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1 Introduction 

How skill prices respond to a change in the supply of education is a classic question in 

labour economics, dating back to Tinbergen (1974). Empirical research has traditionally 

examined how the college wage premium responds to changes in the supply of graduate 

labour, estimating an elasticity of substitution between skilled and unskilled labour 

(prominent examples include Katz and Murphy, 1992; Card and Lemieux, 2001; Autor 

et al, 2020; and Blundell et al, 2022). These estimates have been used to subsequently 

estimate the extent of skill-biased technological change (Goldin and Katz, 2008) and to 

convert microeconomic returns to education into macroeconomic ones (examples include 

Gethin, 2023; Hendricks and Schoellman, 2023; and Bils et al, 2024). 

A limitation of the traditional aggregate approach is that graduates’ skillsets vary 

considerably between majors. Graduates from lower return majors have labour market 

outcomes closer to high school graduates than graduates of higher paying majors. This 

suggests that more granular measures of education would better capture actual skill 

differences. Figure 1 demonstrates this heterogeneity in earnings by major group. 

Moreover, previous research suggests that part of these differences are causal1 and they 

are driven, at least in part, by specific technical skills rather than general ones (Kinsler 

and Pavan, 2015; Deming and Noray, 2020). 

In this paper, we investigate how a graduate’s wage responds to an increase in the 

supply of graduate labour from similar majors. One may expect that one computer 

science graduate is substitutable for another computer science graduate, but not 

necessarily for graduates in fine arts. Investigating this question is complicated by having 

to define groups of majors with similar skillsets. We address this issue by adopting 

hierarchical agglomerative clustering from statistical learning methods. Hierarchical 

agglomerative clustering allows us to group together majors with similar skillsets in a 

data-driven manner using information on graduates’ occupations. For example, if 

Economics and Finance majors are disproportionately likely to be financial analysts, 

they will likely be grouped together (as indeed they are in our analysis below). 

Using major fixed-effect regressions on American Community Survey data from 

2009-2019, we show that graduate wages are inelastic with respect to changes in the 

 
1 Large differences are apparent in cross-sectional studies controlling for a rich set of pre-college ability 

measures (Britton et al, 2022; Andrews et al, 2024) and are similar in magnitude to comparable 

regression discontinuity estimates (Hastings et al, 2013; Kirkeboen et al, 2016; Bleemer and Mehta, 

2022).  
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supply of graduates from similar majors. Even our most conservative specification rules 

out elasticities stronger than -0.4.  

This inelasticity is not an artifact of labour supply and major choice responding to 

labour demand shocks. All specifications contain major time trends to control for secular 

demand trends, following Katz and Murphy (1992), and our data are inconsistent with 

a labour demand interpretation for two reasons. Firstly, we would expect labour demand 

shocks to be highly correlated within skill clusters i.e., the demand for Economics 

graduates increases with the demand for Finance. Therefore, confounding labour demand 

shocks would cause the supply of graduates from one major to be highly correlated with 

others within its cluster. However, this is not the case and our data is much more 

consistent with changes in supply representing idiosyncratic year-to-year fluctuations. 

Second, to err on the side of caution, we also show that our results are robust to 

alternative specifications that are less susceptible to specific sources of demand shocks. 

For instance, we construct an instrumental variable by calculating the supply of native 

graduates in each cluster if all natives worked the typical hours of their major-age-sex 

cell in a base period of 2009. This instrument removes any variation from potentially 

endogenous migration and labour supply decisions and only uses variation from new 

graduates and pre-determined changes from lifecycle labour supply factors. In addition, 

to deal with potential endogeneity in the supply of new graduates, we also estimate our 

specification in first differences. As graduates typically select their major at least one 

year before graduating, all labour demand shocks in the first-differences error term 

transpire after students made their study decisions.  

Our findings are also not attributable to measurement error in the graduate supply 

variable. We address the measurement error problem by randomly splitting our sample 

into two halves, calculating our supply measures in both halves separately, and then 

using one as an instrumental variable for the other. As both measures are equal to the 

true population value plus an independent measurement error, this provides consistent 

estimates that form the basis of our most conservative specifications. 

We also investigate whether there is heterogeneity by major. Specifically, we 

investigate whether the elasticities vary between high and low wage majors. We find that 

for majors below the mean graduate wage, we can rule out even very small elasticities, 

such as -0.1. This inelasticity is consistent with some majors having low returns relative 

to non-graduates (Andrews et al, 2024), meaning there should be less of a wage premium 

to erode. However, while still statistically insignificant, our confidence intervals are wider 

for majors above the mean graduate wage. These confidence intervals include effects as 

strong as -0.27 and -0.49 in the OLS and IV specifications respectively. Therefore, we 
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cannot rule out all economically significant effects for this group, but we can exclude 

some effects consistent with previous research. 

Our inelastic estimates appear inconsistent with earlier research, suggesting that 

US graduates and non-graduates are not very substitutable (e.g., Katz and Murphy, 

1992; Card and Lemieux, 2001; Goldin and Katz, 2008; Autor et al, 2008; Acemoglu and 

Autor, 2011; Autor et al, 2020). These papers estimate elasticities of the college wage 

premium with respect to relative supply that centre around -0.62. As the returns to 

college are heavily dependent on major-specific skills (Kirkeboen et al, 2014; Britton et 

al, 2022; Andrews et al, 2024), which suggests that most of the skills taught in a degree 

are not general to all degrees, one might expect us to find an effect of a similar magnitude. 

The inconsistency can be explained by the methodology of the earlier studies which, 

with one partial exception3 (Card and Lemieux, 2001), regress a non-stationary time 

series of the college wage premium on a non-stationary time series of relative supply. 

Since Granger and Newbold (1974), we have known that non-stationary time series can 

lead to a spurious regression problem. Using an augmented Dickey-Fuller test on Autor 

et al (2020)’s replication data, we demonstrate that the time series in question contain 

unit roots and are thus non-stationary. Furthermore, an Engle-Granger test suggests 

that the time series are not cointegrated either. Estimating analogous specifications after 

first differencing out the unit roots instead produces null results. This non-stationarity 

also parsimoniously explains why some applications of the Katz and Murphy (1992) 

model to other time periods have produced statistically significant results with the wrong 

sign (Beaudry and Green, 2005; Bowlus et al, 2023). 

We rationalise the inelasticity of graduate wages to the supply of graduates by 

presenting descriptive evidence that the two groups have substantial skill overlaps. 

Nearly half of graduates work in occupations where non-graduates are in a majority and 

many more work in occupations where non-graduates constitute at least a substantial 

minority. Likewise, most graduates are not employed in an occupation where either their 

 
2 This would be an elasticity of substitution between graduates and non-graduates between 1.5 and 2 (-1 

divided by a figure around -0.6), assuming a constant elasticity of substitution production function. The 

college wage premium here is defined as graduate wage divided by non-graduate wage. Similarly, relative 

supply is hours worked by graduates divided by hours worked by non-graduates. This does create subtle 

differences in interpreting the elasticities. For example, the relative supply variable moves by more than 

1% in response to a 1% increase in the graduate share of labour due to the denominator also decreasing. 

Similarly, the college wage premium also includes effects on non-graduate wages. These effects move in 

opposite direction. 
3 Although Card and Lemieux (2001) use the time series in some specifications, they also focus on 

estimating age-group specific elasticities that are identified using panel variation. These are estimated to 

be around -0.2, which is much more consistent with our findings. 
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major or similar ones predominate, suggesting significant substitutability between 

graduates of different majors. 

This paper makes several contributions. First, it provides the first general estimates 

of how graduate wages respond to changes in the supply of graduates from similar majors 

– a natural extension of previous research given mounting evidence on the skill differences 

between majors (e.g., Britton et al, 2022; Andrews et al, 2024). The only similar study 

that we are aware of is Qvist et al (2021), which examines the effects of Aalborg 

University becoming the second university in Denmark to offer courses in electrical and 

construction engineering. The overwhelming majority of their estimates on the effects of 

this expansion on engineering wages are null, and they are universally so for engineers 

who are at least one-year post-graduation. 

Beyond estimating the substitutability of different majors, we also contribute new 

evidence on the broader topic of estimating the elasticity of substitution between skilled 

and unskilled workers4. By revisiting the Katz and Murphy (1992) framework with 

appropriate time series techniques, we show that these groups are in fact highly 

substitutable. This finding aligns with recent studies arguing that low elasticities of 

substitution (large wage effects) are incompatible with recent data. For instance, 

Blundell et al (2022) estimates a precise null relationship between the graduate wage 

premium and graduate supply using panel data on UK regions. Furthermore, they argue 

that European data more generally appears inconsistent with low substitutability. 

