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Abstract

Natural experiments are a cornerstone of applied economics, providing settings for
estimating causal effects with a compelling argument for treatment randomisation.
Applied researchers often investigate mechanisms behind treatment effects by controlling
for a mediator of interest, alluding to Causal Mediation (CM) methods for estimating
direct and indirect effects (CM effects). This approach to investigating mechanisms
unintentionally assumes the mediator is quasi-randomly assigned — in addition to
quasi-random assignment of the initial treatment. Individuals’ choice to take (or refuse)
a mediator based on costs and benefits is inconsistent with this assumption, suggesting
in-practice estimates of causal mechanisms have no causal interpretation. I consider an
alternative approach to credibly estimate CM effects, using control function methods
and relying on instrumental variation in mediator take-up costs. Simulations confirm
this approach corrects for bias in conventional CM estimates, providing parametric
and semi-parametric methods. This approach gives applied researchers an alternative
method to estimate CM effects when an initial treatment is quasi-randomly assigned,
but the mediator is not, as is common in natural experiments.
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Economists use natural experiments to credibly answer social questions, when an experi-

ment was infeasible. For example, does health insurance causally improve health outcomes

(Finkelstein, Taubman, Wright, Bernstein, Gruber, Newhouse, Allen, Baicker & Group 2012)?

Natural experiments are settings which answer these questions, but give no indication of how

these effects came about. Causal Mediation (CM) aims to estimate the mechanisms behind

causal effects, by estimating how much of the treatment effect operates through a proposed

mediator. For example, do causal gains from health insurance come mostly from starting to

utilise healthcare more often, or are there other direct effects? This study of mechanisms

behind causal effects broadens the economic understanding of social settings studied with

natural experiments. This paper shows that the conventional approach to estimating CM

effects is inappropriate in a natural experiment setting, provides a theoretical framework

for how bias operates, and develops an approach to correctly estimate CM effects under

alternative assumptions.

This paper starts by answering the following question: what does a selection-on-observables

approach to CM actually estimate when a mediator is not quasi-randomly assigned? Esti-

mates for the average direct and indirect effects are contaminated by bias terms — selection

bias plus group difference terms. For example, if individuals had been choosing to seek

medical care more frequently with new health insurance, then underlying health conditions

would confound estimates of the direct and indirect effects of health insurance through using

more healthcare. This approach only leads to credible causal estimates if the mediator is also

quasi-randomly assigned. Should a researcher consider running a CM analysis without using

another natural experiment to isolate random variation in the mediator (in addition to the

one for the original treatment), then this condition is unlikely to hold true. This means that

investigating mechanisms by CM methods will lead to biased inference in natural experiment

settings.

I consider an alternative approach to estimating CM effects, adjusting for unobserved

selection-into-mediator with a control function adjustment. This solves the identification

problem with structural assumptions for selection-into-mediator — mediator monotonicity

and selection based on benefits — and requires a valid cost instrument for mediator take-up.

While these assumptions are strong, they are plausible in many applied settings. Mediator

monotonicity aligns with conventional theories for selection-into-treatment, and is accepted

widely in many applications using an instrumental variables research design. Selection based

on costs and benefits is central to economic theory, and is the dominant concern for judging

empirical designs that use quasi-experimental variation to estimate causal effects. Access to

a valid instrument is a strong assumption, though is important to avoid further modelling

assumptions; the most compelling example is using variation in mediator take-up costs as
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an instrument. This approach is not perfect in every setting: the structural assumptions are

strong, and are tailored to selection-into-mediator concerns pertinent to economic applications.

Indeed, this approach provides no safe harbour for estimating CM effects if these structural

assumptions do not hold true.

The conventional approach to CM assumes that the original treatment, and the subsequent

mediator, are both ignorable (Imai, Keele & Yamamoto 2010). This approach arose in

the statistics literature, and is widely used in social sciences to estimate CM effects in

observational studies. Informal mechanisms analyses in applied economics allude to CM

methods (despite masquerading under an alternative moniker), and so unintentionally import

this identifying assumption.

Assuming the mediator is ignorable (i.e., quasi-randomly assigned or satisfies selection-on-

observables) conveniently sidesteps the consideration of individual choice by assuming that

either people made decisions to take/refuse a mediator näıvely, or a researcher controlled for

everything relevant to this decision. This assumption might be reasonable when studying

single-celled organisms in a laboratory — their “decisions” are simple and mechanical. Social

scientists, however, study humans who make complex choices based on costs, benefits, and

preferences — which are only partially observed by researchers (at best). Assuming a mediator

is ignorable in social science contexts is often unrealistic. In practice, the only setting where

mediator ignorability becomes credible is when researchers find another natural experiment

affecting the mediator — a rare occurrence given how difficult it is to find one source of

random variation, let alone two, simultaneously.

The applied economics literature has been hesitant to use explicit CM methods, and began

conducting informal mechanism analyses by controlling for a proposed mediator (Blackwell,

Ma & Opacic 2024). This practice is fundamentally a CM analysis, despite not being named

so explicitly, so falls prey to the assumptions of conventional CM analyses just the same. A

new strand of the econometric literature has developed estimators for explicit CM analyses

under a variety of strategies to avoid relying on unrealistic assumptions. This includes

overlapping quasi-experimental research designs (Deuchert, Huber & Schelker 2019, Frölich

& Huber 2017), functional form restrictions (Heckman & Pinto 2015), partial identification

(Flores & Flores-Lagunes 2009), or a hypothesis test of full mediation through observed

channels (Kwon & Roth 2024) — see Huber (2020) for an overview. The new literature has

arisen in implicit acknowledgement that a conventional selection-on-observables approach

to CM in applied settings can lead to biased inference, and needs alternative methods for

credible inference.

This paper explicitly shows how a conventional approaches to CM can lead to biased

inference in natural experiments. I develop a formal framework showing exactly how selection
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bias contaminates CM estimates when mediator choices are driven by unobserved gains —

settings where none of the natural experiment research designs in the previously cited papers

apply (i.e., the mediator is not ignorable). This provides a rigorous warning to applied

economists against uncritically applying conventional CM methods to investigate mechanisms

in natural experiments. Instead, I propose an alternative approach grounded in classic labour

economic theory.

I use the Roy (1951) model as a benchmark for judging the Imai, Keele & Yamamoto

(2010) mediator ignorability assumption in a natural experiment setting, and find it unlikely to

hold in a natural experiment setting.1 This motivates a solution to the identification problem

inspired by classic labour economic work, which also uses the Roy model as a benchmark

(Heckman 1979, Heckman & Honore 1990). I follow the lead of these papers by using a

control function to correct for the selection bias in conventional CM analyses.

The control function approach requires mediator take-up respond only positively to the

initial treatment (monotonicity), which implies mediator selection follows a selection model.

Second, it assumes that mediator take-up is motivated by mediator benefits. Last, it re-

quires a valid instrument for mediator take-up, to avoid relying on parametric assumptions

on unobserved selection. This approach to identifying CM effects (despite selection-into-

mediator) imports insights from the instrumental variables literature, connecting CM to

the marginal treatment effects literature (Vytlacil 2002, Heckman & Navarro-Lozano 2004,

Heckman & Vytlacil 2005, Florens, Heckman, Meghir & Vytlacil 2008, Kline & Walters

2019).2 Using a control function to estimate CM effects builds on the influential Imai, Keele

& Yamamoto (2010) approach, marrying the CM literature with labour economic theory on

selection-into-treatment for the first time.

This paper proceeds as follows. Section 1 introduces the formal framework for CM, and

develops expressions for bias in CM estimates in natural experiments. Section 2 describes

this bias in applied settings with (1) a regression framework, (2) a setting with selection

based on costs and benefits. Section 3 shows how a control function can effectively purge

this bias from CM estimates. Section 4 demonstrates how to estimate CM effects with this

approach, with either parametric or semi-parametric methods, giving supporting simulation

evidence. Section 5 concludes.

1An alternative method to estimate CM effects is ensuring treatment and mediator ignorability holds by
a running two randomised controlled trials (or suitable quasi-experiment) for both treatment and mediator,
at the same time. This set-up has been considered in the literature previously, in theory (Imai, Tingley &
Yamamoto 2013, Heckman & Pinto 2015) and in practice (Ludwig, Kling & Mullainathan 2011, Heckman,
Pinto & Savelyev 2013).

2Indeed, this paper does not invent control function methods, instead noting their applicability in this
setting. See Wooldridge (2015), Imbens (2007) for general overviews of the approach, and Frölich & Huber
(2017) for a CM setting with two instruments that notes the connection to control function methods.
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1 Average Direct and Indirect Effects

CM decomposes causal effects into two channels, through a mediator (indirect effect) and

through all other paths (direct effect). To develop notation, write Zi = 0, 1 for a binary

treatment, Di = 0, 1 a binary mediator, and Yi a continuous outcome.3 Di, Yi are a sum of

their potential outcomes,

Di = (1 − Zi)Di(0) + ZiDi(1),

Yi = (1 − Zi)Yi(0, Di(0)) + ZiYi(1, Di(1)).

Assume treatment Zi is ignorable.4

Zi |= Di(z
′), Yi(z, d

′), for z′, z, d′ = 0, 1

There are only two average effects which are identified without additional assumptions.

1. The average first-stage refers to the effect of the treatment on mediator, Zi on Di:

E [Di |Zi = 1] − E [Di |Zi = 0] = E [Di(1) −Di(0)] .

It is common in the economics literature to assume that Zi influences Di in at most one

direction, Pr (Di(0) ≤ Di(1)) = 1 — monotonicity (Imbens & Angrist 1994). I assume

mediator monotonicity (and its conditional variant) holds throughout to simplify notation.

2. The Average Treatment Effect (ATE) refers to the effect of the treatment on outcome, Zi

on Yi, and is also known as the average total effect or intent-to-treat effect in social science

settings, or reduced-form effect in the instrumental variables literature:

E [Yi |Zi = 1] − E [Yi |Zi = 0] = E [Yi(1, Di(1)) − Yi(0, Di(0))] .

Zi affects outcome Yi directly, and indirectly via the Di(Zi) channel, with no reverse

causality. Figure 1 visualises the design, where the direction arrows denote the causal

direction. CM aims to decompose the ATE of Zi on Yi into these two separate pathways:

Average Direct Effect (ADE): E [Yi(1, Di(Zi)) − Yi(0, Di(Zi))] ,

Average Indirect Effect (AIE): E [Yi(Zi, Di(1)) − Yi(Zi, Di(0))] .

