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Abstract

A decision maker who needs to choose between two actions has an exogenous

“pseudo prior” that determines for each action the likelihood that they would choose

this action. They also have access to a data set (small or large) on how these

actions performed in the past. The decision maker seeks to use this data set in a

way that makes them better off with the data than without it in the environment

they face. Bayesians generically will not satisfy this property as they “guess” which

environment they face and hence might be wrong. A best choice is identified.

Keywords: distribution-free, learning, treatment choice, A/B testing

1 Introduction

Data is constantly used to aid decision-making. There are several common ways of how

to use data. Bayesians maximize subjective expected utility based on some prior and use

the data to update this prior. Frequentists often use the data to estimate which action is

best and then choose this action. A/B testing typically suggests to make choices based

on the outcomes of hypothesis tests using the data.

We point out a common shortcoming of all of these approaches. Any of these decision

makers can be worse off in the true environment if they sometimes alter behavior after

observing the data. We provide a solution that does not have this shortcoming. We

show how the decision-maker can use the data to make them weakly better off in the true

*We would like to thank Bernhard Kasberger, Anton Kolotilin, Macro Mariotti, Philipp Peitler, Larry

Samuelson and Joergen Weibull for useful comments.

1



environment without knowing this environment, typically they will even be strictly better

off. Not knowing which action is best the decision-maker mixes between the different

actions and updates this mixture (or randomized action) whenever they receive data.

The updating of this mixture has many features that are in common with the process of

updating a prior within the Bayesian paradigm.

More specifically, we consider a decision-maker who has to choose from a finite set

of actions. We limit attention to only two actions in the introduction as well as in the

later part of the paper. Actions generate payoffs that belong to a given interval and

that are drawn from some unknown distribution. Any distribution (also referred to as

environment) generating payoffs in this interval might be the true one. The action that

realizes the highest mean payoff under the true distribution is most preferred. This alone

does not help much for making decisions as the true distribution is not known and there

is no prior over the possible distributions.

Our decision maker has access to a data set. This data set contains some payoffs that

these actions have realized. The sequence of actions in this data set is given and the

payoff of each action in the data set is independently drawn from the true distribution.

The decision maker does not know the true environment. Their indecisiveness about

which action is best is reflected in their choosing a mixed action. This mixed action is

updated whenever they receive new information. The mixed action they would choose if

they did not have this data set or if they had to make a choice prior to receiving data set

is called their pseudo prior.

The pseudo prior is denoted by q. It can be the mixed action that resulted from

updating a previous mixed action using previous data. When facing a novel decision the

likelihood qa can reflect the initial understanding of how likely action a will be the best

one. It can represent the fraction of experts who recommend choosing action a. The

uninformative pseudo prior that puts equal weight on each action captures a decision-

maker who approaches the decision without any bias.

The decision-maker formally has a rule that specifies how they update the pseudo

prior after observing the data set. We introduce a way to evaluate such a rule. We say

that a decision-making rule can be caught guessing under q if there is some candidate

true distribution under which the decision-maker is worse off with the data set than

without it. This evaluation takes place prior to observing the payoffs in the data set and

is computed using expectations under the true distribution. We hasten to point out the

true distribution is simply there and not a random draw from some prior as implicitly
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assumed in the Bayesian paradigm. The term guessing comes from the observation that a

Bayesian assesses (or guesses) by means of their prior the likelihood of each environment.

They will not be guessing in the true environment if they happen to assign a sufficiently

high likelihood to this environment. We will be interested in rules that cannot be caught

guessing under q. These rules will be called non-guessing rules under q. They make the

decision maker on average (under the true distribution) better off after observing the

data set. These rules are unambiguously better than following the recommendation of a

random expert when qa is the frequency of experts recommending action a prior to having

the data set. Notice that the rule that specifies to choose q regardless of which payoffs are

observed in the data set is a non-guessing rule. Including this rule in our set of desirable

rules ensures existence.

Observe that a decision-making rule cannot be caught guessing under q if and only if

every Bayesian weakly prefers following this rule to choosing q. Hence, such a rule can be

recommended to others (in an organization) as it can be accepted by all. With only two

actions a rule that cannot be caught guessing under q chooses on average (as weighted by

the true environment) the best action more likely than under q. So a rule that cannot be

caught guessing under q can weakly improve the understanding of which action is best in

the true environment even if this environment is not known.

As a first insight we obtain that it is not possible to improve the understanding of

which action is truly best (so best in the true environment) if at the outset the decision-

maker is already convinced about which action is truly best. More specifically, assume

that the pseudo prior q puts all probability mass on action a. Then some mass can only

be put on action a′ after observing the data set if the decision-maker is convinced that

action a′ is better than a. However, given the richness of possible distributions, it is not

possible in any finite data set to reach this conclusion. Thus, the trivial rule that chooses

a regardless of which payoffs are observed in the data set is the only rule that cannot

be caught guessing when qa = 1. In the following we consider pseudo priors that put

probability mass on each action.

We find that a rule that cannot be caught guessing is expected to choose actions as

under q if both actions are equally good in the true environment. It is as if the decision-

maker ignores the data set when both actions are equally good. In particular this means

that any non-guessing rule randomizes whenever all payoffs in the data set are equal. We

use this to show that any generic Bayesian can be caught guessing as Bayesians generically

do not use mixed actions. Similarly, hypothesis tests are traditionally non random and
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hence can be caught guessing. We also show that rules that cannot be caught guessing

are continuous in each of the payoffs in the data set. This insight is used to show that any

(frequentist) rule that chooses the action that is estimated (using the data set) as being

the best can be caught guessing.

We then proceed to investigate rules that are linear in each of the payoffs in the data

set. Linear rules are arguably the simplest continuous rules which makes them natural

candidates for non-guessing rules. Moreover, linear rules are simple to evaluate as their

performance only depends on the mean payoffs in the true environment. As our central

result we identify a unique best rule among the linear rules. In any environment its

performance is superior to that of any other rule that is both linear and non-guessing

under q. So one can avoid being caught guessing if one uses the data appropriately.

We illustrate with a simple numerical example. Consider a data set in which action

a yielded payoffs 1, 3 and 5 while action a′ yielded payoffs 4 and 10 and where any

payoff necessarily belongs to [0, 10] . This seems to be a difficult problem. Action a′ looks

better but also was observed less often than a and the sample is extremely small. Under

the uninformative pseudo prior the best linear rule specifies to choose action a′ with

probability 0.804.

This is how choices are determined under the best linear rule. In a first step one has

to apply the randomization trick (Schlag, 2003). Each payoff x in the data set is inde-

pendently randomly transformed into one of the two extreme payoffs 0 or 10 by replacing

payoff x by payoff 10 with probability x/10 and by payoff 0 with probability 1 − x/10.

Note that this random transformation does not change the mean payoff of that observa-

tion. Thereafter the data set only contains extreme payoffs. If the sample is balanced, so

each action is observed equally often, and if the pseudo prior is uninformative then the

next step is very simple. Choose whichever action yielded 10 more often, randomizing

equally likely if there is a tie. If either the sample is unbalanced or the pseudo prior is

not uninformative then the rule needs to be slightly more sophisticated in order to deal

with the underlying asymmetries. Accordingly, there is a cutoff such that action a (action

a′) is chosen if the number of times action a yielded 10 is more (is less) than the cutoff,

randomizing at the cutoff appropriately. This cutoff depends on the total number of times

the payoff 10 is observed in the transformed sample. We provide a simple formula for the

value of the cutoff as well as for the mixed action chosen at the cutoff.

Next we investigate how likely the best linear rule will be choosing the truly best

action in different data sets and under different pseudo priors. Up to now we only know
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that the best linear rule is able to increase this likelihood in each environment when

using the data set. As it is not possible to learn which action is better when the two

actions are arbitrarily similar we assume that there is a minimal difference between their

respective means. We find that the minimal probability of choosing the truly best action

converges to one as the number of samples of each action tends to infinity. If the sample

is balanced then under the uninformative prior the minimal probability of choosing the

truly best action is weakly larger than any other rule, even including rules that can be

caught guessing.

We then investigate how learning under the best linear rule depends on the sample

size, in particular how it improves as samples get larger. In all of simulations we uncover

an approximate universal constant. When doubling the number of times each action ap-

pears in the data set the minimal difference between the two means needed to guarantee

a given minimal probability of choosing the truly best action decreases approximately

by 29%. This simple relationship allows us to nicely quantify inefficiencies introduced by

an unbalanced data seta or by a pseudo prior that is not uninformative. For example,

consider starting with a balanced sample and doubling the number of times one action is

observed. Then the numerical calculations show that one third of the additional observa-

tions are wasted when comparing to the more efficient approach to allocate the additional

observations evenly to the two actions. One third seems small given the extreme un-

balancedness of the data set and the apparent difficulty of comparing actions that are

observed differently often.

We then present rules that are non-randomized and that are non-guessing if the means

are not too similar. We also present a weaker concept of almost no guessing to allow for

new actions to be introduced when there is sufficient evidence. We also show how to

include covariates, uncover connections to hypothesis testing and to social learning and

show how the same methodology applies to making statements about which action is

better.

1.1 Related Literature

In terms of the application, our paper is most related to the treatment choice literature,

notably Manski (2004). Therein the objective is as in this paper, to make a choice after

observing outcomes of the different actions. The information provided within the data

is the payoff yielded by an action (bandit setting), there is no additional information
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about payoffs that other actions would have achieved (as in the foregone payoff setting).

We fix the number of times each action is observed as in stratified random sampling

(Manski, 2004). Important is that the payoffs are generated independently in each of

the observations in the data set. This is very different from the alternative setting in

which decision-maker has to learn from own previous choices as in the machine learning

literature (e.g. Cesa-Bianchi & Lugosi, 2006) and under reinforcement (e.g. Börgers etal.,

2004). Covariates can be included as explained in Section 6, similar to Manski (2004)

and Stoye (2009), by making decisions separately for each vector of covariates. It is also

related to A/B and A/B/C testing (Fabijan etal., 2018) which basically uses the same

framework as treatment choice.

In terms of theory, to avoid being caught guessing is a general and novel suggestion

for how to process information. To our knowledge, the term ”guessing” has not appeared

yet when formalizing concepts in decision-making. In the theory proposed in this paper,

there is a choice to be made, and information has been gathered. The objective is to

attain a payoff that is better when using the information than when not, regardless of

the underlying truth. This concept can be applied to any decision-making or strategic

setting where information has to be processed. We have established this criterion to aid

our understanding of how to make choices based on data. Minimax regret is an alternative

distribution-free method that has also been extensively used in the context of decision-

making based on data (Manski, 2004, Schlag, 2006b, Stoye, 2009 among many others).

One major advantage of our criterion is that the constraints imposed by the definition

allow to construct a rule. In contrast, under minimax regret the rules presented in the

literature have been found by guessing and verifying.

The criterion that the decision-maker must be better off than some benchmark for

any underlying distribution is not new. It can be found in Börgers etal. (2004), which

is based on the concept of absolute expediency (Lakshmivarahan & Thathachar, 1973).

Therein, the decision-maker has to be better off in the next round when conditioning

on their own previous choice. The criterion to always be better off can also be found

in the work on social learning by Schlag (1998) (see also Schlag, 1999 and Hofbauer &

Schlag, 2000). Therein, individuals are learning from others in the population. It is as if

each individual has data about what others have experienced. In these papers on social

learning, the benchmark is endogenous and given by the current frequency of play in the

population. In the present paper the benchmark q is an exogenous input to the model.

The present paper reveals optimality properties of the learning rule used in Hofbauer
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& Schlag (2000), see Section 7. There is also a close connection to hypothesis testing.

It turns out that our best linear non-guessing rule is equivalent to a uniformly most

powerful unbiased linear test, as explained in Section 8. More generally, this paper falls

within the literature on robust decision-making, which can be found in many disciplines,

from statistics (Huber, 1972) to engineering (Taguchi & Phadke, 1989) to economics and

mechanism design (Bergemann & Morris, 2005).

The key to finding non-guessing rules is the randomization trick. In all its generality

it can be found in Schlag (2003), independently it is used for the probability ratio test

by Cucconi (1968) and for decision making by Gupta & Hande (1992). It has been

effectively used to compute exact solutions for decision-making (Schlag, 2006b, Stoye,

2009, Tetenov, 2012, Chen & Guggenberger, 2025), statistical hypothesis testing (Schlag,

2006a) and econometric modeling (Gossner & Schlag, 2013).

The proof behind the characterization of the best linear non-guessing rule uses stan-

dard optimization techniques. After inserting the no guessing constraint into the payoff

objective, one solves constrained optimization for a given payoff distribution and then

shows that the solution does not depend on the underlying distribution. The proofs re-

lated to the ability to learn the best action follow the tradition in the related literature on

minimax regret. Therein, a zero sum game against nature is formulated and equilibrium

strategies are guessed (Schlag, 2006b, Stoye, 2009, Chen & Guggenberger, 2025 among

others).