Moreover, Bils et al (2024) argue that worldwide elasticities of substitution between 

skilled and unskilled labour below 4 are implausible. They show that combining 

elasticities below 4 with the dynamics of GDP and Mincerian returns to education 

between 1960 and 2010 would require TFP to decline for low skill workers over that 

period. At elasticities around 1.5, such as those often found in Katz and Murphy (1992) 

style regressions, the required TFP drop for low skill workers becomes extreme at over 

90%. 

Our results also have implications for theories explaining why graduates and non-

graduates may be highly substitutable in some contexts. One prominent explanation is 

endogenous technological change where firms endogenously adopt existing skill-biased 

management practices and technologies when skilled workers are abundant (Blundell et 

al, 2022). Another is directed technical change (Acemoglu, 2002), where an abundance 

of skilled workers increases the returns to developing skill-biased technologies. However, 

 
4 Assuming a constant elasticity of substitution production function, the elasticity of substitution is 

equal to the negative inverse of the elasticity of the college wage premium with respect to the relative 

supply of graduates compared to non-graduates. 
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both have limitations in explaining our results. The limitation of Blundell et al (2022)’s 

endogenous technology adoption explanation is that it was developed to reconcile high 

substitutability in countries like the UK with low substitutability in the US, which is at 

the forefront of the technological frontier. The idea being that countries behind the 

frontier can choose which existing frontier technologies to opt to invest in, and that the 

returns to skill-biased technologies are increasing in skill supply. However, this 

explanation becomes less convincing5 when it turns out that there is high substitutability 

in the US as well. Meanwhile, the directed technical change explanation suffers from the 

short time-period (2009 to 2019) studied in our major-specific analysis), which is likely 

too short for many new technologies to be both invented and adopted. Instead, our 

results are most consistent with the education groups having significantly overlapping 

skillsets. 

Finally, we also make a modest methodological contribution by suggesting an 

approach to addressing classical measurement error in values estimated from a sample. 

As our graduate supply variables are estimates of a population variable, they will 

necessarily contain some classical measurement error. Fortunately, the inconsistency 

introduced by classical measurement error can be addressed if we have an instrumental 

variable uncorrelated with that error. For many variables calculated from a sample, such 

as graduate supply or employment rates, randomly splitting the sample into two will 

enable the calculation of two statistically independent estimates for the parameter of 

interested. This method has similarities with the established psychometric technique of 

validating a measure’s reliability through sample splitting (e.g., de Vet et al, 2017; Pronk 

et al, 2022), but we explicitly incorporate this idea into our estimation procedure to 

adjust our confidence intervals for unreliability. To the best of our knowledge, we are the 

first to construct an instrument to deal with measurement error in this way.   

2 Data 

We use data from eleven waves of the American Community Survey between 2009 and 

2019. The American Community Survey provides a representative cross-sectional 1% 

sample of US population containing information on income, employment, education, and 

other demographic characteristics. We start in 2009, the year that bachelor’s degree 

major6 is first recorded, and end in 2019 to avoid any issues arising from labour market 

 
5 As not all individual US firms will be at the technological frontier, we cannot rule out this explanation 

having some impact. 
6 Notably, this means that our sample does not contain law or medicine as a subject, because those are 

only available at the postgraduate level in the United States. Unfortunately, information on the content 

of any graduate study is unavailable. 
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changes induced by COVID-19. Additionally, the 2020 sample faced significant quality 

control issues (US Census Bureau, 2021). In all, these data provide 28,102,181 individual 

observations with 7,769,718 having a bachelor’s degree. 

We use these data to calculate annual estimates of the proportion of total US hours 

worked by graduates of each major. We also calculate average wage series, weighted by 

hours worked, for each major by five-year age-group7. The underlying hourly wages used 

in the averages are calculated by dividing a worker’s reported labour income by their 

total hours of work. To mitigate the influence of misreported income and working hours 

sometimes causing implausible wage values, we trim the wage values at the 1st and 99th 

percentiles for their sex.  

2.1 Grouping Majors 

As our data contains 176 different major categories and many of these are closely related, 

such as History and US History, we require a method for grouping majors together into 

sensible categories. Pre-existing categorisations are not necessarily suitable for our 

purposes as they may poorly reflect the skills graduates use on the labour market. For 

instance, the higher-level categorisation provided by the US Census Bureau groups 

together Economics, one of the highest earning majors, with Sociology, one of the lowest 

earning majors (see Figure 1) under the category social science. We address this 

categorisation issue in a data-driven way by using a clustering algorithm to group 

together similar majors. 

To use clustering, we require data on what skills graduates of different majors 

possess. The obvious variable highly correlated with the skills a worker uses is their 

occupation. For instance, being employed as an engineer will signal that a worker’s 

quantitative and engineering skills are likely to be relatively high. Therefore, we calculate 

the proportion of graduates working within each four-digit SOC occupation for each 

major and standardise these proportions into z-scores. As clustering approaches measure 

similarity using distance metrics and Euclidean distance performs poorly in high 

dimensions (Beyer et al, 1999), we reduce the dimensionality of the occupation data from 

459 to 10 variables using principal component analysis. Another advantage of principal 

component analysis, in this setting, comes from the first few principal components being 

little affected by measurement error (Hellton and Thoresen, 2014), as the underlying 

proportions will be measured with some error for rarer majors and occupations. 

Using this information on the occupations of graduates from each major, we group 

together majors using hierarchical agglomerative clustering, a method first introduced in 

 
7 The age-groups used are under 25, and 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-60, 60-64, and 65+. 
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Sokal and Michener (1958). We choose hierarchical agglomerative clustering over other 

methods because it is easily interpretable and is also more replicable than the popular 

k-means approach, as it does not require specifying random or arbitrarily chosen start 

points. In hierarchical agglomerative clustering, each major initially constitutes its own 

cluster, and the two most similar clusters are merged sequentially based on a linkage 

rule. This process continues until a stopping point is chosen. Figure 2 provides a stylised 

illustration with six majors instead of 176. First, subjects 5 and 6 are merged as they 

are the closest together, leaving us with five clusters, with the height of the upwards line 

in the dendrogram representing the distance between the two merged clusters. Then, 

subjects 1 and 2 become the two most similar clusters and are also merged. Afterwards, 

the cluster containing subjects 1 and 2 is merged with subject 3. This process continues 

until we tell the algorithm to stop. 

Implementing hierarchical agglomerative clustering requires the researcher to 

choose both the linkage method and the stopping point. For the linkage method, we 

choose average linkage, as it is robust to potential outliers and clusters of unequal sizes 

(Ferreira and Hitchcock, 2009). Average linkage works by taking the location of each 

cluster in n-dimensional space (in this case 10) as the average position of its constituent 

members and then merging the two clusters closest in Euclidean space. We also consider 

results using Ward’s linkage, which minimises the variance within the new set of clusters 

and produces more evenly sized clusters, in Appendix B. Meanwhile, we use the Calinski-

Harabasz (Calinski and Harabasz, 1974) index to guide our choice of stopping point. The 

Calinski-Harabasz index relies on the intuition that an ideal clustering solution will 

produce tight and distinct clusters; this means that the members of a cluster are similar 

to one other but not to members of the other clusters. As higher values of the index 

indicate a better clustering solution, choosing around 30 clusters appears to be “optimal” 

(Appendix Table A1). However, no perfect ground truth is available and thus we also 

test the sensitivity of our results to choosing a different number of clusters. Notably, the 

effective number of clusters is always significantly lower than the headline number. For 

example, with 30 clusters, 80% of graduates are placed within the four largest clusters. 

The clusters produced by this approach appear intuitively sensible (Appendix 

Table A2). The largest cluster primarily contains humanities subjects and certain social 

sciences. Reassuringly, we can also see that History and US History are both placed 

within the same cluster. Other groupings include Economics being paired largely with 

other business school subjects, mathematics majors being paired with computing majors, 

and education-focused majors being grouped together. 
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3 Empirical Strategy 

Our primary specification is a two-way fixed effects model to estimate the elasticity of a 

graduate’s wages with respect to the supply of graduates with similar degrees. Formally, 

our main regression is as follows: 

ln(𝑤𝑎𝑔𝑒𝑚𝑎𝑐𝑡̅                       ) = 𝛼𝑚𝑎 + 𝛽 ln (
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡

) + 𝝁𝑿𝑚𝑎𝑐𝑡 + 𝜏𝑡 + 𝑦𝑒𝑎𝑟𝑡 ∗ 𝛾𝑚 + 𝜀𝑚𝑎𝑐𝑡 (1) 

where 𝑚 represents a major, a represents a five-year age group, c represents a skill 

cluster, and 𝑡 is the year. 𝑤𝑎𝑔𝑒𝑚𝑎𝑐𝑡̅                        represents the average hourly wage of graduates in 

group mact. Meanwhile, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡
 is the share of total hours worked by graduates in 

skill cluster c. Additionally, 𝑿𝑚𝑎𝑐𝑡 contains basic demographic covariates to control for 

the proportion of the group who are female, Black, Asian, or Hispanic. 

