” or ”Other indigeneous”), (d) the child’s assigned sex at birth
is female, and (e) the birth was a twin birth. Relative time periods are defined as the number of years since
the registration of the first FISE retailer the district of residence at the time of birth. All regressions are
conducted without control variables. Standard errors are clustered at the district level and 95% confidence
intervals are reported. Distant lags not shown due to small number of observations.
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Figure B.11: Impacts of FISE subisidies - Estimates from conventional event study
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(a) Primary cooking fuel is LPG
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(c) Infant mortality
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(d) Symptoms of ARI

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005-2015 for Panel (b)). Sample:
FISE-eligible households (panels (a) and (b)), live births registered between 2000 and 2020 to women resid-
ing in FISE-eligible households (Panel (c)), and under-5 children whose mother resides in a FISE-eligible
household (Panel (d)). Notes: Graphs display treatment effects and pre-trend coefficients estimated using
a standard dynamic TWFE estimator following Equation (1). The dependent variable is a dummy equal to
one if the household (a) reports that LPG is its primary cooking fuel, (b) primarily cooks outside, or if the
child (c) died at ages 0 to 11 months, or (d) experienced symptoms of ARI in the 15 days preceding the
survey. In Panel (b), observations from year 2016-2020 are missing. Relative time periods are defined as the
number of years since the registration of the first FISE retailer the district of residence at the time of survey
(panels (a), (b) and (d)) or at the time of birth (panel (c)). In addition to district and year fixed effects, all
imputations control for the set of household-level control variables defined in Figure 3. Panels (c) and (d)
also control for the mother’s age at birth, as well as dummies for female children, for multiple births, for
children born to mother’s aged less than 18 and for children born to mothers who report smoking. In Panel
(d), the child’s age in months is added to the list of individual controls. Standard errors are clustered at
the district level and 95% confidence intervals are reported. Distant lags not shown due to small number of
observations in panels (a), (c) and (d).
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Appendix C - Supplementary tables

Table C.1: Extensive summary statistics at baseline

Never treated
(NT)

Treated
(T)

Diffference
(NT - T)

S.E.

Panel A: Characteristics of households

Uses LPG for cooking 0.022 0.019 0.0034 (0.0045)
Primary cooking fuel is LPG 0.014 0.0079 0.0062 (0.0034)
Cooks with LPG exclusively 0.011 0.0059 0.0049 (0.0030)
Uses wood for cooking 0.93 0.88 0.049 (0.0085)
Primary cooking fuel is wood 0.91 0.87 0.038 (0.0095)
Cooks with wood exclusively 0.86 0.83 0.038 (0.011)
Main cooking area is outdoor 0.062 0.097 -0.035 (0.0081)
Boils water for disinfection 0.71 0.64 0.071 (0.014)
Household head is a woman 0.24 0.18 0.053 (0.013)
Age of household head 52.4 49.8 2.58 (0.54)
Household size 3.68 4.12 -0.45 (0.072)
Urban 0.040 0.12 -0.083 (0.0076)
Has access to electricity 0.24 0.17 0.067 (0.013)
Owns mobile phone 0.026 0.063 -0.037 (0.0058)

Observations 4883

Panel B: Demographics and mortality

Girl 0.50 0.46 0.034 (0.024)
Multiple birth 0.016 0.014 0.0014 (0.0058)
Mother’s age at childbirth 27.4 27.5 -0.049 (0.35)
Mother smokes 0.014 0.023 -0.0086 (0.0060)
Ever breastfed 0.99 0.99 0.00060 (0.0042)
Neonatal mortality risk 0.013 0.014 -0.0011 (0.0053)
Infant mortality risk 0.042 0.024 0.018 (0.0089)
Under-3 mortality risk 0.052 0.029 0.023 (0.0097)

Observations 2182

Panel C: Health at birth

Birth weight 3108.4 3117.0 -8.66 (30.3)
Low birth weight 0.079 0.11 -0.027 (0.016)

