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Abstract

Russia’s invasion of Ukraine was accompanied by a significant reduction of its gas supply
to Europe, causing sharp energy price surges and prompting governments to respond with
public appeals and programs aimed at reducing consumption. This paper investigates the
effects of price increases and non-monetary factors, such as public appeals and saving pro-
grams, on residential energy savings during the crisis. Using a unique building-level dataset
on residential energy consumption and prices in Germany, we identify price-driven savings
and energy price elasticities with a DiD-PSM approach. By comparing buildings which faced
price increases to buildings with constant prices we can isolate price-driven savings from con-
temporaneous non-monetary effects. Our findings reveal that while increased prices led to
moderate short-run energy savings, the majority of observed savings were driven by non-
monetary factors. Consequently, we identify a relatively low short-run energy price elasticity
of demand of -0.07. Going beyond average effect estimation, we use two machine learning
methods to calculate building-level price-driven and non-price-driven savings and analyze
their variation with socio-economic characteristics using census data.
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1 Introduction

The Russian invasion of Ukraine caused an energy crisis that strongly affected European coun-
tries with high dependence on Russian natural gas imports. Interruption of Russian gas supply
led to increasing gas prices with knock-on effects on other energy prices. Discussions about poten-
tial gas shortages in the winter of 2022/23 and fear of resulting power cuts, industrial production
disruptions and job losses led to the formulation of saving targets by the European Union (EU)
and several individual countries (European Council, 2022). Germany, Europe’s largest economy
and biggest importer of Russian gas until the crisis (Bachmann et al., 2022; U.S. Energy In-
formation Administration, 2022), announced an ambitious gas saving target of 20%. German
energy consumers were urged to save energy through numerous public calls by the government
and various interest groups (More and Carrel, 2022). For example, the German minister for eco-
nomic affairs, Robert Habeck, made a public appeal to "[...] Join the effort! By saving energy,
we can reduce Germany’s dependence on Russian imports and help protect the climate." (Bun-
desministerium für Wirtschaft und Klimaschutz, 2022; own translation). These appeals were
backed with a portfolio of government programs, which included informing households about
untapped energy saving potentials and their energy prices (The Press and Information Office of
the Federal Government, 2022; Umweltbundesamt, 2022), mandatory optimization of buildings’
heating system operation (Federal Ministry of Economic Affairs and Climate Action, 2022a),
mandatory limits on heating public buildings (Goldenberg, 2022) and support measures to shield
households from the financial burden of exploding energy prices (Federal Ministry of Economic
Affairs and Climate Action, 2022b). A challenge for the design of these emergency measures
was a lack of experience and resulting uncertainty about how much savings would result from
higher prices and how much savings could be achieved through other non-price interventions.

This paper answers the question to which extent energy savings in the crisis were driven by
higher prices (price-driven savings) and non-monetary factors (non-price-driven savings), such
as public appeals. Disentangling these two types of savings allows us to accurately calculate the
short-term price elasticity of energy demand in the energy price crisis. Since the government
programs and public appeals were largely directed at households, our focus is on residential
heat energy savings. We use building-level heat energy billing data of more than 140,000 two-
and multi-family buildings from an energy billing service provider in Germany. Our empirical
strategy includes three separate methods which rely on the variation of energy prices across
different buildings. The variation in prices is due to households’ different tariff types (mostly
one- or two-year contracts), the timing of their contract renewal, and the contract position of
their suppliers.1

In the first part of our analysis, we estimate the price-driven heat energy savings using a
difference-in-differences framework with propensity score matching (DiD-PSM). Buildings that
experienced an increase in energy prices in 2022 constitute the treatment group and buildings
with constant prices the control group. Crucially, we estimate short-run heat energy price

1 Energy suppliers who have purchased their energy through long-term contracts are less likely to default or to
increase their prices than energy suppliers that had to buy their energy on the spot market in 2022.
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elasticities during the crisis using the same DiD-PSM framework to carefully account for non-
price-driven energy savings. Thus, we avoid that the estimated energy price elasticities are
inflated by the contemporaneous appeals and programs to save energy.

Secondly, we employ double machine learning (DML) to flexibly analyze socio-economic
heterogeneities in price-driven energy savings. To this end, we merge the building-level energy
dataset with socio-economic characteristics obtained from the German microcensus at the zip-
code level. Using the DML procedure we then estimate building-level treatment effects and use
non-parametric kernel regressions to explore how they vary with socio-economic variables.

In the third part of our analysis, we again rely on machine learning techniques, this time
to estimate non-price-driven savings and their heterogeneity. We first train a Lasso-regression
model to predict energy consumption on pre-crisis data. Then, we use the model’s predic-
tions to obtain building-level counterfactual energy consumption for 2022 had the energy crisis
not happened. The difference between observed and counterfactual energy consumption yields
non-price-driven savings for buildings where prices did not rise during the crisis. Using these
building-level estimates of non-price-driven energy savings, we can again use non-parametric
kernel regressions to explore heterogeneities with respect to socio-economic variables.

The price elasticity of energy demand is an important parameter for assessing potential
demand responses to crises and fundamental for energy and climate policy. The short-run energy
price elasticity in times of energy price crises is the central parameter to understand and correctly
anticipate price-driven savings.2 It informs governments how to balance the use of price-based
measures and non-price interventions, such as energy saving programs and campaigns, to achieve
short-term demand reductions. There is a consensus that in the short-term energy demand is
relatively price-inelastic during normal times with moderate prices (see Brons et al., 2008; Espey
and Espey, 2004; Havranek et al., 2012; Labandeira et al., 2017). Yet, there is a lack of evidence
on the short-term elasticity in times of crisis when prices surge beyond typical levels. The recent
crisis thus offers an opportunity to study the demand elasticity at high prices and its potential
non-linearity.

There has been an increasing interest in the demand response to the recent energy crisis
(Dertwinkel-Kalt et al., 2024; Jamissen et al., 2024; Roth and Schmidt, 2023; Ruhnau et al.,
2023). Roth and Schmidt (2023) find that savings during the energy crisis were not only due to
mild temperatures. They calculate that savings exceed reductions in energy demand that would
be expected from the warmer climate in 2022 alone. Relying on a field experiment with an energy
provider, Dertwinkel-Kalt et al. (2024) also find that gas savings in Germany during the energy
crisis were significant. However, economic incentives and prices had little impact due to lim-
ited consumer understanding, suggesting that societal engagement drove energy saving efforts.
Ruhnau et al. (2023) find significant gas savings across small consumers, industry, and power
stations, with variations in timing and magnitude linked to key wartime developments. They

2 Long-run energy price elasticities, on the other hand, shape energy market design, are relevant for estimating
emission reductions from carbon taxes and thus, to set carbon prices at levels that are consistent with Greenhouse-
gas reduction targets. They also determine the incidences of, for example, energy and carbon taxes on consumers
and producers and are therefore important to design equitable emission reduction strategies (see Trotta et al.,
2022; Xiang and Lawley, 2019).
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also estimate energy price elasticities but acknowledge that their elasticities may be inflated by
"public attention and ethical considerations" of households to save energy (Ruhnau et al., 2023,
p.624). These non-price-driven energy conservation motives may however have been particularly
important during the recent energy crisis. To our knowledge, Jamissen et al. (2024) is the only
other study to control for public attention in the crisis in their estimation of a gas price elasticity
using an autoregressive distributed lag model. In contrast to our study, their analysis relies on
aggregate data and can therefore only exploit across-time variation in prices and consumption to
identify the effect of prices on natural gas demand. In spite of their different method and the use
of aggregate data, they find a gas price elasticity, which is of similar magnitude as our elasticity
estimate for gas-heated buildings. Importantly, they also find a much smaller gas price elasticity
than parts of the literature which do not account for non-monetary factors in the crisis.

For a different energy price crisis in California, Reiss and White (2008) show that public calls
to save energy were effective in achieving substantial and rapid demand reductions. Related, Ito
et al. (2018) find that moral persuasion by firms or governments can be an effective short-term
strategy to change households’ consumption behavior. This indicates that not accounting for
crisis-linked non-monetary motivations in estimation strategies may lead to an overestimation
of the price elasticity of energy by falsely attributing non-price-driven savings to price-induced
savings. Therefore, when analyzing energy price elasticities during energy crises, it is crucial to
account for non-price motivations to conserve energy prompted by such events, which our data
and identification strategy allows us to do.