We proceed as follows. Section 2 contains the model. In Section 3 we present some

first insights and in Section 4 we discuss linear rules. Section 5 contains the results for

choosing between two actions. Therein, in Subsections 5.1− 5.6 we present a “best” rule,

some examples, large sample performance, quantification of performance, non-random

non-guessing rules an an extension on almost no guessing. In Section 6 we show how

covariates can be included, in Sections 7 and 8 we connect to social learning and to

hypothesis testing. In Section 10 compare SEU maximizing to non-guessing. In Sectino

11 we conclude. In the appendix we present the proof of the main theorem from Section

5.1 and parameters of the “best” rule for two actions in small samples.
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2 The Model

A decision-maker has some data and wants to use this to make a choice. The underlying

decision problem is given as follows. The decision-maker has to choose an action a from

a finite set A consisting of n actions. Let ∆A be the set of mixed actions. When deriving

general properties we allow for n ≥ 3 while in our characterization we assume n = 2. Each

action a ∈ A yields a random payoff Za, the (joint) distribution of {Za}a∈A is denoted by

G. Let Ga be the marginal distribution of Za for a ∈ A. For simplicity we assume that

G has finite support. Allowing also for distributions that have non finite support only

complicates the proofs and exposition. We assume that the payoff of any action belongs

to a common given bounded interval. Without loss of generality (given the preferences

stated below), by affinely transforming payoffs, we may assume that the payoff realized

by any action is contained in [0, 1] . So it is assumed that Za ∈ [0, 1] for all a ∈ A. We

will say that G is binary valued if Ga ({0, 1}) = 1 for all a ∈ A. Let µG
a be the expected

payoff of action a, so µG
a =

∫
x
xdGa (x) for a ∈ A.

The decision maker does not know the distribution G they face. When we wish to

give particular emphasis to the distribution they face we denote it by Ḡ and refer to

it as the true distribution. All the decision maker knows is that Ḡ satisfies the prop-

erties above. We refer to distributions that the decision maker thinks they could be

facing as conceivable. Let G denote the set of conceivable distributions, so Ḡ ∈ G and

G = {G with finite support : Ga ([0, 1]) = 1 ∀a ∈ A}. Later we will also consider the case

where G is a subset of this set. All the decision-maker knows about Ḡ is that it belongs

to G. Without seeing the data (as explained below) they cannot distinguish the elements

in G. In particular, the decision maker does not have a prior over the elements of G.
The decision-maker prefers higher expected payoffs to lower expected payoffs under

the true distribution, so they weakly prefer a to a′ if µḠ
a ≥ µḠ

a′ .
1 So a is the best action

if µḠ
a > maxa′∈A\{a} µ

Ḡ
a′ . This preference alone does not help much for making a choice as

the decision-maker does not know Ḡ and hence does not know µḠ
a for any a ∈ A.

The data or data set is given by a set X = {(ai, xi)}mi=1 that consists of m pairs of

observations where xi is a payoff that is has been independently realized by the action

ai ∈ A, so xi is independently drawn from Ḡai , i = 1, ...,m. In particular, the same action

can appear multiple times in the data set. Moreover, not all actions from A need to be

in the data set. Let mā = |{j : aj = ā}| be the number of times that action a appears

1In a slightly more general model, actions would generate outcomes, outcomes would be evaluated by

von Neumann Morgenstern utilities and these utilities would be the payoffs mentioned above.
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in the data set. So m =
∑

a∈Ama. We refer to ma as the sample size of a in the data

set. In the following we will hold the sample size of each action fixed and known to the

decision-maker, so only the payoffs generated are random. We call the data set balanced

if ma = mā for a ̸= ā. For binary valued data sets where xi ∈ {0, 1} for all i = 1, ..,m let

rā = |{j : aj = ā, xj = 1}| be the number of times a success (payoff 1) was observed for

action a ∈ A and let r =
∑

a∈A ra be the total number of successes.

The decision-maker observes the data set X and then makes a choice. The way in

which the decision-maker uses the data set to make their choice can be described by a

mapping (or rule) f from ∪∞
m=1 (A× [0, 1])m to ∆A where f (X)a is the probability of

choosing action a after observing data set X. The expected payoff of their choice after

observing the data set X under the true distribution is then equal to f (X) · µḠ. Note

here that it plays no role how payoffs are correlated between actions. The only relevant

property of Ḡ is its marginals.

Note the randomness implicit in f (X) · µḠ that is due to the randomness in the

realizations of the payoffs in X. To eliminate this randomness we evaluate a rule under

a conceivable distribution G by fixing the actions observed in the data set as defined by

{ma}a∈A and calculate expected payoffs prior to observing the payoffs in the data set.

This expectation is denoted by EG

(
f
(
X̄
))

and formally given by

EG

(
f
(
X̄
))

=

∫
x

f
(
{(aj, xj)}mj=1

)
dGa1 (x1) ...dGam (xm) .

Following our assumptions above, rule f is preferred to rule g under the true distribution

Ḡ if EḠ

(
f
(
X̄
))
> EḠ

(
g
(
X̄
))
.

The choice remains difficult as the decision-maker does not know the true distribution

Ḡ. To aid their choice we introduce a mixed action q ∈ ∆A and use q ·µG as a benchmark

for evaluating the success of the decision-maker after observing the data set. The following

interpretations can be given for q. It can be the choice resulting from learning from

previous data sets. The value qa might be the proportion of times the decision-maker

chose action a in similar situations. The mixed action q might be what the decision-

maker would choose if they did not have data at their disposal. The value qa might be the

likelihood that the decision-maker thinks that action a is best or their degree of openness

to choosing action a. The value of qa can be seen as a model of the decision-maker’s

initial knowledge and understanding of how good action a is before observing the data

set. Alternatively, qa might be the proportion of experts who recommend to choose action

a, capturing the wisdom of the crowd. In any of these interpretations, qa = 1 would mean
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that under the benchmark the decision-maker would have no slightest doubt that action

a should be chosen.

We refer to q as the pseudo prior. Two candidates for pseudo priors stand out. One

is the pseudo prior that puts equal weight on each action, so qa = 1
n
for all a ∈ A.

We call it the uninformative pseudo prior as it does not give any action an advantage

or special attention, reflecting a decision-maker who has no prior information on this

decision problem. Another candidate is the pseudo prior q under which an action is

chosen according to the frequency with which it occurs in the data set. This pseudo

prior might make sense when the actions in the data set have been sampled from some

population in which case this choice of q reflects (on average) the frequencies with which

the actions occur in this population. Under this pseudo prior a close connection to social

learning will be revealed in Section 7.

If the decision-maker would be a Bayesian (more precisely, a subjective expected utility

maximizer) then they would have a prior over the conceivable distributions in G and would

choose an expected payoff maximizing action. Let Q be this prior. Then the Bayesian

would choose a rule f̂ that maximizes
∫
G∈G EG

(
f
(
X̄
))
·µGdQ (G) . Note that the Bayesian

expects that they will do better when conditioning on the data than when choosing q for

any q. This is because the rule f̂ they would choose satisfies∫
G∈G

EG

(
f̂
(
X̄
))

· µGdQ (G) = max
f

∫
G∈G

EG

(
f
(
X̄
))

· µGdQ (G) ≥
∫
G∈G

q · µGdQ (G) .

However, the prior Q is hypothetical. The distribution Ḡ they face is given and not

drawn from any distribution. In the end the decision-maker only cares about the expected

payoffs they obtain under the distribution Ḡ. As the above inequality need not hold for

all distributions G, they might strictly prefer q to their rule under the true distribution

Ḡ. Namely, it might be that

EḠ

(
f̂
(
X̄
))

· µḠ < q · µḠ. (1)

Note that this can only happen if the weight put by the decision-maker’s prior Q on

Ḡ is sufficiently small. In this sense they would be caught guessing that they are not

facing the distribution they are actually facing.2 Note that the property of being caught

guessing does not depend on a particular realization of the payoffs, it is an observation

about average performance when weighing realizations according to the underlying payoff

2To guess is to form an opinion from little or no evidence (Meriam-Webster Dictionary, 2024). Guessing

implicitly means to take wrong decisions in to account.
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distribution. This discussion raises two questions. Will Bayesians potentially be caught

guessing? What properties do rules have that cannot be caught guessing? Both of these

questions will be formalized and answered.

In this paper we look for rules that cannot be caught guessing. Specifically we search

for rules where the decision-maker is always better off with the data than when choosing

the mixed action q. We call such rules non-guessing.

Definition 1 A rule f can be caught guessing under the pseudo prior q if there exists

a distribution G ∈ G such that EG

(
f
(
X̄
))

· µG < q · µG. A rule f is called a non-

guessing rule under the pseudo prior q if it cannot be caught guessing under q, so if

EG

(
f
(
X̄
))

· µG ≥ q · µG holds for G ∈ G.

If qa is the frequency of experts recommending action a for each a ∈ A then with a

non-guessing rule the decision maker will on average beat the wisdom of the crowd. If q is

the choice made after observing the previous data set then a non-guessing rule on average

makes the decision maker weakly better off after observing each additional data set. If

there are only two actions (so n = 2) then a non-guessing will learn on average which

action is better as it will choose the best action weakly more likely than the pseudo prior

whenever the two means are not equal. The term average refers above to expectations

taken based on the true distribution.

Note the difference between non-guessing and SEU maximization. A Bayesian stores

their understanding of which environment they might be facing in a prior and updates this

when observing data. A decision-maker who uses a non-guessing rule does not directly try

to infer which joint distribution they are facing. Instead they store some understanding

of how good each action is in their pseudo prior and update this understanding when

observing data. In Section 10 we provide a more extensive comparison between SEU

maximization and non-guessing.

Let F∗ be the set of all non-guessing rules. Note that the rule to choose q regardless

of the information provided by the data set is a non-guessing rule. Criteria for selecting

among non-guessing rules are straightforward to add.

We obtain the following trivial characterization.

Remark 2 Fix q ∈ ∆A. A rule f is non-guessing under q if and only if exante before

observing the data set any Bayesian weakly prefers following this rule to choosing q.

In this spirit non-guessing rules can be used to reach consensus among a committee

consisting only of Bayesians. Assume that there is a given default that is chosen if there
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is no agreement. Then each member of the committee will agree to a given non-guessing

rule under q if q is set equal to this default. Assume instead that disagreement leads to

random dictatorship. Then only give the committee access to the data set if they agree in

which case each member of the committee will agree on a given non-guessing rule under

q if qa is set equal to the fraction of them who without the data set have action a as their

most preferred action.3

In the next section we will find out whether Bayesians can be caught guessing. As

our first illustration of how to evaluate the non-guessing property we choose a simple

frequentist rule.

Example 3 (The Random Empirical Success Rule) A natural way to make deci-

sions when there is no information is to choose the action that achieved the higher aver-

age payoffs in the data set, randomizing with equal probability whenever there are ties for

the highest. Formally, this is the rule f where f
(
(aj, xj)

m
j=1

)
a
= 1

L
if 1

ma

∑
j:aj=a xj ≥

1
ma′

∑
j:aj=a′ xj for all a′ ̸= a where L =

∣∣∣argmaxa′′
{

1
md

∑
j:aj=a′′ xj

}∣∣∣ . We call this rule

the random empirical success rule (short, rES).4 It is easy to verify that, for any given

distribution, rES learns with high probability which action is best if the data set contains

sufficiently many observations of each action. However, rES can be caught guessing un-

der any pseudo prior and any data set as we explain after Proposition 8 below. To gain

some intuition let rES be denoted by f r, assume A = {a, a′} and consider the simplest

data set in which ma = ma′ = 1. Assume that the decision-maker is unknowingly facing

a decision problem in which the payoff to action a is Bernoulli distributed while action a′

is deterministic. Specifically, assume that Ḡ is such that Ḡa ({0, 1}) = Ḡa′ ({z}) = 1 for

some z ∈ (0, 1) . Then EḠ (f r)a = µḠ
a so EḠ (f r) · µḠ =

(
µḠ
a

)2
+
(
1− µḠ

a

)
z. Note that

EḠ (f r)·µḠ ≥ q ·µḠ holds if and only if (EḠ (f r)a − qa)·
(
µḠ
a − z

)
=
(
µḠ
a − qa

)
·
(
µḠ
a − z

)
≥

0. Consequently, EḠ (f r) · µḠ < q · µḠ when qa < µḠ
a < z. This reveals that rES can be

caught guessing for any choice of q when ma = ma′ = 1. Treating the data as represen-

3Clearly, no rule can be acceptable by any set of Bayesians if each of them is free to choose whatever

they wish if they do not have access to the data set. This is because some might have a degenerate

prior that puts all weight on an environment that has a unique best action and where all data sets are

possible. They would choose the best action in that environment strictly not prefer any rule that does

not stubbornly recommend that action.
4The only difference to the empirical success rule of Manski (2004) appears when several actions

achieve the same maximal empirical success 1
mb

∑
j:aj=b xj . While BAR randomizes equally likely among

these, the empirical success rule is non randomized. All actions are indexed and the rule selects the action

with the lowest index among those with the highest empirical success.
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tative ignores the underlying random nature of the decision problem and leads to some

guessing.

3 First Insights

We now present some properties of non-guessing rules. These properties give initial guid-

ance for how to construct rules and also help in the comparison to SEU maximization.

First we identify data sets in which the understanding of the decision-maker about

how good an action is, as captured by the pseudo prior, may not change. It may not

change if this action is not contained in the data set. Similarly it may not change if this

action is ruled out a priori before observing the data. In particular, if the pseudo prior

puts all mass on a single action then the decision-maker who uses a non-guessing rule

must ignore the data set and choose this action regardless of the observations in the data

set. These findings are closely connected to the insight that any improving social learning

rule has to be imitating, as further explained in Section 7. Formally:

Proposition 4 Let f be a non-guessing rule under q. If mX
a = 0 or qa = 0 then f (X)a =

qa.

We provide some intuition behind this finding. Proofs are omitted as they are straight-

forward. To simplify the arguments assume that there are only two actions a and a′.

Consider first the case where action a does not occur in the data set, so mX
a = 0.Without

any observations of action a it is hard to learn which of the two actions is better. Only

understanding how good or how bad action a′ is does not help in understanding whether

action a′ is better or worse than action a. Hence, a non-guessing rule will not change the

weight put on action a, so f (X)a = qa if mX
a = 0. Now consider the case where action

a would never be chosen without the data, so qa = 0. To change the weight on action

a after observing the data means to increase the probability of choosing action a at the

expense of decreasing the probability of choosing some other action. This may only be

done if one is sure that action a is better than some other action. However, no data set

can reveal with certainty that this is true. Hence, the understanding about action a will

not change if qa = 0.