3This paper exclusively focuses on the binary case. See Huber, Hsu, Lee & Lettry (2020) for a discussion
of CM with continuous treatment and/or mediator, and the assumptions required.

4This assumption can hold conditional on covariates. To simplify notation in this section, leave the
conditional part unsaid, as it changes no part of the identification framework.
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Figure 1: Structural Causal Model for Causal Mediation.

DiZi Yi

Mediator

Treatment Outcome
First-stage Complier AIE

ADE

U i

Note: This figure shows the structural causal model behind causal mediation, where arrows represent causal
effects — e.g., Zi → Di means Zi affects Di with no reverse causality. The Complier AIE refers to the AIE
local to Di(Zi) compliers, so that AIE = average first-stage × Complier AIE. U i represents this paper’s
focus on the case that Di is not ignorable by showing an unobserved confounder. Subsection 2.1 defines U i

in an applied setting.

Estimating the AIE answers the following question: how much of the causal effect Zi

on Yi goes through the Di channel? If a researcher is studying the health gains of health

insurance (Finkelstein et al. 2012), and wants to study the role of healthcare usage, the AIE

represents how much of the effect comes from using the hospital more often. Estimating

the ADE answers the following equation: how much is left over after accounting for the Di

channel?5 For the health insurance example, how much of the health insurance effect is a

direct effect, other than increased healthcare usage — e.g., long-term effects of lower medical

debt, or less worry over health shocks. An instrumental variables approach assumes this

direct effect is zero for everyone (the exclusion restriction). CM is a similar, yet distinct,

framework attempting to explicitly model the direct effect, and not assuming it is zero.

The ADE and AIE are not separately identified without further assumptions.

1.1 Identification of Causal Mediation (CM) Effects

The conventional approach to estimating direct and indirect effects assumes both Zi and Di

are ignorable, conditional on a vector of control variables X i.

Definition 1. Sequential Ignorability (Imai, Keele & Yamamoto 2010)

Zi |= Di(z
′), Yi(z, d

′) | X i, for z′, z, d′ = 0, 1 (1)

Di |= Yi(z′, d′) | X i, Zi = z′, for z′, d′ = 0, 1. (2)

5In a non-parametric setting it is not necessary that ADE + AIE = ATE. See Imai, Keele & Yamamoto
(2010) for this point in full.
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Sequential ignorability assumes that the initial treatment Zi is ignorable conditional on

X i (as has already been assumed above). It then also assumes that, after Zi is assigned, that

Di is ignorable conditional on X , Zi (hereafter, mediator ignorability). If 1(1) and 1(2) hold,

then the ADE and AIE are identified by two-stage mean differences conditioning on X i.
6

EDi,X i

E [Yi |Zi = 1, Di,X i] − E [Yi |Zi = 0, Di,X i]︸ ︷︷ ︸
Second-stage regression, Yi on Zi holding Di,X i constant

 = E [Yi(1, Di(Zi)) − Yi(0, Di(Zi))]︸ ︷︷ ︸
Average Direct Effect (ADE)

EZi,X i

(E [Di |Zi = 1,X i] − E [Di |Zi = 0,X i]
)

︸ ︷︷ ︸
First-stage regression, Di on Zi

×
(
E [Yi |Zi, Di = 1,X i] − E [Yi |Zi, Di = 0,X i]

)
︸ ︷︷ ︸

Second-stage regression, Yi on Di holding Zi,X i constant


= E [Yi(Zi, Di(1)) − Yi(Zi, Di(0))]︸ ︷︷ ︸

Average Indirect Effect (AIE)

I refer to the estimands on the left-hand side as Causal Mediation (CM) estimands. These

estimands are typically estimated with linear models, with resulting estimates composed from

two-stage Ordinary Least Squares (OLS) estimates (Imai, Keele & Yamamoto 2010). While

this is the most common approach in the applied literature, I do not assume the linear model.

Linearity assumptions are unnecessary to my analysis; it suffices to note that heterogeneous

treatment effects and non-linear confounding would bias OLS estimates of CM estimands in

the same manner that is well documented elsewhere (see e.g., Angrist 1998, S loczyński 2022).

This section focuses on problems that plague CM by selection-on-observables, regardless of

estimation method.

1.2 Non-identification of Causal Mediation (CM) Effects

Applied researchers often use a natural experiment to study settings where treatment Zi

is ignorable, justifying assumption 1(1). Rarely do they also have access to an additional,

overlapping natural experiment to isolate random variation in Di — to justify mediator

ignorability 1(2). One might consider conventional CM methods in such a setting to learn

about the mechanisms behind the causal effect Zi on Yi. This approach leads to biased

estimates, and contaminates inference regarding direct and indirect effects.

Theorem 1. Absent an identification strategy for the mediator, causal mediation estimates

are at risk of selection bias. If 1(1) holds, and 1(2) does not, then CM estimands are

6In addition, a common support condition for both Zi, Di (across X i) is necessary. Imai, Keele & Ya-
mamoto (2010) show a general identification statement; I show identification in terms of two-stage regression,
notation for which is more familiar in economics. Appendix A.1 states the Imai, Keele & Yamamoto (2010)
identification result, and then develops the two-stage regression notation which holds as a consequence of
sequential ignorability.
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contaminated by selection bias and group differences. Proof: see Appendix A.2.

Below I present the relevant selection bias and group difference terms, omitting the

conditional on X i notation for brevity.

For the direct effect: CM estimand = ADE + selection bias + group differences.7

EDi

[
E [Yi |Zi = 1, Di] − E [Yi |Zi = 0, Di]

]
= E [Yi(1, Di(Zi)) − Yi(0, Di(Zi))]

+ EDi=d′

[
E [Yi(0, Di(Zi)) |Di(1) = d′] − E [Yi(0, Di(Zi)) |Di(0) = d′]

]
+ EDi=d′

[(
1 − Pr (Di(1) = d′)

)(E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Di(1) = 1 − d′]

− E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Di(1) = d′]

)]

For the indirect effect: CM estimand = AIE + selection bias + group differences.

EZi

[(
E [Di |Zi = 1] − E [Di |Zi = 0]

)
×
(
E [Yi |Zi, Di = 1] − E [Yi |Zi, Di = 0]

)]
= E [Yi(Zi, Di(1)) − Yi(Zi, Di(0))]

+ Pr (Di(1) = 1, Di(0) = 0)
(
E [Yi(Zi, 0) |Di = 1] − E [Yi(Zi, 0) |Di = 0]

)
+ Pr (Di(1) = 1, Di(0) = 0)×
(

1 − Pr (Di = 1)
)(E [Yi(Zi, 1) − Yi(Zi, 0) |Di = 1]

− E [Yi(Zi, 1) − Yi(Zi, 0) |Di = 0]

)

−
(

1 − Pr (Di(1) = 1, Di(0) = 0)

Pr (Di(1) = 1, Di(0) = 0)

)(E [Yi(Zi, 1) − Yi(Zi, 0) |Di(1) = 0 or Di(0) = 1]

− E [Yi(Zi, 1) − Yi(Zi, 0)]

)


The selection bias terms come from systematic differences between the groups taking or

refusing the mediator (Di = 1 versus Di = 0), differences not fully unexplained by X i. These

selection bias terms would equal zero if the mediator had been ignorable 1(2), but do not

necessarily average to zero if not.

The group differences represent the fact that a matching approach gives an average effect

on the treated group and, when selection-on-observables does not hold, this is systematically

different from the average effect (Heckman et al. 1998). These terms are a non-parametric

framing of the bias from controlling for intermediate outcomes, previously studied only in a

7The bias terms here mirror those in Heckman, Ichimura, Smith & Todd (1998), Angrist & Pischke (2009)
for a single Di on Yi treatment effect, when Di is not ignorable:

E [Yi |Di = 1]−E [Yi |Di = 0] = ATE+
(
E [Yi(., 0) |Di = 1]− E [Yi(., 0) |Di = 0]

)
︸ ︷︷ ︸

Selection Bias

+Pr (Di = 0) (ATT−ATU)︸ ︷︷ ︸
Group-differences Bias

.
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linear setting (i.e., bad controls in Cinelli, Forney & Pearl 2024, or M-bias in Ding & Miratrix

2015).

The AIE group differences term is longer, because the indirect effect is comprised of the

effect of Di local to Di(Zi) compliers.

AIE = E [Yi(Zi, Di(1)) − Yi(Zi, Di(0))]

= E [Di(1) −Di(0)] E [Yi(Zi, 1) − Yi(Zi, 0) |Di(0) = 0, Di(1) = 1]︸ ︷︷ ︸
Average Di on Yi effect among Di(Zi) compliers

It is important to acknowledge the mediator compliers here, because the AIE is the treatment

effect going through the Di(Zi) channel, thus only refers to individuals pushed into mediator

Di by initial treatment Zi. If we had been using a population average effect for Di on Yi,

then this is losing focus on the definition of the AIE; it is not about the causal effect Di on

Yi, it is about the causal effect Di(Zi) on Yi.

The group difference bias term arises because the selection-on-observables approach

assumes that this complier average effect is equal to the population average effect, which

does not hold true if the mediator is not ignorable. This distinction between average effects

and complier average effects in the AIE is skipped over by the “controlled effect” definitions

of Pearl (2013).

2 Causal Mediation (CM) in Applied Settings

Unobserved confounding is particularly problematic when studying the mechanisms behind

treatment effects. For example, in studying health gains from health insurance, we might

expect that health gains came about because those with new insurance started visiting their

healthcare provider more often, when in past they forewent using healthcare over financial

concerns (Finkelstein et al. 2012). Applying conventional CM methods to investigate this

expectation would be dismissing unobserved confounders for how often individuals visit

healthcare providers, leading to biased results.

The wider population does not have one uniform bill of health; many people are born

predisposed to ailments, due to genetic variation or other unrelated factors. These conditions

can exist for years before being diagnosed. People with severe underlying conditions may

visit healthcare providers more often than the rest of the population, to investigate or begin

treating the ill–effects. It stands to reason that people with more serve underlying conditions

may gain more from more often attending healthcare providers once given health insurance.

These underlying causes for responding more to new access to health insurance cannot be

controlled for by researchers, as researchers cannot hope to observe and control for health
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conditions that are yet to even be diagnosed. This means underlying health conditions are

an unobserved confounder, and will bias estimates of the ADE and AIE in this setting.

In this section, I further develop the issue of selection on unobserved factors in a general

CM setting. First, I show the non-parametric bias terms from Section 1 can be written as

omitted variables bias in a regression framework. Second, I show how selection bias operates

in a basic model for selection-into-mediator based on costs and benefits.