We contribute to the literature in three major ways. First, we use unique building-level data
that enables us to apply a DiD-PSM approach to identify short-term price-driven savings while
comprehensively controlling for contemporaneous non-price-driven savings. Being able to iso-
late price-driven savings from non-price driven savings enables us to more precisely estimate the
short-term price elasticity of heat energy demand during crises by avoiding that our estimated
elasticities are inflated by contemporaneous non-price driven energy savings. Our findings help
understand heat energy price elasticities during energy crises with large price increases.3 We find
that buildings with price increases saved on average 2.2 percentage points (pp.) more than build-
ings with constant prices. The associated arc-elasticity of energy demand is -0.07. Price-driven
savings increase with the magnitude of the price increase. For buildings with low price increases
of up to 25% we find small and statistically insignificant energy savings. However, buildings
with larger prices increases of 25% - 50% and >50% reduced their heat energy consumption by
statistically significant 2.2% and 4.4%, respectively. The arc-elasticities of energy demand are
constant across price-increases - all three groups exhibit a price elasticity -0.07 (though insignifi-
cant for the group with low price increases). Other studies on the recent energy crisis find a wide
range of energy price elasticities. Ruhnau et al. (2023) find relatively high gas price elasticities

3 Several existing studies investigate price elasticities of residential heat energy demand during times-as-usual
(see Hanemann et al., 2013; Ó Broin et al., 2015; Schulte and Heindl, 2017; Trotta et al., 2022) and identify an
elasticity measure in the range of -0.18 to -0.64 for a number of countries and types of heating fuel. Labandeira
et al. (2017) estimate in the most recent meta-analysis on energy price elasticities based on 428 papers produced
between 1990 and 2016 providing 966 short-term price elasticities, the short-term energy price elasticity is around
-0.22.

3



between between -0.16 and -0.27 without controlling for non-price motivations. Controlling for
attention to the crisis using Google searches, Jamissen et al. (2024) find a gas price elasticity
of -0.04. In spite of the above mentioned methodological differences, our estimated elasticity of
-0.06 for gas-heated buildings is quite close to their estimated elasticity.4 This underlines the
importance of comprehensively controlling for non-price motivations as we do in our empirical
strategy. While Jamissen et al. (2024) partly control non-price factors by accounting for public
attention for the energy crisis, our control-group-based approach comprehensively controls for
all non-price factors including governmental energy saving programs and regulations.

Second, we add to the literature of heterogeneous residential energy savings by applying DML
to investigate how building-level price-driven savings vary with socio-economic characteristics
that potentially affect the observed short-term response to a crisis. To this end, we merge
the building-level energy dataset to administrative microdata on socio-economic characteristics
from the German microcensus. Overall, we do not find strong heterogeneities of price-driven
savings. We observe that price-induced savings increase with average net income per person,
which contradicts other studies finding less price-responsiveness among high-income households
(see Rubin and Auffhammer, 2024; Schmitz and Madlener, 2020). A possible reason for this
finding could be a higher savings potential of richer households due to higher baseline energy
consumption. Age, years of schooling, and unemployment do not vary with price-induced savings
in a meaningful way.

Finally, we train a machine learning model to predict energy consumption in 2022 for a
counterfactual scenario had the crisis not occurred. We estimate non-price-driven savings by
comparing the counterfactual energy consumption in a non-crisis scenario with actual energy
consumption for buildings where prices remained constant. This allows us to calculate the
average magnitude of non-price-driven savings during the crisis. Moreover, as these estimates
of non-price-driven savings are at the building-level, we can also explore how they vary with
socio-economic characteristics. By proposing and implementing a methodology to estimate non-
price-driven savings we add to the literature on energy demand response during energy crises.
We find that across buildings with constant prices, non-price-induced savings are on average 8.5
% of a building’s energy consumption in 2021. This underscores the importance of non-price
factors to achieve energy savings in the recent crisis. Similar to price-driven savings, we do not
observe strong heterogeneities of non-price-driven savings. A cautious interpretation of non-
price savings shows that they first rise with the unemployment rate before falling again at very
high unemployment rates. They do not, however, appear to vary with income, age and years of
schooling.

The remainder of this paper is organized as follows: Section 2 provides insight into the
background of this study by discussing the historical background of the gas trade relationship
between Germany and Russia and how the Russian invasion of Ukraine in February 2022 has
altered this relationship. This section also offers an overview of residential energy consumption
and energy billing in Germany. Section 3 presents the data and descriptive statistics. Section 4
discusses our empirical strategy and explains the three methods that we use to estimate price-

4 For buildings with district heating, we find a price elasticity of demand of -0.17.
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driven and non-price-driven energy savings. In section 5 we present and discuss the results,
before concluding in section 6.

2 Background

2.1 The Energy Crisis and its Implications for Germany

In 2021, before the Russian invasion of Ukraine, Russia was the main fossil fuel supplier of
the European Union with shares of 26% petroleum oil and 44% natural gas imports (Wettengel,
2024). However, not all European countries were equally import dependent on fossil fuel imports
from Russia. As of 2021, Germany was importing 98% of its oil and 95% of natural gas out
of which 34% and 55% were originating from Russia, respectively (Bachmann et al., 2022;
Wettengel, 2024).5 However, this situation substantially changed with the Russian invasion of
Ukraine in February 2022.

Already in the months preceding the invasion, Russia began restricting its gas supply to
Germany. After the start of the war, Germany announced plans to reduce its dependence on
Russian gas by 2024. With the EU embargos on Russian coal and oil, Germany also drastically
reduced imports of these two energy carriers from Russia (Wettengel, 2024). Russia preempted
Germany’s plans of reducing its dependence on imports of Russian gas by gradually cutting the
flow of gas to Germany until a complete halt in late summer 2022, briefly before the explosions
of the Nord Stream pipelines (ibid.).

Following the invasion and the reduction of gas supply from Russia, gas wholesale prices
in Germany temporarily increased to about four times the pre-war levels observed in 2021
(Bundesnetzagentur, 2023). The rising wholesale prices were ultimately also reflected in higher
end-user prices. At their peak in the beginning of September 2022, households faced a gas
price of around 40 cents/kWh when concluding new contracts compared to approximately 6
cents/kWh before the crisis (VERIVOX, 2025). These high prices and the supply interruption
in late summer 2022 lead to intense public discussions and worries about the possibility of gas
shortages in the winter 2022/23.

In response to this situation, the German government called upon all economic actors to save
energy wherever and whenever it is possible while simultaneously trying to secure other sources
for natural gas imports (More and Carrel, 2022). The resulting efforts to save proved successful,
as the German economy reduced overall gas consumption by approximately 20% between July
2022 and March 2023 compared to previous years, with industrial gas consumption dropping by
26% and household consumption decreasing by 17% (Moll et al., 2023).

5 Germany had 50-year long natural gas trade relationship with Russia which was founded on an agreement
made in 1958 under which West Germany was providing pipes for the Druzhba pipeline ("Friendship Pipeline") in
return for Russian natural gas. This pipeline, becoming operational in 1964, was the world’s longest oil pipeline
linking Russia with much of eastern Europe (Sullivan, 2022).
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2.2 Residential Energy Consumption and Billing in Germany

The strong increase of residential energy prices in Germany posed substantial burdens on house-
holds (Kröger et al., 2023). At the end of 2022, the German government introduced one-off
relief payments to alleviate these burdens to some extent. The support measure consisted in
covering the monthly installments of residential gas and district heat customers for December
2022. Support measures for households using other heat energy carriers such as oil and wood
pellets were designed differently. Since we can only exactly calculate the amount of support
for gas and district heat, we choose to limit analysis to these two energy carriers (see section 3
for further details). In 2023 the German government introduced further interventions including
a price cap on heat energy to further shield households from the high heat energy prices. As
this price-cap strongly altered households’ perception of marginal prices (Dertwinkel-Kalt et al.,
2024) and thus households’ reaction to energy prices, we decide to limit our analysis to the years
up to 2022.