Observations 1507

Panel D: Children’s health

Acute respiratory infection in past 2 weeks 0.25 0.23 0.014 (0.021)
Hemoglobin level adjusted for altitude (g/dL) 110.0 109.8 0.15 (0.77)
Moderate or severe anemia 0.22 0.19 0.031 (0.023)

Observations 2082

Source: Author’s calculations using Peru Continuous DHS 2007-2008. Notes: Unweighted statistics. Column
(1) reports statistics for observations from never-treated districts and column (2) for observations from districts
treated between 2012 and 2020. Sample: (A) FISE-eligible households, (B) live-births in past 5 years to women
residing in a FISE-eligible household, (C) last 3 live-births in past 5 years to women residing in a FISE-eligible
household, (D) under-5 children whose mother resides in a FISE-eligible household (children aged 6 to 59
months for hemoglobin level and anemia). Standard errors for t-test between never-treated (NT) and treated
(T) groups between parentheses.
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Table C.2: Average yearly effect of FISE subsidies on fuel switch - DID im-
putation estimates

(1) (2) (3) (4) (5) (6)
Use
LPG

LPG
primary

LPG
exclusive

Use
wood

Wood
primary

Wood
exclusive

Panel A: All households

Exposed to FISE 0.068 0.109 0.079 -0.060 -0.075 -0.019
(0.013) (0.013) (0.010) (0.012) (0.015) (0.016)

Mean of ouctome 0.394 0.219 0.122 0.795 0.697 0.504
Mean (treatment, pre) 0.161 0.072 0.040 0.855 0.807 0.671
N 137909 137909 137909 137909 137909 137909

Panel B: High treatment intensity vs. never treated

Exposed to FISE 0.087 0.123 0.092 -0.053 -0.068 -0.014
(0.016) (0.018) (0.014) (0.015) (0.020) (0.021)

Mean of ouctome 0.399 0.214 0.119 0.794 0.698 0.496
Mean (treatment, pre) 0.161 0.071 0.039 0.815 0.767 0.633
N 82720 82720 82720 82720 82720 82720

Panel C: Low treatment intensity vs. never treated

Exposed to FISE 0.049 0.100 0.069 -0.064 -0.085 -0.025
(0.015) (0.014) (0.011) (0.014) (0.016) (0.017)

Mean of ouctome 0.368 0.196 0.105 0.834 0.741 0.542
Mean (treatment, pre) 0.162 0.072 0.040 0.877 0.829 0.692
N 98022 98022 98022 98022 98022 98022

Source: Author’s calculations using Peru Continuous DHS 2005-2020. Sample: FISE-
eligible households. Notes: This table reports overall treatment effects across all relative
time periods estimated using the Borusyak, Jaravel, and Spiess (2022) imputation estimator.
Each column reports the coefficient of interest from a separate imputation. The dependent
variable is a dummy variable equal to one if the household reports (1) that LPG is either
its primary or secondary cooking fuel, (2) that LPG is its primary cooking fuel, or (3)
that it exclusively cooks with LPG. Columns (4) to (6), report results for similar dependent
variables in the case of wood fuel. In Panel A, imputation is conducted for the whole sample
of FISE-eligible households. In Panel B, the sample is restricted to households residing in
high treatment intensity districts and in never treated districts. In Panel C, the sample is
restricted to households residing in low treatment intensity districts and in never treated
districts. In addition to district and year fixed effects, the covariates include dummies for
survey months and urban residence. Standard errors clustered at the district level between
parentheses.
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Table C.3: Average yearly effect of FISE subsidies on infant mor-
tality and early-life mortality - DID imputation estimates

(1) (2) (3) (4)
Neonatal
mortality

Post-neonatal
mortality

Infant
mortality

Under 3
mortality

Panel A: All births

Exposed to FISE 0.0021 0.0019 0.0043 0.0031
(0.0011) (0.0011) (0.0016) (0.0019)