We also include the necessary fixed effects and time trends required for causal 

identification. 𝛼𝑚𝑎 represents a set of major-by-age group fixed effects that control for 

time-invariant differences in unobserved productivity between major-age group 

categories. We split by age-group to control for the effects of labour market experience 

on wages. This is important because some of the variation in 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡
 will come 

from new graduates and retirements, which are mechanically related with the group’s 

average labour market experience. Another advantage of this disaggregation is that it 

may slightly increase precision and statistical power compared to total aggregation 

(Egerod and Hollenbach, 2024). Meanwhile, 𝜏𝑡 are a set of time fixed effects that capture 

any common shocks affecting all graduates. Finally, 𝑦𝑒𝑎𝑟𝑡 ∗ 𝛾𝑚 are a set of major-specific 

linear time trends capturing any pre-existing trends in wages for each major that arise 

from the gradual adoption of new technologies. These time trends have similarities to 

the linear time trend controlling for secular labour demand trends in Katz and Murphy 

(1992). 

Each observation is weighted by the number of individuals in that major-age 

category during the base year of 2009. This weighting makes the results representative 

of the US graduate labour market and reduces the influence of any measurement error 

in 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡
, as the measured values will be more accurate when they are based upon 

more observations.  

We also cluster the standard errors at the skill cluster level because the treatment 

is assigned at that level. Furthermore, as the typical regression only contains 30 clusters 

of unequal size, all tables report 95% wild cluster bootstrap (Cameron et al, 2008) 

confidence intervals using Webb (2023) weights to achieve the correct coverage levels. 
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These regressions are also run using only graduate observations, without any 

category for non-graduates, for three reasons. First, the non-graduate category likely 

contains more heterogeneity in education content than any specific major, making them 

less suitable for testing whether the type of education supplied matters for skill prices. 

Second, economic theory suggests that the average wages of graduates and non-graduates 

may change by different amounts when the supply of graduates changes, violating 

common shocks. In a Becker (1962) style human capital model, as the graduate share of 

the population increases due to higher returns or lower costs, the highest ability workers 

who were previously non-graduates become graduates. This shift reduces the average 

unobserved ability of both graduates and non-graduates, but not necessarily by the same 

amount. Consequently, assuming common time shocks for graduates and non-graduates 

would be inappropriate. Excluding non-graduates means that our time fixed effects will 

capture any bias from this channel8 and mean that our regressions measure the effect of 

reallocating graduates from one major to another. Third, due to most Americans being 

non-graduates, including them would also harm precision in our weighted specification 

as most of the variation would come from a single time series. 

3.1 Potential Endogeneity 

3.1.1 Labour Demand Shocks 

The most obvious source of potential endogeneity in equation (1) is that major time 

trends could insufficiently control for any major-specific labour demand shocks that are 

correlated with the supply of similar graduate labour. Fortunately, careful consideration 

of how these shocks would manifest themselves suggests a potential falsification test, and 

suggest alternative specifications exist that can handle these shocks, albeit sometimes at 

the cost of precision. The falsification tests stems from the idea that when graduates of 

one major face a positive labour demand shock, other graduates with similar skillsets 

should also face a positive labour demand shock. Therefore, if there are large shifts in 

major take-up, or in the labour supplied by existing graduates, in response to labour 

demand shocks, we would observe a strong correlation between the labour supplied by 

one major and the supply from other majors within the same skill cluster. Yet, Table 1 

shows that we can rule out the supply of a major growing by more than 0.02% when the 

 
8 One could still imagine a Roy (1951) type self-selection model where students have different positively 

correlated unobserved abilities for each subject, with higher returns to education in subjects where their 

ability is higher, causing some bias of a similar nature. Therefore, the marginal student moving between 

subjects will likely have a lower subject-specific ability draw in both their new and old subject than the 

typical graduate. Alternatively, if their outside option was not university, they would simply have lower 

ability. However, this mechanism would bias our estimates downwards, so cannot change the story told 

by our results. 



11 

 

supply of graduates from similar majors increases by 1%, in the OLS model. For the IV 

specification, the corresponding upper bound is 0.2%. These results suggest that our 

identifying variation primarily represent idiosyncratic year-to-year shifts around the 

linear time trend that are uncorrelated with any labour demand shocks. 

An alternative approach to dealing with labour demand shocks is to consider how 

labour supplied could react to demand shocks and adjust our econometric approach to 

exclude any potentially endogenous variation. Changes in the labour supplied by 

graduates of a major can only come from the production of new graduates, changes in 

the hours worked of existing workers, immigration, or graduates exiting the labour 

market. To address students potentially considering the demand for different majors 

when making their study decisions, we estimate a first-differenced specification. As 

graduates typically choose their major at least one year prior to graduating, this ensures 

that labour demand shocks in the error term occur after study decisions are made. 

Meanwhile, to handle any potentially endogenous variation from hours worked, 

immigration, or labour force exits, we construct an instrumental variable. This 

instrument calculates the log share of total hours worked by US-born workers from each 

skill cluster under a counterfactual where everyone works the average hours of their 

major-age-sex combination in a base period of 2009. As a result, all the variation comes 

from changes in the size of each major-age-sex cell. Therefore, the changes in graduate 

supply induced by the instrument come from the production of new graduates and pre-

determined shifts in labour supply due to lifecycle factors. As the instrument is calculated 

using only US-born individuals and because the hours are fixed at 2009 levels, it is 

unaffected by endogenous migration and shifts in hours of work. We define this 

instrument formally in equation (2): 

𝑙𝑛(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡
) = 𝑙𝑛 (

∑ 𝟙𝑥∈𝐶𝑐
(𝑥)(𝐻𝑜𝑢𝑟𝑠𝑥2009

̅                                  ∗𝑁𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑝𝑆ℎ𝑎𝑟𝑒𝑥𝑡)
𝑥∈𝑀𝐴𝑆

∑ (𝐻𝑜𝑢𝑟𝑠𝑥2009
̅                                  ∗𝑁𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑝𝑆ℎ𝑎𝑟𝑒𝑥𝑡)

𝑥∈𝑀𝐴𝑆

) 

 

(2) 

where 𝑖 represents major, 𝑐 skill cluster, 𝑡 the year, and 𝑀𝐴𝑆 is the set of all possible 

major-age-sex combinations in the data. 𝟙𝑥∈𝐶 is an indicator function equal to one if 𝑥 

is a member of the set 𝐶𝑐, the set of all major-age-sex cells in skill cluster 𝑐, and zero 

otherwise. Meanwhile, 𝐻𝑜𝑢𝑟𝑠𝑥2009
̅                             is the average hours worked by a member of the 

major-age-sex cell 𝑥 in 2009 and 𝐻𝑜𝑢𝑟𝑠2009
̅                          is the average hours worked by US-born 

adults in 2009. Finally, 𝑁𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑝𝑆ℎ𝑎𝑟𝑒𝑥𝑡 is the share of the US-born population that 

lies within major-age-sex cell 𝑥 at time 𝑡. 
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3.1.2 Measurement Error 

The other potential source of inconsistency in our specification comes from classical 

measurement error in the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡
 variable. At first sight, it may appear that this 

should be addressed by our large 1% sample of the US providing precise estimates. 

However, this variable is highly persistent as new graduates remain in the labour market 

for a long time and exits due to retirement or death tend to be permanent9. Adding fixed 

effects and time trends will therefore subtract out a large portion of the true variation 

in 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡
, but none of the serially uncorrelated measurement errors, potentially 

creating a measurement error problem. 

We resolve this issue by running a robustness test where we randomly split the 

underlying data into two samples and use the calculation of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡
 in one sample 

as an instrument for its measurement in the other sample. As both measurements are 

statistically independent measures of the true value, this approach yields consistent 

estimates. However, the attached confidence intervals may be relatively conservative, as 

psychometricians have long known that the correlation between two halves of a measure 

underestimates the reliability of the full measure (Spearman, 1910; Brown, 1910). 

Therefore, there could be room for efficiency improvements. 

Owing to the specific nature of the measurement error problem in this context, we 

also add a second instrument which is the interaction of our first instrument with the 

natural logarithm of the skill cluster’s size in 2009. This is because the measurement 

error, as a percentage of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡
 , will be smaller for larger clusters and we take 

the logarithm to handle skewness in the distribution of cluster sizes. 