In Germany, heat energy is billed annually with consumers paying monthly or quarterly
installments. The installments are calculated based on households’ historical consumption. The
objective of the monthly installments is to spread the cost of energy evenly throughout the year,
and can be adjusted at any point during the billing cycle. At the end of the yearly billing
cycle, the actual energy consumption is reconciled against the estimated energy consumption
on which the advance payments are based. Additional payments or back payments are made to
account for any overpayments or underpayments ensuring that consumers are billed accurately
according to their actual consumption. Due to the annual billing cycle prices are not very
salient and most households might not be aware of their exact heat energy price (Dertwinkel-
Kalt et al., 2024). However, irregular price changes during a running contract are more visible to
residential consumers as energy suppliers are legally obliged to inform them in writing with an
advance notice of at least four weeks (Bundesnetzagentur, 2024, § 41 EnWG Energielieferverträge
mit Letztverbrauchern Energiewirtschaftsgesetz). This advance notice must clearly outline the
nature and reason for the change, allowing consumers ample time to assess its impact and, if
necessary, switch energy providers or renegotiate their contract.

In some buildings the residents have a direct contract with the energy provider. In other
- particularly in multi-apartment - buildings the landlord or building management company
concludes a central energy contract for the entire building with the energy provider. In the
latter buildings, the information flow of price changes to energy consuming residents may be
less immediate than in the former. The reason is that for buildings with a central energy contract,
the energy provider’s contractual partner is the landlord or the building management company.
In the occurrence of a price change, the energy provider is then obliged to inform the landlord or
building management company. However, they do not have any legal obligation to immediately
inform the energy consuming residents of the price change and may only do so at the end of
the annual billing period. Nevertheless, their best interest would be of quickly informing the
residents to avoid having to advance the price difference until the end of the billing period, to
prevent conflicts with residents about high supplementary payments and to allow residents to
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react to the risen prices by adapting their heating behavior.

3 Data

3.1 Data Sources

Data on Heat Energy Consumption Our main dataset comprises residential annual heat
energy billing data of 141,575 German multi-family buildings6 from 2017 until 2022 by ista,
one of the largest heat energy bill providers in Germany. The dataset contains information on
energy consumption, energy expenditures, the billing periods, energy carrier, total living space,
number of apartments in each building, retrofits7, hot water consumption and the buildings’ zip-
code.8 Based on the heat energy consumption and expenditures, we calculate kWh prices for
each year and building.9 As the buildings in our sample all have central heat energy contracts,
all apartment units face the same kWh price, meaning that the calculated kWh price does not
constitute the average but the actual heat energy price of each household in the building. During
the energy crisis, the German government adopted a relief package to lift the energy price burden
on households and firms. Part of this package were the so-called December relief payments which
were announced in November 2022 for gas and district heat users. These payments meant that
the state paid for the December heat energy costs of residents, i.e. one twelfth of the yearly
payments. We can thus easily account for the December relief payments in our price calculation
for buildings with as and district heat. The amount of the payments were independent of
actual energy consumption to remain energy saving incentive-compatible. There were also relief
payments for other energy carriers such as oil or wood pellets. In contrast to gas and district
heating relief payments, these were not automatically paid out to households. Households had
to actively apply for these relief payments. As we do not know which households received relief
payments, we are therefore not able to calculate the prices they faced. This is the reason we
solely focus on gas and district heating and exclude buildings with other heat energy carriers
from the sample.10

Data on Climate Factors To adjust absolute heat energy consumption according to local
temperature changes, we employ the publicly available zip-code level climate factors by the
German Weather Service ("Deutscher Wetterdienst"). These climate factors are calculated for
rolling 12-month periods as quotients of the mean annual degree days, which are calculated with
reference to the time series of the Potsdam reference station, and the current annual degree days

6 In 2022, approximately 62% of the German population lived in apartments and 12% lived in semi-detached
housing, making the total share of the population living in multi-family houses 74% (Statista, 2023).

7 We drop all households that have undergone thermal retrofitting procedures over the period of this study
from our sample.

8 Zip-codes in this paper refer to German postal codes ("Postleitzahlen").
9 The heat energy expenditures that we observe from the heat energy bills are rounded to the full cent. Heat

energy prices per kWh are, however, usually denominated at more granular intervals in most heat energy contracts.
We calculate kWh prices by dividing the rounded observed expenditure by observed consumption. This results
in prices with many decimal places. To ensure that we can identify if a price stayed constant, we round the kWh
prices to 0.1 Euro cents. As our main empirical strategy relies on comparing buildings with price increases to
buildings with constant prices, we drop the few buildings from our sample where prices decreased in 2022.

10 Gas and district heat together cover 63% of German buildings (Destatis, 2018).
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for the respective zip-code. In all parts of the analysis, we control for weather by including the
climate factor up to the third polynomial as an explanatory variable.

Data on Home Office To account for potential changes in work and leisure time patterns
due to the Covid-19 pandemic, we control for home office use. We rely on home office data at
the zip-code level collected and made available by infas360. Specifically, we observe the number
of days per week spent working from home on a scale from zero to five workdays for the period
before, during, and after the pandemic at the zip-code level. 11 Our home office variable captures
the mean of the number of days spent working from home, normalized by national home office
trends from the federal statistical office of Germany, Destatis. Thus, the home office variable
reflects the national home office average, but exploits variation at the sub-national level.

Data on Socio-Economic Characteristics We merge socio-economic data from the 2018
wave of the German microcensus with the data provided by ista. The microcensus is the biggest
annually-repeated household survey in Germany and comprises information on the individuals
living in the household as well as on the household characteristics. We use variables on age,
income, unemployment, years of schooling, and share of people receiving social benefits. We
use these variables to analyze how energy savings vary with socio-economic characteristics.
Information on households’ location is anonymized to a certain degree extend and follows a
different spatial categorization than the zip-codes. In contrast to the heat energy billing data,
the microcensus contains regional identifiers for the municipal identification number (AGS), not
the zip-code. In a first step, we calculate AGS-level averages of the socio-economic variables of
interest. In a second step, we merge the AGS-level dataset with the energy billing data using zip-
code-to-AGS correspondence tables while carefully adjusting the AGS-level means when there
is no one-to-one correspondence.12

3.2 Descriptive Statistics

Figure 1 presents the developments in heat energy prices and heat energy consumption from
2017 until 2022. The strong crisis-related energy price hike is visible in Panel (a) and the decline
in energy consumption per square meter during the crisis is given in Panel (b).

Table 1 presents the descriptive statistics for the control and treatment group for the pre-
treatment period as well as the year 2022, the year of the crisis. The top panel of the table
shows building-level variables. The middle and lower panels show the climate factor and home
office variable, as well as the socio-economic variables from the microcensus. For the treatment
group, prices rose strongly between 2021 and 2022 with an average of 44.5%. Overall, weather-
unadjusted heat energy consumption in both the treatment and the control groups fell by 16.0%
in the same year. 5,254 buildings did not experience a change in their kWh price, meaning that
the control group makes up a share of 3.7% of our sample in the year 2022.

11 For the post-pandemic time frame, we observe not the realized but instead the planned number of home office
days by the employer.

12 Note that we use the word "zip-code" to refer to that community/neighborhood level also after merging the
data.
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Figure 1: Heat energy price and consumption between 2017-2022.

(a) Heat energy price in Euro per kWh between
2017-2022.

(b) Heat energy consumption in kWh per square
meter between 2017-2022.

Table 1: Overview of descriptive statistics

Control group Treatment group

2017-2021 2022 2017-2021 2022

ista data
Price (Cent/kWh) 5.71 (1.34) 5.94 (1.29) 6.54 (2.22) 9.88 (4.09)
Price change (%) 2.51 (12.39) 0.06 (0.72) 3.59 (14.35) 44.49 (43.52)
Heat consumption (kWh) 110.95 (41.69) 98.65 (38.57) 112.66 (45.76) 99.12 (42.22)
Heat consumption change (%) 3.60 (23.58) -16.02 (22.55) 3.55 (27.00) -15.99 (22.19)
Size apartment (sqm) 77.29 (28.18) 77.43 (27.97) 78.01 (28.37) 78.26 (28.41)
Number apartments 11.30 (10.40) 11.24 (10.37) 10.12 (10.82) 10.02 (10.78)
Share of gas (%) 94.41 (22.98) 94.44 (22.91) 86.13 (34.56) 86.43 (34.25)

German weather service DWD
Climate factor 1.14 (0.10) 1.20 (0.09) 1.14 (0.10) 1.20 (0.09)

infas360
Home office (%) 14.88 (10.50) 23.33 (8.52) 14.09 (10.06) 22.57 (8.03)

microcensus
Year of birth 1972.79 (3.26) 1972.77 (3.26) 1972.72 (3.20) 1972.73 (3.19)
Social benefits (%) 3.98 (2.95) 3.98 (2.97) 4.12 (3.00) 4.11 (3.00)
Household income (€) 2867.85 (489.49) 2873.09 (496.86) 2867.94 (468.43) 2873.25 (472.17)
Years schooling 12.57 (0.71) 12.57 (0.72) 12.54 (0.73) 12.54 (0.73)
Unemployment (%) 3.17 (2.35) 3.16 (2.36) 3.22 (2.37) 3.21 (2.36)

Observations 22,921 5,254 588,425 136,321
Notes: The table reports the means and standard deviations (in parentheses) of the main vari-
ables used in the analysis for the unmatched sample.