Given these insights it seems hard to learn from data without guessing. However, as

we see below, this is possible when 0 < qa < 1. One can increase the weight on action a

13



when action a looks better than action a′ and decrease it when action a looks worse than

action a′. When done appropriately, one can move on average (as weighted by the true

underlying distribution) in the right direction.

Next we identify distributions under which the decision-maker’s understanding may

not change in expectation. This holds true for distributions in which all actions are equally

good. Note that non-guessing definition has no bite when all actions are equally good.

The proof of this finding utilizes continuity arguments.

Proposition 5 Assume that f is a non-guessing rule under q. If G is such that µG
a = µG

a′

for all a, a′ ∈ A then EG

(
f
(
X̄
))

= q.

Proof (of Proposition 5). Assume that f is a non-guessing rule. Consider some G

such that µG
a′ = µG

a′′ for all a′, a′′ ∈ A and EG

(
f
(
X̄
))

a
> qa. Then we can change G

slightly to Ĝ such that µĜ
a < µĜ

a′ = µĜ
a′′ for all a, a′′ ∈ A\ {a} . Yet, as EG

(
f
(
X̄
))

a
is

continuous in G, we still have EĜ

(
f
(
X̄
))

a
> qa (provided Ĝ is sufficiently close to G)

which contracts the fact that f is a non-guessing rule.

An immediate implication is that a decision-maker using a non-guessing rule chooses

the pseudo prior whenever all payoffs in the data set are equal.

Corollary 6 If f is a non-guessing rule under q then f ((ai, y)
m
i=1) = q for all y ∈ [0, 1] .

In particular, this shows that non-guessing rules sometimes randomize whenever the

pseudo prior does not put all mass on a single action.

Given these insights we can now answer whether Bayesians can be caught guessing.

To qualify the behavior of a Bayesian it is natural to let the pseudo prior q be their choice

under their prior when there is no data set. In the following arguments we also allow for

more general pseudo priors as one might wonder what happens if, when starting from some

default choice q, the decision is delegated to a Bayesian. We say that a decision maker

is responsive to the data set if there is some data set for which they choose something

different from the pseudo prior. It turns out that any Bayesian who is response to the data

set can typically be caught guessing. We first explain intuitively and then formally. This

statement follows immediately from Proposition 4 if the pseudo prior is deterministic. If

the pseudo prior is not deterministic then Corollary 6 implies that the Bayesian has to

randomize after some data sets. However, as we show below, Bayesians typically do not

randomize where typically is given in a well defined sense.
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More formally, we say that Bayesians generically can be caught guessing under q if the

set of all priors under which any SEU maximizing rule can be caught guessing is dense

in G while its complement is nowhere dense in G. So to find a SEU maximizer who uses

a non-guessing rule is an exception. There will be arbitrarily close priors where all SEU

maximizers can be caught guessing. On the other hand, whenever there is a prior under

which it is not possible to be both SEU maximizing and non-guessing then this property

will also hold for any nearby prior.

Corollary 7 Any responsive Bayesian generically can be caught guessing under q for any

q ∈ ∆A.

Proof. Given the arguments in the text above we only need to consider a non deter-

ministic pseudo prior q. Let a′, a′′ ∈ A be such qa′ , qa′′ > 0. Following Proposition 5

a non-guessing rule randomizes between a′ and a′′ when all payoffs in the data set are

equal. In the following we show that Bayesians generically will not randomize between a′

and a′′ for any data set.

Let Q′ (X|Q) be the posterior given prior Q and data set X. Let P (X|G) be the

probability of observing data set X under joint distribution G ∈ G. Then

Q′ (X|Q)
(
Ḡ
)

Q′ (X|Q) (G)
=
P
(
X|Ḡ

)
Q
(
Ḡ
)

P (X|G)Q (G)
.

Let Q̄ be the prior of the Bayesian decision-maker and let Q̂ = (1− ε) Q̄+ ε
[
Ĝ
]
for some

Ĝ ∈ G where
[
Ĝ
]
∈ G is defined by

[
Ĝ
] (
Ĝ
)
= 1. Then for all G, Ḡ ∈ G\

{
Ĝ
}
we have

Q′
(
X|Q̂

)
(G)

Q′
(
X|Q̂

) (
Ḡ
) =

Q′ (X|Q̄
)
(G)

Q′
(
X|Q̄

) (
Ḡ
)

and for G ̸= Ĝ we have

Q′
(
X|Q̂

)(
Ĝ
)

Q′
(
X|Q̂

)
(G)

=
P
(
X|Ĝ

)(
(1− ε) Q̄

(
Ĝ
)
+ ε
)

P (X|G) (1− ε) Q̄ (G)
=
P
(
X|Ĝ

)
Q̄
(
Ĝ
)

P (X|G) Q̄ (G)

(1− ε) Q̄
(
Ĝ
)
+ ε

(1− ε) Q̄
(
Ĝ
)

>
Q′ (X|Q̄

) (
Ĝ
)

Q′
(
X|Q̄

)
(G)

.

So Q′
(
X|Q̂

)
= (1− λ)Q′ (X|Q̄

)
+ λ

[
Ĝ
]
for some λ > 0.
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Let µQ
a =

∫
µG
a dQ (G) be the expected payoff of action a ∈ A under prior Q. Assume

that Q̄ is such that µ
Q′(X|Q̄)
a′ = µ

Q′(X|Q̄)
a′′ for some a′, a′′ ∈ A with a′ ̸= a′′. Consider any Ĝ

such that µĜ
a′ > µĜ

a′′ . Then µ
Q′(X|Q̂)
a = (1− λ)µ

Q′(X|Q̄)
a + λµĜ

a for a ∈ A and consequently

µ
Q′(X|Q̂)
a′ > µ

Q′(X|Q̂)
a′′ . Thus the Bayesian with prior Q̂ which is arbitrarily close to Q̄ will

not be indifferent between actions a′ and a′′.

The above shows that the set of priors under which any SEU maximizing rule under

this prior have some guessing is dense. We now show that its compliment is nowhere

dense. Consider some open neighborhood N in G. Let Q̄ ∈ N . Then Q̂ ∈ N if ε is

sufficiently small. As µ
Q′(X|Q̂)
a′ > µ

Q′(X|Q̂)
a′′ , by continuity of Bayesian updating, there

will be a neighborhood N0 of Q̂ such that µ
Q′(X|Q)
a′ > µ

Q′(X|Q)
a′′ holds for all Q ∈ N0.

Consequently, the non-guessing rules are not dense in N0 and hence not dense in N .

Our third insight is that any non-guessing rule has to be continuous and monotone in

the payoffs. In particular, the decision-maker should not “jump to conclusions” whenever

some payoff in the data set changes slightly.

Proposition 8 Assume that f is a non-guessing rule. Then f
(
{(aj, xj)}mj=1

)
is contin-

uous in xi and f
(
{(aj, xj)}mj=1

)
ai

is weakly monotone increasing in xi for all i = 1, ..,m.

Proof. Assume that f is a non-guessing rule. We wish to show that f has to be continuous

in xi by contradiction. Consider data set X in which xi < 1 where i ∈ {1, ..,m} . Assume

that f (X)ai makes a discontinuous jump when xi slightly increases in the data set X.

Take a distribution G such that X occurs with positive probability, no action yields

a deterministic payoff and all actions are equally good. Such distributions exist. By

replacing xi by xi+ε and slightly changing the weights on some other payoffs in the support

of G we can make it such that all µa remain all equal. As f makes a discontinuous jump

when xi slightly increases, so does EG

(
f
(
X̄
))

ai
in the same direction. On the other hand,

as all means stay the same, EG

(
f
(
X̄
))

ai
= qai has to remain unchanged by Proposition

5 which is a contradiction to f has to be continuous.

We now prove weak monotonicity. Consider a data set X and let (a, x1) be the first

data point in this set. Assume that x1 < 1. We will show that fa has to be weakly

monotone increasing in x1. Let G ∈ G be such that µG
a′ =

1
2
for all a′ ∈ A and X occurs

with positive probability. So Ga ({x1}) > 0. As G has finite support, we can find ε > 0

sufficiently small so that Ga ({x1 + ε}) = 0. Let X̂ be defined by replacing (a, x1) by

(a, x1 + ε) .
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We now move some mass that Ga puts on x1 to x1 + ε to obtain distribution Ĝ. Let γ

be the mass moved. So γ is the probability that Ĝa puts on x1 + ε. Choose γ sufficiently

small. Then the distributions of data sets under G and Ĝ are essentially identical apart

from the probability γ under which data set X occurs under G while data set X̂ occurs

under Ĝ. As γ is sufficiently small, all other data sets that cannot occur under both G

and Ĝ can be ignored.

Assume f (X)a > f
(
X̂
)
a
which violates weak monotonicity of fa. ThenEG

(
f
(
X̄
))

a
>

EĜ

(
f
(
X̄
))

a
holds when γ is sufficiently small. As µG

a′ =
1
2
for all a′ ∈ A, by Lemma 5 this

means that EG

(
f
(
X̄
))

a
= qa > EĜ

(
f
(
X̄
))

a
. On the other hand, as f is a non-guessing

rule, and µĜ
a′ =

1
2
< µa for a′ ̸= a we have EĜ

(
f
(
X̄
))

a
≥ qa, which is a contradiction.

A direct consequence of Proposition 8 is that the ability randomize with any intensity

is an integral part of any responsive non-guessing rule. More specifically, consider a

non-guessing rule that chooses action a with probability λ0 for some data set and with

probability λ1 for some other data set with λ0 < λ1. Then for any λ ∈ (λ0, λ1) there

exists a data set for which the rule chooses action a with probability λ. This follows with

continuity from the intermediate value theorem. In particular this shows why rES can be

caught guessing under any q. Similarly, any other frequentist rule that estimates which

action is best and only randomizes when there are ties can be caught guessing under any

q.

Finally we show how one can sequentially combine two non-guessing rules that each

have access to their own data set into a new non-guessing rule for the combined data set.

The idea is to sequentially apply one rule after the other, using the output of the first

rule as pseudo prior for the second. This is reminiscent of SEU maximization where the

posterior can be used as a prior when facing the next data set.

Proposition 9 Let t ∈ {2, ...,m− 2} and let f, f̄ , f̂ be rules such that

f̂ ({(ai, xi)}mi=1) = f̄
(
{(ai, xi)}mi=t+1

)
for all {xi}mi=1 ∈ [0, 1]m .

If f is a non-guessing rule under pseudo prior q and f̄ is a non guessing rule under pseudo

prior f
(
{(ai, xi)}ti=1

)
then f̂ is a non-guessing rule under pseudo prior q.

The proof follows from the definitions. Note that it is important that the intermediate

round t does not depend on payoffs in the data set. Later we will provide some examples

to evaluate the effectiveness of this sequential combination.
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4 Linear Rules

Given the insights from the previous section it is not clear where to start looking for

non trivial non-guessing rules as both SEU maximization and frequentist rules have been

ruled out. Moreover the rule has to be very sensitive to changes in payoffs. The set

of possible rules is infinitely dimensional so there are many ways of introducing this

sensitivity. On the other hand we have a powerful identity that has to hold whenever all

actions are equally good. At this point the search would be a lost cause were it not for

the randomization trick. This is a method that allows to limit attention to binary valued

data sets and linear rules, reducing the complexity of the problem enormously. Together

with the mentioned identity we will be able to identify linear non-guessing rules. We also

comment on the further value of linear rules.

Definition 10 The rule f is linear if f ((ai, xi)
m
i=1) is linear (or, more precisely, affine)

in xj for each j ∈ {1, ..,m} , so for each a ∈ A and j ∈ {1, ..,m} there exist functions

γj (x−j) and δj (x−j) such that f ((ai, xi)
m
i=1)a = γj (x−j)xj + δj (x−j).

Linear functions are arguably the simplest continuous functions. Following Proposition

8, non-guessing rules have to be continuous. It is easy to see that any linear rule f satisfies

f ((ai, xi)
m
i=1) =

1∑
j1=0

...
1∑

jm=0

(
m∏
i=1

xjii (1− xi)
1−ji

)
f ((ai, ji)

m
i=1) .

In particular, linear rules are uniquely defined by their values for binary valued data

sets. In fact, this equality shows how one can construct a linear rule f for data sets with

payoffs in [0, 1] when starting with a rule f 0 that is defined on binary valued data sets. For

i = 1, ..,m, independently randomly transform the ith payoff xi into 1 with probability

xi and into 0 with probability 1− xi. After transforming all payoffs one obtains a binary

valued data set to which then we evaluate the rule f 0. The rule f is then set equal to

the expected choices under this construction, the formula is given by the equation above

when replacing f on the right hand side by f 0.The construction of a linear rule from a

rule for binary valued data is called the randomization trick and goes back to (Schlag,

2003). The value of this trick is that this construction nicely uncovers how properties of

the rule f 0 for binary valued data automatically carry over to data where payoffs are in

[0, 1] .

The unique linear rule f for payoffs belonging to [0, 1] that emerges from this con-

struction is called the linear extension of f 0. Note that one can also evaluate the linear
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extension of a rule that is defined for payoffs in [0, 1] by limiting this rule to binary valued

payoffs and then creating the linear rule. This mapping is of course the identity mapping

when the original rule was already linear.

Proposition 11 If f 0 is a non-guessing rule under q for distributions with payoffs in

{0, 1} then the linear extension of f 0 is a non-guessing rule under q when facing distri-

butions with payoffs in [0, 1] .

This result will be used in the next section to find non-guessing rules by looking at

the much simpler setting where payoffs are binary valued and thereby identifying linear

non-guessing rules when payoffs are in [0, 1] .