4 Results 

Table 2 presents the results from estimating equation (1) using the OLS and IV 

approaches, alongside results from an analogous first-differences specification. All 

estimates are statistically insignificant but the confidence intervals are small enough to 

exclude many values of potential economic significance. The OLS 95% confidence 

intervals exclude elasticities of graduate wages with respect to the supply of similar 

graduates stronger than -0.1, and elasticities stronger than -0.2 are excluded in the IV 

specification. In contrast, previous studies such as Katz and Murphy (1992) or Autor et 

 
9 It is possible that this would allow the relative supply variable to be trend stationary. However, as the 

sample period is just over 50 years and the typical career is almost as long, it will behave like a non-

stationary series in the finite sample available. Indeed, spurious regression is still a problem in such a 

time series with sufficiently persistent stationary processes (Granger et al, 2001). 
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al (2020), estimate an elasticity around -0.6 for the relative wages of US graduates to 

non-graduates with respect to relative supplies. Additionally, the fixed effect and first-

difference specifications produce very similar results, suggesting that major choices 

responding to labour demand shocks is not a significant source of bias. 

These null results are robust to other reasonable groupings of majors. Figure 3 

demonstrates that our estimates remain statistically insignificant regardless of how many 

clusters we group the majors into. However, the precision of the estimates does vary, 

with precision increasing with the number of clusters. Therefore, we can rule out very 

small elasticities when major is measured at a very fine level, but only larger ones at the 

broadest levels. Notably, the OLS and IV estimates are very similar even in the 

aggregations that produce tight confidence intervals, which also suggests that the OLS 

results contain little bias from labour demand shocks. Readers can decide what level of 

aggregation they think is most interesting, but there is a case for thinking that both 

finer and coarser levels are interesting, although dropping below 30 clusters may be 

undesirable10. We do not estimate elasticities levels much broader than the 20 clusters 

specification in Figure 3 – for example, close to 90% of the observations would lie within 

a single cluster when using only 10 clusters.  We also present figures similar to figure 3 

in Appendix B when taking alternative approaches to clustering that cover changing the 

occupation definition, the number of principal components, and using Ward’s linkage to 

create more evenly sized clusters. The precise null results remain regardless of our 

choices. 

Although we detect a null pattern overall, it could mask some heterogeneous effects 

between skill clusters. Specifically, one might expect a stronger elasticity between wages 

and supply for more skilled majors. Indeed, detecting an effect from some of the lower 

wage majors would be inconsistent with evidence that whatever skills they teach have 

little labour market value (Britton et al, 2022; Andrews et al, 2024). Therefore, we split 

the sample into majors which earn about the mean graduate wage and those that earn 

below it. This split reveals that our results are primarily driven by a very precise null 

result in the lower wage group, where elasticities stronger than -0.1 lie outside both the 

above and below mean confidence intervals. For higher wage clusters, the results remain 

null, but the IV results could still be consistent with elasticities of up to -0.5 in the 

expected direction, with the OLS results being more precise. 

 
10 The big change between 20 and 30 is that the humanities and social sciences cluster is merged with 

the education cluster. We do not think that merging a purely vocational cluster with one mostly 

containing general degrees is desirable for the purposes of our analysis and that this reflects the 

algorithm running out of sensible merging options with a low number of clusters.  
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4.1.1 Errors-in-variables Model 

To address any classical measurement error in the graduate supply variable, we randomly 

split our sample in two to calculate the supply variable for both samples and use one as 

an instrument for the other. By construction, these two variables will measure the 

population value with an independent measurement error, meaning an instrumental 

variables approach will produce consistent estimates. We also add an additional 

instrument interacting the initial instrument with the natural logarithm of a cluster’s 

size in 2009, to reflect the fact that the measurements are more precise in larger clusters. 

Table 4 presents the results from our errors-in-variables analysis. Columns with an 

internal instrument use the procedure described above, while ones with external 

instruments use the value of the IV from equation (2) calculated in the other half of the 

sample. Meanwhile, as the choice of which sample to use to select as an instrument or 

an endogenous variable is arbitrary, we present both options separately as model 1 and 

model 2. All regression models in this procedure have strong instruments and produce 

null results, as one would expect from the earlier results, but with wider confidence 

intervals. Nonetheless, these confidence intervals still consistently exclude elasticities 

stronger than -0.39. That -0.39 is also likely to be conservative given that the estimates 

when we swap the samples used for the instrument and endogenous variable also produce 

similar results. These estimates are also robust to using limited information maximum 

likelihood estimation (Appendix Table A3), which is less susceptible to weak instrument 

bias in overidentified models (Blomquist and Dahlberg, 1999). 

5 Explaining our Results 

The presence of large differences in the returns to a degree by major (Kirkeboen et al, 

2016; Bleemer and Mehta, 2022; Britton et al, 2022; Andrews et al, 2024) and an 

elasticity of substitution between skilled and unskilled labour of around 1.5 to 2 in the 

US (Katz and Murphy, 1992; Autor et al, 2008; Autor et al, 2020) appear mutually 

inconsistent with our estimates. If the returns to a degree mostly reflect subject-specific 

skills and an expansion in graduates erodes the graduate wage premium, then that result 

should be driven by a decrease in the return to those subject-specific skills11.  

We argue that the discrepancy can be understood by revisiting the evidence for a 

link between the college wage premium (graduate wage divided by non-graduate wage) 

and the relative supply of graduates to non-graduates. Specifically, we argue that these 

 
11 Advanced skills being highly complementary to unskilled workers could also explain the apparent 

inconsistency, although it is unclear why a physicist would complement a high school dropout but not an 

English graduate. 
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results were obtained by regressing non-stationary unit root time series upon one 

another, resulting in the type of spurious regression warned about in Granger and 

Newbold (1974). The basic time series setup, introduced by Katz and Murphy (1992) 

and used in studies such as Autor et al (2008) and Autor et al (2020), is presented in 

equation (3): 

ln (
𝑤𝑆𝑡

𝑤𝑈𝑡

) = 𝛼0 −
1

𝜎𝑆𝑈

ln (
𝐿𝑆𝑡

𝐿𝑈𝑡

) + 𝛼1𝑡 + 𝜀𝑡 (3) 

where 𝑤𝑆𝑡

𝑤𝑈𝑡
 is the ratio between the average wage of graduates and the average wage of 

non-graduates in the United States, 𝐿𝑆𝑡

𝐿𝑈𝑡
 is the ratio between total hours worked by 

graduates and total hours worked by non-graduates, and 𝑡 is a time trend to control for 

secular labour demand trends. The aim of this setup is to estimate the parameter 𝜎𝑆𝑈 , 

which is the elasticity of substitution between skilled and unskilled workers under a 

constant elasticity of substitution production function. 

There are good theoretical reasons to suspect a unit root in both the ln(𝑤𝑆𝑡

𝑤𝑈𝑡
) time 

series and the ln(𝐿𝑆𝑡

𝐿𝑈𝑡
) series. For the former, permanent technology shocks affecting the 

relative demand for skilled and unskilled labour could result in a unit root process. While 

the latter series is heavily driven by the production of new graduates, retirements, and 

deaths; all of which are highly persistent processes. 

Indeed, using the replication data from Autor et al (2020), we show that an 

augmented Dickey-Fuller cannot reject a null hypothesis of a unit root for either time 

series. This Dickey-Fuller test allows for the series to have a constant term and a time 

trend, like in the regression setup. We also cannot reject a unit root in the pre or post 

1992 periods, which Autor et al (2020) argues are structurally distinct. The results of 

these tests are presented in Panel A of Table 5, with the p-values ranging between 0.412 

and 0.993. 

Nevertheless, if the time series are cointegrated, the resulting regressions will not 

be spurious. Unfortunately, applying an Engle-Granger test for cointegration using the 

MacKinnon (2010) critical values, reveals that we also can not reject a null hypothesis 

of no cointegration. These test results are presented in Panel B of Table 5 and show that 

the test statistic is well below the critical value even at the 10% level. 

As the time series appear to contain unit roots and are not cointegrated, we need 

to first difference the time series to obtain stationary series. Panel A of Table 6 presents 

the results from estimating variants of equation (3) in levels, while panel B is in first 

differences. Additionally, column (2) of panel A estimates an analogous specification to 

Table A1 of Autor et al (2020), excluding four data points prior to 1963 when annual 
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data was not available12. Regardless of the sample period or specification of the time 

trends, first-differencing produces statistically insignificant estimates that are 

meaningfully different from the original results. The new confidence intervals also 

typically contain values consistent with our results at the finer skill cluster level. Overall, 

this suggests that changes in the relative supply of college graduates have not had large 

effects on the college wage premium. 