2.1 Regression Framework

Inference for CM effects can be written in a regression framework, showing how correlation

between the error term and the mediator persistently biases estimates.

Start by writing potential outcomes Yi(., .) as a sum of observed and unobserved factors,

following the notation of Heckman & Vytlacil (2005). For each z′, d′ = 0, 1, put µd′(z
′;X i) =

E [Yi(z
′, d′) |X i] and the corresponding error terms, Ud′,i = Yi(z

′, d′)−µd′(z
′;X i), so we have

the following expressions:

Yi(Zi, 0) = µ0(Zi;X i) + U0,i, Yi(Zi, 1) = µ1(Zi;X i) + U1,i.

With this notation, observed data Zi, Di, Yi,X i have the following outcome formulae — which

characterise direct effects, indirect effects, and selection bias.

Di = θ + πZi + ζ(X i) + ηi (3)

Yi = α + βDi + γZi + δZiDi + φ(X i) + (1 −Di)U0,i +DiU1,i︸ ︷︷ ︸
Correlated error term.

(4)

This is not consequence of linearity assumptions; the regression functions allow for uncon-

strained heterogenous treatment effects. This is because Zi, Di are categorical, and if either

were instead continuously distributed then this representative would not necessarily hold

true. First-stage (3) is identified, with θ + ζ(X i) the intercept, and π the first-stage average

compliance rate (conditional on X i). Second-stage (4) has the following definitions, and is

not identified thanks to omitted variables bias. See Appendix A.3 for the derivation.

(a) α = E [µ0(0;X i)] and φ(X i) = µ0(0;X i) − α are the intercept terms.

(b) β = µ1(0;X i) − µ0(0;X i) is the AIE conditional on Zi = 0,X i.

(c) γ = µ0(1;X i) − µ0(0;X i) is the ADE conditional on Di = 0,X i.

(d) δ = µ1(1;X i)−µ0(1;X i)−
(
µ1(0;X i)−µ0(0;X i)

)
is the average interaction effect conditional

on X i.
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(e) (1 −Di)U0,i +DiU1,i is the disruptive error term.

The ADE and AIE are averages of these regression coefficients.

ADE = E [γ + δDi] ,

AIE = E
[
π
(
β + δZi + Ũi

)]
, with Ũi = E [U1,i − U0,i |X i, Di(0) = 0, Di(1) = 1]︸ ︷︷ ︸

Unobserved complier gains.

.

The ADE is a simple sum of the coefficients, while the AIE includes a group differences term

because it only refers to Di(Zi) compliers.

By construction, U i := (U0,i, U1,i) is an unobserved confounder. The regression estimates

of β, γ, δ in second-stage (4) give unbiased estimates only if Di is also conditionally ignorable:

Di |= U i. If not, then estimates of CM effects suffer from omitted variables bias from failing

to adjust for the unobserved confounder, U i.

2.2 Selection on Costs and Benefits

CM is at risk of bias because Di |= (U0,i, U1,i) is unlikely to hold in applied settings. A separate

identification strategy could disrupt the selection-into-Di based on unobserved factors, and

lend credibility to the mediator ignorability assumption. Without it, bias will persist, given

how we conventionally think of selection-into-treatment.

Consider a model where individual i selects into a mediator based on costs and benefits

(in terms of outcome Yi), after Zi,X i have been assigned. In a natural experiment setting,

an external factor has disrupted individuals selecting Zi by choice (thus Zi is ignorable), but

it has not disrupted the choice to take mediator (thus Di is not ignorable). Write Ci for

individual i’s costs of taking mediator Di, and 1 {.} for the indicator function. The Roy

model has i taking the mediator if the benefits exceed the costs,

Di (z′) = 1

 Ci︸︷︷︸
Costs

≤ Yi (z′, 1) − Yi (z′, 0)︸ ︷︷ ︸
Benefits

 , for z′ = 0, 1. (5)

The Roy model provides an intuitive framework for analysing selection mechanisms be-

cause it captures the fundamental economic principle of decision-making based on costs and

benefits in terms of the outcome under study (Roy 1951, Heckman & Honore 1990). If the

treatment Zi is health insurance, outcome Yi a measure of health outcomes, and the mediator

Di increased use of healthcare institutions, then this models the choice to visit the doctor

more often in terms of health benefits relative to costs.8 This makes the Roy model useful

8If the choice is considers over a sum of outcomes, then a simple extension to a utility maximisation model
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as a base case for CM, where selection-into-mediator may be driven by private information

(unobserved by the researcher). By using the Roy model as a benchmark, I explore the

practical limits of the mediator ignorability assumption.

Decompose the costs into its mean and an error term, Ci(Zi) = µC(Zi;X i) + UC,i, to

show Roy-selection in terms of unobserved and observed factors,

Di(z
′) = 1

{
UC,i −

(
U1,i − U0,i

)
≤ µ1(z

′;X i) − µ0(z
′;X i) − µC(z′;X i)

}
, for z′ = 0, 1.

If selection follows a Roy model, and the mediator is ignorable, then unobserved benefits

can play no part in selection. The only driver of selection are individuals’ differences in costs

(and not benefits). If there are any selection-into-Di benefits unobserved to the researcher,

then mediator ignorability cannot hold.

Proposition 1. Suppose mediator selection follows a Roy model (5), and selection is not

fully explained by costs and observed gains. Then mediator ignorability does not hold.

This is an equivalence statement: selection based on costs and benefits is only consistent

with mediator ignorability if the researcher observed every single source of mediator benefits.

See Appendix A.4 for the proof. This means than the vector of control variables X i must be

incredibly rich. Together, X i and unobserved cost differences UC,i must explain selection-into-

Di one hundred percent. In the Roy model framework, however, individuals make decisions

about mediator take-up based on gains — whether the researcher observes them or not. The

unobserved gains are unlikely to be fully captured by an observed control set X i, except in

very special cases.

In practice, the only way to believe in the mediator ignorability assumption is to study

a setting where the researcher has two causal research designs, one for treatment Zi and

another for mediator Di, at the same time. An unmotivated note saying “we conduct an

informal mechanism analysis by controlling for this variable” or “we assume the mediator

satisfies selection-on-observables” does not cut it here, and will lead to biased inference in

practice.

3 Solving Identification with a Control Function (CF)

If your goal is to estimate CM effects, and you could control for unobserved selection terms

U0,i, U1,i, then you would. This ideal (but infeasible) scenario would yield unbiased estimates

for the ADE and AIE. A Control Function (CF) approach takes this insight seriously,

maintains this same framework with expected costs and benefits. See Heckman & Honore (1990), Eisenhauer,
Heckman & Vytlacil (2015).
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providing conditions to model the implied confounding by U0,i, U1,i, and then controlling for

it.

The main problem is that second-stage regression equation (4) is not identified, because

U0,i, U1,i are unobserved, and lead to omitted variables bias.

E [Yi |Zi, Di,X i] = α + βDi + γZi + δZiDi + φ(X i)

+ (1 −Di)E [U0,i |Di = 0,X i] +DiE [U1,i |Di = 1,X i]︸ ︷︷ ︸
Unobserved confounding.

(6)

The CF approach models the contaminating terms in (6), avoiding the bias from omitting

them in regression estimates. CF methods were first devised to correct for sample selection

problems (Heckman 1974), and were extended to a general selection problem of the same form

as Equation (6) (Heckman 1979). The approach works in the following manner: (1) assume

that the variable of interest follows a selection model, where unexplained first-stage selection

informs unobserved second-stage confounding; (2) extract information about unobserved

confounding from the first-stage; and (3) incorporate this information as control terms in the

second-stage equation to adjust for selection-into-mediator. Identification in CF methods

typically relies on either distributional assumptions on the unobserved error terms, or an

exclusion restriction for Instrumental Variables (IVs) in the first-stage (or both). By explicitly

accounting for the information contained in the first-stage selection model, CF methods enable

consistent estimation of causal effects in the second-stage even when selection is driven by

unobserved factors (Florens et al. 2008).

In the example of analysing health gains from health insurance (Finkelstein et al. 2012),

a CF approach addresses the unobserved confounding from underlying health conditions. It

does so by assuming that unobserved selection-into-frequent health care usage is informative

for underlying health conditions, assuming people with more severe underlying conditions

visit the doctor more often than those without. Then it uses this information in the second-

stage estimation of how much the effect goes through increased healthcare usage, estimating

the ADE and AIE.

3.1 Re-identification of Causal Mediation (CM) Effects

The following assumptions are sufficient to model the correlated error terms, identifying

β, γ, δ in the second-stage regression (4), and thus both the ADE and AIE.

Assumption CF–1. Mediator monotonicity, conditional on X i.

Pr (Di(0) ≤ Di(1) |X i) = 1.
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Assumption CF–1 is the monotonicity condition first used in an IV context (Imbens & Angrist

1994). Here, it is assuming that people respond to treatment, Zi, by consistently taking or

refusing the mediator Di (always or never-mediators), or taking the mediator Di if and only

if assigned to the treatment Zi = 1 (mediator compliers). There are no mediator defiers.

The main implication of Assumption CF–1 is that selection-into-mediator can be written

as a selection model with ordered threshold crossing values that describe selection-into-Di

(Vytlacil 2002).

Di(z
′) = 1

{
Vi ≤ ψ

(
z′;X i

)}
, for z′ = 0, 1

where Vi is a latent variable with continuous distribution and conditional cumulative density

function FV (. |X i), and ψ(. ;X i) collects observed sources of mediator selection. Vi could be

assumed to follow a known distribution; the canonical Heckman selection model assumes Vi

is normally distributed (a “Heckit” model). The identification strategy here applies to the

general case that the distribution of Vi is unknown, without parametric restrictions.

I focus on the equivalent transformed model of Heckman & Vytlacil (2005),

Di(z
′) = 1 {Ui ≤ π(z′;X i)} , for z′ = 0, 1

where Ui := FV (Vi | X i) follows a uniform distribution, and π(z′;X i) = FV

(
ψ(z′;X i)

)
=

Pr (Di = 1 |Zi = z′,X i) is the mediator propensity score. Ui are the unobserved mediator

take-up costs. Note the maintained assumption that treatment Zi is ignorable conditional

on X i implies Zi |= Ui conditional on X i.