4 Methodology and Empirical Strategy

We rely on several methods to estimate price-driven savings, the associated energy price elastic-
ities and non-price driven savings during the energy crisis. At that time, price hikes coincided
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with several non-price factors that may have led to energy savings, such as public appeals and
various government programs and regulations aimed at reducing energy consumption. The si-
multaneous occurrence of price hikes and non-price factors poses an empirical identification
challenge to isolate price-driven from non-price driven savings. In appendix A.1 we illustrate
this identification challenge using a simple theoretical model that features a household’s decision
on how much energy to consume depending on prices and public appeals to save energy. The
model shows that when energy prices and public appeals are correlated, non-price driven savings
can lead to an omitted variable bias in the estimation of price-driven savings and vice versa. In
the energy crisis, there was a clear temporal correlation of price hikes and the rise of non-price
factors for energy savings, such as public appeals. Hence, we design our empirical strategy to
carefully isolate price-driven from non-price driven savings.
We apply a DiD-PSM approach to estimate price-driven savings and energy price elasticities in
the crisis using households with constant prices as the control group. The DiD-PSM approach
allows us to explore how price-driven savings vary by energy carrier and treatment intensity
using coarse subgroup analyses. Moreover, we are interested in more granular and detailed het-
erogeneities of price-driven savings depending on socio-economic characteristics. To this end,
we apply Double Machine Learning, again using buildings where prices did not rise in 2022
as the control group, which allows us to analyze how price-driven savings continuously vary
with socio-economic characteristics. Finally, we estimate non-price driven savings that are at-
tributable to factors such as savings programs, appeals and moral motivations to save. We
predict counterfactual energy consumption had the crisis not happened, using a lasso-model
trained on the pre-crisis period. The difference of observed energy consumption and predicted
counterfactual energy consumption in 2022 for the buildings where prices did not rise in 2022
gives us an estimate of the non-price savings.13 Using these building-level estimates, we can
compute average non-price driven savings and explore how non-price driven savings vary with
socio-economic characteristics.

4.1 Estimation of Price-Driven Savings & Energy Price Elasticities

4.1.1 Average Effects

Method 1: Difference-in-Differences with Propensity Score Matching To esti-
mate price-driven energy savings we apply a DiD-PSM approach. We consider a building as
treated if its energy price increased between 2021 and 2022. The control group consists of
buildings for which prices stayed constant during this period. To increase the comparability
of the treatment and the control group and to improve the plausibility of the parallel trends
assumption we apply 1:1 nearest neighbor propensity score matching with replacement. In the
results section, we show that our results are robust to a host of robustness checks including 5:1
matching. We discuss the validity of our control group, show evidence for parallel trends and
matching diagnostics in the following subsection.

13 For the buildings where prices rose this quantity would correspond to the sum of non-price and price-driven
savings
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We first estimate the propensity score in a logistic regression by regressing the treatment group
indicator on a set of matching variables (the number of apartments in the building, the average
apartment size, the average energy price in the pre-treatment period, the climate factor, and the
home office rate) and on year and energy carrier fixed effects. As suggested by Austin (2011b)
we match on the logit of the propensity score and use a caliper width of 0.2 standard deviations
which is considered to be optimal by Austin (2011a). We furthermore enforce exact matching
by year and energy carrier to avoid that an observation is matched to another observation from
a different year or to a different type of energy carrier. Finally, we ensure common support
by discarding observations that fall outside of the support of the treatment group’s propensity
score distribution.
Using the matched sample, we then estimate average price-driven savings in the treatment group
with a DiD model. As we are in a setup with common treatment timing and only one post-
treatment period, we can implement the DiD approach using a simple two-way fixed effects
regression model (equation 1):

ln(eit) = λi + µt + δDit + x′
itβ + ϵit (1)

In the estimation, each observation is weighted by its matching weight wi,t. Matching weights
take the value of one for treated observations. For the control group, they correspond to the
number of times that a control observation was used as a match. ln(eit) is the logarithm of
residential energy consumption in building i during year t. Dit is a binary treatment indicator
that takes the value of one for treated buildings in the year 2022. x′

it denotes the set of control
variables which are the climate factor up to its third polynomial and the home office rate. γi

and µt capture building and time fixed effects, ϵit is the error term. Our coefficient of interest is
δ which indicates the ATT or the average price-driven energy savings in 2022 of buildings that
were exposed to a price increase during the energy crisis.
To allow for potential non-linearities in the enery demand function we estimate price-driven
savings by treatment intensity. To this end, we categorize buildings that experienced a price
increase in 2022 into the following three treatment groups: those with price increases of <25%,
between 25% - 50%, and >50%. The control group remains the same, i.e. group of buildings
with constant prices in 2022. We repeat the above matching procedure by separately matching
each one of the three treatment groups to the control group. For all three of the matched
samples we apply the DiD-PSM described above to estimate the average price-driven savings for
each price-increase level. Additionally, we estimate energy carrier specific effects, by analogously
repeating the described matching procedure and the DiD-PSM estimation using the sample of
gas-heated buildings only and using the sample of district-heated buildings only.

Identification, Validity of the Control Group and Matching Diagnostics The
key identifying assumption of our DiD-PSM estimation is that the trend in average energy
consumption would have been the same between the treatment group and the matched control
group in a hypothetical crisis-scenario in which the treatment group is not exposed to price
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hikes14. In other words, the parallel trends assumption implies that non-price-driven savings are
on average equal between the two matched groups during the crisis year 2022.
While the assumption is untestable, we provide evidence in support of parallel trends with the
event study in Figure 2. The figure shows the year-specific treatment coefficients that we obtain
by estimating the following event-study specification on the matched sample:

ln(eit) = λi + µt +
2021∑

τ=2019
γτ Diτ + δDit + x′

itβ + ϵit (2)

The event study in Figure 2 clearly shows that on average the trends in energy consumption
between the matched treatment and the control group were not significantly different before the
energy crisis.

Figure 2: Event study supporting parallel trends

The figure shows the event study coefficients from estimating equation 2 on the matched sample.
The x-axis displays the time to treatment in years, where 0 corresponds to the energy crisis in
2022. The displayed event study coefficients indicate the estimated year-specific treatment effects
and placebo treatment effects. Vertical bars indicate 95% percent confidence intervals that are
calculated using standard errors clustered at the building-level.

It is very unlikely that there may have been any form of active sorting into or, in our case,
rather out of treatment at the building level. Landlords or building managers will not have
strategically opted for shorter or longer contract periods to avoid having to renew the contracts
in the middle of the crisis, as the crisis was not foreseeable when concluding the contracts.

14 Besides parallel trends identification in a DiD also requires no anticipation and the stable unit treatment value
assumption (SUTVA). In our setting, no anticipation most likely holds, as households probably did not anticipate
the energy crisis. We nevertheless perform a robustness check where we exclude the year 2021 from our sample
to address any concerns about possible anticipation (Section 5). For SUTVA to hold, we need to assume that of
building i’s energy consumption does not depend on the treatment status of building j ̸= i. In other words, there
should be no spillovers from the treatment status of one building on the energy consumption of other buildings.
If our units of analysis were apartments, one may be concerned about spillover effects as it is well known that
heating of one apartment has effects on the temperature in adjacent apartments. However, our analysis is at the
building-level, which is why such concerns do not apply in our setting and we are confident that SUTVA holds.
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However, prices could also increase if the contract period didn’t end in the middle of the crisis;
either because the energy provider went bankrupt or because they had to increase prices due to
increased energy provision costs. Whether the energy provider went bankrupt or faced increased
energy provision costs that they had to pass-on to consumers largely depended on their wholesale
energy-provision contracts. It is unlikely that when concluding the energy contracts, landlords
or building managers may have taken into consideration whether an energy provider buys its
energy through short-term or long-term wholesale energy-provision contracts. Thus, we do not
expect any building-level unobservables to be correlated with treatment assignment, because
there was no active sorting into or out of treatment.
Nevertheless, treatment assignment may not have been entirely random. If in some areas energy
providers relied more on long-term wholesale contracts than in others, then we may have an
uneven distribution of treated and control buildings across Germany. This does not threaten
the validity of the parallel trends assumption, as long as areas with higher and lower shares of
treated buildings do not have different energy consumption trends. The event study results in
Figure 2 indicate that such diverging energy consumption trends are most likely not present.
To be on the safe side, we nevertheless additionally perform a robustness check where we do
exact matching by "Raumordnungsregion" (hereon referred to as "spatial-planning region" or
"region"), which is a geographic area defined for spatial planning purposes in Germany and lies
between NUTS-2 and NUTS-3 regions.15 This addresses the potential issue of diverging energy
consumption trends between spatial-planning regions with higher and lower shares of treated
buildings and additionally controls for any differences in region-level unobservables between
treated and controls.
Even though any active sorting into or out of treatment seems unlikely, we choose to apply a
DiD-PSM approach in order to balance out any observable differences between treatment and
control group.