Significant substitution between skill groups is also what we should expect after 

examining the structure of the US labour market, as college graduates and non-graduates 

have highly overlapping skills. Most graduates work in occupations where large shares, 

or even a majority, of workers do not possess a degree. Figure 4 plots the density of the 

occupational graduate share for the occupations of US graduates. Although some 

graduates work in graduate-dominated professions, there are clearly many occupations 

where the skills acquired during a degree are either unnecessary or can be acquired via 

alternative means. 

A similar story also holds when looking at our skill clusters. Figure 5 demonstrates 

that most graduates work in occupations where their skill cluster is a clear minority 

(Figure 5), although there are some occupations where a specific skill cluster 

predominates. This obviously limits the extent to which we should see effects. However, 

this graph would likely look slightly less stark if we had data on postgraduate majors. 

Therefore, we do not know if a graduate studied specific subjects directly linked to 

occupational licensing requirements, such as law and medicine, that are only available 

at the postgraduate level in the US, where we might expect supply effects. 

6 Conclusion 

In this paper, we provide a new perspective on how graduate wages respond to changes 

in the supply of graduates. One aspect of this approach is to consider the significant 

heterogeneity in skills between majors. We demonstrate that graduate wages appear 

inelastic to the supply of graduate labour from similar majors, with us being able to rule 

out elasticities stronger than -0.4 in even our most conservative specification. This result 

appears inconsistent with prior research (e.g., Katz and Murphy, 1992; Goldin and Katz, 

2008; Autor et al, 2008; Autor et al, 2020) arguing that the undifferentiated returns to 

college are highly responsive to the supply of graduates. We reconcile this by 

demonstrating that prior results stem from regressing non-stationary time series upon 

one another and that any response attenuates substantially after correcting for this. 

Furthermore, we argue that substantial substitutability between graduate and non-

 
12 First differencing with those four observations would be impossible. 
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graduate labour should be expected given the makeup of the labour market. There is 

significant occupational overlap between graduates and non-graduates and between 

graduates from different majors, implying sharp limits on how different the skills 

typically used by the different groups are. 

These results have significant implications for education policy and our 

understanding of labour markets. Firstly, the inelasticity of wages to an increase in the 

supply of graduates of similar majors imply substantial benefits to reallocating students 

from low return majors to higher return majors or possibly alternative career paths13. 

Low return majors are unlikely to see meaningful wage improvements when their 

numbers significantly shrink, whereas the wage advantage of higher return majors is 

likely to be reasonably robust. For instance, Bleemer and Mehta (2022) estimate a 46% 

return to studying Economics over a second choice major and this advantage is unlikely 

to be significantly eroded by realistic reallocations of students. Meanwhile, our re-

analysis of the US elasticity of substitution between skilled and unskilled workers has 

three major implications. First, it suggests that skill-biased technological change has 

played a larger role in wage inequality than previously thought, as there was little 

countervailing effect from increasing higher education. Second, it also limits the extent 

to which education can be used as a policy lever to reduce inequality. And third, by 

shifting our beliefs about the elasticity of substitution between high and low skilled 

labour upwards, it suggests that the macroeconomic returns to education are likely to 

be slightly greater in general (Gethin, 2023). 

Nevertheless, there are still several stones left unturned in this paper. For example, 

our research suggests that existing education data can be a weak guide to the specific 

skills that an individual worker uses, even at the major level, but we do not investigate 

alternatives. One related area of research shows that occupational licensing requirements, 

which govern the market supply of a very narrow set of skills, appear to affect wages 

(Kleiner and Krueger, 2013; Pizzola and Tabarrok, 2017; Dodini, 2023). Therefore, with 

the appropriate data and methodology, one could investigate how responsive the wage 

of an occupation like doctors responds to the supply of licensed professionals.  

Finally, there may also be room to improve on the estimates of the novel parameter 

estimated in this dataset. If a researcher can access similar data with sufficiently precise 

measures of graduate supply over longer time periods, they could obtain even more 

precise estimates of the novel parameter estimated here. These results would be 

particularly interesting for the higher wage majors. 

 
13 It is possible that some low return majors may lead to lower economic returns than alternative 

training or work after including fees, opportunity costs, and government subsidies. 



18 

 

References 

Acemoglu, D., 2002. Directed Technical Change. The Review of Economic Studies 69, 

781–809. https://doi.org/10.1111/1467-937X.00226 

Acemoglu, D., Autor, D., 2011. Skills, Tasks and Technologies: Implications for 

Employment and Earnings*, in: Card, D., Ashenfelter, O. (Eds.), Handbook of 

Labor Economics. Elsevier, pp. 1043–1171. https://doi.org/10.1016/S0169-

7218(11)02410-5 

Andrews, R.J., Imberman, S.A., Lovenheim, M.F., Stange, K., 2024. The Returns to 

College Major Choice: Average and Distributional Effects, Career Trajectories, and 

Earnings Variability. The Review of Economics and Statistics 1–45. 

https://doi.org/10.1162/rest_a_01503 

Autor, D., Goldin, C., Katz, L.F., 2020. Extending the Race between Education and 

Technology. AEA Papers and Proceedings 110, 347–351. 

https://doi.org/10.1257/pandp.20201061 

Autor, D.H., Katz, L.F., Kearney, M.S., 2008. Trends in U.S. Wage Inequality: Revising 

the Revisionists. The Review of Economics and Statistics 90, 300–323. 

https://doi.org/10.1162/rest.90.2.300 

Beaudry, P., Green, D.A., 2005. Changes in U.S. Wages, 1976–2000: Ongoing Skill Bias 

or Major Technological Change? Journal of Labor Economics 23, 609–648. 

https://doi.org/10.1086/430288 

Becker, G.S., 1962. Investment in Human Capital: A Theoretical Analysis. The Journal 

of Political Economy LXX, 9–49. 

Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U., 1999. When Is “Nearest Neighbor” 

Meaningful?, in: Beeri, C., Buneman, P. (Eds.), Database Theory — ICDT’99. 

Springer, Berlin, Heidelberg, pp. 217–235. https://doi.org/10.1007/3-540-49257-

7_15 

Bils, M., Kaymak, B., Wu, K.-J., 2024. Labor Substitutability among Schooling Groups. 

American Economic Journal: Macroeconomics 16, 1–34. 

https://doi.org/10.1257/mac.20220288 

Bleemer, Z., Mehta, A., 2022. Will Studying Economics Make You Rich? A Regression 

Discontinuity Analysis of the Returns to College Major. American Economic 

Journal: Applied Economics 14, 1–22. https://doi.org/10.1257/app.20200447 

Blomquist, S., Dahlberg, M., 1999. Small sample properties of LIML and jackknife IV 

estimators: experiments with weak instruments. Journal of Applied Econometrics 

14, 69–88. https://doi.org/10.1002/(SICI)1099-1255(199901/02)14:1<69::AID-



19 

 

JAE521>3.0.CO;2-7 

Blundell, R., Green, D.A., Jin, W., 2022. The U.K. as a Technological Follower: Higher 

Education Expansion and the College Wage Premium. The Review of Economic 

Studies 89, 142–180. https://doi.org/10.1093/restud/rdab034 

Bowlus, A., Lochner, L., Robinson, C., Suleymanoglu, E., 2023. Wages, Skills, and Skill-

Biased Technical Change: The Canonical Model Revisited. Journal of Human 

Resources 58, 1783–1819. https://doi.org/10.3368/jhr.0617-8889R1 

Britton, J., van der Erve, L., Belfield, C., Vignoles, A., Dickson, M., Zhu, Y., Walker, 

I., Dearden, L., Sibieta, L., Buscha, F., 2022. How much does degree choice matter? 

Labour Economics 79, 102268. https://doi.org/10.1016/j.labeco.2022.102268 

Brown, W., 1910. Some Experimental Results in the Correlation of Mental Abilities. 