This selection model setup is equivalent to the monotonicity condition, and is importing a

well-known equivalence result from the IV literature to the CM setting. The main conceptual

difference is not assuming Zi is a valid instrument for identifying the Di on Yi effect among

compliers; it is using the selection model representation to correct for selection bias. See

Appendix A.5 for a validation of the general Vytlacil (2002) equivalence result in a CM

setting, with conditioning covariates X i.

Assumption CF–2. Selection on mediator benefits.

Cov (Ui, U0,i) , Cov (Ui, U1,i) ̸= 0.

Assumption CF–2 is stating that unobserved selection in mediator take-up (Ui) informs

second-stage confounding, when refusing or taking the mediator (U0,i and U1,i). If there is

confounding in Yi, then it can be measured in Di.

This is a strong assumption, and will not hold in all examples. If people had been deciding

to take Di by a Roy model, then this assumption holds because Vi = UC,i −
(
U1,i − U0,i

)
.

Individuals could be making decisions based on other outcomes, but as long as mediator
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costs and benefits guide at least part of this decision (i.e., bounded away from zero), then

this assumption will hold.

For notation purposes, suppose the vector of control variables X i has at least two entries;

denote X IV
i as one entry in the vector, and X−

i as the remaining.

Assumption CF–3. Mediator take-up cost instrument.

X IV
i satisfies

∂

∂X IV
i

{
µ1(z

′,X i) − µ0(z
′,X i)

}
= 0 <

∂

∂X IV
i

{
E [Di(z

′) |X i]
}
, for z′ = 0, 1.

Assumption CF–3 is requiring at least one control variable guides selection-into-Di — an IV.

It assumes an instrument exists, which satisfies an exclusion restriction (i.e., not impacting

mediator gains µ1 − µ0), and has a non-zero influence on the mediator (i.e., strong IV

first-stage). The exclusion restriction is untestable, and must be guided by domain-specific

knowledge; IV first-stage strength is testable, and must be justified with data by methods

common in the IV literature.

This assumption identifies the mediator propensity score separately from the direct and

indirect effects, avoiding indeterminacy in the second-stage outcome equation. While not

technically required for identification, it avoids relying entirely on an assumed distribution

for unobserved error terms (and bias from inevitably breaking this assumption). The most

compelling example of a mediator IV is using data on the cost of mediator take-up as a

first-stage IV, if it varies between individuals for unrelated reasons and is strong in explaining

mediator take-up.

Proposition 2. If assumptions CF–1, CF–2, CF–3 hold, then second-stage regression equa-

tion (4) is identified with a CF adjustment.

E [Yi |Zi, Di,X i] = α + βDi + γZi + δZiDi + φ
(
X−

i

)
+ ρ0 (1 −Di)λ0

(
π(Zi;X i)

)
+ ρ1Diλ1

(
π(Zi;X i)

)
,

where λ0, λ1 are the Control Functions (CFs), ρ0, ρ1 are linear parameters, and mediator

propensity score π(z′;X i) is separately identified in the first-stage (3). Proof: see Ap-

pendix A.6.

Again, this set-up required no linearity assumptions, and treatment effects vary, because

Zi, Di are categorical and β, γ, δ, φ(X i) vary with X i. The CFs are functions which measure

unobserved mediator gains, for those with unobserved mediator costs above or below a

propensity score value. Following the IV notation of Kline & Walters (2019), put µV =
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E
[
F−1
V (Ui | X i)

]
, to give the following representation for the CFs:

λ0
(
p′
)

= E
[
F−1
V (Ui | X i) − µV

∣∣ p′ < Ui

]
,

λ1
(
p′
)

= E
[
F−1
V (Ui | X i) − µV

∣∣Ui ≤ p′
]

= −λ0
(
p′
)(1 − p′

p′

)
, for p′ ∈ (0, 1).

If we are using the canonical Heckman selection model, we assume the error term follows a

normal distribution, so that λ0, λ1 are the inverse Mills ratio. Alternatively, λ0, λ1 could have

other definitions following the assumed distribution of the error terms (see e.g, Wooldridge

2015). If we do not know what distribution class the errors follow, then λ0, λ1 can be estimated

separately with semi-parametric methods to avoid relying on parametric assumptions.

Theorem CF. If assumptions CF–1, CF–2, CF–3 hold, the ADE and AIE are identified as

a function of the parameters in Proposition 2.

ADE = E [γ + δDi] ,

AIE = E

[
π
(
β + δZi + (ρ1 − ρ0) Γ

(
π(0;X i), π(1;X i)

)︸ ︷︷ ︸
Mediator compliers adjustment

)]

where Γ (p, p′) = E
[
F−1
V (Ui | X i) − µV

∣∣ p < Ui ≤ p′
]

= p′λ1(p′)−pλ1(p)
p′−p

is the average unob-

served net gains for those with unobserved costs between p < p′,9 and π = π(1;X i)−π(0;X i)

is the mediator complier score. Proof: see Appendix A.7.

This theorem provides a solution to the identification problem for CM effects when facing

selection; rather than assuming away selection problems, it explicitly models them. The

ADE is straightforward to calculate as an average of the direct effect parameters, while the

AIE also includes an adjustment for unobserved complier gains to the mediator. Again, this

is because the AIE only refers to individuals who were induced by treatment Zi into taking

mediator Di (mediator compliers). The CFs allow us to measure both selection bias and

complier differences, and thus purge persistent bias in identifying CM effects.

This identification strategy is essentially a Marginal Treatment Effect approach (MTE,

Heckman & Vytlacil 2005) applied to a CM setting. Just as the semi-parametric local IV

approach uses variation in instruments to identify MTEs across the distribution of unobserved

treatment take-up costs, this CF approach identifies CM effects across the distribution of

unobserved mediator take-up costs. This connection to MTEs provides a conceptual bridge

between the literature on IV structural causal effects and CM.

9The complier adjustment term was first written in this manner by Kline & Walters (2019) for an IV
setting.
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Figure 2: The CF Adjustment Addresses Persistent Bias in Conventional CM Estimates.

(a) ÂDE−ADE. (b) ÂIE−AIE.

Note: These figures show the empirical density of point estimates minus the true average effect, for 10,000
different datasets generated from a Roy model with normally distributed error terms (with both correlation
and heteroscedasticity, further described in Subsection 4.3). The black dashed line is the true value; orange
is the distribution of conventional CM estimates from two-stage OLS (Imai, Keele & Yamamoto 2010), and
blue estimates with a two-stage Heckman selection adjustment.

In a simulation with Roy selection-into-mediator based on unobserved error terms, the

CF adjustment pushes conventional CM estimates back to the true value. Figure 2 shows

how a CF adjustment corrects unadjusted CM effect estimates.

4 Control Function (CF) Estimation of CM Effects

A conventional approach to estimating CM effects involves a two-stage approach to estimating

the ADE and the AIE: the first-stage (Zi on Di), and the second-stage (Zi, Di on Yi). A CF

approach is a simple and intuitive addition to this approach: including the CF terms λ0, λ1

in the second-stage regression to address selection-into-mediator.

This section presents two practical estimation strategies. First, I demonstrate how to

estimate CM effects with an assumed distribution of error terms, focusing on the Heckman

selection model as the leading case. Second, I consider a more flexible semi-parametric

approach that avoids distributional assumptions — at the cost of semi-parametrically esti-

mating the corresponding CFs. While both methods effectively address the selection bias

issues detailed in previous sections, they differ in their implementation complexity, efficiency,
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and underlying assumptions.

4.1 Parametric CF

A parametric CF solves the identification problem by assuming a distribution for the unob-

served error terms in the first-stage selection model, and modelling selection based on this

distribution. The Heckman selection model is the most pertinent example, assuming the

normal distribution for unobserved errors (Heckman 1979). A parametric CF using other

distributions works in exactly the same manner, replacing the relevant density functions

for an alternative distribution as needed. As such, this section focuses exclusively on the

Heckman selection model.

The Heckman selection model assumes unobserved errors Vi follow a normal distribution,

so estimates the first-stage using a probit model.

Pr (Di = 1 |Zi,X i) = Φ
(
θ + πZi + ζ ′X i

)
,

where Φ(.) is the cumulative density function for the standard normal distribution, and θ, π, ζ

are parameters estimated with maximum likelihood. In the parametric case, an excluded

instrument (X IV
i ) is not technically necessary in the first-stage equation — though not

including one exposes the method to indeterminacy if the errors are not normally distributed.

Thus, it is best practice to use this method with access to an instrument.

From this probit first-stage, construct an estimate of the inverse Mills ratio terms to serve

as the CFs. These terms capture the correlation between unobserved factors influencing both

mediator selection and outcomes, when the errors are normally distributed.

λ0(p
′) = −ϕ(p′)

Φ(p′)
, λ1(p

′) =
ϕ(p′)

Φ(p′)
, for p′ ∈ (0, 1)

where ϕ(.) is the probability density function for the standard normal distribution.

Lastly, the second-stage is estimated with OLS, including the CFs with plug in estimates

of the mediator propensity score.

E [Yi |Zi, Di,X i] = α + βDi + γZi + δZiDi + φ
(
X−

i

)
+ ρ0(1 −Di)λ0

(
− Φ−1(π̂(Zi;X i))

)
+ ρ1Diλ1

(
Φ−1(π̂(Zi;X i))

)
+ εi,

where π̂
(
z′;X i

)
are the predictions from the probit first-stage.

The resulting ADE and AIE estimates are composed from sample estimates of the terms

17



Causal Mediation in Natural Experiments. 24 June 2025

in Theorem CF,

ÂDE = γ̂ + δ̂ D, ÂIE = π̂
(
β̂ + δ̂ Z +

(
ρ̂1 − ρ̂0

)
Γ
(
π̂(0;X i), π̂(1;X i)

))
where D = 1

N

∑N
i=1Di, Z = 1

N

∑N
i=1 Zi, and Γ(., .) is the the average of the complier adjust-

ment term as a function of λ1 with π̂
(
0;X i

)
, π̂
(
1;X i

)
values plugged in.

The standard errors for estimates can be computed using the delta method. Specifically,

accounting for both the sampling variability in the first-stage estimates of the mediator

propensity score as well as the second-stage sampling variability. This approach yields
√
n-

consistent estimates when the underlying error terms follow a bivariate normal distribution

— i.e., when π(Zi;X i) is correctly modelled by the probit first-stage. Errors can also be

estimated by the bootstrap, by including estimation of both the first and second-stage within

each bootstrap iteration.

In practice, a parametric CF approach is simple to implement using standard statistical

packages. The key advantage is computational simplicity and efficiency, particularly in

moderate-sized samples. However, this comes at the cost of strong distributional assumptions.