We point out three nice properties of linear rules. First of all, linear functions are easy

to evaluate as due to linearity,

EGf ({(ai, xi)}mi=1) = f
({(

ai, µ
G
ai

)}m
i=1

)
=

1∑
j1=0

...
1∑

jm=0

(
m∏
i=1

(
µG
ai

)ji (
1− µG

ai

)1−ji

)
f ((ai, ji)

m
i=1) .

Second of all, linear non-guessing rules can be most preferred among the set of all

non-guessing rules. The advantage of being linear emerges when selecting among non-

guessing rules using a worst case approach. One might wish to minimax regret among

the non-guessing rules, where regret is given by loss of not having chosen the best action.

Alternatively, one might wish to maximize the minimal probability of choosing the best

action when the means of the actions are not too similar (as in Section 5.4). In the most

generality consider selecting among the non-guessing rule one that minimizes a maximum

loss. Specifically, let l (G, p) ∈ R be the loss of choosing p ∈ ∆A given distribution G and

assume that f is weakly preferred to f̄ if

sup
G∈G

l
(
G,EG

(
f
(
X̄
)))

≤ sup
G∈G

l
(
G,EG

(
f̄
(
X̄
)))

.

It then follows with Proposition 11 that the linear extension of a non-guessing rule is

a non-guessing rule that is weakly preferred to the original rule. When computing the

maximum loss using the linear extension it is like maximizing the original expression only

over the binary valued distributions. This shows that linear rules exist among the most

preferred non-guessing rules under such worst case scenario preferences.

The third property refers to averaging. The availability of some data only in terms

of averages often emerges when using data from sources of others. Averaging is also a

way to deal with data sets that consist of independent groups of dependent observations
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by taking averages among those that are dependent. Linear non-guessing rules remain

non-guessing when some of the payoffs in the data set are themselves averages.

More formally, let G
(t)
a be the distribution of the average of t identically distributed

random variables with distribution Ga, so G
(t)
a is the distribution of 1

t

(
Z

(1)
a + ...+ Z

(t)
a

)
where Z

(j)
a , j = 1, .., t are (possibly non independent) copies of Za. Given k ∈ Nm let Xk

be a data set in which payoff zj is independently drawn from G
(kj)
a . So Xk = X when

kj = 1 for all j = 1, ..,m. We say that Xk is a data set that allows for averages.

Proposition 12 If f is a linear non-guessing rule then f is also a non-guessing rule

when the data set allows for averages.

The statement follows immediately by observing that 1
t

(
Z

(1)
a + ...+ Z

(t)
a

)
has mean

µG
a . As the performance of a linear rule only depends on the underlying mean of each

observed payoff it does not matter how the payoffs are otherwise distributed.

5 Data Sets with Only Two Different Actions

Given the last two sections it now seems feasible to be able to identify non-guessing

rules. Yet as we wish to consider any data set and select among the non-guessing rules

tractability is still a concern. So we limit attention to data sets that contain only two

actions. Given Proposition 4 we can assume without loss of generality that n = 2 and

ma,ma′ ≥ 1 (so m ≥ 2).

5.1 A “Best” Rule

Given the findings in Section 4 we search for non-guessing rules among the linear rules.

It turns that there is a dominant linear non-guessing rule. Being dominant, for any given

vector of the mean payoffs, it maximizes the minimal expected payoff, minimizes the

maximal regret and maximizes the minimal probability placed on the best actions.

We call f̄ a dominant rule among the rules in the set ⪯F if f̄ ∈ ⪯F and f̄ achieves higher

expected payoffs than any other rule f in ⪯F under any distribution G, so if EG

(
f̄
(
X̄
))

·
µG ≥ EG

(
f
(
X̄
))

· µG for f ∈ ⪯F and G ∈ G.
Linear rules can be characterized by their behavior when data is binary valued. Cutoff

rules for binary valued data play a central role in our main characterization. We say that
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a rule f 0 for binary valued data is a cutoff rule if for each r ∈ {0, ..,m} there exists a ∈ A,

sr ∈ {0, ..,ma} and θr ∈ (0, 1] such that f 0
a = 1 if ra > sr, f

0
a = θr if ra = sr and f 0

a = 0

if ra < sr. Loosely speaking, choose action a if it yielded strictly more successes that a

given threshold, choose the other action if it yielded strictly less and mix appropriately

at the threshold.

Theorem 13 Given A = {a, a′} and q such that qa, qa′ > 0 consider the cutoff rule f 0∗

for binary valued data defined as follows. Let s0 = 0, sm = ma and θ0 = θm = qa. For

r ∈ {1, ..,m− 1} let sr with max {0, r −ma′} ≤ sr ≤ min {r,ma} and θr ∈ (0, 1] be such

that

1(
m
r

)
(ma

s

)(
ma′

r − s

)
θr +

min{r,ma}∑
i=s+1

(
ma

i

)(
ma′

r − i

) = qa, (2)

so

1(
m
r

) min{r,ma}∑
i=s+1

(
ma

i

)(
ma′

r − i

)
< qa ≤

1(
m
r

) min{r,ma}∑
i=s

(
ma

i

)(
ma′

r − i

)
and

θr =

(
m
r

)(
ma

s

)(
ma′
r−s

)
qa − 1(

m
r

) min{r,ma}∑
i=s+1

(
ma

i

)(
ma′

r − i

) .

Then the randomized extension f ∗ of the rule f 0∗ is a dominant rule among the linear

non-guessing rules and it is the unique rule with this property.

The proof of this result is in the appendix. At the end of this section we discuss

the limitations introduced by limiting attention to linear rules. We proceed now by

providing some intuition behind the construction of the dominant linear non-guessing rule.

Following Proposition 11, all we need to do is to find a non-guessing rule for Bernoulli

distributions. A rule for general distributions that inherits its properties is then created

by using the randomization trick. So let us look at the rule f 0∗ for binary valued data sets.

As we wish to choose action a when action a is better, it is natural to choose a when there

are sufficiently many more successes of a than of a′ in the data. The threshold is chosen

so that, following Proposition 5, the non-guessing rule selects action a with probability

qa whenever both actions are equally good. This condition has to hold when µa = µa′

is small and there are most likely to be few successes in the data set as well as when

µa = µa′ is large and there are many successes in the data set. To be able to condition

on the total number of successes makes it possible to guarantee this condition across all
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values of µa = µa′ . The equality (2) emerges directly from this condition. In Section 8 we

give more insights by establishing a connection to unbiased hypothesis tests.

We further the understanding of the dominant linear non-guessing rule by presenting

some comparative statics. We first consider properties defined by f 0∗ that govern how the

dominant linear rule deals with the transformed data set. Equivalently, these are proper-

ties of the dominant linear rule in binary data sets. Specifically we present comparative

statics on the cutoff sr. We do this for large samples where it is easy to verify using the

central limit theorem that the cutoff sr approximately satisfies

qa ≈ 1− Φ

(
sr
r
; p,

√
p (1− p)

r

(
1− r

m

))
for 1 ≤ r ≤ m− 1,

where p = ma

m
and Φ (·;µ, σ) is the cdf of the Normal distribution with mean µ and

variance σ2.5 Given this approximation we make the following three observations. (i) The

cutoff is decreasing in the weight put on action a. The more convinced the decision maker

is that a is the better action the more likely they will also choose that action. (ii) Note

that ra
r

≥ p if and only if ra
ma

≥ ra′
ma′

. Moreover,
∣∣ sr
r
− p
∣∣ decreases when p(1−p)

r

(
1− r

m

)
decreases. Hence, if there are sufficiently many successes in the transformed data set or

the sample is sufficiently unbalanced then action a is chosen if it yielded disproportionally

more often a success than action a′. (iii) The more unbalanced the data set or the more

successes there are in the transformed data set, the closer the threshold proportion of

successes sr
r
is to the frequency ma

m
with which action a is observed in the data set.

Next we provide some comparative statics for how the dominant linear rule deals with

the original data set. Choice probabilities are continuous in the payoffs of the original

data set. We know this from Proposition 8 as the rule is non-guessing, here we point

out that it emerges when applying the randomization trick. In fact, non random choices

5Let Xi ∈ {0, 1} such that Xi = 1 if the ith draw without replacement from an urn with r values 1

and m− r values 0. Then for j ̸= i and p = ma

m ,

Cov (Xi, Xj) =
ma

m

ma − 1

m− 1

(
1− ma

m

)2
+

(
ma

m

ma′

m− 1
+

ma′

m

ma

m− 1

)(
1− ma

m

)(
−ma

m

)
+
ma′

m

ma′ − 1

m− 1

(ma

m

)2
= − (1− p)

p

m− 1

and

V ar

r∑
i=1

Xi = r ∗ p (1− p) + r (r − 1)

(
− (1− p)

p

m− 1

)
= rp (1− p)

(
1− r

m

)
.
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only emerge whenever payoffs 0 and 1 do not both occur in the data set. For example,

assume that payoff 0 does not occur. Then the randomization trick transforms the data

set with strictly positive probability into a one in which all payoffs are equal to 1, upon

which the rule chooses q. So whenever the decision-maker is initially open to choosing

either action (as qa ∈ (0, 1)), after observing a data set in which both extreme payoffs do

not occur they remain open. Note also, following Proposition 8, that the weight placed

by the dominant linear rule on any action is weakly monotone increasing in each of the

payoffs in the data set that are associated to this action. This is however difficult to see

from Theorem 13 as it would require a more detailed understanding of how the cutoffs

{sr}mr=0 compare to each other.

We proceed by presenting two corollaries of Theorem 13. The first relates to symmetry

in labels. As the dominant linear non-guessing rule is unique the rule must be symmetric

when the setting is completely symmetric, so when qa = 1
2
and ma = ma′ . In that case

the cutoff rule f 0∗ is defined by sr = r
2
and θr = 1

2
if r is even and sr = r+1

2
and θr = 1

if r is odd. We see that this is rES. In fact, we can verify easily (from the equations in

Theorem 13) that the cutoff rule f 0∗ is not equal to rES otherwise. We summarize these

insights.

Corollary 14 The randomized extension of rES is the dominant linear non-guessing rule

if and only qa =
1
2
and ma = ma′.

Following Schlag (2006b) we know that rES attains minimax regret in balanced sam-

ples. Thus, the result above shows that the dominant linear non-guessing rule attains

minimax regret in the completely symmetric setting where the pseudo prior is uninfor-

mative and the sample is balanced. Note that there are no results in the literature on

minimax regret for unbalanced samples.6

We use the insight that the randomized extension of rES is a non-guessing rule to show

how the sequential combination of rules (see Proposition 9) can lead to inefficiencies. To

see this, consider qa =
1
2
and the data set ((a, 1) , (a′, 0)) . Then the dominant rule selects

action a and hence puts no weight on action a′. Consequently, when combining this rule

with the dominant rule for the data set ((a, 0) , (a′, 1)), action a′ still receives no weight by

Proposition 4. However, the dominant rule for the combined data set puts equal weight on

6It is straightforward to extend the findings of Manski (2004) to obtain bounds on maximal regret

of BAR for unbalanced samples. Exact results as in Schlag (2006b) for unbalanced samples are hard to

come by as the proofs require guesssing the Nash equilbrium of a zero sum game.
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each action. As the dominant rule is unique it follows that it is not possible to efficiently

evaluate these two data sets separately.

The second corollary contains a simple insight on the value of having more data.

Corollary 15 The expected payoffs achieved by the dominant linear non-guessing rule

weakly increase as more observations are added to the data set.

The corollary follows from Theorem 13 as the dominant linear non-guessing rule for

the smaller data set is always feasible in the larger data set. So the property of being

dominant implies the statement. We however hasten to point out two things. First of

all, more data need not lead to a strict increase. For example, below we show that

EG

(
f ∗ (X̄)) ·µG does not change when adding one more observation given ma = ma′ = 1

when qa =
1
2
. Second of all, this corollary does not reveal any information on whether the

dominant linear non-guessing rule will learn what is best in the long run. We will deal

with this topic separately in Section 5.3 below.

Finally, note that Theorem 13 is far from being a characterization of all non-guessing

rules. In particular, it is an open question whether the dominant linear non-guessing

rules are admissible among the set of non-guessing rules. Clearly their property of being

dominant among the linear rules means they are undominated when the underlying dis-

tributions are binary valued. It can be shown that they dominate all other non-guessing

rules when ma = ma′ = 1 (see more in Section 5.2). However, this is no longer necessarily

true when ma,ma′ ≥ 1 and m ≥ 3 (see Section 7).The value of the above characterization

lies in the ability to identify rules for any m and, due to linearity, to be able to quantify

their performance as done later in Section 5.4. Moreover, as shown in Section 5.4, linear-

ity is not an obstacle when searching for rules that are good at learning which action is

best.

5.2 Some Examples

The dominant linear non-guessing rule for ma = ma′ = 1 is simple. We have s1 = 1

and θ1 = 2qa if qa ≤ 1
2
and s1 = 0 and θ1 = 2qa − 1 if qa ≥ 1

2
. Consider how this rule

behaves after the randomization trick has been applied when qa ≤ 1
2
. If action a′ yields a

success while action a a failure then action a′ is chosen. However, vice versa, if action a

gave a success and action a′ gave a failure then action a is only chosen with probability
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2qa and action a′ is chosen with probability 1 − 2qa. So the fact that qa ≤ 1
2
leads to

trusting evidence that action a′ looks better while being more suspicious when action a

looks better. It follows that

f ∗ ({(a, xa) , (a′, xa′)})a = qa +min {qa, qa′} (xa − xa′)

and hence EGf
∗ ({(a, Za) , (a

′, Za′)})a = qa +min {qa, qa′}
(
µG
a − µG

a′

)
. In particular, dom-

inant linear non-guessing rule for ma = ma′ = 1 performs strictly better than q whenever

both actions are not equally good. It strictly improves the decision-maker’s understand-

ing of which action is better as compared to q. As mentioned above, this rule dominates

all other non-guessing rules, not only the linear ones. The proof is beyond the scope of

this paper but it is essentially identical to the one provided by Schlag (1998) on dominant

improving rules for imitation in a population.