British Journal of Psychology, 1904-1920 3, 296–322. 

https://doi.org/10.1111/j.2044-8295.1910.tb00207.x 

Caliński, T., Harabasz, J., 1974. A dendrite method for cluster analysis. Communications 

in Statistics 3, 1–27. https://doi.org/10.1080/03610927408827101 

Cameron, A.C., Gelbach, J.B., Miller, D.L., 2008. Bootstrap-Based Improvements for 

Inference with Clustered Errors. The Review of Economics and Statistics 90, 414–

427. https://doi.org/10.1162/rest.90.3.414 

Card, D., Lemieux, T., 2001. Can Falling Supply Explain the Rising Return to College 

for Younger Men? A Cohort-Based Analysis*. The Quarterly Journal of Economics 

116, 705–746. https://doi.org/10.1162/00335530151144140 

de Vet, H.C.W., Mokkink, L.B., Mosmuller, D.G., Terwee, C.B., 2017. Spearman–Brown 

prophecy formula and Cronbach’s alpha: different faces of reliability and 

opportunities for new applications. Journal of Clinical Epidemiology 85, 45–49. 

https://doi.org/10.1016/j.jclinepi.2017.01.013 

Deming, D.J., Noray, K., 2020. Earnings Dynamics, Changing Job Skills, and STEM 

Careers*. The Quarterly Journal of Economics 135, 1965–2005. 

https://doi.org/10.1093/qje/qjaa021 

Dickey, D.A., Fuller, W.A., 1979. Distribution of the Estimators for Autoregressive Time 

Series With a Unit Root. Journal of the American Statistical Association 74, 427–

431. https://doi.org/10.2307/2286348 

Dodini, S., 2023. The spillover effects of labor regulations on the structure of earnings 

and employment: Evidence from occupational licensing. Journal of Public 

Economics 225, 104947. https://doi.org/10.1016/j.jpubeco.2023.104947 

Egerod, B., Hollenbach, F.M., 2024. How many is enough? Sample Size in Staggered 

Difference-in-Differences Designs. https://doi.org/10.31219/osf.io/ac5ru 



20 

 

Ferreira, L., Hitchcock, D.B., 2009. A Comparison of Hierarchical Methods for Clustering 

Functional Data. Communications in Statistics - Simulation and Computation 38, 

1925–1949. https://doi.org/10.1080/03610910903168603 

Gethin, A., 2023. Distributional Growth Accounting: Education and the Reduction of 

Global Poverty, 1980-2022. 

Goldin, C., Katz, L.F., 2008. The Race between Education and Technology. Harvard 

University Press. https://doi.org/10.2307/j.ctvjf9x5x 

Granger IV, C.W.J., Hyung, N., Jeon, Y., 2001. Spurious regressions with stationary 

series. Applied Economics 33, 899–904. https://doi.org/10.1080/00036840121734 

Granger, C.W.J., Newbold, P., 1974. Spurious regressions in econometrics. Journal of 

Econometrics 2, 111–120. https://doi.org/10.1016/0304-4076(74)90034-7 

Hastings, J.S., Neilson, C.A., Zimmerman, S.D., 2013. Are Some Degrees Worth More 

than Others? Evidence from college admission cutoffs in Chile. NBER Working 

Paper Series. https://doi.org/10.3386/w19241 

Hellton, K.H., Thoresen, M., 2014. The Impact of Measurement Error on Principal 

Component Analysis. Scandinavian Journal of Statistics 41, 1051–1063. 

https://doi.org/10.1111/sjos.12083 

Hendricks, L., Schoellman, T., 2023. Skilled Labor Productivity and Cross-Country 

Income Differences. American Economic Journal: Macroeconomics 15, 240–268. 

https://doi.org/10.1257/mac.20200256 

Katz, L.F., Murphy, K.M., 1992. Changes in Relative Wages, 1963-1987: Supply and 

Demand Factors. The Quarterly Journal of Economics 107, 35–78. 

https://doi.org/10.2307/2118323 

Kinsler, J., Pavan, R., 2015. The Specificity of General Human Capital: Evidence from 

College Major Choice. Journal of Labor Economics 33, 933–972. 

https://doi.org/10.1086/681206 

Kirkeboen, L.J., Leuven, E., Mogstad, M., 2016. Field of Study, Earnings, and Self-

Selection*. The Quarterly Journal of Economics 131, 1057–1111. 

https://doi.org/10.1093/qje/qjw019 

Kleiner, M.M., Krueger, A.B., 2013. Analyzing the Extent and Influence of Occupational 

Licensing on the Labor Market. Journal of Labor Economics 31, S173–S202. 

https://doi.org/10.1086/669060 

MacKinnon, J.G., 2010. Critical values for cointegration tests (Working Paper No. 1227). 

Queen’s Economics Department Working Paper. 

Pizzola, B., Tabarrok, A., 2017. Occupational licensing causes a wage premium: Evidence 

from a natural experiment in Colorado’s funeral services industry. International 

https://doi.org/10.2307/j.ctvjf9x5x


21 

 

Review of Law and Economics 50, 50–59. 

https://doi.org/10.1016/j.irle.2017.04.005 

Pronk, T., Molenaar, D., Wiers, R.W., Murre, J., 2022. Methods to split cognitive task 

data for estimating split-half reliability: A comprehensive review and systematic 

assessment. Psychon Bull Rev 29, 44–54. https://doi.org/10.3758/s13423-021-

01948-3 

Qvist, H.-P.Y., Holm, A., Munk, M.D., 2021. Demand and Supply Effects and Returns 

to College Education: Evidence from a Natural Experiment with Engineers in 

Denmark. The Scandinavian Journal of Economics 123, 676–704. 

https://doi.org/10.1111/sjoe.12400 

Roy, A.D., 1951. Some thoughs on the distribution of earnings. Oxford Economic Papers 

3, 135–146. https://doi.org/10.1093/oxfordjournals.oep.a041827 

Sokal, R.R., Michener, C.D., 1958. A Statistical Method for Evaluating Systematic 

Relationships. University of Kansas Science Bulletin 38, 1409–1438. 

Spearman, C., 1910. Correlation Calculated from Faulty Data. British Journal of 

Psychology, 1904-1920 3, 271–295. https://doi.org/10.1111/j.2044-

8295.1910.tb00206.x 

Tinbergen, J., 1974. Substitution of Graduate by Other Labour. Kyklos 27, 217–226. 

https://doi.org/10.1111/j.1467-6435.1974.tb01903.x 

US Census Bureau, 2021. Pandemic Impact on 2020 American Community Survey 1-

Year Data [WWW Document]. Census.gov. URL 

https://www.census.gov/newsroom/blogs/random-samplings/2021/10/pandemic-

impact-on-2020-acs-1-year-data.html (accessed 2.18.25). 

Webb, M.D., 2023. Reworking wild bootstrap-based inference for clustered errors. 

Canadian Journal of Economics/Revue canadienne d’économique 56, 839–858. 

https://doi.org/10.1111/caje.12661 

 

 

  



22 

 

Figure 1: Full-time Labour Income by Major (2019) 

 

Notes: Data are from the 2019 American Community Survey. A full-time worker is classified as anyone working at 

least 1560 hours a year, which is 30 hours per week. 
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Figure 2: Example Hierarchical Agglomerative Clustering Dendrogram 

 

Notes: As one moves up the dendrogram, the most similar clusters are merged. Initially, this is subjects 5 and 6. 

This continues until a researcher decides to stop and cut the dendrogram. 
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Figure 3: Elasticity of Graduate Wages to Supply of Similar Majors with 

Varying Numbers of Clusters

 

Notes: Point estimates come from estimating equation (1). The IV estimates use the instrument in equation (2) in a 

two-stage least squares setup. The 95% confidence intervals come from 5000 wild cluster bootstrap replications using 

Webb weights, clustered at the skill cluster level. The number of clusters is the number of clusters we tell the 

hierarchical clustering algorithm to sort the majors into. 
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Figure 4: Graduate Share in Occupations Worked by Graduates 

 

Notes: Kernel density plot using an Epanechnikov kernel. Underlying data contains all college graduates in the 

American Community Survey from 2009-2019. College educated share is the proportion of workers in their four-digit 

occupation with at least a bachelor’s degree.  



26 

 

Figure 5: Same Skill Cluster Share in Occupations Worked by Graduates 

 

Notes: Kernel density plot using an Epanechnikov kernel. Underlying data contains all college graduates in the 

American Community Survey from 2009-2019. Share in the same skill cluster is the proportion of workers in their 

four-digit occupation who majored in a subject within their skill cluster.  
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Table 1: OLS Regression of Supply of Hours Worked from a Major on the 

Supply of Hours Worked from Other Majors within the Same Skill Cluster 

Dependent variable: ln (
𝑀𝑎𝑗𝑜𝑟𝐻𝑜𝑢𝑟𝑠𝑖𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡

) 

 (1) (2) 

 FE IV-FE 

ln (
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡

−
𝑀𝑎𝑗𝑜𝑟𝐻𝑜𝑢𝑟𝑠𝑖𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡

) -0.005 0.042 

 (0.012) (0.101) 

 [-0.03, 0.02] [-0.17, 0.22] 

F-statistic  26.7 

Major-by-age fixed effects Yes Yes 

Year-by-age fixed effects Yes Yes 

Controls Yes Yes 

Time trend Yes Yes 

R-squared 0.001 0.001 

Observations 17,912 17,444 
Notes: Major-age (five year) combinations, the unit of analysis, are weighted proportionally to the sum of their 

members. Standard errors clustered at the skill cluster level are in parentheses. 95% wild cluster bootstrap confidence 

intervals from 5000 replications using Webb weights are in square brackets. Controls cover the proportion of asian, 

hispanic, black, and female workers used to calculate the major-by-age group. Within R-squared values are reported. 