For example, if the error terms deviate substantially from joint normality, the estimates may

be biased.10

4.2 Semi-parametric CF

For settings where researchers are not comfortable specifying a specific distribution for the

error terms, a semi-parametric CF will nonetheless consistently estimate CM effects. This

method maintains the same identification strategy but avoids assuming a specific error

distribution.

The semi-parametric approach begins with flexible estimation of the first-stage, estimating

the mediator propensity score,

Pr (Di = 1 |Zi,X i) = π (Zi;X i) ,

where X i must include the instrument(s) X IV
i . This can be estimated using flexible methods,

as long as the first-stage is estimated
√
n-consistently.11 An attractive option is the Klein &

10While this concern is immaterial in an IV setting estimating the LATE (Kline & Walters 2019), it is
pertinent in this setting as the CF extrapolates from IV compliers to mediator compliers.

11If an estimate of the first-stage that is not
√
n-consistent is used (e.g., a modern machine learning

estimator), then the resulting second-stage estimate will not be
√
n-consistent. This could be ameliorated by

augmenting the approach with cross-fitting, and the appropriate Neyman orthogonal moments; Bia, Huber
& Lafférs (2024) use this approach for one-sided selection problems, but (as fas as I am aware) there is no
general double machine learning approach for CF methods with a two-sided selection problem.
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Spady (1993) semi-parametric binary response model, which avoids relying on an assumed

distribution of first-stage errors though requires a linear specification. If it is important to

avoid a linear specification, then a probability forest avoids linearity assumptions (Athey,

Tibshirani & Wager 2019) — though is best used for cases with many columns in the X i

variables.

Next the second-stage is estimated with semi-parametric methods. Consider the subsam-

ples of mediator refusers and takers separately,

E [Yi |Zi, Di = 0,X i] = α + γZi + φ
(
X−

i

)
+ ρ0λ0

(
π(Zi;X i)

)
,

E [Yi |Zi, Di = 1,X i] = (α + β) + (γ + δ)Zi + φ
(
X−

i

)
+ ρ1λ1

(
π(Zi;X i)

)
.

The separated subsamples can be estimated, each individually, with semi-parametric methods.

The linear parameters (including a linear approximation φ′ of nuisance function φ(.))12 can

be estimated with OLS, while ρ0λ0 and ρ1λ1 take a flexible semi-parametric specification

with first-stage estimates π̂(Zi;X i) plugged in. An attractive option is a series estimator,

such as a spline specification, as this estimates the function without assuming a functional

form but maintains
√
n-consistency.

The ADE is estimated by this approach as follows. Take γ̂, the Di = 0 subsample estimate

of γ, and (γ̂ + δ), the Di = 1 subsample estimate of (γ + δ), to give

ÂDE
CF

= (1 −D) γ̂ +D (γ̂ + δ).

The AIE is less simple, for two reasons that differ from the parametric CF setting. First,

the the intercepts for each subsample, α and (α + β) are not separately identified from the

CFs if the λ0, λ1 functions are flexibly estimated. Second, a semi-parametric specification for

the CFs mean ρ0 and λ0 are no longer separately identified from each other (and same for

ρ1, λ1). As such, it is not possible to directly use λ̂0, λ̂1 in estimating the complier adjustment

term (as is done in the parametric case).

Theses problem can be avoided by estimating the AIE using its relation to the ATE.

Write ÂTE for the point-estimate of the ATE, and δ̂ = (γ̂ + δ) − γ̂ for the point estimate of

γ, to give the following representation,

ÂIE
CF

= ÂTE − (1 − Z)

(
γ̂ +

1

N

N∑
i=1

δ̂ π̂(1;X i)

)
− Z

(
γ̂ +

1

N

N∑
i=1

δ̂ π̂(0;X i)

)
,

where 1
N

∑N
i=1 δ̂ π̂(0;X i) estimates E [δDi(0)], and 1

N

∑N
i=1 δ̂ π̂(0;X i) estimates E [δDi(1)].

12Appropriate interactions between Zi, Di and X i can also flexibly control for X i, again avoiding linearity
assumptions.
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Appendix A.8 describes the reasoning for this estimator of the AIE, relative to estimates of

the ATE and AIE, in further detail.

This semi-parametric approach achieves valid estimation of the CM effects, without

specifying the distribution behind unobserved error terms, and achieves desirable properties

as long as the first-stage correctly estimates the mediator propensity score, and the structural

assumptions hold true. The standard errors for estimates can again be computed using the

delta method, or estimated by the bootstrap — again, across both first and second-stages

within each bootstrap iteration. Note that relying on propensity score estimation requires

assumptions that can be found wanting in real-world settings; a common support condition

for the mediator is required, and a semi-/non-parametric first-stage may become cumbersome

if there are many control variables or many rows of data.

4.3 Simulation Evidence

The following simulation gives an example to show how these methods work in practice.

Suppose data observed to the researcher Zi, Di, Yi,X i are drawn from the following data

generating processes, for i = 1, . . . , N , with N = 1, 000 for this simulation.

Zi ∼ Binom (0.5) , X−
i ∼ N(4, 1), X IV

i ∼ Uniform (−1, 1) , (U0,i, U1,i, UC,i) ∼ N (0 ,Σ )

Σ is the matrix of parameters which controls the level of confounding from unobserved costs

and benefits.13

Each i chooses to take mediator Di by a Roy model, with following mean definitions for

each z′, d′ = 0, 1

Di(z
′) = 1 {Ci ≤ Yi(z

′, 1) − Yi(z
′, 0)} ,

µd′ (z′;X i) = (z′ + d′ + z′d′) + X−
i , µC (z′;X i) = 3z′ + X−

i −X IV
i .

Following Subsection 2.1, these data have the following first and second-stage equations:

Di = 1
{
UC,i −

(
U1,i − U0,i

)
≤ −3Zi + X−

i −X IV
i

}
,

Yi = Zi +Di + ZiDi + X−
i + (1 −Di)U0,i +DiU1,i.

Treatment Zi has a causal effect on outcome Yi, and it operates partially through mediator

Di. Outcome mean µDi
(Zi;X i) contains an interaction term, ZiDi, so while Zi, Di have

constant partial effects, the ATE depends on how many i choose to take the mediator so

13The correlation and relative standard deviations for U0,i, U1,i affect how large selection bias in conventional
CM estimates; correlation for these with unobserved costs UC,i does not particularly matter, though increased
variance in unobserved costs makes estimates less precise for both OLS and CF methods.
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there is treatment effect heterogeneity.

After Zi is assigned, i chooses to take mediator Di by considering the costs and benefits

— which vary based on Zi, demographic controls X i, and the (non-degenerate) unobserved

error terms Ui,0, U1,i. As a result, sequential ignorability does not hold; the mediator is not

conditionally ignorable. Thus, a conventional approach to CM does not give an estimate

for how much of the ATE goes through mediator D, but is contaminated by selection bias

thanks to the unobserved error terms.

I simulate this data generating process 10,000 times, using Σ =
(

1 0.75 0
0.75 2.25 0
0 0 0.25

)
,14 and

estimate CM effects with conventional CM methods (two-stage OLS) and the introduced CF

methods. In this simulation Pr (Di = 1) = 0.379, and 65.77% of the sample are mediator

compliers (for whom Di(0) = 0 and Di(1) = 1). This gives an ATE value of 2.60, ADE 1.38,

and AIE 1.22, respectively.15

Figure 3: Simulated Distribution of CM Effect Estimates, Semi-parametric versus OLS,
Relative to True Value.

(a) ÂDE−ADE. (b) ÂIE−AIE.

Note: These figures show the empirical density of point estimates minus the true average effect, for 10,000
different datasets generated from a Roy model with correlated uniformly distributed error terms. The black
dashed line is the true value; orange is the distribution of conventional CM estimates from two-stage OLS
(Imai, Keele & Yamamoto 2010), and green estimates with a two-stage semi-parametric CF.

14This choice of parameters has Var (U0,i) = 1,Var (U1,i) = 2.25,Corr
(
U0,i, U1,i

)
= 0.5 so that unobserved

errors meaningfully confound conventional CM methods, with notable heteroscedasticity. Unobserved costs
are uncorrelated with U0,i, U1,i (although non-zero correlation would not meaningfully change the results),
and Var (UC,i) = 0.25 maintains uncertainty in unobserved costs.

15Note that ATE = ADE + AIE in this setting. Pr (Zi = 1) = 0.5 ensures this equality, but it is not
guaranteed in general. See Appendix A.8.
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Figure 2 shows how these estimates perform, with a parametric CF approach, relative

to the true value. The OLS estimates’ distribution do not overlap the true values for any

standard level of significance; the distance between the OLS estimates and the true values

are the underlying bias terms derived in Theorem 1. The parametric CF approach perfectly

reproduces the true values, as the probit first-stage correctly models the normally distributed

error terms. The semi-parametric approach (not shown in Figure 2) performs similarly, with

a wider distribution; this is to be expected comparing a correctly specified parametric model

with a semi-parametric one.

The parametric CF may not be appropriate in setting with non-normal error terms. I

simulated the same data again, but transform U0,i, U1,i to be correlated uniform errors (with

the same standard deviations as previously). Figure 3 shows the resulting distribution of

point-estimates, relative to the truth, for the parametric and semi-parametric approaches.

The parametric CF is slightly off target, showing persistent bias from incorrectly specifying

the error term distribution. The semi-parametric approach is centred exactly around the

truth, with a slightly high variance (as is expected).

Figure 4: CF Adjusted Estimates Work with Different Error Term Parameters.

(a) ADE. (b) AIE.

Note: These figures show the OLS and CF point estimates of the ADE and AIE, for N = 1, 000 sample size,
varying Corr

(
U0,i, U1,i

)
values with Var (U0,i) = 1,Var (U1,i) = 1.5 fixed. The black dashed line is the true

value, coloured points are points estimates for the respective data generated, and shaded regions are the 95%
confidence intervals from 1,000 bootstraps each. Orange represents OLS estimates, blue the CF approach.

The error terms determine the bias in OLS estimates of the ADE and AIE, so the

bias varies for different values of the error-term parameters Corr
(
U0,i, U1,i

)
∈ [−1, 1] and
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Var (U0,i) ,Var (U1,i) ≥ 0. The true AIE values vary, because Di(Zi) compliers have higher

average values of U1,i−U0,i as Corr
(
U0,i, U1,i

)
increases. Figure 4 shows CF estimates against

estimates calculated by standard OLS, showing 95% confidence intervals calculated from

1,000 bootstraps. The point estimates of the CF do not exactly equal the true values, as

they are estimates from one simulation (not averages across many generated datasets, as

in Figure 3). The CF approach improves on OLS estimates by correcting for bias, with

confidence regions overlapping the true values.16 This correction did not come for free: the

standard errors are significantly greater in a CF approach than OLS. In this manner, this

simulation shows the pros and cons of using the CF approach to estimating CM effects in

practice.