With these insights we now uncover a value of non-guessing rules. Consider any

data set in which each action appears at least once. To apply the dominant rule for

ma = ma′ = 1 to the first time each action appears in this data set constitutes a non-

guessing rule for this data set. As the dominant linear non-guessing rules dominates

all other linear non-guessing rules, it also dominates (performs better than) this rule.

Combining this insight with the learning abilities of the dominant rule for ma = ma′ = 1

shown above we obtain the following. The dominant linear rule under q performs strictly

better than when choosing q whenever both means are not equal and each action appears

at least once in the data set. In some sense, the decision-maker is expected to have a

better understanding of the decision problem whenever the two actions are not equally

good. We summarize this insight formally.

Remark 16 EGf
∗ (X̄) ·µG > q ·µG hold for G such that µG

a ̸= µG
a′ whenever ma,ma′ ≥ 1.

Consider now the case where m = 3 and ma = 1. If qa ≤ 1
3
then s1 = 1 and θ1 = 3qa,

if qa >
1
3
then s1 = 0 and θ1 =

3
2
qa − 1

2
. If qa ≤ 2

3
then s2 = 1 and θ2 =

3
2
qa, if qa ≥ 2

3
then

s2 = 0 and θ2 = 3qa − 2. Together this yields

f ({(a, x1) , (a′, x2) , (a′, x3)})a =


qa +

1
2
qa (4x1 − (2 + x1) (x2 + x3) + 2x2x3) if qa ≤ 1

3

qa − (1− qa + x1)
x2+x3

2
+ x2x3 (1− 2qa)

+ (1− (1− (x2 + x3)) qa)x1
if 1

3
< qa <

2
3

qa +
1
2
(1− qa) (2x1 − (1− x1) (x2 + x3)− 2x2x3) if qa ≥ 2

3
.
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It follows that

EG (f ({(a, Za) , (a
′, Za′) , (a

′, Za′)}))a =


qa + qa (2− µa′) (µa − µa′) if qa ≤ 1

3

qa + (1− µa′ − qa + 2qaµa′) (µa − µa′) if 1
3
< qa <

2
3

qa + (1− qa) (1 + µa′) (µa − µa′) if qa ≥ 2
3
.

The insights of Schlag (1999) can be used to show that there is no dominant rule

among all rules when m = 3 and qa′′ =
ma′′
m

for a′′ ∈ A (as explained in Section 7).

We comparem = 3 tom = 2.We observe that the performance strictly improves when

µa ̸= µa′ when qa /∈
{
0, 1

2
, 1
}
. However, when qa = 1

2
then fa = 1

2
+ 1

2

(
x1 − 1

2
x2 − 1

2
x3
)

and E
(
f
(
X̄
))

a
= 1

2
+ 1

2
(µa − µa′) . In the latter case the performance remains unchanged

when adding one more data point to a balanced data set with one observation for each

action. When we add yet another observation of action a′, so m = 4 and ma = 1, then

we obtain E
(
f
(
X̄
))

a
= 1

2
+ 1

2
(1 + µa′ − µ2

a′) (µa − µa′) if qa = 1
2
. Now we find superior

performance as compared to ma = ma′ = 1 when µa ̸= µa′ and µa′ ̸= 0.

In the appendix we present some values of s and θ in small data sets.

5.3 Performance in Large Samples

The performance of the dominant linear non-guessing rule increases as the data set gets

larger. We now show that this will lead the decision-maker to choose the best action in

the long run when the data set contains sufficiently many observations of each action. In

fact, the minimal probability of choosing the best action will be arbitrary large for any

given minimal distance between the two means.

For G with µG
a ̸= µG

a′ let a
G∗ ∈ A be such that µG

aG∗ = max
{
µG
a , µ

G
a′

}
.

Proposition 17 Let f ∗ be the dominant linear non-guessing rule.

(i) For every d > 0 and ψ < 1 there exists m̄ ∈ N such that if ma,ma′ ≥ m̄ and∣∣µG
a − µG

a′

∣∣ ≥ d then EG

(
f ∗ (X̄))

aG∗ ≥ ψ.

(ii) For ever ε > 0 there exists m̄ ∈ N such that if ma,ma′ ≥ m̄ then EG

(
f ∗ (X̄))·µG ≥

max
{
µG
a , µ

G
a′

}
− ε for all G ∈ G.

Note that part (ii) follows immediately from part (i). Note also that the value of m̄

will depend on q. Any rule that is non-guessing when qa = 1 chooses action a regardless

of the data set. Continuity arguments imply that behavior will be very similar when qa

is very close to 1. As a consequence, learning can be arbitrarily slow when q is close to

the boundaries.
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The proof of Proposition 17 is intuitive albeit a bit awkward. Although we know

the exact formula for the dominant linear non-guessing rule we are not able to derive

properties of its expected value unless the data set is balanced and the pseudo prior is

symmetric.

Proof. Assume that
∣∣µG

a − µG
a′

∣∣ ≥ d.We will first prove the claim whenma = ma′ and qa =
1
2
. Given the randomization trick we only have to consider binary valued distributions.

The claim follows easily. If ma and ma′ are sufficiently large then with arbitrarily high

probability the better action will yield strictly more successes and will be chosen by the

best-average rule. Here the property that
∣∣µG

a − µG
a′

∣∣ ≥ d ensures that convergence is

uniform in the sense that how large ma and ma′ have to be only depends on d and not on

the specific G. The minimal number of times each action should be contained in the data

set can be set without knowing the specific values of µG
a and µG

a′ . Note that this argument

extends immediately whenma ̸= ma′ as the dominant linear non-guessing rule will perform

better than the rule that first drops observations from the action sampled more often to

make the sample balanced and then applying the dominant linear non-guessing rule for

balanced sample.

Next we consider qa ̸= 1
2
, without loss of generality we can assume that qa >

1
2
.We will

iteratively apply Proposition 9. Let f ∗ be the dominant linear non-guessing rule when qa =

qa′ =
1
2
. Let f̄ (·|q) be the rule such that f̄a (X|q) = 2qa − 1+ 2 (1− qa) f

∗
a (X) . Note that

f̄ (X|q)a ∈ [0, 1] and f̄ (X|q)a−qa = 2 (1− qa) f
∗
a (X)−(1− qa) = 2 (1− qa)

(
f ∗ (X)a −

1
2

)
.

Hence f̄ (·|q) is a non-guessing rule under q. Note that f̄ (X|q)a is continuous in q when-

ever
∣∣µG

a − µG
a′

∣∣ ≥ d. Two claims for the limit as min {ma,ma′} goes to infinity follow from

the first part of this proof. If µG
a ≥ µG

a′ + d then Ef ∗ (X̄)
a
converges uniformly to 1 and

hence so does Ef̄
(
X̄|q

)
a
. If µG

a ≤ µG
a′ − d then Ef ∗ (X̄)

a
converges uniformly to 0 and

hence Ef̄
(
X̄|q

)
a
converges to 2qa − 1.

In the following we split up the data set and sequentially apply this construction a

finite number of times. Assume that m = k · z where k and z are positive integers. Given

M = (ai, xi)
m
i=1 let Mi =

(
(aj, xj)

iz
j=(i−1)z+1

)
for i = 1, .., k. We consider a sequence(

f (i)
)s
i=1

of s rules such that f (i) = f̄
(
Mi|f (i−1)

)
where f (0) = q and M0 = ∅.

To simplify the exposition of the argument we will first consider z to be very large.

Assume µG
a ≥ µG

a′ + d. Then f
(i)
a will approach 1 for all i. Now consider the case where

µG
a ≤ µG

a′ − d. Then f
(1)
a will approach 2qa − 1. Note that qa − (2qa − 1) = 1− qa > 0. So

f
(i)
a will only stay above 1

2
for finitely many steps. Thereafter it will fall below 1

2
. Once it

falls below 1
2
the roles of actions a and a′ are swapped and thereafter f

(i)
a′ will approach
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1. Note that we need qa − (k − 1) (1− qa) <
1
2
so we can choose k =

⌈
2qa−1
2(1−qa)

⌉
+ 1 steps.

Now consider what is really happening for large but finite z. We cannot rule out any

values of f (ι) (Mi) . Yet with arbitrarily high probability we can ensure that the f
(k)
a is

close to 1 if µa ≥ µa′ + d and close to 0 if µG
a ≤ µG

a′ − d. This is done by choosing z

sufficiently large and using the uniform convergence that we proved for the case where

qa = qa′ =
1
2
. Consequently the dominant linear non-guessing rule will learn approximately

which action is best when
∣∣µG

a − µG
a′

∣∣ ≥ d.

The proof above reveals for any given α > 0 that the value of z can be chosen such

that the statement in the proposition holds whenever qa, qa′ ≥ α.

5.4 Finite Sample Learning

In the following we show a close connection between the ability of a rule to learn which

action is best and the non-guessing criterion. Clearly no rule will be able to guarantee

to choose the best action in the true environment when the two actions are distributed

very similarly. However we do expect that they can choose the best action with a high

probability provided the two actions are sufficiently different. The following definition

provides a way to quantify this from the perspective of the decision-maker. Let a∗ (G) ∈
argmax

{
µG
a , µ

G
a′

}
which uniquely defines the best action under any G with µG

a ̸= µG
a′ .

Definition 18 We call ψ ≤ 1 the confidence level of rule f for identifying the best action

under the pseudo prior q and the minimal effect size d > 0 if (i) EG

(
f
(
X̄
))

a∗G
≥ ψ holds

whenever
∣∣µG

a − µG
a′

∣∣ ≥ d, and (ii) for any ψ′ > ψ there exists G such that EG

(
f
(
X̄
))

a∗G
<

ψ′ and
∣∣µG

a − µG
a′

∣∣ ≥ d.

Some notes are in place. As the decision-maker does not know the true distribution

the property they identify for the true distribution has to hold for all distributions. As it

is not possible to learn which action is best when the two actions are arbitrarily similar

the specification of how well the rule is for learning has to be conditional on there being

some minimal difference between the two actions in the true distribution. As the decision-

maker only cares about means we quantify the difference between the two distributions

by the difference between their respective means.

Proposition 19 (i) For any given pseudo prior q the confidence level of the best linear

non-guessing rule under a given minimal effect size weakly increases if more observations

are added to the data set.
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(ii) Consider a balanced sample. The best linear non-guessing rule under the uninfor-

mative pseudo prior attains the highest confidence level under any given minimal effect

size. In particular, any Bayesian rule attains a weakly lower confidence level for the same

minimal effect size.

So we find that the best linear non-guessing rule f ∗ under the uninformative pseudo

prior is best at learning which action is better when the sample is balanced. Its perfor-

mance improves when more observations are added and the data set becomes unbalanced.

We do not know which rule is best when the sample is unbalanced. However the mono-

tonicity identified in (i) has the following implication. For a given unbalanced data set

the minimal probability of the best linear rule f ∗ is bounded below by that of f ∗ in the

largest balanced data set that is contained the unbalanced data set considered. It is also

bounded above that in by the smallest balanced data set that contains the unbalanced

data set considered.

Next we investigate in more detail the relationship between the minimal effect size

and the confidence level.

5.4.1 Balanced data sets under the uninformative pseudo prior

Consider a balanced data set and the uninformative pseudo prior. Let ψ∗ (ma,ma′ , d, qa)

denote the confidence level of the best linear rule given sample sizes ma and ma un-

der the minimal effect size d and the weight qa put by the pseudo prior on action

a. Let d∗ (ma,ma′ , ψ, qa) denote its inverse when considering ψ∗ as a function of d, so

ψ∗ (ma,ma′ , d
∗ (ma,ma′ , ψ, qa)) = ψ.

We consider the relationship between minimal effect size and confidence levels. Let

B (i,m, p) =
(
m
i

)
pi (1− p)m−i .

Proposition 20 The confidence level ψ∗ of the best linear rule in a balanced sample under

the uninformative prior is given by

ψ∗
(
ma,ma, d,

1

2

)
=

m∑
i=m/2+1

B

(
i,m,

1

2
(1 + d)

)
+

1

2
B

(
m/2,m,

1

2
(1 + d)

)
.

The probability of choosing the best action is equal to this value of ψ when µG
a = 1

2
(1 + d)

and µG
a′ =

1
2
(1− d) .
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The proof uses results in (Schlag, 2006) given the close connection to minimax regret.

In Figure 1 we graph ψ∗ (10, 10, ·, 1
2

)
.We observe that ψ∗ (10, 10, ·, 1

2

)
is approximately

equal to 1
2
+ 7

4
· d for ψ∗ below 0.65 and to 1 − (1− d)

20
3 for ψ∗ above 0.9. Numeri-

cal calculations show that the minimal effect size needed to support a given confidence

level drops approximately by 29.1% when doubling the sample size. This means that

d∗ (ma,ma′ , ψ) ≈ 0.709 · d∗ (m,ψ) , numerical calculations show that the error of this

approximation is below 0.005 when 10 ≤ m ≤ 200. Specifically, we find that d∗ is multi-

plicatively separable in ψ and ma and can be written as

d∗ (m,ψ) ≈ d∗ (40, 40, ψ) ·
(ma

40

) ln(0.709)
ln 2

if ma = ma′ and qa =
1

2
. (3)

Here we present the approximation in a way such that it is exact when ma = ma′ = 40.

Following (3), one can linearly rescale the x achsis in Figure 1 to obtain the relationship

between minimal effect size and confidence level for other balanced samples. For example,

when ma = ma′ = 100 then multiply each of the tick marks 0.2, 0.4, 0.6, ... with(
200
20

) ln(0.709)
ln 2 = 0.319 05, so 0.2 turns into 0.06381.