Figure 3 displays the distributions of the logit of the propensity score of treated and control
buildings before and after matching. Additionally, Figure A.1 shows the covariate balance before
and after matching. There is good overlap between the distributions of the treated and the
control group before the matching (Figure 3 left panel) and most matching variables were already
relatively balanced before the matching (Figure A.1). After matching, the two distributions are
very similar, suggesting that the matching was successful in further improving the comparability
of the treatment and the control group (Figure 3 Panel (b)). This is confirmed by Figure A.1
which shows that the matching procedure reduced the standardized mean difference between
the treatment and the control group for all matching variables. The matching reduced the
standardized mean difference below 0.1, which is the conventional threshold for good covariate
balance (Austin, 2009), for all variables except for the average price in the pre-period. In the
latter case, the matching nevertheless succeeded in reducing the standardized mean difference
below 0.2. In the unmatched sample, the variance ratios of all variables were already between
the conventional thresholds of 0.5 and 2 (zhang_balance_2019). Still, the matching further
improved variance ratios.

15 There are in total 96 spatial-planning regions in Germany.
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Figure 3: Distributions of the Logit of the Propensity Score by Treatment Group
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The figure shows the distribution of the logit of the propensity score by treatment group before
(top panel) and after (bottom panel) matching.

Calculation of Elasticities Besides estimating the price-driven savings during the energy
crisis, we are also interested in calculating the corresponding energy price elasticities. When
percentage changes in prices or percentage changes in demand are large, it is common to use
the arc formula for the price elasticity of demand Feehan (2018). The arc formula takes the
percentage changes of price and demand relative to the midpoints of the intervals marked by
the values before and after the demand and price changes:

η =
e2022−e2021
e2022+e2021

2
p2022−p2021
p2022+p2021

2

(3)

To estimate the price-elasticity of energy demand during the crisis in 2022 we slightly adjust
our main estimation equation 1. Instead of using the logarithm of energy consumption as the
dependent variable, we now use a building’s energy consumption normalized by the building’s
average energy consumption in 2021 and 2022:

eit
ei,2021+ei,2022

2
= λi + µt + δDit + x′

itβ + ϵit (4)

In equation 4, δ stands for the average price-driven energy savings of the treatment group as
a percentage of the average energy consumption in 2021 and 2022 which corresponds to the
denominator of equation 3. We obtain η̂, the estimate of the price elasticity of energy demand,
by dividing δ̂ by the average price increase of the treatment group in 2022, normalized by the
treatment group’s average price in 2021 and 2022.
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4.1.2 Heterogeneous effects

Method 2: Double Machine Learning We use double machine learning (DML) pro-
posed by Chernozhukov et al. (2018) which allows us to explore heterogeneities in price-driven
savings in a more flexible way than it would be possible with our previous DiD-PSM approach.
In particular, the DML framework allows us to model non-parametric effect heterogeneity so that
we can obtain a detailed picture of how non-price savings vary with socio-economic variables.

In our application of DML we closely follow the implementation described in Knaus (2022).
As double machine learning models have mainly been developed for cross-sectional data, we
only use the year 2022 for our analysis. Our dependent variable is ∆ei, the change in energy
consumption compared to 2021 in kWh. The treatment variable Di is a binary variable taking
the value of one if a building’s energy price increased during the crisis and zero if the price stayed
constant. We use a rich set of control variables including the change in the climate factor up
to the third polynomial, the one-year lag of the climate factor, the average energy price before
the energy crisis, the change in the homeoffice rate, several building characteristics (number of
apartments per building, average apartment size, energy carrier) and a set of socio-economic
variables (average birthyear, share of social benefit recipients, unemployment rate, average net
income and average years of schooling).
We first flexibly predict building-specific treatment probabilities, ϕ̂(Xi), using a Lasso-model
and five-fold cross-fitting. Then we predict the building-specific treatment-specific outcome (i.e.
the change in energy consumption), π̂(d, Xi), again using a Lasso-model and five-fold cross-
fitting. In a third step we plug the predicted ϕ̂(Xi) and π̂(d, Xi) into the following formula for
the doubly robust score of the potential outcome:

Γ̂i(d, Xi) = π̂(d, Xi) + J(d)(∆ei − π̂(d, Xi))
ϕ̂(Xi)

(5)

d ∈ {0, 1} takes the value of 0 to indicate the untreated state and 1 to indicate the treated state
and the variable J(d) = ⊮(Di = d) indicates whether a building i’s actual treatment status
corresponds to d. For each building i, we thus obtain two doubly robust potential outcome
scores: one potential outcome score under treatment Γ̂i(1, Xi) and one potential outcome without
treatment Γ̂i(0, Xi). We then take the difference of the two doubly robust potential outcome
scores to obtain a pseudo-outcome for each building:

∆̂i = Γ̂i(1, Xi) − Γ̂i(0, Xi) (6)

The pseudo-outcome ∆̂i can be interpreted as a building-specific treatment effect. In a final
step, we can therefore run a non-parametric kernel regression of ∆̂i on socio-economic variables
to explore effect heterogeneity.

Identification DML identification relies on an unconfoundedness or conditional indepen-
dence assumption Knaus (2022). This differs from the identifying assumption in our previous
DiD-PSM approach which relies on parallel trends. Conditional independence is more difficult
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to defend than parallel trends. As discussed in section 4.1.1, it is very unlikely that buildings
could have actively sorted into or out of treatment. We are therefore confident that there are
no relevant unobserved building-level differences between the treatment and the control group.
The double machine learning that flexibly controls for a rich set of covariates further reduces
the likelihood of any remaining omitted variable bias.

4.2 Estimation of Non-Price-Driven Savings

Method 3: Lasso Prediction of Counterfactual Energy Consumption Our esti-
mation of price-driven savings during the energy crisis rely on using a control group of buildings
that were not exposed to price hikes to construct a counterfactual. Such natural control group
is not available for the estimation of non-price-driven savings as all German households were
exposed to the crisis. We therefore need to rely on a different method to estimate the counterfac-
tual heat energy consumption in 2022 for a hypothetical scenario without the energy price crisis.
We train a Lasso-model with ten-fold cross-validation on the years before the energy crisis16.
The dependent variable is a building’s energy consumption eit and the explanatory variables
are buildings’ one-year lagged energy consumption, the local homeoffice rate and climate factors
up to the third polynomial. We do not use further building-level characteristics as explanatory
variables because the building’s condition should be implicitly accounted for by controlling for
the previous year’s energy consumption. We then insert the 2022 climate factors, homeoffice
rate and the energy consumption of 2021 into the Lasso-model trained on the pre-period. This
provides an estimate of the counterfactual energy consumption in 2022, êi,2022, i.e. for a coun-
terfactual scenario where the the energy price crisis had not happened.
∆̂ei,2022 is the difference between the counterfactual energy consumption, êi,2022, and the ob-
served energy consumption, ei,2022. ∆̂ei,2022 has different interpretations for buildings with
constant prices in the crisis and for buildings where prices increased. For buildings with con-
stant prices we denote this difference as ∆̂e

0
i,2022. This object is an estimate for building-level

non-price driven savings (see discussion of identification below). For buildings where prices in-
creased, the difference ∆̂e

1
i,2022 needs to be interpreted as the sum of non-price driven savings

and price-driven savings and is therefore not of much interest, as the two cannot be disentan-
gled.
By taking the average of ∆̂e

0
i,2022, we obtain an estimate of average non-price-driven savings

for buildings with constant prices. Similarly to the final step of the DML procedure, we can
now also regress ∆̂e

0
i,2022 on socio-economic variables using non-parametric kernel regressions to

explore heterogeneities in non-price savings during the energy crisis.