5 Summary and Concluding Remarks

This paper has studied a selection-on-observables approach to CM in a natural experiment

setting. I have shown the pitfalls of using the most popular methods for estimating direct

and indirect effects without a clear case for the mediator being ignorable. Using the Roy

model as a benchmark, a mediator is unlikely to be ignorable in natural experiment settings,

and the bias terms likely crowd out inference regarding CM effects.

This paper has contributed to the growing CM literature in economics, integrating labour

economic theory for selection-into-treatment as a way of judging the credibility of conventional

CM analyses. It has drawn on the classic literature, and pointed to already-in-use control

function methods as a compelling way of estimating direct and indirect effects in a natural

experiment setting. Further research could build on this approach by suggesting efficiency

improvements, adjustments for common statistical irregularities (say, cluster dependence),

or integrating the control function to the growing double robustness literature (Farbmacher,

Huber, Lafférs, Langen & Spindler 2022, Bia et al. 2024).

This paper does not provide a blanket endorsement for applied researchers to use CM

methods. The structural assumptions are strong, and design-based inference requires an

instrument for mediator take-up; if the assumptions are broken, then selection-adjusted esti-

mates of CM effects will also be biased, and will not improve on the selection-on-observables

approach. And yet, there are likely settings in which the structural assumptions are credible.

Mediator monotonicity aligns well with economic theory in many cases, and it is plausible

for researchers to study big data settings with external variation in mediator take-up costs.

In these cases, this paper opens the door to identifying mechanisms behind treatment effects

16In the appendix, Figure A1 shows the same simulation while varying Var (U1,i), with fixed Var (U0,i) =
1,Corr

(
U0,i, U1,i

)
= 0.5. The conclusion is the same as for varying the correlation coefficient, ρ, in Figure 4.
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in natural experiment settings.
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A Supplementary Appendix

This section is for supplementary information, and validation of presented propositions and

theorems. It is not meant for publication.

Any comments or suggestions may be sent to me at seh325@cornell.edu, or raised as an

issue on the Github project, https://github.com/shoganhennessy/mediation-natural-experiment.

A.1 Identification in Causal Mediation

Imai, Keele & Yamamoto (2010, Theorem 1) states that the ADE and AIE are identified

under sequential ignorability, at each level of Zi = 0, 1. For z′ = 0, 1:

E [Yi(1, Di(z
′)) − Yi(0, Di(z

′))] =

∫ ∫ (
E [Yi |Zi = 1, Di,X i] − E [Yi |Zi = 0, Di,X i]

)
dFDi |Zi=z′,X i

dFX i
,

E [Yi(z
′, Di(1)) − Yi(z

′, Di(0))] =

∫ ∫
E [Yi |Zi = z′, Di,X i]

(
dFDi |Zi=1,X i

− dFDi |Zi=0,X i

)
dFX i

.

I focus on the averages, which are identified by consequence of the above.

E [Yi(1, Di(Zi)) − Yi(0, Di(Zi))] = EZi
[E [Yi(1, Di(z

′)) − Yi(0, Di(z
′)) |Zi = z′]]

E [Yi(Zi, Di(1)) − Yi(Zi, Di(0))] = EZi
[E [Yi(z

′, Di(1)) − Yi(z
′, Di(0)) |Zi = z′]]

My estimand for the ADE is a simple rearrangement of the above. The estimand for the

AIE relies on a different sequence, relying on (1) sequential ignorability, (2) conditional

monotonicity. These give (1) identification equivalence of AIE local to cpmpliers conditional

on X i and AIE conditional on X i, LAIE = AIE, (2) identification of the complier score.

E [Yi(Zi, Di(1)) − Yi(Zi, Di(0)) |X i]

= Pr (Di(0) = 0, Di(1) = 1 |X i)E [Yi(Zi, 1) − Yi(Zi, 0) |Di(0) = 0, Di(1) = 1,X i]

= Pr (Di(0) = 0, Di(1) = 1 |X i)E [Yi(Zi, 1) − Yi(Zi, 0) |X i]

= Pr (Di(0) = 0, Di(1) = 1 |X i)
(
E [Yi |Zi, Di = 1,X i] − E [Yi |Zi, Di = 0,X i]

)
=
(
E [Di |Zi = 1,X i] − E [Di |Zi = 0,X i]

) (
E [Yi |Zi, Di = 1,X i] − E [Yi |Zi, Di = 0,X i]

)
Monotonicity is not technically required for the above. Breaking monotonicity would not

change the identification in any of the above; it would be the same except replacing the

complier score with a complier/defier score, Pr (Di(0) ̸= Di(1) |X i) = E [Di |Zi = 1,X i] −
E [Di |Zi = 0,X i].
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A.2 Bias in Causal Mediation (CM) Estimands

Suppose that Zi is ignorable conditional on X i, but Di is not.

A.2.1 Bias in the Average Direct Effect (ADE)

To show that the conventional approach to mediation gives an estimate for the ADE with

selection and group difference-bias, start with the components of the conventional estimands.

This proof starts with the relevant expectations, conditional on a specific value of X i and

d′ ∈ {0, 1}.

E [Yi |Zi = 1, Di = d′,X i] =E [Yi(1, Di(Zi)) |Di(1) = d′,X i] ,

E [Yi |Zi = 0, Di = d′,X i] =E [Yi(0, Di(Zi)) |Di(0) = d′,X i]

And so,

E [Yi |Zi = 1, Di = d′,X i] − E [Yi |Zi = 0, Di = d′,X i]

= E [Yi(1, Di(Zi)) |Di(1) = d′,X i] − E [Yi(0, Di(Zi)) |Di(0) = d′,X i]

= E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Di(1) = d′,X i]

+ E [Yi(0, Di(Zi)) |Di(1) = d′,X i] − E [Yi(0, Di(Zi)) |Di(0) = d′,X i] .

The final term is a sum of the ADE, conditional on Di(1) = d′, and a selection bias term —

difference in baseline outcomes between the (partially overlapping) groups for whom Di(1) =

d′ and Di(0) = d′.

To reach the final term, note the following.

E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |X i]

= E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Di(1) = d′,X i]

+
(

1 − Pr (Di(1) = d′ |X i)
)(E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Di(1) = d′,X i]

− E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Di(1) = 1 − d′,X i]

)

The second term is the difference between the ADE and LADE local to relevant complier

groups.
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Collect everything together, as follows.

E [Yi |Zi = 1, Di = d′,X i] − E [Yi |Zi = 0, Di = d′,X i]

=E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |X i]︸ ︷︷ ︸
ADE, conditional on X i

+ E [Yi(0, Di(Zi)) |Di(1) = d′,X i] − E [Yi(0, Di(Zi)) |Di(0) = d′,X i]︸ ︷︷ ︸
Selection bias

+
(

1 − Pr (Di(1) = d′ |X i)
)(E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Di(1) = 1 − d′,X i]

− E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Di(1) = d′,X i]

)
︸ ︷︷ ︸

group difference-bias

The proof is achieved by applying the expectation across Di = d′, and X i.

A.2.2 Bias in the Average Indirect Effect (AIE)

To show that the conventional approach to mediation gives an estimate for the AIE with

selection and group difference-bias, start with the definition of the ADE — the direct effect

among compliers times the size of the complier group.

This proof starts with the relevant expectations, conditional on a specific value of X i.

E [Yi(Zi, Di(1)) − Yi(Zi, Di(0)) |X i]

= Pr (Di(0) = 0, Di(1) = 1 |X i)E [Yi(Zi, 1) − Yi(Zi, 0) |Di(0) = 0, Di(1) = 1,X i]

When Di is not ignorable, the bias comes from estimating the second term,

E [Yi(Zi, 1) − Yi(Zi, 0) |Di(0) = 0, Di(1) = 1,X i], the direct effect among mediator compliers.

Let z′ ∈ {0, 1}. Again, note the mean outcomes in terms of average potential outcomes,

E [Yi |Zi = z′, Di = 1,X i] =E [Yi(z
′, 1) |Di = 1,X i] ,

E [Yi |Zi = z′, Di = 0,X i] =E [Yi(z
′, 0) |Di = 0,X i] .

So compose the selection bias term, as follows.

E [Yi |Zi = z′, Di = 1,X i] − E [Yi |Zi = z′, Di = 0,X i]

=E [Yi(z
′, 1) |Di = 1,X i] − E [Yi(z

′, 0) |Di = 0,X i]

=E [Yi(z
′, 1) − Yi(z

′, 0) |Di = 1,X i] + E [Yi(z
′, 0) |Di = 1,X i] − E [Yi(z

′, 0) |Di = 0,X i]

The final term is a sum of the AIE, among the treated group Di = 1, and a selection bias

term — difference in baseline potential outcomes between the groups for whom Di = 1 and
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Di = 0.

The AIE is the direct effect among compliers times the size of the complier group, so we

need to compensate for the difference between the treated group Di = 1 and complier group

Di(0) = 0, Di(1) = 1.

Start with the difference between treated group’s average and overall average.

E [Yi(z
′, 1) − Yi(z

′, 0) |Di = 1,X i]

=E [Yi(z
′, 1) − Yi(z

′, 0) |X i]

+
(

1 − Pr (Di = 1 |X i)
)(E [Yi(z

′, 1) − Yi(z
′, 0) |Di = 1,X i]

− E [Yi(z
′, 1) − Yi(z

′, 0) |Di = 0,X i]

)

Then the difference between the compliers’ average and the overall average.

E [Yi(z
′, 1) − Yi(z

′, 0) |Di(0) = 0, Di(1) = 1,X i]

=E [Yi(z
′, 1) − Yi(z

′, 0) |X i]

+
1 − Pr (Di(0) = 0, Di(1) = 1 |X i)

Pr (Di(0) = 0, Di(1) = 1 |X i)

(
E [Yi(z

′, 1) − Yi(z
′, 0) |Di(1) = 0 or Di(0) = 1,X i]

− E [Yi(z
′, 1) − Yi(z

′, 0) |X i]

)

Collect everything together, as follows.