5.4.2 Unbalanced Data Sets under the Uninformative Pseudo Prior

We now turn to unbalanced samples. We no longer have an exact formula for the confi-

dence level. The choice probabilities are easily determined for any pair of means given the

formula for the best linear rule given in Theorem 13. However, a formal identification of

the worst case is missing. Never-the-less we obtain similar results. The mean of the worst

case distribution is for all practical purposes essentially in the middle, namely if qa <
1
2

then the worst case distribution for minimal effect size d is attained when µG
a ≈ 1

2
(1− d)

and µG
a′ ≈ 1

2
(1 + d) . The error by evaluating ψ∗ as if means are in the middle is below

0.002. Given this approximate worst case we can compute the confidence levels using the

formula in Theorem 13. This has a simple approximate representation, specifically,

d∗ (ma,ma′ , ψ) ≈
d∗
(
40, 40 · ma′

ma
, 0.9

)
d∗ (40, 40, 0.9)

d∗ (40, 40, ψ)·
(ma

40

) ln(0.709)
ln 2

for ma′ ≥ ma and qa =
1

2
.

So d∗ is multiplicatively separable in ma,
ma′
ma

and ψ, here the formula is written in a way

that it is exact when ma = 40 and ψ = 0.9.

It seems inefficient to learn from an unbalanced sample. We present a means to

measure this inefficiency. Assume that there is a balanced sample and you wish to add
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(an even number of) k more observations. Seems most efficient to allocate them evenly

to the two actions. This can be shown formally by following Schlag (2006), which is

however beyond the scope of this paper. What if they are all added as observations of a′?

Then the resulting confidence level could have also been reached with a balanced sample

by adding less observations. Let m̂ be this balanced sample, so ψ∗ (ma,ma + k, d, 1
2

)
=

ψ∗ (m̂a, m̂a, d,
1
2

)
. Then 2ma+k−2m̂a observations were needlessly added. The percentage

of added observations wasted is hence 2ma+k−2m̂a

k
∗ 100. In Figure 2 we plot this against

the percentage of observations added as given by k
ma

∗ 100. Due to integer constraints, m̂

is typically computed as random combination of two adjacent sample sizes. For example,

start with a balanced sample of 40 observations of each action and add 16 observations

of action a′. The confidence level reached with this unbalanced sample is the same as in

the balanced sample with 46.34 observations of each action. The percentage of additional

observations wasted is then equal to 96−2∗46.34
16

∗ 100 = 20.75%. Note that the percentage

waisted would equal 0 if no observations are saved by allocating equally. It would be

100% if only data that comes in pairs improves the confidence level. Given (3) the value

of m̂a will approximately not depend on the minimal effect size d. Observe that learning

is reasonably efficient even in very unbalanced samples as only roughly 1/3 of the added

observations are wasted when one sample is doubled.

5.4.3 Balanced Data Sets under General Pseudo Priors

Finally we turn to the inefficiencies driven by using a pseudo prior that is not uninfor-

mative, so qa ̸= 1
2
. We investigate this in balanced data sets. We find that the mean of

the worst case distribution is in the middle and we once again have a simple numerical

representation, namely,

d∗ (ma,ma, ψ, qa) ≈ d∗ (40, 40, ψ, qa) ·
(ma

40

) ln(0.709)
ln 2

.

In Figure 3 we plot the confidence level as a function of the minimal effect size for

different pseudo priors. Note the inefficiency in learning introduced by the asymmetric

pseudo prior. By the non-guessing condition, the expected weight put on action a will

increase whenever it is the better action. However, this increase will be small as lots of

evidence in favor of a will be needed to substantially increase its weight. Moreover, in

the worst case the weight put on the better action starts at min {qa, qa′} which is lower

than under the uninformative prior where it starts at 1
2
. The worst case is attained when

action that receives less weight under the pseudo prior is the better action.
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To get a better feel for the inefficiencies introduced by the asymmetric pseudo prior

we calculate the percentage of samples that were wasted (when concerned only with the

confidence level) under an unequal pseudo prior as compared to when using the efficient

uninformative pseudo prior. We show the results for ma = ma′ = 40 in Figure 4. So

for qa = 1
3
confidence level of 0.9 (which requires d ≈ 0.191) we find approximately 44%

wasted, for qa =
1
10

the value is approximately 75%.

Remember that the pseudo prior might be the result of earlier learning. One expects

that action a is better when qa >
1
2
but this need not be true as it might be that one

obtained untypical realizations of the payoffs. The findings above show how likely it will

be to learn that action a′ is better even qa > 1
2
. The pseudo prior might be also be

driven by the circumstances surrounding the decision-making. We observe above that

learning abilities are substantially impeded when not choosing the uninformative pseudo

prior. This is expected as the pseudo prior reflects some beliefs or understanding of the

environment that is not captured in our measure of learning performance as given by the

confidence level. We present a more fitting definition of learning for settings in which the

pseudo prior reflects beliefs. Assume that the value qa given by the pseudo prior captures

the probability that action a will be the best action. This is a type of belief. It can result

from asking experts which action is to choose and then setting qa equal to the proportion

who recommend action a. One might then assume that one of the experts is correct with

each expert being equally like to be correct. Consequently we let the true environment

reflect this belief and assume qa represents the true probability that action a is the best

action. This motivates the following definition.

Definition 21 We call ψw ≤ 1 the weighted confidence level of rule f for identify-

ing the best action under the pseudo prior q and the minimal effect size d > 0 if (i)

qaEG(a)

(
f
(
X̄
))

a
+qa′EG(a′)

(
f
(
X̄
))

a′
≥ ψw holds whenever µG(a)

a ≥ µG(a)

a′ +d and µG(a′)

a′ ≥
µG(a′)
a + d, and (ii) for any ψ′ > ψw there exist distributions G(a) and G(a′) such that

qaEG(a)

(
f
(
X̄
))

a
+ qa′EG(a′)

(
f
(
X̄
))

a′
< ψ′, µG(a)

a ≥ µG(a)

a′ + d and µG(a′)

a′ ≥ µG(a′)
a + d.

It follows that the weighted confidence level is at least q2a + (1− qa)
2 . This is because

with probability qa (qa′) action a (a′) is the better action in which case the probability of

choosing action a (a′) is at least qa (qa′ = 1−qa). So the minimal value is higher when the

pseudo prior is more extreme. This does not mean that the better performance is realized

by choosing a more extreme pseudo prior as in this scenario the pseudo prior is given

by the understanding of the environment or the recommendations of experts and not the
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result of a strategic choice. With this new definition we reproduce the analysis that led

to Figures 3 and 4. In Figure 5 we illustrate the tradeoff between minimal effect size and

weighted confidence level in balanced samples using ma = ma′ = 40. Compared to the

uninformative pseudo prior, observe that the unequal pseudo priors are more efficient for

small effect sizes and slightly less efficient for large ones. In Figure 6 we evaluate the

percentage of observations waisted or excessive (when value is negative) as compared to

balanced sample with uninformative pseudo prior when ma = ma′ = 40.

We observe how much more efficient (in terms of saving observations) it is to follow

unequal pseudo prior as opposed to using the uninformative pseudo prior, unless the

weighted confidence level is very high.

5.5 Non-Randomized Rules

In this section we briefly show that evidence can also be extracted from the data set with

a non-randomized rule. To do so, sufficient evidence is needed. Evidence refers here to

how to get better payoffs than under the pseudo prior. Sufficient evidence means that the

two actions should not perform too similar.

Our analysis above shows that randomization is needed to ensure non-guessing. The

proof of Theorem 13 shows that this is due to the environments where both actions are

almost equally good. Once there is a minimal difference between the means of the two

actions then non-randomized rules exist that are non-guessing. In that case there is

enough evidence that randomization is no longer needed. We present such rules. They

are constructed from the dominant linear non-guessing rule f ∗ as follows. However they

are no longer linear. Consider κa, κa′ ∈ (0, 1) such that κa′ = 1 − κa. Let f
d be the rule

such that fd (X)a = 1 if f ∗ (X)a ≥ κa and fd (X)a′ = 1 if f ∗ (X)a > κa′ (which means

that fd (X)a = 0 if f ∗ (X)a < κa). So action a is chosen if and only if the probability of

choosing a under the dominant linear non-guessing rule is sufficiently high, action a′ is

chosen otherwise. In the appendix we show that a sufficient condition for this rule to be

non-guessing under q is that

EG

(
f ∗ (X̄))

ā
≥ (1− κā) qā + κā

holds for all ā ∈ A = {a, a′} and G ∈ G. This condition will hold if
∣∣µG

a − µG
a′

∣∣ is sufficiently

large. For given sample sizes ma and ma′ the free parameter κa is easily found that

makes the required minimal difference between the two actions as small as possible. For
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example, when qa = 1
2
and min {ma,ma′} ≥ 23 it is best to set κa = 1

2
and the non-

guessing condition holds when
∣∣µG

a − µG
a′

∣∣ ≥ 0.1. Note that this rule is a particular ε

non-guessing rules for ε = 0.05 as we do not know whether it can extract evidence when∣∣µG
a − µG

a′

∣∣ < 0.1, at most it loses 1
2
· 0.1 = 0.05 is lost when comparing to q.

The maximal regret of these “de-randomized” rules can be bounded from above, using

the techniques provided in Schlag (2006b). This bound is equal to 1
min{κa,κa′}

times the

maximal regret of the dominant linear non-guessing rule. In the example above, the regret

of the derandomized rule is bounded by 2 · 0.02512 ≤ 0.0503.

5.6 Almost No Guessing

We briefly expand on a weaker concept. The starting point is the insight from Proposition

4 that actions that are do not receive any weight under the pseudo prior will not be chosen,

regardless of how much data is gathered and how attractive they look later. This result

relies on the unwillingness to accept any reduction in payoffs, regardless of how small it

might be. We slightly relax our definition to tolerate small reductions.

Definition 22 Given ε > 0, the rule f is an ε almost non-guessing rule under prior q if

EG

(
f
(
X̄
))

· µG ≥ q · µG − ε holds for all G ∈ G.

For any given ε > 0 we construct a rule that is ε almost non-guessing and that puts

weight on actions that are not in the support of q. We do this by selecting a mixed action

q̄ that has full support and that is sufficiently close to q so that payoffs never fall below

q · µG − ε. The full support condition on q̄ ensures that the rule also puts weight on all

actions and not only on those in the support of q. Thus, innovation is possible for any

data set that contains information on all actions if the decision-maker is willing to perform

slightly worse than the pseudo prior.

We present the parameters of the rule suggested and compute its maximal regret in

some examples. Consider the case of two actions where A = {a, a′} and assume that

qa = 1. We search for a rule f such that EG

(
f
(
X̄
))

· µG − µG
a ≥ −ε and f (X)a′ > 0 for

some data setsX. Clearly, without making any assumptions on f, EG

(
f
(
X̄
))
·µG−µG

a ≥ 0

holds when µG
a′ ≥ µG

a . So we aim to find a rule f such that µG
a − EG

(
f
(
X̄
))

· µG ≤ ε

holds when µG
a > µG

a′ . This means that the regret of not choosing a (even though a is the

best action) should be at most ε. We construct such a rule by choosing a rule f that is

non-guessing under an appropriately chosen pseudo prior q̄. Let f (q) denote a non-guessing
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rule under q. Let q̄a be the smallest value of qa such that µG
a − EG

(
f (q)

(
X̄
))

· µG ≤ ε

holds when µG
a > µG

a′ . We show the maximal regret of this rule when ε = 0.01 for a few

balanced sample sizes. These values of maximal regret are attained when a′ is best as the

maximal regret when instead a is best is bounded by ε = 0.01.

ε = 0.01 (k1, k2) q̄a r ≤
(6, 6) 0.845 0.156

(12, 12) 0.79 0.0873

(25, 25) 0.722 0.0484

(145, 145) 0.5 0.01

We observe for k1 = k2 = 25 that the non-guessing rule under q̄ with q̄a = 0.722 is ε

almost non-guessing under q with qa = 1 when ε = 0.01. The wish of the decision-maker

to benchmark to choosing a with a tolerance of payoff loss (under the pseudo prior) of at

most 0.01 requires 25 observations of each action to guarantee regret below 0.05. Had they

started with the uninformative pseudo prior then, as observed above, only 6 observations

of each action would have been necessary.

Note also the connection to minimax regret. A rule f that guarantees that regret is

below r̄ has the property that the increase in payoffs when choosing the best action is at

most r̄. So the possible increase when choosing any action is also at most r̄. Thus such

a rule is ε almost non-guessing under any pseudo prior under ε = r̄. As already noted in

Section 5.1 after Corollary 14 the randomized extension of the random empirical success

rule, which is the dominant linear non-guessing rule under the uninformative pseudo prior,

attains minimax regret. Hence, the table entry above for (k1, k2) = (145, 145) follows from

the respective table entry in Section 5.4.

We hasten to point out that there is no claim that this rule minimizes maximum regret

among all ε almost non-guessing rules. A selection among the ε almost no guessing rules

is beyond the scope of this paper.

6 Including Covariates

In the following we briefly explain how one can include covariates. We closely follow

Manski (2004). There is a finite covariate space. Payoffs depend on the underlying

covariates. Choice is conditional on the covariates. In our setting this means that we

can allow for pseudo priors that depend on the covariates. A rule is now a choice that
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conditions on the covariates and has as input a data set. Each element of the data set

now has a covariate vector in addition to an action and payoff. We construct rules just

as in (Manski, 2004) by separating inference across all the different possible covariate

configurations. One only considers those data points that have the same covariates. To

these one applies a non-guessing rule. Consequently, the combined rule is a non-guessing

rule.