The instrument is defined as proportion of hours worked by natives from within the same skill cluster, excluding those 

from the same major, if everyone worked the hours typical of their age-major-sex combination in the base period of 

2009. 
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Table 2: Elasticity of Graduate Wages to Supply of Graduates with Similar 

Majors 

Dependent variable: ln(𝑤𝑎𝑔𝑒𝑖𝑎𝑐𝑡̅                    ) 

 (1) (2) (3) (4) 

 FE IV-FE FD IV-FD 

ln (
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡

) 0.029 0.006 0.049 -0.003 

 (0.061) (0.108) (0.058) (0.092) 

 [-0.11, 0.16] [-0.25, 0.24] [-0.08, 0.18] [-0.21, 0.19] 

F-statistic  161.1  125.0 

Major-by-age fixed effects Yes Yes Yes Yes 

Year-by-age fixed effects Yes Yes Yes Yes 

Controls Yes Yes Yes Yes 

Time trend Yes Yes Yes Yes 

R-squared 0.008 0.008 0.011 0.011 

Observations 18,419 18,419 16,731 16,731 
Notes: All regressions estimate equation (1) or a first-differenced analogue. Major-age (five year) combinations, the 

unit of analysis, are weighted proportionally to the sum of their members. Standard errors clustered at the skill cluster 

level are in parentheses. 95% wild cluster bootstrap confidence intervals from 5000 replications using Webb weights 

are in square brackets. Controls cover the proportion of asian, hispanic, black, and female workers used to calculate 

the major-by-age group. Within R-squared values are reported. The instrument is defined as proportion of hours 

worked by natives from within the same skill cluster if everyone worked the hours typical of their age-major-sex 

combination in the base period of 2009. 
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Table 3: Elasticity of Graduate Wages to Supply of Graduates with Similar 

Majors by Average Wage of Major 

Dependent variable: ln(𝑤𝑎𝑔𝑒𝑖𝑎𝑐𝑡̅                    ) 

Major wage in 2009: Below Mean  Above Mean 

 (1) (2)  (3) (4) 

 FE IV-FE  FE IV-FE 

ln (
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡

) 0.092 0.066  -0.051 -0.050 

 (0.047) (0.055)  (0.111) (0.236) 

 [-0.04, 0.20] [-0.10, 0.18]  [-0.27, 0.23] [-0.48, 0.59] 

F-statistic  96.3   198.8 

Major-by-age fixed 

effects 

Yes Yes  Yes Yes 

Year-by-age fixed effects Yes Yes  Yes Yes 

Controls Yes Yes  Yes Yes 

Time trend Yes Yes  Yes Yes 

R-squared 0.010 0.010  0.009 0.009 

Observations 9,227 9,227  9,192 9,192 

Notes: All regressions estimate equation (1). Major-age (five year) combinations, the unit of analysis, are weighted 

proportionally to the sum of their members. Standard errors clustered at the skill cluster level are in parentheses. 95% 

wild cluster bootstrap confidence intervals from 5000 replications using Webb weights are in square brackets. Controls 

cover the proportion of asian, hispanic, black, and female workers used to calculate the major-by-age group. Below 

mean average wage means that the average wage of graduates from that major was below the mean graduate’s wage 

in 2009. Within R-squared values are reported. The instrument is defined as proportion of hours worked by natives 

from within the same skill cluster if everyone worked the hours typical of their age-major-sex combination in the base 

period of 2009. 
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Table 4: Errors-in-Variables Model for the Elasticity of Graduate Wages to 

Supply of Graduates with Similar Majors 

Dependent variable: ln(𝑤𝑎𝑔𝑒𝑖𝑎𝑐𝑡̅                    ) 

 Sample Split 1  Sample Split 2 

 (1) (2)  (3) (4) 

ln (
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡

) 0.027 0.029  -0.002 -0.054 

 (0.132) (0.160)  (0.113) (0.113) 

 [-0.31, 0.31] [-0.39, 0.37]  [-0.28, 0.22] [-0.38, 0.16] 

F-statistic 22.6 27.9  19.6 25.6 

Instruments Internal External  Internal External 

Major-by-age fixed 

effects 

Yes Yes  Yes Yes 

Year-by-age fixed effects Yes Yes  Yes Yes 

Controls Yes Yes  Yes Yes 

Time trend Yes Yes  Yes Yes 

R-squared 0.008 0.008  0.008 0.007 

Observations 18,419 18,419  18,419 18,419 
Notes: All regressions estimate equation (1). Major-age (five year) combinations, the unit of analysis, are weighted 

proportionally to the sum of their members. Standard errors clustered at the skill cluster level are in parentheses. 95% 

wild cluster bootstrap confidence intervals from 5000 replications using Webb weights are in square brackets. Controls 

cover the proportion of asian, hispanic, black, and female workers used to calculate the major-by-age group. Within 

R-squared values are reported. The external instrument is defined as proportion of hours worked by natives from 

within the same skill cluster if everyone worked the hours typical of their age-major-sex combination in the base 

period of 2009 from the other half of the sample. The internal instrument is the independent variable calculated in 

the other half of the sample. Either instrument is also interacted with the log of the cluster’s size in 2009 to account 

for the structure of the measurement error. The distinction between Model 1 and Model 2 and is that Model 1 takes 

the value from half of the sample to be endogenous and the other to be the instrument and Model 2 flips this. 
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Table 5: Autor et al (2020)’s Time Series Do Not Pass Diagnostic Tests 

 

Panel A: Augmented Dickey-Fuller Test with Time Trend 

Series: Sample ADF Statistic 5% Critical Value P-value 

Relative Wage 1963-2017 -1.253 -3.496 0.899 

Relative Supply 1963-2017 -1.357 -3.496 0.873 

Relative Wage 1963-1991 -0.346 -3.588 0.988 

Relative Supply 1963-1991 -0.138 -3.588 0.993 

Relative Wage 1992-2017 -1.746 -3.596 0.730 

Relative Supply 1992-2017 -2.340 -3.596 0.412 

Panel B: Engle-Granger Test for Cointegration 

Sample ADF Statistic 5% Critical Value 10% Critical Value 

1963-2017 -2.012 -3.961 -3.630 

1963-1991 -2.615 -4.136 -3.758 

1992-2017 -2.216 -4.164 -3.779 
Notes: These statistics are calculated from the replication data provided by Autor et al (2020). The Engle-Granger 

test for cointegration critical values are calculated from the MacKinnon (2010) formula for N=2 with a time trend. 
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Table 6: Autor et al (2020) Approach Before and After First Differencing 

Dependent variable: ln ( 
𝑤𝑆𝑘𝑖𝑙𝑙𝑒𝑑𝑡

𝑤𝑈𝑛𝑠𝑘𝑖𝑙𝑙𝑒𝑑𝑡
⁄ ) 

 (1) (2) (3) (4) (5) 

 Panel A: Levels 

      

ln ( 
𝐿𝑆𝑘𝑖𝑙𝑙𝑒𝑑𝑡

𝐿𝑈𝑛𝑠𝑘𝑖𝑙𝑙𝑒𝑑𝑡

⁄ ) -0.254*** -0.644*** -0.688*** -0.602*** -0.183 

 (0.048) (0.057) (0.070) (0.079) (0.170) 

      

 Panel B: First Differences 

      

ln ( 
𝐿𝑆𝑘𝑖𝑙𝑙𝑒𝑑𝑡

𝐿𝑈𝑛𝑠𝑘𝑖𝑙𝑙𝑒𝑑𝑡

⁄ ) -0.096 -0.121 -0.120 -0.162 -0.006 

 (0.113) (0.118) (0.121) (0.163) (0.094) 

      

Observations 54 54 54 28 26 

Sample 1963-2017 1963-2017 1963-2017 1963-1991 1992-2017 

Time trend Linear Linear spline Quadratic Linear Linear 

Notes: Heteroskedasticity-robust standard errors in parentheses. Data on college wage premiums and relative 

supplies are taken from Autor et al (2020). The linear spline fits a linear time trend between 1963 and 1992 and a 

different linear time trend between 1992 and 2017, as in many of Autor et al (2020)’s specifications. The first 

differenced regressions difference the time series and omit the constant to be analogous to the levels specification. 
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Table A1: Calinski-Harabasz Index by Number of Clusters 

No. clusters Calinski-Harabasz Pseudo-F 

5 13.77 

10 13.00 

15 23.58 

20 32.82 

25 30.26 

30 32.87 

35 31.79 

40 30.97 

45 29.44 

50 29.30 
Notes: Calculates the Calinski-Harabasz (1974) statistic for a given number of clusters when clustering majors using 

average linkage on the first ten principal components of occupation data. A higher pseudo-F suggests a “better” 

clustering solution in the sense that the clusters are tighter and more distinct from one another. 
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Table A2: Assignment of Majors into Clusters 