Identification Identification of the non-price-driven savings relies on the argument that
short-term changes in energy consumption can only come from a limited set of factors. Besides
the crisis-related non-price factors such as public appeals and saving programs, these factors

16 As one of the explanatory variables is the buildings’ lagged energy consumption, we can only use the four
pre-treatment years 2018-2021 as compared to the DiD-PSM approach where have five pre-treatment years from
2017-2021.
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are retrofits, changes in the annual temperature, reactions to price-changes and changes in
homeoffice patterns17. Other factors such as socio-economic changes or changes in living habits
are more sticky and will therefore only have a negligible effect on year-on-year changes in energy
consumption.
As we exclude buildings that have been retrofitted from our sample and only focus on buildings
that had a constant price from 2021 to 2022, changes in energy consumption in 2022 can only
come from changes in temperature, changed homeoffice rates or the multiple non-price-factors
related to the energy crisis such as appeals to save and energy savings programs. Since our
machine learning model flexibly accounts for climate factors and for the homeoffice rate, the
difference between the predicted counterfactual energy consumption and the observed actual
energy consumption should correspond to the crisis-related non-price-driven energy savings.

5 Results and Discussion

5.1 Price-driven Savings and Heat Energy Price Elasticities

5.1.1 Average Price-Driven Savings

We estimate average price-driven energy savings using a DiD-PSM approach, as outlined in
section 4.1.1. We find that energy savings in buildings where heat energy prices increased were
on average 2.2 pp. larger than in control buildings where prices stayed constant (see Table
2 Column (a)). To corroborate our estimated price-driven savings, we perform a number of
robustness checks, which all yield similar results. We present them at the end of this section.
Germany achieved the EU savings target of 15% in the energy crisis (Bundesnetzagentur, n.d.),
which is also reflected in our sample, where we observe total heat energy savings of 16.0%.
However, our results also show that price-driven savings of 2.2% only made a minor contribution.
More important factors were non-price factors such as public appeals and savings programs (for
a more detailed discussion and estimation results for non-price-driven savings please refer to
section 5.2) and the weather. This is relevant for energy policy in times of crisis as it implies
that sufficient short-term savings to avoid energy scarcity are unlikely to be achieved through
high energy prices alone. This is particularly the case in countries with high information frictions
in the residential energy market such as Germany (see section 2). If information frictions were
lower, price-driven savings might have been higher. In 2022, Germany introduced regulation to
promote the uptake of smart meters in the residential energy sector which may contribute to
making households more price-responsive in future crises.

The estimated price-driven savings correspond to a short-term arc-elasticity of demand of
-0.07, which we compute as described in section 4.1.1. This elasticity is smaller than the price
elasticity found by other studies during the crisis that do not control for non-price-driven savings
(Ruhnau et al., 2023). This underlines the importance of adequately controlling for non-price

17 Changes in homeoffice patterns are particularly relevant when comparing the year 2021 which had several
Covid-lockdowns and stay-at-home regulations with the year 2022 when Covid-restrictions have been largely
waived
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factors such as public appeals and attention, savings programs and regulations when estimating
price-driven savings and energy price elasticities during times of energy crises. Not doing so
might inflate estimated price elasticities. The results by Jamissen et al. (2024), who also control
for one of the non-price factors (public attention), point in a similar direction, i.e. they find a
much lower elasticity than Ruhnau et al. (2023). Similar to price-driven savings, the low short-
run energy price elasticity is partly due to the information frictions in Germany’s residential
heat energy market. Another reason for our relatively low elasticity estimate is that we only
estimate a short-run elasticity. Short-run energy price elasticities tend to be lower than long-
run price elasticities in general because som price-induced adjustments such as energy efficiency
investments take time to be implemented.
A point to note regarding the interpretation of the price-driven savings as well as the energy price
elasticities is that they only reflect to what extent households reacted to actual building-level
price changes. If households reacted to a general discourse about high energy prices to which
the control group was equally exposed, then this effect will not be reflected in the estimated
price-driven savings and elasticities.
With the objective of understanding if the low price responsiveness prevails across all levels
of price increases, we estimate price-driven savings for three subgroups: buildings with a price
increase of <25%, 25% - 50%, and >50% (as described in more detail in Section 4.1.1). Columns
(b) - (d) of Table 2 and Figure 4 present the DiD-PSM results for the three subgroups. For
buildings with a <25% price increase, we do not observe a statistically significant treatment
effect. Buildings with price increases of 25% - 50% saved 2.2 pp. more compared to their
untreated counterparts. For buildings where prices increased by >50% we observe the highest
energy savings relative to the control group of 4.4 pp. The event study plots for for DID-PSM
by subgroup indicate that parallel trends also hold for different levels of price-increase (see Ap-
pendix Figure A.3). Even though we find that households are not particularly price-responsive
in the short run, we nevertheless see a clear pattern of larger savings in buildings with higher
price increases.

However, these different price-driven savings of the three subgroups all translate to an energy-
price elasticity of -0.07 (see Appendix Figure A.2a) meaning that the price elasticity of demand
is quite constant with increasing prices.18

A subsequent subsample analysis shows that the average price-driven savings in buildings
with district heating were 5.1% which is notably higher than the average price-driven savings
of 2.1% in gas-heated buildings (see Figure 5). Again, the event study plots for these DiD-PSM
subsample analyses indicates that parallel trends hold (see Appendix Figure A.4). This is also
reflected in a higher price elasticity of demand for buildings with district heating. While we find
a price elasticity of gas demand of -0.06, the elasticity for heat energy demand in buildings with
district heating is almost three times as large with -0.17. There are several possible reasons for

18 Note that the standard errors of the treatment group with price increases of up to 25% is comparatively large.
The reason is the denominator in the arc elasticity calculation reflecting the average price increase between 2021
and 2022, meaning that δ̂ in equation 4 is simply divided by a smaller number than in the other two treatment
groups with larger price increases.
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Table 2: DiD-PSM: Full sample and by treatment intensity.

Dependent Variable: log(Heat Energy Consumption)
(a) (b) (c) (d)

Model: Main DiD %∆p<=25% 25%<%∆p<=50% %∆p>50%

Variables
Treated −0.022*** −0.006 −0.022*** −0.044***

(0.005) (0.004) (0.006) (0.004)

Control variables Yes Yes Yes Yes

Fixed-effects
Building Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 746,056 312,363 224,127 261,337
R2 0.881 0.886 0.885 0.874

Control variables comprise homeoffice and the first to third polynomial of the climate factor.
Standard-errors are clustered at the building level and are given in parentheses.
* p <0.05, ** p <0.01, *** p <0.001.

this stark difference. Gas-heated buildings have individual contracts with prices depending on a
number of contract-specific factors such as the energy provider as well as the timing of entering
into the contract. This means that two buildings next to each other might be paying completely
different gas prices. In contrast, district heating, as its name reveals, usually covers an entire
district where a single price is applicable throughout. This implies that the local newspapers
might pick up on energy price increases supplied with district heating. While gas price increases
were emphasized heavily in the national news, reports on increased district heating prices could
have alerted households of the increased local prices and thereby reinforced the response to the
energy crisis.

We perform a battery of robustness checks to confirm the validity of our results. In the first
robustness check we exclude the year 2021. Gazprom started to reduce the supply of natural gas
already in 2021, which caused increases in wholesale prices, although to a lesser extent than the
price hikes observed in the second half of 2022 (Ruhnau et al., 2023). Due to our data structure,
where prices are yearly average prices, this may bias the estimated price-driven savings toward
zero: Assume, for example, that a building had to renew its contract just before the beginning
of the heating period in the second half of 2021 with a price increase of 10%. Then only half
of its annual consumption will be billed with the new higher price and the price increase that
we observe in the annual data will be roughly 5%. In 2022, the full year will be billed with the
new higher price. Compared to the average price of 2021, this will again correspond to a price
increase of about 5%. Consequently, this building would be categorized as treated with a price
increase in 2022 even though the price increase already happened in the second half of 2021. To
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Figure 4: Price-driven savings by treatment group
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The figure shows estimates of price-driven energy savings during the crisis by treatment group.
The coefficients indicate the estimated treatment effects on log energy consumption of being
exposed to a price increase during the crisis. Vertical bars indicate 95% percent confidence
intervals that are calculated using standard errors clustered at the building-level.