E [Yi |Zi = z′, Di = 1,X i] − E [Yi |Zi = z′, Di = 0,X i]

=E [Yi(z
′, 1) − Yi(z

′, 0) |Di(1) = 1, Di(0) = 0,X i]︸ ︷︷ ︸
AIE among compliers, conditional on X i,Zi=z′

+ E [Yi(z
′, 0) |Di = 1,X i] − E [Yi(z

′, 0) |Di = 0,X i]︸ ︷︷ ︸
Selection bias

+


(

1 − Pr (Di = 1 |X i)
)(E [Yi(z

′, 1) − Yi(z
′, 0) |Di = 1,X i]

− E [Yi(z
′, 1) − Yi(z

′, 0) |Di = 0,X i]

)

− 1 − Pr (Di(0) = 0, Di(1) = 1 |X i)

Pr (Di(0) = 0, Di(1) = 1 |X i)

(
E [Yi(z

′, 1) − Yi(z
′, 0) |Di(1) = 0 or Di(0) = 1,X i]

− E [Yi(z
′, 1) − Yi(z

′, 0) |X i]

)


︸ ︷︷ ︸
group difference-bias

The proof is finally achieved by multiplying by the complier score, Pr (Di(0) = 0, Di(1) = 1 |X i)

= E [Di |Zi = 1,X i] − E [Di |Zi = 0,X i], then applying the expectation across Zi = z′, and

X i.
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A.3 A Regression Framework for Direct and Indirect Effects

Put µd′(z
′;X ) = E [Yi(z

′, d′) |X ] and Ud′,i = Yi(z
′, d′) − µd′(z

′;X ) for each z′, d′ = 0, 1, so

we have the following expressions:

Yi(Zi, 0) = µ0(Zi;X i) + U0,i, Yi(Zi, 1) = µ1(Zi;X i) + U1,i.

U0,i, U1,i are error terms with unknown distributions, mean independent of Zi,X i by definition

— but possibly correlated with Di. Zi is conditionally independent of potential outcomes, so

that U0,i, U1,i |= Zi.

The first-stage regression of Z → Y has unbiased estimates, since Zi |= Di(.)
∣∣X i. Put

π(z′;X ) = E [Di(z
′) |X ], and ηz′,i = Di(z

′) − π(z′;X ) the first-stage error terms.

Di = ZiDi(1) + (1 − Zi)Di(0)

= Di(0) + Zi [Di(1) −Di(0)]

= π(0;X i)︸ ︷︷ ︸
Intercept, :=θ+ζ(X i)

+Zi

(
π(1;X i) − π(0;X i)

)︸ ︷︷ ︸
Regressor, :=πZi

+ (1 − Zi)η0,i + Ziη1,i︸ ︷︷ ︸
Errors, :=ηi

=⇒ E [Di |Zi,X i] = θ + πZi + ζ(X i).

Since the ignorability assumption gives E [Ziηz′,i |X i] = E [Zi |X i]E [ηz′,i |X i] = 0, for each

z′ = 0, 1. By the same argument Zi is also assumed independent of potential outcomes

Yi(., .), so that U0,i, U1,i |= Zi. Thus, the reduced form regression Z → Y also leads to

unbiased estimates for the ATE.

The same cannot be said of the regression that estimates direct and indirect effects,

without further assumptions.

Yi = ZiYi(1, Di(1)) + (1 − Zi)Yi(0, Di(0))

= ZiDiYi(1, 1)

+ (1 − Zi)DiYi(0, 1)

+ Zi(1 −Di)Yi(1, 0)

+ (1 − Zi)(1 −Di)Yi(0, 0)

= Yi(0, 0)

+ Zi [Yi(1, 0) − Yi(0, 0)]

+Di [Yi(0, 1) − Yi(0, 0)]

+ ZiDi [Yi(1, 1) − Yi(1, 0) − (Yi(0, 1) − Yi(0, 0))]

And so Yi can be written as a regression equation in terms of the observed factors and error
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terms.

Yi = µ0(0;X i)

+Di [µ1(0;X i) − µ0(0;X i)]

+ Zi [µ0(1;X i) − µ0(0;X i)]

+ ZiDi [µ1(1;X i) − µ0(1;X i) − (µ1(0;X i) − µ0(0;X i))]

+ U0,i +Di (U1,i − U0,i)

= α + βDi + γZi + δZiDi + φ(X i) + (1 −Di)U0,i +DiU1,i

With the following definitions:

(a) α = E [µ0(0;X i)] and φ(X i) = µ0(0;X i) − α are the intercept terms.

(b) β = µ1(0;X i) − µ0(0;X i) is the indirect effect under Zi = 0

(c) γ = µ0(1;X i) − µ0(0;X i) is the direct effect under Di = 0.

(d) δ = µ1(1;X i) − µ0(1;X i) − (µ1(0;X i) − µ0(0;X i)) is the interaction effect.

(e) (1 −Di)U0,i +DiU1,i is the remaining error term.

This sequence gives us the resulting regression equation:

E [Yi |Zi, Di,X i] = α + βDi + γZi + δZiDi + φ(X i)

+ (1 −Di)E [U0,i |Di = 0,X i] +DiE [U1,i |Di = 1,X i]

Taking the conditional expectation, and collecting for the expressions of the direct and indirect

effects:

E [Yi(1, Di(Zi)) − Yi(0, Di(Zi))] = E [γ + δDi]

E [Yi(Zi, Di(1)) − Yi(Zi, Di(0))] = E
[
π
(
β + Ziδ + Ũi

)]
These equations have simpler expressions after assuming constant treatment effects in a linear

framework; I have avoided this as having compliers, and controlling for observed factors X i

only makes sense in the case of heterogeneous treatment effects.

These terms are conventionally estimated in a simultaneous regression (Imai, Keele &

Yamamoto 2010). If sequential ignorability does not hold, then the regression estimates from

estimating the mediation equations (without adjusting for the contaminated bias term) suffer

from omitted variables bias.
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EX i
[E [Yi |Zi = Di = 0,X i]] = E [α] + E [U0,i |Di = 0]

EX i
[E [Yi |Zi = 0, Di = 1,X i] − E [Yi |Zi = 0, Di = 0,X i]] = E [β] + (E [U1,i |Di = 1] − E [U0,i |Di = 0])

EX i
[E [Yi |Zi = 1, Di = 0,X i] − E [Yi |Zi = 0, Di = 0,X i]] = E [γ] + E [U0,i |Di = 0]

EX i

[
E [Yi |Zi = 1, Di = 1,X i] − E [Yi |Zi = 1, Di = 0,X i]

− (E [Yi |Zi = 0, Di = 1,X i] − E [Yi |Zi = 0, Di = 0,X i])

]
= E [δ]

And so the ADE and AIE estimates are contaminated by these bias terms. Additionally,

the AIE estimates refers to gains from the mediator among D(z) compliers (not the entire

average), so will be biased when not accounting for Ũi, too.

A.4 Roy Model and Sequential Ignorability

Proof of Proposition 1.

Suppose Zi is ignorable, and selection-into-Di follows a Roy model, with the definitions

in Section 2. If selection-into-Di is degenerate on U0,i, U1,i:

E [Di |Zi,X i, U1,i − U0,i = u] = E [Di |Zi,X i, U1,i − U0,i = u′] , for all u, u′ in the range of U1,i − U0,i.

In this case, the control set X i and the costs µc, Uc,i are the only determinants of selection-into-

Di — and, U0,i, U1,i play no role. This could be achieved by either assuming that unobserved

gains are degenerate (the researcher had observed everything in X i), or selection-into-Di had

been disrupted in some fashion (e.g., by a natural experiment design for Di).

To motivate a contraposition argument, suppose Di is ignorable conditional on Zi,X i.

For each z′, d′ = 0, 1

Di |= Yi(z′, d′) | X i, Zi = z′

=⇒ Di |= µd′(z
′;X i) + Ud′,i | X i, Zi = z′

=⇒ Di |= Ud′,i | X i, Zi = z′

=⇒ Di |= U1,i − U0,i | X i, Zi = z′

=⇒ E [Di |U1,i − U0,i = u′,X i, Zi = z′] = E [Di |X i, Zi = z′]

for all u′ in the range of U1,i − U0,i.

This final implication is that selection-into-Di is degenerate on U0,i, U1,i. Thus, a contrapo-

sition argument has that if selection-into-Di is non-degenerate on U0,i, U1,i, then Di is not

ignorable.
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A.5 Monotonicity =⇒ Selection Model, in a CM Setting.

Proof that (conditional) monotonicity implies a selection model representation in a CM

setting. This proof is an applied example of the Vytlacil (2002) equivalence result, now

including conditioning covariates X i, and is presented merely as a validation exercise.

Assume condition monotonicity CF–1 holds, for any treatment values z < z′ and any

covariate value X i = x .

Pr (Di(z
′) ≥ Di(z) |x ) = 1.

For each value of X i = x and any treatment values z < z′, we first define:

• A = {i : Di(z) = Di(z
′) = 1}, always-mediators

• N = {i : Di(z) = Di(z
′) = 0}, never-mediators

• C = {i : Di(z) = 0, Di(z
′) = 1}, mediator-compliers.

For any mediator complier i ∈ C, partition the set as follows.

• Z1(i) = {z′ : Di(z
′) = 1}, treatment values where i takes the mediator

• Z0(i) = {z′ : Di(z
′) = 0}, treatment values where i doesn’t take the mediator.

Note that having binary Zi = 0, 1 reduces this to the simple case of Z0(i) = {0}, and

Z1(i) = {1}. The equivalence result holds for continuous values of Zi, so continue with the

more general Z0(i),Z1(i) notation.

By monotonicity, we have

sup
z′∈Z0(i)

π(z′;x ) ≤ inf
z′∈Z1(i)

π(z′;x ), for any i ∈ C

where π(z′;x ) = Pr (Di = 1 |Zi = z′,X i = x ) is the mediator propensity score. A simple

proof by contradiction verifies this statement (Vytlacil 2002, Lemma 1).

Now we construct Vi as follows:

Vi =


1, if i ∈ N

0, if i ∈ A

infz′∈Z1(i) π(z′;x ), if i ∈ C.

Define ψ(z′;x ) = π(z′;x ). Then we can represent Di(z
′) as a selection model,

Di(z
′) = 1 {ψ(z′;X i) ≥ Vi} , for z′ = 0, 1.