Mean of ouctome 0.014 0.012 0.026 0.033
Mean (treatment, pre) 0.015 0.015 0.028 0.035
N 195598 182606 182606 153090

Panel B: High treatment intensity vs. never treated

Exposed to FISE 0.0031 0.0023 0.0056 0.0060
(0.0014) (0.0015) (0.0022) (0.0025)

Mean of ouctome 0.013 0.011 0.025 0.032
Mean (treatment, pre) 0.014 0.014 0.026 0.032
N 109013 101823 101823 85430

Panel C: Low treatment intensity vs. never treated

Exposed to FISE 0.0018 0.0015 0.0036 0.00064
(0.0012) (0.0013) (0.0018) (0.0024)

Mean of ouctome 0.014 0.012 0.027 0.035
Mean (treatment, pre) 0.016 0.016 0.029 0.037
N 139226 130060 130060 109242

Source: Author’s calculations using Peru Continuous DHS 2005-2020. Sample:
live births registered between 2000 and 2020 to mothers residing in FISE-eligible
households. Notes: This table reports overall treatment effects across all rel-
ative time periods estimated using the Borusyak, Jaravel, and Spiess (2022)
imputation estimator. Each column reports the coefficient of interest from a
separate imputation. The dependent variable is a dummy equal to one if the
child died (1) before the age of 1 month, (2) at ages 1 to 11 months, (3) at ages 0
to 11 months, and (4) before reaching the age of 3 years. Children who did not
reach the corresponding age by the time of survey are dropped from the sample.
In Panel A, the imputation is conducted for the whole sample of FISE-eligible
observations. In Panel B, the sample is restricted to live births in high treat-
ment intensity districts and in never treated districts. In Panel C, the sample is
restricted to live births in low treatment intensity districts and in never treated
districts. In addition to district and year fixed effects, the covariates include
the mother’s age at birth, as well as dummies for female children, for multiple
births, for children born to mothers aged less than 18 and for children born to
mothers who report smoking. The estimation procedure also controls for the
set of household-level control variables defined in Table C.2. Standard errors
clustered at the district level between parentheses.
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Table C.4: Average yearly effect of FISE subsidies on health at birth and
during childhood - DID imputation estimates

(1) (2) (3)
Low birth
weight

Symptoms
of ARI

Moderate/severe
anemia

Panel A: All observations

Exposed to FISE 0.0060 0.026 0.0057
(0.0055) (0.010) (0.012)

Unit of observation Birth Child Child
Mean of ouctome 0.086 0.156 0.152
Mean (treatment, pre) 0.092 0.180 0.170
N 63109 66261 51176

Panel B: High treatment intensity vs. never treated

Exposed to FISE 0.015 0.033 0.0029
(0.0074) (0.015) (0.019)

Unit of observation Birth Child Child
Mean of ouctome 0.086 0.146 0.152
Mean (treatment, pre) 0.089 0.153 0.167
N 35939 36679 28276

Panel C: Low treatment intensity vs. never treated

Exposed to FISE 0.00069 0.019 0.013
(0.0063) (0.010) (0.012)

Unit of observation Birth Child Child
Mean of ouctome 0.088 0.161 0.155
Mean (treatment, pre) 0.093 0.191 0.172
N 43735 48302 37645