Figure 5: Price-driven savings by carrier
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The figure shows estimates of price-driven energy savings during the crisis by energy carrier. The
coefficients indicate the estimated treatment effects on log energy consumption of being exposed
to a price increase during the crisis. Vertical bars indicate 95% percent confidence intervals that
are calculated using standard errors clustered at the building-level.

avoid this potential issue, we drop the year 2021 in a first robustness check. Our estimated non-
price-driven savings (Column (a) of Table A.2 in Appendix A.4) are not significantly different
from the ones in our main specification, albeit smaller. This, however, is in line with our main
result that price-driven savings only played a minor role in the overall savings during the crisis.
In a second robustness check, we additionally enforce exact matches at the level of spatial-
planning regions. This robustness check serves two purposes: First, it avoids that buildings
from former East-Germany are matched to buildings from former West-Germany. Due to the
historical differences, households in East- and West-German households may on average have dif-
ferent attitudes towards Russia, the War in Ukraine and in general different levels of trust in the
media and government (Braun & Trüdinger, 2023). They may therefore have different non-price
motives to save energy. Second, as discussed in the methodology section, some spatial-planning
regions may have higher shares of treated buildings than others due to potentially different
wholesale contract positions of the regional energy providers. By matching on spatial-planning
regions, we thus also avoid that any region-level unobservables may bias our results. Column
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(d) of Table A.2 in Appendix A.4 shows that the price-driven savings with matching at the level
of spatial-planning region are, as in the first robustness check, not significantly different from
our main specification. This, again, corroborates the result that price-induced savings did not
constitute the lion’s share of savings.
Third, we winsorize the energy consumption variable at the 5th and 95th percentile to address
variation in energy consumption due to short-term changes in occupancies such as temporal va-
cancies due to vacation. The results for this robustness check are given in Column (c) of Table
A.2 in Appendix A.4. They are very similar in magnitude to our main specification and again
not significantly different from the price-driven savings that we estimate in our main specifica-
tion.
Fourth, we perform 5:1 matching instead of 1:1 nearest neighbor matching. The results are
shown in Column (b) of Table A.2 in Appendix A.4 and are again very similar to the price-
driven savings from the main specification.
Finally, Figure A.5 in Appendix A.4 shows the event-study plots for all four robustness specifi-
cations. We do not observe significant pre-treatment coefficients in any robustness specification
which is a further strong indication of the plausibility of the parallel trends assumption. Overall,
our findings on price-driven savings appear to be robust against a number of potential concerns
regarding the timing of the price increases, region-specific effects, as well as possible alternative
methodological choices.

5.1.2 Socio-Economic Heterogeneities of Price-Driven Savings

To explore how price-driven energy savings vary with socio-economic characteristics, we regress
the building-level pseudo outcomes ∆̂i, that we estimated using the DML procedure, on socio-
economic characteristics using a non-parametric local polynomial regressions. Figure 6 shows
the estimated relationships between price-driven savings and four socio-economic variables: net
income per person, the unemployment rate, age and years of schooling. The reason we include
the unemployment rate as a variable of interest in this part of the analysis is that unemployed
people do not pay for their own heating and therefore may have different incentives to save
energy than those who do pay their own bills.

Price-driven savings seem to increase with the average net income per person (Figure 6 Panel
(a)). This surprising observation may be due to the fact that richer households consume more
energy per person which leads to a higher savings potential. However, the difference in price-
driven savings between buildings with lower income vs. buildings with higher income appears
not to be significant and should therefore be interpreted with caution.

The other three socio-economic variables of interest do not exhibit any clear visible relation-
ship with estimated price-driven savings (Figure 6 Panel (b)-(d)).
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Figure 6: Heterogeneity of price-driven savings

(a) Net income per person (b) Unemployment

(c) Age (d) Years of schooling

The figure shows how price-driven savings vary with different socio-economic characteristics.
The black line is an estimated non-parametric local polynomial regression function that we obtain
by regressing DML-pseudo outcomes ∆̂i on socio-economic characteristics. The shaded areas
indicate 95% confidence intervals. Note that the confidence intervals only reflect the uncertainty
in fitting the non-parametric regression on the estimate pseudo outcomes ∆̂i. It does not include
the uncertainty from the first step of estimating the building-level ∆̂i using DML.
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5.2 Non-price-driven savings

5.2.1 Average non-price driven savings

To estimate non-price-induced savings we proceed as described in Section 4.2: We first predict
counterfactual energy consumption in 2022 had the crisis not happened. For buildings with
constant prices the difference between observed and predicted counterfactual energy consump-
tion constitutes non-price-induced savings. Across buildings with constant prices in the crisis,
the average building-level non-price-driven savings are on average 8.5 % of a building’s energy
consumption in 2021. In comparison to price-driven savings, the saving’s effect of non-price
factors was therefore almost four times as large. This underscores the importance of non-price
factors to trigger short-term savings in the recent crisis.

5.2.2 Socio-Economic Heterogeneities of Non-Price-Driven Savings

We regress estimated non-price-driven savings on different socio-economic variables, again using
non-parametric local polynomial regressions. Figure 7 shows how non-price driven energy savings
vary with several socio-economic characteristics. Non-price-driven savings do not seem to vary
with income, age and years of schooling (see Figure 7 Panel (a), (c), (d)).

Non-price-driven savings first increase with the unemployment rate and then appear to de-
crease again at very high unemployment rates (Figure 7 Panel (b)). However, this relationship
should be interpreted with caution due to the large confidence intervals of the fitted regression
function at higher unemployment rates.
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Figure 7: Heterogeneity of non-price-driven savings
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The figure shows how non-price-driven savings vary with different socio-economic characteris-
tics. The black line is an estimated non-parametric local polynomial regression function that we
obtain by regressing estimated non-price-driven savings on socio-economic characteristics. The
shaded areas indicate 95% confidence intervals. Note that the confidence intervals only reflect the
uncertainty in fitting the non-parametric regression on the estimated non-price-driven savings.
It does not include the uncertainty from the first step of estimating the building-level non-price-
driven savings.
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6 Conclusion

In this paper, we examine the effects of the energy crisis in 2022 and the contemporaneous
appeals and programs to save energy on energy consumption in Germany. We apply three
different methods - DiD-PSM and two machine learning based approaches - to estimate price-
driven energy savings, energy price elasticities and non-price-driven energy savings during the
crisis. We also analyze how both types of energy savings vary with various socio-economic
characteristics. Our analysis is based on a unique dataset of residential building-level heat
energy prices and consumption that we combine with administrative data on socio-economic
characteristics from the German microcensus.

Our findings confirm that rising energy prices contributed to a reduction in residential heat
energy demand. However, we find that price-driven savings were, on average, relatively low
compared to total heat energy savings during the crisis, even after controlling for the higher
temperatures in 2022. The low price-driven savings translate to a low short-term energy price
elasticity during the crisis of -0.07. The flip-side of the modest price-driven response is that the
majority of observed savings were driven by non-price factors highlighting the significant role of
public appeals and energy saving programs in achieving the observed short-term energy-savings.

Our analysis carries several methodological and policy implications. Methodologically, we
propose and implement an approach for estimating energy price elasticities that prevents the
overestimation of elasticity measures by comprehensively controlling for contemporaneous non-
price-driven responses using an adequate control group. Moreover, we use double machine learn-
ing to analyse heterogeneities in non-price-driven savings and apply another machine learning
based approach to estimate non-price-driven savings. On the policy side, our findings offer
valuable insights into emergency interventions and the design of public policy during periods of
energy crises to achieve short-term energy savings to avoid shortages.