Note how the data set used for a given specification of the covariates gets small as

more covariates are added. Here we observe the advantage of our concept of non-guessing

rules as it has good properties regardless of the sample size.

7 Connecting to Social Learning and Imitation

Schlag (1998) introduced a setting for selecting rules for social learning. In this model

there is an infinite population of individuals. Each individual has to choose an action.

Between choices each individual observes performance of others selected at random from

the population. Based on this observation the individual chooses her next action. So

a rule is a function of choices and payoffs of own and of others. In Schlag (1998) each

individual observes one other, in Schlag (1999) two others and in Hofbauer and Schlag

(2000) a finite number of other individuals. The objective is to find an improving rule

under which, when all use this rule, the average payoff attained in the population is weakly

higher in the next round for any underlying distribution of payoffs.

First note that the improving criterion is evaluated ex-ante, prior to observing the

choices of the others. However, as it has to hold for any distribution of choices in the

population, it has to also hold conditional on who is observed. More specifically, we can

assume without loss of generality that a group of individuals sees each other. So in the

social learning model, if an individual observes n− 1 others then the group consists of n

individuals. The improving condition holds conditional in the sense that among these n

individuals with their actions, ex-ante to observing anyone’s payoffs, their expected payoff

has to be higher in the next round. This insight uncovers a close connection between

improving rules and non-guessing rules under the pseudo prior in which probabilities

equal frequencies in the data set.

We explain in more detail. Consider an improving rule. We will construct a non-

guessing rule when qa = ma

m
for all a ∈ A. To do this, randomly select (with equal

probability) an element of the data set, act as if the associated action was your own
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choice and the others in the data set were the choices observed. We then apply the social

learning rule. It is as if we are evaluating the average payoff in the data set and looking for

this to be always larger than their average payoff in the last round. As the social learning

rule is improving, this construction has led to a non-guessing rule under the pseudo prior

that chooses the probability of an action equal to its frequency in the data set.

Consider now a non-guessing rule under the pseudo prior that chooses each action

according to the frequencies this action appears in the data set. Consider an individual in

the social learning context who observes n− 1 others. Then combine those observations

together with her own to define a data set. Apply the rule to this data set to determine

the choice probabilities of each action. Now determine switching probabilities in the social

learning setting such that the choice probabilities of the rule emerge. This generates an

improving rule.

We summarize these findings.

Proposition 23 Consider a data set X and assume qa =
ma

m
for all a ∈ A. Any improv-

ing rule can be used to create a non-guessing rule under q, and vice versa, any non-guessing

rule under q can be used to create an improving rule. The expected payoff of the individual

rule is equal to the average expected payoff of the associated improving rule if each data

point would be associated to an individual who is observing the performance of the others

belonging to the data set.

In particular we observe a direct connection between the insight that choice probabili-

ties of actions not observed may not change (Proposition 4) and the insight that improving

rules must be imitating (see Lemma 1 in (Schlag, 1998)).

We can utilize this connection to uncover more about the structure of rules. Schlag

(1999) shows that there is no dominant rule for learning from two others when n = 2.

This means for the setting of this paper that there is no dominant rule when ma = 1,

ma′ = 2 and n = 2. So our limitation to linear rules comes with a loss of generality unless

ma = ma′ = 1.

Finally we note that we have uncovered for the case of two actions a social learning

rule that generates a payoff-monotone selection dynamics (Samuelson & Zhang, 1992) in

any game where this dynamics approximates the best response dynamics if sufficiently

many others are observed and the two actions are not too similar. This follows from

Proposition 17 and the above insights.
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8 Connecting to Unbiased Hypothesis Testing

Consider the case where there are only two actions. In the following we show that there

is a close connection to statistical hypothesis testing. In short, choosing an action is

like saying which action is better, it is as if accepting or rejecting the null hypothesis

that one action has a larger mean than the other. This leads to a close relationship

between a dominant linear non-guessing rule and UMPU test for binary valued data.

This relationship reveals a simple interpretation of the dominant linear non-guessing rule

as the randomized extension of a permutation test.

We expand. First we show that a rule is non-guessing if and only if it is associated to

an unbiased test for comparing the means of the two actions. Consider the null hypothesis

H0 : µa ≤ µa′ , or more formally, H0 =
{
G : µa ≤ µG

a′

}
. Then a randomized test ϕ specifies

a rejection probability of H0 given the data. So ϕ ({(ai, xi)}mi=1) is the rejection probability

of H0 given X = (ai, xi)
m
i=1 . The test ϕ has level α if EG0 (ϕ) ≤ α whenever G0 is in H0,

so when µG0
a ≤ µG0

a′ .Without loss of generality we can assume that α = supG0∈H0
EG0 (ϕ) .

The test ϕ is unbiased if EG1 (ϕ) ≥ EG0 (ϕ) whenever G1 is not in H0 and G0 is in H0.

Assume that ϕ is unbiased. Then it follows that EG1 (ϕ) ≥ α ≥ EG0 (ϕ) for G1 /∈ H0

and G0 ∈ H0. Consequently, (EG (ϕ)− α)
(
µG
a − µG

a′

)
≥ 0. This is equivalent to EG (ϕ) ·

µG
a + (1− EG (ϕ))µG

a′ ≥ αµG
a + (1− α)µG

a′ . Thus we have shown that if ϕ is an unbiased

test then the rule f = (ϕ, 1− ϕ) is non-guessing under q = (α, 1− α) .

For the converse, consider a non-guessing rule f under q = (α, 1− α). From the

equations above it follows that (EG (fa)− qa)
(
µG
a − µG

a′

)
≥ 0 and hence EG1 (fa) ≥ qa ≥

EG0 (fa) whenever G1 /∈ H0 and G0 ∈ H0. So this means that fa is an unbiased test of H0

with level qa.

Consider now binary valued data. Note that there is a uniformly most powerful test of

the above null hypothesis (Tocher, 1950). It is a permutation test with test statistic equal

to the number of successes among the samples of action a. It rejects the null hypothesis if

the proportion of permutations with more successes among action a than in the observed

data set is at most α with appropriate randomization close to the threshold. Note that

this is in fact the dominant linear non-guessing rule that is non-guessing. This is no

coincidence given our above presentation.

We now formally connect our dominance property to the UMPU property. Consider

rules f and g that both are non-guessing rules under q. Then f dominates g if EG (f) ·
µG ≥ EG (g) · µG. This is equivalent to (EG (f)a − EG (g)a) ·

(
µG
a − µG

a′

)
≥ 0. Hence,

EG (f)1 ≥ EG (g)a for all G /∈ H0 which means that fa as a test is uniformly more
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powerful than ga. However, we can also conclude that EG (f)a ≤ EG (g)a for all G ∈ H0.

This means that fa is less likely to reject the null hypothesis when it is true. This is

a property that a uniformly more powerful test does not need to fulfill according to its

definition.

Conversely, consider two tests ϕ and ϕ′ with level α where ϕ is uniformly more powerful

than ϕ′. Then (EG (f)a − EG (g)a) ·
(
µG
a − µG

a′

)
≥ 0 when µG

a > µG
a′ . However, the defini-

tion of uniformly more powerful does not allow us to conclude that (EG (f)a − EG (g)a) ·(
µG
a − µG

a′

)
≥ 0 also holds when µG

a < µG
a′ .

We can however easily mend this problem. Namely, we can apply the same method-

ology to testing H0 =
{
G : µG

a ≥ µG
a′

}
with size 1 − α. Essentially we have swapped the

null and the alternative hypothesis. The same UMPU test emerges, except that labels

are swapped, which allows us to conclude that (EG (f)a − EG (g)a) ·
(
µG
a − µG

a′

)
≥ 0 holds

when µG
a < µG

a′ .

To conclude, we obtain an equivalence between the dominant linear non-guessing rule

for binary valued data and the UMPU test for comparing means of two Bernoulli distri-

butions. Note that linear rules are uniquely identified on binary valued data. Comparing

linear rules is like comparing rules based on binary data. Hence our dominant linear

non-guessing rule is equivalent to a uniformly most powerful test within class of unbiased

and linear tests for comparing the means of two variables with known bounds on their

support.

On the side the insights above reveal an alternative proof of Theorem 13, by utilizing

the UMPU properties and the randomization trick.

We add a comment on the methodology of statistical hypothesis testing. It is hard to

argue in favor of the property of a test being unbiased apart from the ease that this adds

to construct tests and find uniformly most powerful ones. Given what we write above, we

have uncovered the following insights related to statistical hypothesis testing. Consider

a statistician who will most likely (with probability 1 − α) choose action a′ and is only

willing to change his opinion if the data gives conclusive evidence that he can do better.

Then this statistician should choose the action prescribed by the UMPU test. Among

all reactions based on conclusive evidence, it not only maximally increases the likelihood

of correctly rejecting the null, it also maximally decreases the likelihood of incorrectly

rejecting the null. We hasten to point out one disadvantage regarding classical statistical

hypothesis testing. The recommendation of our dominant linear non-guessing rule for

interval data is typically randomized. Actions are recommended with probabilities. One
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cannot find rules in our setting that are nonrandom (however do note the results in Section

5.5).

9 Measuring Evidence in Data Sets

Assume that there are two actions to choose from and you wish to make a probabilistic

statement, based on the data, about which action has the highest mean. Take our domi-

nant linear non-guessing rule under the uninformative pseudo prior and interpret choice

of action a as saying that a has a higher mean than the other action. To apply this

non-guessing rule in this way has the property that its expected probability of stating

the truth is at least 1
2
. We put this into context. Recalling from elementary statistics,

the average observed payoff of action a is an unbiased estimate of the mean of action a,

and the expected difference in the average observed payoffs of action a and action a′ is

positive if and only if a has the higher mean. Yet what we have found in this paper that

stating that the action with the higher observed average is also the one with the higher

mean can be worse than a uniform random guess. The methodology in this paper shows

how to make statements that are always at least as true as a uniform random guess. The

dominant linear non-guessing rule under the uninformative pseudo prior is the best such

rule in the sense that it is more correct (i.e., it has a higher probability placed on the best

action) than any other linear rule that always outperforms the uniform random guess.

10 A Comparison

We summarize the similarities and differences between SEU maximization and non-

guessing. Both start with some personal initial understandings about the environment

they are facing. The Bayesians think about which environments they might be facing.

The non-guessing decision-makers think directly about which actions they might be choos-

ing. They both use probabilities to combine these initial understandings and update this

combined understanding after observing the data. The updated combined understanding

can then be used as an initial combined understanding for the next data set.

Both kinds of decision-makers can be so convinced in their understanding that no data

set can change this understanding. This happens for a Bayesian who has a degenerate prior

on a single distribution and for a non-guessing decision-maker who has a non degenerate
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pseudo prior. On the other hand, both will essentially learn which action is best in

large data sets if the true environment is reflected in one of their initial understandings.

The only problem with SEU maximization is that their description of the environment

is extremely detailed. The set of possible understandings is an infinitely dimensional

set. Any prior that comes to mind will not have all possible distributions in its support.

Consequently, the best action among those initially considered need not be the best in

the true environment. Discretizing the support to make it finitely dimensional does not

help in organizing the large set of possible distributions which is needed before assessing

a prior. On the other hand, non-guessing decision-makers can easily include all possible

actions in their initial understanding (when n is not too large) to ensure that they find the

best action in the true environment when the data set is sufficiently large. Large sets of

actions may still be difficult to handle, but they do typically come with a clear structure

(like prices).

The understanding of the Bayesian as captured by the prior is a sufficient statistic

of the data sets observed in the past. The updated prior stores all relevant information

when facing a new data set. In contrast, the pseudo prior underlying any non-guessing

rule does not necessarily store all relevant information from past data sets observed. A

non-guessing decision-maker is often better off remembering all past data sets when facing

the next one (as shown in Section 5.1) instead of just remembering the updated pseudo

prior.

The understanding of the Bayesian might change dramatically after observing the

data set. This happens when observing some data set that cannot be generated under

one of the distributions in the support of their prior. After observing this data set that

distribution is ruled out in their posterior and receives no longer any weight. Things look

a bit different for non-guessing rules. When the data set does not contain both extreme

payoffs then the support of the pseudo prior does not change after observing the data set.

On the other hand, if both extreme payoffs are in the data set then the understanding

possibly changes drastically. In other words, Bayesians may jump to conclusions and rule

out understandings they previously had. Non-guessing decision-makers will not do so if

the data set does not contain both extreme payoffs.

Bayesians do not care if they might perform worse with the data set than without it

under the true distribution as their prior makes them comfortable in trading off perfor-

mance across different understandings. On the other hand, a non-guessing rule has the

defining property that performance with the data set is always superior than without it,
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regardless of which underlying distribution is the true one.

In the setting of this paper, Bayesians condition their behavior on a prior whose

possible support is infinitely dimensional. The underlying set of environments is so rich

that an uninformative (i.e., uniform) prior does not exist. Priors are easily criticized as

being arbitrary or too complicated. Given the richness, priors can be hard to identify or

to describe to others. Moreover, simple comparative statics on the understanding of the

decision-maker do not exist as there are many ways in which the prior can be changed.

On the other hand, non-guessing rules rely on a much simpler object, namely on a mixed

strategy. This makes it is easier to convey to others. The uninformative pseudo prior

in which each action is chosen equally likely is focal. Comparative statics are easy to

perform. For Bayesians, the richness of the set of priors makes it hard to understand how

much data is needed to establish good learning properties. In contrast, non-guessing rules

come with simple bounds on how performance depends on the sample sizes (see Section

5.4).