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005 and 2007-
2019 for Panel (c)). Sample: live births in the 5 years preceding the survey to mothers
residing in FISE-eligible households (column (1)) or under-5 children whose mother
resides in a FISE-eligible household (columns (2) and (3)). Notes: This table reports
overall treatment effects across all relative time periods estimated using the Borusyak,
Jaravel, and Spiess (2022) imputation estimator. In column (3), observations from
year 2006 are missing and observations from 2020 are dropped because interviews
scheduled after March 16 were conducted by phone due to the covid crisis. The sample
is trimmed at the 1st and 99th percentile of hemoglobin level in this column. Each
column reports the coefficient of interest from a separate imputation. The dependent
variable is a dummy equal to one if the child (1) weighed less than 2.5 kg at birth,
(2) experienced symptoms of ARI in the 15 days preceding the survey, and (3) has
an hemoglobin count lower than 10 grams per deciliter. Hemoglobin level is only
measured for children aged 6 to 59 months. In Panel A, the imputation is conducted
for the whole sample of FISE-eligible observations. In Panel B, the sample is restricted
to observations in high treatment intensity districts and in never treated districts. In
Panel C, the sample is restricted to observations in low treatment intensity districts and
in never treated districts. In addition to district and year fixed effects, the covariates
include the child’s age in months (except in column (1)), the mother’s age at birth, as
well as dummies for female children, for multiple births, for children born to mother’s
aged less than 18 and for children born to mothers who report smoking. The estimation
procedure also controls for the set of household-level control variables defined in Table
C.2. Standard errors clustered at the district level between parentheses.

60



Table C.5: Average yearly effect of FISE subsidies on the
probability of moderate or severe anemia among adult
women - DID imputation estimates

(1) (2) (3)
All 18-34 y.o 35-49 y.o

Panel A: All observations

Exposed to FISE 0.012 0.0015 0.022
(0.0055) (0.0071) (0.0084)

Mean of ouctome 0.065 0.061 0.071
Mean (treatment, pre) 0.061 0.057 0.066
N 79472 47369 32103

Panel B: High treatment intensity vs. never treated

Exposed to FISE 0.0082 -0.018 0.038
(0.0084) (0.012) (0.011)

Mean of ouctome 0.063 0.058 0.069
Mean (treatment, pre) 0.056 0.052 0.064
N 45798 26882 18916

Panel C: Low treatment intensity vs. never treated

Exposed to FISE 0.016 0.014 0.017
(0.0057) (0.0068) (0.0092)

Mean of ouctome 0.067 0.064 0.073
Mean (treatment, pre) 0.064 0.062 0.068
N 56595 33649 22946

Sample: women residing in FISE-eligible households at the time
of survey. Sample trimmed at the 1st and 99th percentile of
hemoglobin level. Notes: This table reports overall treatment ef-
fects across all relative time periods estimated using the Borusyak,
Jaravel, and Spiess (2022) imputation estimator. Each column re-
ports the coefficient of interest from a separate imputation.The
dependent variable is a dummy equal to one if the woman has an
hemoglobin count lower than 11 grams per deciliter (10 grams for
pregnant women). Observations from year 2006 are missing. Ob-
servations from year 2020 are dropped because interviews sched-
uled after March 16 were conducted by phone due to the covid crisis
and hemoglobin levels are missing for these interviews. In Panel A,
the imputation is conducted for the whole sample of FISE-eligible
observations. In Panel B, the sample is restricted to women in
high treatment intensity districts and in never treated districts.
In Panel C, the sample is restricted to women in low treatment
intensity districts and in never treated districts. In addition to
district and year fixed effects, the covariates include the woman’s
age, BMI, and smoking status, as well as the set of household-level
control variables defined in Table C.2. Standard errors clustered
at the district level between parentheses.
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Table C.6: Average yearly effect of FISE subsidies on cooking habits,
water disinfection and breastfeeding - DID imputation estimates

(1) (2) (3)
Cook

outdoors
Boil
water

Months
breastfed

Panel A: All observations

Exposed to FISE -0.036 -0.0065 -0.13
(0.011) (0.010) (0.24)

Unit of observation Household Household Birth
Mean of ouctome 0.063 0.711 18.737
Mean (treatment, pre) 0.069 0.651 18.728
N 78528 142478 24100

Panel B: High treatment intensity vs. never treated

Exposed to FISE -0.059 0.0027 -0.034
(0.020) (0.014) (0.36)