Major Cluster 

General agriculture 1 

Agriculture production and management 1 

Plant science and agronomy 2 

Soil science 2 

Forestry 2 

Agricultural economics 3 

Industrial and manufacturing engineering 3 

Engineering and industrial management 3 

Architecture 4 

General engineering 4 

Biological engineering 4 

Architectural engineering 4 

Chemical engineering 4 

Civil engineering 4 

Electrical engineering 4 

Engineering mechanics, physics, and science 4 

Environmental engineering 4 

Geological and geophysical engineering 4 

Materials engineering and materials science 4 

Mechanical engineering 4 

Metallurgical engineering 4 

Mining and mineral engineering 4 

Petroleum engineering 4 

Miscellaneous engineering 4 

Physical sciences 4 

Geology and earth science 4 

Geosciences 4 

Aerospace engineering 5 

Biomedical engineering 5 

Astronomy and astrophysics 5 

Atmospheric sciences and meteorology 5 

Chemistry 5 

Physics 5 

Materials science 5 

Animal sciences 6 

Food science 6 

Environmental science 6 

Natural resources management 6 
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Botany 6 

Ecology 6 

Miscellaneous biology 6 

Computer and information systems 7 

Computer science 7 

Information sciences 7 

Computer information management and security 7 

Computer engineering 7 

Mathematics 7 

Applied mathematics 7 

Statistics and decision science 7 

Mathematics and computer science 7 

Actuarial science 7 

Management information systems and statistics 7 

Computer programming and data processing 8 

Computer networking and telecommunications 8 

Biology 9 

Biochemical sciences 9 

Molecular biology 9 

Genetics 9 

Microbiology 9 

Pharmacology 9 

Physiology 9 

Zoology 9 

Neuroscience 9 

Neuroscience 9 

Cognitive science and biopsychology 9 

Nuclear, industrial radiology, and biological 

technologies 9 

Communication disorders sciences and services 9 

Medical technologies technicians 9 

Health and medical preparatory programs 9 

Nursing 9 

Pharmacy, pharmaceutical sciences, and administration 9 

Medical assisting services 10 

Treatment therapy professions 10 

Miscellaneous agriculture 11 

Area, ethnic, and civilization studies 11 

Physical and health education teaching 11 

Miscellaneous education 11 

Linguistics and comparative language and literature 11 
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French, german, latin and other common foreign 

language studies 11 

Other foreign languages 11 

Family and consumer sciences 11 

Pre-law and legal studies 11 

English language and literature 11 

Liberal arts 11 

Humanities 11 

Library science 11 

Interdisciplinary and multi-disciplinary studies 

(general) 11 

Intercultural and international studies 11 

Nutrition sciences 11 

Interdisciplinary social sciences 11 

Multi-disciplinary or general science 11 

Philosophy and religious studies 11 

Theology and religious vocations 11 

Multi-disciplinary or general science 11 

Psychology 11 

Clinical psychology 11 

Counseling psychology 11 

Social psychology 11 

Miscellaneous psychology 11 

Human services and community organization 11 

Social work 11 

General social sciences 11 

Anthropology and archeology 11 

Geography 11 

Sociology 11 

Miscellaneous social sciences 11 

Miscellaneous health medical professions 11 

History 11 

United states history 11 

General education 12 

Educational administration and supervision 12 

School student counselling 12 

Elementary education 12 

Mathematics teacher education 12 

Early childhood education 12 

Science and computer teacher education 12 

Secondary teacher education 12 
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Special needs education 12 

Social science or history teacher education 12 

Teacher education:  multiple levels 12 

Language and drama education 12 

Art and music education 12 

Educational psychology 12 

Communications 13 

Advertising and public relations 13 

Industrial and organizational psychology 13 

Public administration 13 

Public policy 13 

Economics 13 

International relations 13 

Political science and government 13 

General business 13 

Accounting 13 

Business management and administration 13 

Business economics 13 

Marketing and marketing research 13 

Finance 13 

Human resources and personnel management 13 

International business 13 

Miscellaneous business and medical administration 13 

Operations, logistics and e-commerce 14 

Physical fitness, parks, recreation, and leisure 15 

General medical and health services 15 

Community and public health 15 

Health and medical administrative services 16 

Journalism 17 

Mass media 17 

Composition and speech 17 

Art history and criticism 17 

Music 18 

Visual and performing arts 18 

Communication technologies 19 

Fine arts 19 

Drama and theater arts 19 

Commercial art and graphic design 19 

Film, video and photographic arts 19 

Studio arts 19 

Miscellaneous fine arts 19 
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Hospitality management 20 

Court reporting 21 

Criminal justice and fire protection 21 

Criminology 21 

Naval architecture and marine engineering 22 

Nuclear engineering 22 

Oceanography 23 

Engineering technologies 24 

Electrical engineering technology 24 

Industrial production technologies 24 

Mechanical engineering related technologies 24 

Miscellaneous engineering technologies 24 

Transportation sciences and technologies 25 

Construction services 26 

Military technologies 27 

Electrical and mechanic repairs and technologies 28 

Cosmetology services and culinary arts 29 

Precision production and industrial arts 30 
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Table A3: Errors-in-Variables Model for the Elasticity of Graduate Wages to 

Supply of Graduates with Similar Majors (LIML) 

 

Dependent variable:  

 Model 1  Model 2 

 (1) (2)  (3) (4) 

ln (
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑡

𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠𝑡

) 0.027 0.029  -0.002 -0.055 

 (0.133) (0.160)  (0.113) (0.113) 

 [-0.31, 0.31] [-0.39, 0.37]  [-0.28, 0.22] [-0.38, 0.16] 

F-statistic 22.6 27.9  19.6 25.6 

Instruments Internal External  Internal External 

Major-by-age fixed effects Yes Yes  Yes Yes 

Year-by-age fixed effects Yes Yes  Yes Yes 

Controls Yes Yes  Yes Yes 

Time trend Yes Yes  Yes Yes 

R-squared 0.008 0.008  0.008 0.007 

Observations 18,419 18,419  18,419 18,419 

Notes: All regressions estimate equation (1). Major-age (five year) combinations, the unit of analysis, are weighted 

proportionally to the sum of their members. Standard errors clustered at the skill cluster level are in parentheses. 95% 

wild cluster bootstrap confidence intervals from 5000 replications using Webb weights are in square brackets. Controls 

cover the proportion of asian, hispanic, black, and female workers used to calculate the major-by-age group. Within 

R-squared values are reported. The external instrument is defined as proportion of hours worked by natives from 

within the same skill cluster if everyone worked the hours typical of their age-major-sex combination in the base 

period of 2009 from the other half of the sample. The internal instrument is the independent variable calculated in 

the other half of the sample. Either instrument is also interacted with the log of the cluster’s size in 2009 to account 

for the structure of the measurement error. The distinction between Model 1 and Model 2 and is that Model 1 takes 

the value from half of the sample to be endogenous and the other to be the instrument and Model 2 flips this. 
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Appendix B 

Figure B1: Elasticity of Graduate Wages to Supply of Similar Majors When 

Clustering on 2-Digit Occupation 

 

Notes: Point estimates come from estimating equation (1). The 95% confidence intervals come from 5000 wild cluster 

bootstrap replications using Webb weights, clustered at the skill cluster level. The number of clusters is the number 

of clusters we tell the hierarchical clustering algorithm to sort the majors into. Titles describe whether we z-score the 

data before clustering and whether we use average or ward’s linkage. 
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Figure B2: Elasticity of Graduate Wages to Supply of Similar Majors When 

Clustering on 3-Digit Occupation 

 

Notes: Point estimates come from estimating equation (1). The 95% confidence intervals come from 5000 wild cluster 

bootstrap replications using Webb weights, clustered at the skill cluster level. The number of clusters is the number 

of clusters we tell the hierarchical clustering algorithm to sort the majors into. Titles describe whether we z-score the 

data before taking principal components, the number of principal components we cluster on, and whether we use 

average or ward’s linkage. 
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Figure B3: Elasticity of Graduate Wages to Supply of Similar Majors When 

Clustering on 4-Digit Occupation 

 

Notes: Point estimates come from estimating equation (1). The 95% confidence intervals come from 5000 wild cluster 

bootstrap replications using Webb weights, clustered at the skill cluster level. The number of clusters is the number 

of clusters we tell the hierarchical clustering algorithm to sort the majors into. Titles describe whether we z-score the 

data before taking principal components, the number of principal components we cluster on, and whether we use 

average or ward’s linkage. 

 

 