Information has value for Bayesians, in the sense of it being preferred to no information,

as Bayesians treat the world as if the distribution they face has been drawn from their

prior. This value is personal and hypothetical as it only emerges when averaging across

different environments, using weights that they have assigned. In some distributions the

value of information under their rule can be negative. There is always some other Bayesian

who will recommend them not to use the data. On the other hand, information has value

for non-guessing rules regardless of which environment is the true one. Everyone can agree

that the decision-maker is better off, so there is no personal element in this assertion.

Thus, in some sense, only a non-guessing rule extracts objective information from the

data set.

11 Conclusion

to be added
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12 Appendix

12.1 Proof of Theorem 13

Without loss of generality assumema ≤ ma′ . Following Proposition 11 it is enough to focus

on distributions that yield payoffs in [0, 1] . So all properties that refer to the distributions

only depend on their means. Let dij be the additional probability put on action a on top

of qa when observing i winners of action a and j winners of action a′, so dij ∈ [−qa, qa′ ] .
Let Fa = fa−qa be the expected increase of play of action a as a function of the means

of the two actions µa and µa′ . So

Fa (µa, µa′) =
ma∑
i=0

ma′∑
j=0

dij

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

j

)
µj
a′ (1− µa′)

ma′−j .

In particular,

Fa (µa, µa) =
ma∑
i=0

ma′∑
j=0

dij

(
ma

i

)(
ma′

j

)
µi+j
a (1− µa)

n−i−j

=
n∑

r=0

 min{ma,r}∑
i=max{0,r−ma′}

di,r−i

(
ma

i

)(
ma′

j

)µr
a (1− µa)

n−r .

Following Proposition 5, Fa (µa, µa) = 0 holds for all µa ∈ [0, 1]. In particular, d0,0 =

dma,ma′
= 0. The identity theorem for polynomials implies that

min{ma,r}∑
i=max{0,r−ma′}

di,r−i

(
ma

i

)(
ma′

r − i

)
= 0

holds for all r ∈ {1, ..., n− 1} .
Note that

Fa =
ma∑
r=1

r∑
i=0

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

+

ma′∑
r=ma+1

ma∑
i=0

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

+
n−1∑

r=ma′+1

ma∑
i=r−ma′

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

Accordingly we will distinguish between two cases for r.
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Assume r ∈ {1, ..,ma} . Let F r
a be be the expected increase of play of action a condi-

tional on r successes. We use the fact that using that

r−1∑
i=0

(
ma

i

)(
ma′

r − i

)
di,r−i +

(
ma

r

)
dr,0 = 0

to obtain

F r
a =

r∑
i=0

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

=
r−1∑
i=0

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

+dr,0

(
ma

r

)
µr
a (1− µa)

ma−r (1− µa′)
ma′

=
r−1∑
i=0

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

−
r−1∑
i=0

(
ma

i

)(
ma′

r − i

)
di,r−iµ

r
a (1− µa)

ma−r (1− µa′)
ma′

=
r−1∑
i=0

di,r−i

(
ma

i

)(
ma′

r − i

)(
µi
a (1− µa)

ma−i µr−i
a′ (1− µa′)

ma′−(r−i)

−µr
a (1− µa)

ma−r (1− µa′)
ma′

)

=
r−1∑
i=0

di,r−i

(
ma

i

)(
ma′

r − i

)(
((1− µa)µa′)

r−i

− ((1− µa′)µa)
r−i

)
µi
a (1− µa)

ma−r (1− µa′)
ma′−(r−i)

Using the fact that

((1− µa)µa′)
r−i − ((1− µa′)µa)

r−i = (µa′ − µa)
r−i−1∑
j=0

((1− µa)µa′)
j ((1− µa′)µa)

r−i−1−j

we obtain

F r
a = − (µa − µa′)

r−1∑
i=0

di,r−i

(
ma

i

)(
ma′

r − i

)( (∑r−i−1
j=0 ((1− µa)µa′)

j ((1− µa′)µa)
r−i−1−j

)
µi
a (1− µa)

ma−r (1− µa′)
ma′−(r−i)

)
Setting

wi,r−i =

(
r−i−1∑
j=0

((1− µa)µa′)
j ((1− µa′)µa)

r−1−j

)
(1− µa)

ma−r (1− µa′)
ma′−r

we can shorten the expression for F r
a to obtain

F r
a = − (µa − µa′)

r−1∑
i=0

di,r−i

(
ma

i

)(
ma′

r − i

)
wi,r−i.
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In the following we aim to minimize

r−1∑
i=0

di,r−i

(
ma

i

)(
ma′

r − i

)
wi,r−i

subject to the constraints that

−qa ≤ dr,0 = − 1(
ma

r

) r−1∑
i=0

(
ma

i

)(
ma′

r − i

)
di,r−i ≤ qa′

and −qa ≤ di,r−i ≤ qa′ for i ≤ r − 1.

We will show that this is solved by di,r−i = −qa for i < s, di,r−i = qa′ for i > s and by

ds,r−s ∈ [−qa, qa′ ] solving

s−1∑
i=0

(
ma

i

)(
ma′

r − i

)
(−qa) +

(
ma

s

)(
ma′

r − s

)
ds,r−s +

r∑
i=s+1

(
ma

i

)(
ma′

r − i

)
qa′ = 0.

The Lagrangian is given by

L = −
r−1∑
i=0

di,r−i

(
ma

i

)(
ma′

r − i

)
wi,r−i −

r−1∑
i=0

λi (di,r−i − qa′)

−λr

(
− 1(

ma

r

) r−1∑
i=0

(
ma

i

)(
ma′

r − i

)
di,r−i − qa′

)

−
r−1∑
i=0

τi (−qa − di,r−i)− τr

(
−qa +

1(
ma

r

) r−1∑
i=0

(
ma

i

)(
ma′

r − i

)
di,r−i

)
.

where

dL

d (di,r−i)
= −

(
ma

i

)(
ma′

r − i

)
wi,r−i − λi + λr

1(
ma

r

)(ma

i

)(
ma′

r − i

)
+τi − τr

1(
ma

r

)(ma

i

)(
ma′

r − i

)
.

The solution is given by λs = τs = 0, λi = 0 for i < s and τi = 0 for i > s,

λr =
(
ma

r

)
ws,r−s,

τi =

(
ma

i

)(
ma′

r − i

)
(wi,r−i − ws,r−s)

for i < s and

λi =

(
ma

i

)(
ma′

r − i

)
(ws,r−s − wi,r−i)

for s < i < r. Note that τi ≥ 0 for i < s and λi ≥ 0 for i > s as wi,r−i is decreasing in i.
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(ii) Assume r ∈ {ma + 1, ..., n− 1} . We repeat the arguments above.

Using that

ma−1∑
i=max{0,r−ma′}

(
ma

i

)(
ma′

r − i

)
di,r−i +

(
ma′

r −ma

)
dma,r−ma = 0

we obtain

F r
a =

m∑
i=max{0,r−(n−m)}

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

=
ma−1∑

i=max{0,r−ma′}

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

+dma,r−ma

(
ma′

r −ma

)
µma
a µr−ma

a′ (1− µa′)
n−r

=
ma−1∑

i=max{0,r−ma′}

di,r−i

(
ma

i

)
µi
a (1− µa)

ma−i

(
ma′

r − i

)
µr−i
a′ (1− µa′)

ma′−(r−i)

−
ma−1∑

i=max{0,r−ma′}

(
ma

i

)(
ma′

r − i

)
di,r−iµ

ma
a µr−ma

a′ (1− µa′)
n−r

=
ma−1∑

i=max{0,r−ma′}

di,r−i

(
ma

i

)(
ma′

r − i

)(
µi
a (1− µa)

ma−i µr−i
a′ (1− µa′)

ma′−(r−i)

−µma
a µr−ma

a′ (1− µa′)
n−r

)

=
ma−1∑

i=max{0,r−ma′}

di,r−i

(
ma

i

)(
ma′

r − i

)( (
(1− µa)

ma−i µma−i
2 − µma−i

a (1− µa′)
ma−i

)
µi
aµ

r−ma

a′ (1− µa′)
ma′−(r−i)

)
= − (µa − µa′) ·

ma−1∑
i=max{0,r−ma′}

di,r−i

(
ma

i

)(
ma′

r − i

)( (∑ma−i−1
j=0 ((1− µa)µa′)

j ((1− µa′)µa)
ma−1−j

)
µr−ma

a′ (1− µa′)
ma′−r

)

Let

wi,r−i =

(
ma−i−1∑

j=0

((1− µa)µa′)
j ((1− µa′)µa)

ma−1−j

)
µr−ma

a′ (1− µa′)
ma′−r .

So we aim to minimize

ma−1∑
i=max{0,r−ma′}

di,r−i

(
ma

i

)(
ma′

r − i

)
wi,r−i
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such that

−qa ≤ dma,r−ma = − 1(
ma′
r−ma

) ma−1∑
i=max{0,r−ma′}

(
ma′

r − i

)
di,r−i ≤ qa′

and −qa ≤ di,r−i ≤ qa′ for i ≤ ma − 1. This is solved by di,r−i = −qa for i < s, ai,r−i = qa′

for i > s and ds,r−s ∈ [−qa, qa′ ] solving
s−1∑

i=max{0,r−ma′}

(
ma

i

)(
ma′

r − i

)
(−qa) +

(
ma

s

)(
ma′

r − s

)
ds,r−s +

ma∑
i=s+1

(
ma

i

)(
ma′

r − i

)
qa′ = 0

Setting up the Lagrangian as above and taking the derivative we obtain

dL

dai,r−i

= −
(
ma

i

)(
ma′

r − i

)
wi,r−i − λi + λr

1(
ma′
r−ma

)(ma

i

)(
ma′

r − i

)
+τi − τr

1(
ma′
r−ma

)(ma

i

)(
ma′

r − i

)
.

This is solved by λs = τs = 0, λi = 0 for i < s and τi = 0 for i > s, λr =
(

ma′
r−ma

)
ws,r−s,

τi =
(
ma

i

)(
ma′
r−i

)
(wi,r−i − ws,r−s) ≥ 0 for i < s and λi =

(
ma

i

)(
ma′
r−i

)
(ws,r−s − wi,r−i) ≥ 0 for

i > s. This completes the proof.

12.2 Parameters of the Dominant Rule in Small Samples

We present the values of s and θ for the dominant linear non-guessing rule. We first do

this for the uninformative pseudo prior.

n 2 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5

ma 1 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2

r 1 1 2 1 2 3 1 2 3 1 2 3 4 1 2 3 4

sr 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 2

θr 0 1
4

3
4

1
3

1 2
3

0 2
3

0 3
8

1
6

5
6

5
8

1
6

2
3

1
3

5
6

Next we present the parameters when the pseudo prior assigns probabilities that are

equal to the frequencies in the data set.

n 2 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5

ma 1 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2

r 1 1 2 1 2 3 1 2 3 1 2 3 4 1 2 3 4

sr 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 2

θr 0 0 1
2

0 1
2

1
3

0 1
2

0 0 1
2

1
3

1
4

0 1
2

1
6

2
3
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On the side, note that the values of sr are the same as under the uninformative pseudo

prior except when n = 5, ma = 1 and r = 2. This is due to the coarseness of the threshold

for small sample sizes.

13 Proposition and Proof for Section 5.5

Proposition 24 (i) If EG

(
f ∗ (X̄))

ā
≥ (1− κā) qā+κā holds for ā ∈ {a, a′} then E

(
fd
(
X̄
))
·

µG ≥ q · µG.

(ii) For every d ∈ (0, 1) there exists m̄ such that if ma,ma′ ≥ m̄ and
∣∣µG

a − µG
a′

∣∣ ≥ d

then EG

(
fd
(
X̄
))

· µG ≥ q · µG.

(iii) max
{
µG
a , µ

G
a′

}
−EG

(
fd
(
X̄
))
·µG ≤ 1

min{κa,κa′}

(
max

{
µG
a , µ

G
a′

}
− EG

(
f ∗ (X̄)) · µG

)
.

Proof. Consider first some random variable Y with distribution PF and some z < 1.

Then

EY =

∫
y>z

ydPF (y) +

∫
y≤z

ydPF (y) ≤ PF (Y > z) + z (1− PF (Y > z))

and hence

PF (Y ≥ z) ≥ PF (Y > z) ≥ 1

1− z
(EY − z) .

Now consider part (i). Assume µG
a > µG

a′ . Let dP
G (X) =

∏m
i=1 dGai (xi). From the

above we obtain

E
(
fd
(
X̄
))

a
= PG (f ∗ (X)a ≥ κa) ≥

1

1− κa
(EG (f ∗ (X))− κa) .

So EG

(
fd
(
X̄
))

· µG ≥ q · µG if

EG

(
fd
(
X̄
))

a
− qa ≥

1

1− κa
(EG (f ∗ (X))− κa)− qa ≥ 0

if

EG

(
f ∗ (X̄))

a
≥ (1− κa) qa + κa.

The analogous condition is found similarly for a′ which completes the proof of part (i).

We do not have to prove part (ii) as it follows from part (i) and Proposition 17.

For part (iii) assume without loss of generality that µG
a > µG

a′ . Then

EG

(
fd
(
X̄
))

· µG = EG

(
fd
(
X̄
))

a
µG
a + EG

(
fd
(
X̄
))

a′
µG
a′

= EG

(
fd
(
X̄
))

a

(
µG
a − µG

a′

)
+ µG

a′

≥ 1

1− κa
(EG (f ∗ (X))a − κa)

(
µG
a − µG

a′

)
+ µG

a′
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so

µG
a − EG

(
fd
(
X̄
))

· µG ≤ µG
a − µG

a′ −
1

1− κa
(EG (f ∗ (X))a − κa)

(
µG
a − µG

a′

)
=

1

κa′

(
µG
a − µG

a′

)
EG (f ∗ (X))a′

=
1

κa′

(
µG
a − EG

(
f ∗ (X̄)) · µG

)
which completes the proof.
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