Unit of observation Household Household Birth
Mean of ouctome 0.057 0.737 19.133
Mean (treatment, pre) 0.066 0.656 19.361
N 46851 85335 13391

Panel C: Low treatment intensity vs. never treated

Exposed to FISE -0.017 -0.018 -0.30
(0.0087) (0.011) (0.26)

Unit of observation Household Household Birth
Mean of ouctome 0.062 0.715 18.604
Mean (treatment, pre) 0.071 0.649 18.408
N 56076 101110 17146

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005-2015 for
Panel (a)). Sample: FISE-eligible households (columns (1) and (2)) or live births
in the 5 years preceding the survey to women residing in FISE-eligible households
(column (3)). Notes: This table reports overall treatment effects across all relative
time periods estimated using the Borusyak, Jaravel, and Spiess (2022) imputation
estimator. Each column reports the coefficient of interest from a separate imputation.
In columns (1) and (2), the dependent variable is a dummy equal to one if the
household (1) reports that its main cooking area is located outdoors, or (2) declares
that it boils water for disinfection. In column (3), the dependent variable is the
number of months of breastfeeding reported by the mother for children above 40
months of age. In Panel A, the imputation is conducted for the whole sample of
FISE-eligible observations. In Panel B, the sample is restricted to observations in
high treatment intensity districts and in never treated districts. In Panel C, the
sample is restricted to observations in low treatment intensity districts and in never
treated districts. In addition to district and year fixed effects, the covariates include
the set of household-level control variables defined in Table C.2. In column (3), the
estimation also controls for the mother’s age at birth, as well as dummies for female
children, for multiple births, for children born to mothers aged less than 18 and
for children born to mothers who report smoking. Standard errors clustered at the
district level between parentheses.
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Table C.7: Falsification test: Average yearly effect of FISE
subsidies on diarrhea and nutritional status - DID imputation
estimates

(1) (2)
Diarrhea Wasted

Exposed to FISE 0.0048 0.0014
(0.011) (0.0022)

Mean of ouctome 0.140 0.009
Mean (treatment, pre) 0.161 0.009
N 66261 58171

Source: Author’s calculations using Peru Continuous DHS 2005-2020
(2005 and 2007-2019 for column (2)). Sample: under-5 children whose
mother resides in a FISE-eligible household. Notes: This table reports
overall treatment effects across all relative time periods estimated using
the Borusyak, Jaravel, and Spiess (2022) imputation estimator. Each col-
umn reports the coefficient of interest from a separate imputation. The
dependent variable is a dummy equal to one if the child (1) experienced
symptoms of diarrhea in the 15 days preceding the survey, or (2) is wasted
(weight-for-height z-score)<-2). In column (2), observations from year
2006 are missing and observations from year 2020 are dropped because
interviews scheduled after March 16 were conducted by phone due to the
covid crisis. In addition to district and year fixed effects, the covariates
include the child’s age in months, the mother’s age at birth, as well as dum-
mies for female children, for multiple births, for children born to mother’s
aged less than 18 and for children born to mothers who report smoking.
The estimation procedure also controls for the set of household-level con-
trol variables defined in Table C.2. Standard errors clustered at the district
level between parentheses.
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Table C.8: Average yearly effects of FISE subsidies - DID impu-
tation estimates, excluding recent movers

(1) (2)
Infant

mortality
Symptoms
of ARI

Exposed to FISE 0.0040 0.023
(0.0016) (0.0100)

Unit of observation Birth Child
Mean of ouctome 0.026 0.156
Mean (treatment, pre) 0.028 0.180
N 181032 61899