Crucially, our results suggest that simply allowing energy prices to escalate in times of
energy shortages is insufficient for achieving the necessary short-run energy demand reductions
in the residential sector. This is particularly the case for countries such as Germany, where the
residential heat energy sector is marked by strong information frictions. In the recent crisis,
public appeals and energy saving programs have played a much larger role than price increases
in achieving short-term heat energy savings in Germany’s residential sector.
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A Appendix

A.1 Theoretical Framework

We first present a simple theoretical model of energy consumption that describes a household’s
utility maximization problem which consists in allocating its budget between consuming energy
and a consuming a composite consumption good. The particular feature of the model is that it
allows for a specific disutility from energy consumption in 2022 reflecting the non-price driven
motivations to save energy. In this model, a household derives utility from consuming energy
e and a composite consumption good x. The household’s utility from consuming energy also
depends on non-monetary motivations to save energy. These non-monetary motivations can
be influenced by public campaigns or government appeals for saving energy. Following Perino
(2015), we model this using a utility function u(e, x, m), where m is a parameter representing
the effect of campaigns or appeals to save energy. A change in m changes the marginal rate of
substitution between e and x. The price of energy is p and the composite consumption good is
the numeraire. The household has income w that it can spend on e and x. For ease of exposition
we again follow Perino (2015) and use a constant elasticity of substitution (CES) utility function:

u(e, x, m) =
[ 1

1 + m
er + m

1 + m
xr

]1/r

(7)

An increase in m reduces the weight in the utility function on e and increases the weight on
x. An increase in m thus represents a campaign or appeal with the message to reduce energy
consumption. Maximizing u(e, x, m) subject to the budget constraint pe + x = w yields the
optimal energy consumption

e∗ = p−σw

mσ + p1−σ
(8)

Taking the differential of e∗ gives

de∗ = −σm(mp)σ−1 + 1
(mσ + p1−σ)2︸ ︷︷ ︸

∂e∗

∂p

dp −(mσp1−σ))2σmσ−1︸ ︷︷ ︸
∂e∗

∂m

dm (9)

First note that both partial derivatives are negative because σ, m, p ≥ 0 and σ, m ≥ 0.

∂e∗

∂p
= −σm(mp)σ−1 + 1

(mσ + p1−σ)2 ≤ 0 (10)

∂e∗

∂m
= −(mσp1−σ))2σmσ−1 ≤ 0 (11)

Intuitively, this means that the optimal consumption of energy e∗ decreases with rising price
p as well as with stronger public campaign m. Dividing both sides of the differential of e∗ in
equation 9 by dp gives us the total derivative of energy consumption with respect to the price
of energy

29



de∗

dp
= −σm(mp)σ−1 + 1

(mσ + p1−σ)2︸ ︷︷ ︸
∂e∗

∂p

−(mσp1−σ))2σmσ−1︸ ︷︷ ︸
∂e∗

∂m

dm

dp
(12)

We easily see that the total derivative de∗

dp only corresponds to the partial derivative ∂e∗

∂p if
m is unrelated to p, i.e. if dm

dp = 0. However, dm
dp was larger than zero during the 2022 energy

price crisis when the price hikes were met with calls from several public actors to reduce energy
consumption (i.e. an increase in m). During the crisis, the total derivative of de∗

dp therefore
corresponded to the combined partial effects of ∂e∗

∂p and ∂e∗

∂m (times dm
dp ).

Consequently, regressing e∗ on p without explicitly modeling m would yield an estimate of
the effect of p on e∗ which is biased by the effect of m on e∗. We therefore explicitly model
non-monetary motivations in our empirical strategy to be able to properly isolate the effect of
prices on energy consumption.

Similarly, equation 13 shows that the total derivative de∗

dm only corresponds to the partial
derivative ∂e∗

∂m if dp
dm = 0. As mentioned, this was not the case in the crisis. Hence, when

estimating the effect of public appeals on energy consumption, or - more generally - estimating
non-price-driven savings, one needs to carefully control for the contemporaneous effect of price
hikes. To ensure that our estimated non-price-driven savings are not biased by the price hikes, we
only use buildings where prices stayed constant during the crisis for the estimation of non-price
driven energy savings (see Section 4.2).

de∗

dm
= −σm(mp)σ−1 + 1

(mσ + p1−σ)2︸ ︷︷ ︸
∂e∗

∂p

dp

dm
−(mσp1−σ))2σmσ−1︸ ︷︷ ︸

∂e∗

∂m

(13)

The model’s results provide several empirical predictions. First, it trivially predicts that rising
energy prices should lead to reduced energy consumption. Second, it projects that households
reduce their energy consumption in 2022 compared to 2021 even if their prices stayed constant
and that these savings vary with the strength of the non-monetary savings motives. And finally
it shows that in order to isolate the partial effect of energy prices on energy consumption one
needs to adequately control for non-monetary savings.
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A.2 Further Matching Diagnostics

Figure A.1: Loveplot of the covariate balance

The figure shows standardized mean differences and variance ratios between the treatment and
the control group before and after matching.
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A.3 Results by Treatment Group and by Energy Carrier

Table A.1: DiD-PSM by type of carrier.

Dependent Variable: log(Heat Energy Consumption)
Model: Gas District Heat

Variables
Gas District Heat

Treated −0.021*** −0.051***
(0.005) (0.012)

Controls variables Yes Yes

Fixed-effects
id Yes Yes
Year Yes Yes

Fit statistics
Observations 647,462 98,594
R2 0.867 0.911
R2 Adj. 0.836 0.890
R2 Within 0.011 0.016

Control variables comprise homeoffice and first to third polynomial of the climate factor.
Standard-errors are clustered at the building level and are given in parentheses.
* p <0.05, ** p <0.01, *** p <0.001
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Figure A.2: Elasticity by treatment group and carrier.
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(a) Elasticity by treatment group.
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(b) Elasticity by energy carrier.

The figure shows estimates of the short-term energy price elasticity during the crisis by treat-
ment group (Panel (a)) and by energy carrier (Panel (b)). Vertical bars indicate 95% percent
confidence intervals that are calculated using standard errors clustered at the building-level.
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Figure A.3: Event studies by treatment group.

(a) Event study for buildings with price increases of
<25%

(b) Event study for buildings with price increases of
25% - 50%

(c) Event study for buildings with price increases of
>50%

The figure shows the event study coefficients from estimating equation 2 on the matched sample
of control buildings and treated buildings with price increases of <25% (Panel (a)), with price
increases of 25% - 50% (Panel (b)) and with price increases of >50% (Panel (c)). The x-axis
displays the time to treatment in years, where 0 corresponds to the energy crisis in 2022. The
displayed event study coefficients indicate the estimated year-specific treatment effects and placebo
treatment effects. Vertical bars indicate 95% percent confidence intervals that are calculated using
standard errors clustered at the building-level.
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Figure A.4: Event studies by carrier.

(a) Event study for gas.

(b) Event study for district heat.

The figure shows the event study coefficients from estimating equation 2 on the matched sample
of buildings heated with gas (Panel (a)) and buildings with district heating (Panel (b)) and with
price increases of >50% (Panel (c)). The x-axis displays the time to treatment in years, where
0 corresponds to the energy crisis in 2022. The displayed event study coefficients indicate the
estimated year-specific treatment effects and placebo treatment effects. Vertical bars indicate 95%
percent confidence intervals that are calculated using standard errors clustered at the building-
level.
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A.4 Robustness

Figure A.5: Robustness: Event study plots of different DiD-PSM specifications

(a) Excluding the year 2021. (b) Exact matching on the regional level.

(c) Outcome variable winsorized. (d) Five to one matching.

The figure shows the event study coefficients from various DiD-PSM robustness checks. Panel
(a) shows the main specification excluding the year 2021. Panel (b) shows the event study when
doing an exact match on the regional level. Panel (c) shows the event study when winsorizing
the outcome variable. Panel (d) shows using 5:1 matching. The x-axis displays the time to
treatment in years, where 0 corresponds to the energy crisis in 2022. The displayed event study
coefficients indicate the estimated year-specific treatment effects and placebo treatment effects.
Vertical bars indicate 95% percent confidence intervals that are calculated using standard errors
clustered at the building-level.
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Table A.2: Robustness check: different DiD-PSM specifications.

Dependent Variable: log(Heat Energy Consumption)
Model: Excluding 2021 5:1 Matching Winsorized Regional matching

Variables
Treated -0.013∗∗∗ -0.020∗∗∗ -0.020∗∗∗ -0.013∗∗∗

(0.005) (0.004) (0.004) (0.0046)

Control variables Yes Yes Yes Yes

Fixed-effects
id Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 597,136 746,362 746,056 636,618
R2 0.883 0.881 0.888 0.876
Within R2 0.011 0.012 0.013 0.011

Control variables comprise homeoffice and the first to third polynomial of the climate factor
Standard-errors are clustered at the building level and are given in parentheses.
* p <0.05, ** p <0.01, *** p <0.001.
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