Source: Author’s calculations using Peru Continuous DHS 2005-2020. Sam-
ple: live births registered between 2000 and 2020 to women residing in FISE-
eligible households (column (1)) or under-5 children whose mother resides in
a FISE-eligible household (column (2)). Children whose mother moved to a
new home between the treatment date and the date of survey are excluded
from the sample. Notes: This table reports overall treatment effects across
all relative time periods estimated using the Borusyak, Jaravel, and Spiess
(2022) imputation estimator. Each column reports the coefficient of interest
from a separate imputation. The dependent variable is a dummy equal to one
if the child (1) died at ages 0 to 11 months, or (2) experienced symptoms of
ARI in the 15 days preceding the survey. In addition to district and year fixed
effects, the covariates include the child’s age in months (only in column (2)),
the mother’s age at birth, as well as dummies for female children, for multiple
births, for children born to mother’s aged less than 18 and for children born
to mothers who report smoking. The estimation procedure also controls for
the set of household-level control variables defined in Table C.2. Standard
errors clustered at the district level between parentheses.
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Table C.9: Average yearly effects of FISE subsidies on ineligible households
- DID imputation estimates

(1) (2) (3) (4)
LPG

primary
Cook

outdoors
Infant

mortality
Symptoms
of ARI

Exposed to FISE -0.041 0.0091 0.0018 0.015
(0.020) (0.0046) (0.0013) (0.0093)

Unit of analysis Household Household Birth Child
Mean of ouctome 0.850 0.038 0.015 0.131
Mean (treatment, pre) 0.762 0.049 0.018 0.145
N 240998 139192 248651 115948

Source: Author’s calculations using Peru Continuous DHS 2005-2020 (2005-2015 for Panel
(b)). Sample: FISE-ineligible households (columns (1) and (2)), live births registered
between 2000 and 2020 to women residing in FISE-ineligible households (column (3)), and
under-5 children whose mother resides in a FISE-ineligible household (column (4)). Notes:
This table reports overall treatment effects across all relative time periods estimated using
the Borusyak, Jaravel, and Spiess (2022) imputation estimator. The dependent variable is
a dummy equal to one if the household (1) reports that LPG is its primary cooking fuel, (2)
primarily cooks outside, or if the child (3) died at ages 0 to 11 months, or (4) experienced
symptoms of ARI in the 15 days preceding the survey. In column (2), observations from
year 2016-2020 are missing. In addition to district and year fixed effects, all imputations
control for the set of household-level control variables defined in Table C.2. Columns (3)
and (4) also control for the mother’s age at birth, as well as dummies for female children,
for multiple births, for children born to mother’s aged less than 18 and for children born to
mothers who report smoking. In column (4), the child’s age in months is added to the list
of individual controls. Standard errors clustered at the district level between parentheses.
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Appendix D - Total infant mortality calculation

To compute the total number of infant deaths caused by the intervention, I multiply the treat-

ment coefficient on infant mortality for district d in year l by the number of new births to

eligible households in this same year. I sum this product for all treated districts and for all

relative time periods l comprised between - 2 and 7. I exclude distant time periods beyond 7

years post-treatment because the coefficients are not precisely estimated for these periods. The

formula is:

Mtotal =
∑
d

7∑
l=−2

µl × ρdl ×BRdl × POPdl (3)

where Mtotal corresponds to total infant mortality over the period of interest, µl is the relevant

treatment coefficient, ρdl is the proportion of FISE-eligible households in district d for relative

time period l, BRdl is the birth rate in the district and POPdl is the district population.

I use birth rates and shares of FISE-eligible population defined at the department level as

proxies for birth rates and eligibility rates at the district level because these statistics are not

available or cannot be computed for the lowest level of administrative division. The birth

rate data were obtained from the Peruvian Ministry of Health’s 2016 Basic Indicators Report

(Ministerio de Salud 2016) and the calculation of the proportion of FISE-eligible households uses

the Peru Continuous DHS data for the relevant years. District population data were obtained

from the 2007 and 2017 censuses (Instituto Nacional de Estad́ıstica e Informática 2007, 2017).

Populations for non-census years up to 2016 are estimated by linear interpolation. Estimates

for the years 2018-2020 are obtained by applying the average annual population growth rate at

the district level for the period 2012-2017 to each relevant year.
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