We can verify this works:
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• For i ∈ A: Vi = 0 and ψ(z′;x ) ≥ 0 for all z′, so Di(z
′) = 1

• For i ∈ N : Vi = 1 and ψ(z′;x ) ≤ 1 for all z′, with ψ(z′;x ) < 1 for z′ ∈ Z0(i), so

Di(z
′) = 0 for z′ ∈ Z0(i)

• For i ∈ C: Vi = infz′∈Z1(i) π(z′;x )

– When z′ ∈ Z1(i): ψ(z′;x ) ≥ infz′′∈Z1(i) π(z′′;x ) = Vi, so Di(z
′) = 1

– When z′ ∈ Z0(i): ψ(z′;x ) < infz′′∈Z1(i) π(z′′;x ) = Vi, so Di(z
′) = 0.

Therefore, the construction Di(z
′) = 1 {ψ(z′;X i) ≥ Vi} is a valid representation of the

selection process under monotonicity.

This selection model can be transformed to one with a uniform distribution, to get the

general selection model of Heckman & Vytlacil (2005). Let FV

(
.
∣∣X i

)
be the conditional

cumulative density function of Vi given X i. Define

Ui = FV (Vi | X i)

π(z′;X i) = FV (ψ(z′;X i) | X i) = Pr (Di = 1 |Zi = z′,X i)

We can then equivalently represent the mediator choice as the transformed selection model

Di(z
′) = 1 {π(z′;X i) ≥ Ui} , for z′ = 0, 1

where Ui |X i ∼ Uniform(0, 1) by the probability integral transformation.

A.6 Control Function (CF) Identification of the Second-stage

Proof of Proposition 2. This proof relies heavily on the notation and reasoning of Kline &

Walters (2019) for an IV setting.

By Assumption CF–1 (mediator monotonicity), selection-into-mediator can be represented

as a threshold-crossing selection model.

Di(z
′) = 1 {π(z′;X i) ≥ Ui} , for z′ = 0, 1

where Ui = FV (Vi | X i) follows a uniform distribution on [0, 1], and π(z′;X i) = E [Di |Zi = z′,X i]

is the mediator propensity score.

The threshold crossing selection model represents individuals who refuse the mediator as

follows:

Di = 0 =⇒ π(Zi;X i) < Ui
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Our objective is to determine E [U0,i |Di = 0, Zi,X i], which can then be written as

E [U0,i |π(Zi;X i) < Ui, Zi,X i] .

Since Zi is ignorable, we have:

E [U0,i |π(Zi;X i) < Ui, Zi,X i] = E [U0,i |π(Zi;X i) < Ui]

Assumption CF–2 has Cov(Ui, U0,i) ̸= 0. This non-zero covariance implies statistical

dependence between the selection error and outcome error. This dependence allows us to

represent U0,i using a linear projection. We use F−1
V (Ui | X i) rather than Ui directly in the

projection to allow for flexibility in how the selection error affects outcomes. The linear

projection can be written as follows

U0,i = ρ0
(
F−1
V (Ui | X i) − µV

)
+ ε0,i,

where

• µV = E
[
F−1
V (Ui | X i)

]
is the mean of F−1

V (Ui | X i)

• ρ0 =
Cov(U0,i,F

−1
V (Ui|X i))

Var(F−1
V (Ui|X i))

is the projection coefficient

• ε0,i is a residual with E
[
ε0,i
∣∣F−1

V (Ui | X i)
]

= 0.

The coefficient ρ0 is the slope in the best linear predictor of U0,i given F−1
V (Ui | X i), and

is chosen to ensure that the residual ε0,i is uncorrelated with F−1
V (Ui | X i). This property

is crucial for the identification strategy, as it isolates the component of Ui that is related to

selection-into-Di.

The non-zero covariance condition in CF–2 ensures ρ0 ̸= 0, so is relevant. Since Ui and

F−1
V (Ui | X i) are related by a monotonic transformation (the inverse cumulative density

function), the covariance Cov(Ui, U0,i) ̸= 0 implies Cov(F−1
V (Ui | X i) , U0,i) ̸= 0.

Given the linear projection of U0,i onto F−1
V (Ui | X i), we can compute the conditional

expectation:

E [U0,i |π(Zi;X i) < Ui] = E
[
ρ0
(
F−1
V (Ui | X i) − µV

)
+ ε0,i

∣∣ π(Zi;X i) < Ui

]
Since E

[
ε0,i
∣∣F−1

V (Ui | X i)
]

= 0 by construction, and Ui is a function of F−1
V (Ui | X i),

we have

E [ε0,i |π(Zi;X i) < Ui] = 0.
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Therefore:

E [U0,i |π(Zi;X i) < Ui] = ρ0E
[
F−1
V (Ui | X i) − µV

∣∣ π(Zi;X i) < Ui

]
.

This gives us the control function representation:

E [U0,i |Di = 0, Zi,X i] = ρ0λ0
(
π(Zi;X i)

)
where λ0 (p′) = E

[
F−1
V (Ui | X i) − µV

∣∣ p′ < Ui

]
. The control function λ0 (p′) captures the

expected value of the transformed selection term, conditional on being above the threshold

p′ ∈ (0, 1).

The same sequence of steps for mediator takers, Di = 1, gives the other CF:

E [U1,i |Di = 1, Zi,X i] = ρ1λ1
(
π(Zi;X i)

)
,

where λ1 (p′) = E
[
F−1
V (Ui | X i) − µV

∣∣Ui ≤ p′
]

for p′ ∈ (0, 1), and ρ1 =
Cov(U1,i,F

−1
V (Ui|X i))

Var(F−1
V (Ui|X i))

is

the corresponding projection coefficient.

The relationship between λ0(p
′) and λ1(p

′) can be derived as:

λ1 (p′) = −λ0 (p′)

(
1 − p′

p′

)
, for p′ ∈ (0, 1).

This relationship ensures consistency in the CF approach across the Di = 0 and Di = 1

groups (Kline & Walters 2019).

Assumption CF–3 (mediator take-up cost instrument X IV
i ) ensures identification of the

propensity score function π(z′;X i) in the first stage by providing valid instrumental varia-

tion. This variation allows us to identify the propensity score, and consequently the control

functions λ0 and λ1.

Combining all elements, the conditional expectation of Yi given Zi, Di,X i is

E [Yi |Zi, Di,X i] = α + βDi + γZi + δZiDi + φ(X i)

+ (1 −Di)E [U0,i |Di = 0] +DiE [U1,i |Di = 1] .

Substitute the CFs,

(1 −Di)E [U0,i |Zi, Di = 0,X i] +DiE [U1,i |Zi, Di = 1,X i]

= (1 −Di)ρ0λ0
(
π(Zi;X i)

)
+Diρ1λ1

(
π(Zi;X i)

)
.
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This gives the final result,

E [Yi |Zi, Di,X i] = α + βDi + γZi + δZiDi + φ(X i)

+ ρ0 (1 −Di)λ0
(
π(Zi;X i)

)
+ ρ1Diλ1

(
π(Zi;X i)

)
.

All parameters — α, β, γ, δ, φ(.), ρ0, ρ1 — are identified once we control for selection bias

through the CFs λ0, λ1, with π(z′;X i) identified separately in the first-stage. λ0, λ1 can be

assumed to be certain functions (say, the inverse Mills ratio in Heckman 1979), or treated as

non-parametric parameters to be estimated — at cost of the constant and ρ0, ρ1 no longer

being separately identified from λ0, λ1, see Appendix A.8.

A.7 Control Function (CF) Identification of the ADE and AIE

Proof of Theorem CF.

Assume CF–1, CF–2, CF–3 hold. Then Proposition 2 has α, β, γ, δ, φ(.), ρ0, ρ1 identified

in a regression. The following composes the ADE and AIE from these parameters.

For the ADE,

E [γ + δDi] = E
[(
µ0(1;X i) − µ0(0;X i)

)
+Di

(
µ1(1;X i) − µ0(1;X i) −

(
µ1(0;X i) − µ0(0;X i)

))]
= E

[
Di

(
µ1(1;X i) − µ1(0;X i)

)
+ (1 −Di)

(
µ0(1;X i) − µ0(0;X i)

)]
= E

[
Di

(
Yi(1, 1) − U1,i −

(
Yi(0, 1) − U1,i

))
+ (1 −Di)

(
Yi(1, 0) − U0,i −

(
Yi(0, 0) − U0,i

))]
= E

[
Di

(
Yi(1, 1) − Yi(0, 1)

)
+ (1 −Di)

(
Yi(1, 0) − Yi(0, 0)

)]
= E [Yi(1, Di(Zi)) − Yi(0, Di(Zi))]

= ADE.

Identification is similar for the AIE, but also involves the complier adjustment term.

(ρ1 − ρ0) Γ
(
π(0;X i), π(1;X i)

)
= (ρ1 − ρ0)

π(1;X i)λ1(π(1;X i)) − π(0;X i)λ1(π(0;X i))

π(1;X i) − π(0;X i)

= (ρ1 − ρ0)E
[
F−1
V (Ui|X i) − µV

∣∣ π(0;X i) < Ui ≤ π(1;X i),X i

]
= (ρ1 − ρ0)E

[
F−1
V (Ui|X i) − µV

∣∣Di(0) = 0, Di(1) = 1,X i

]
= E

[
ρ1
(
F−1
V (Ui|X i) − µV

) ∣∣Di(0) = 0, Di(1) = 1,X i

]
− E

[
ρ0
(
F−1
V (Ui|X i) − µV

) ∣∣Di(0) = 0, Di(1) = 1,X i

]
= E [U1,i − U0,i |Di(0) = 0, Di(1) = 1,X i] .

This complier adjustment was first presented for an IV setting by Kline & Walters (2019).
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Collecting for the AIE,

E
[
π
(
β + δZi + (ρ1 − ρ0)Γ

(
π(0;X i), π(1;X i)

))]
= E

[
π

((
µ1(0;X i) − µ0(0;X i)

)
+ Zi

(
µ1(1;X i) − µ0(1;X i) −

(
µ1(0;X i) − µ0(0;X i)

)))]
+ E

[
π E [U1,i − U0,i |Di(0) = 0, Di(1) = 1,X i]

]
= E

[
π

(
Zi

(
µ1(1;X i) − µ0(1;X i)

)
+ (1 − Zi)

(
µ1(0;X i) − µ0(0;X i)

))]
+ E

[
π E [U1,i − U0,i |Di(0) = 0, Di(1) = 1,X i]

]
= E

[
π

(
µ1(Zi,X i) − µ0(Zi,X i) + E [U1,i − U0,i |Di(0) = 0, Di(1) = 1,X i]

)]
= E [π E [µ1(Zi,X i) − µ0(Zi,X i) + U1,i − U0,i |Di(0) = 0, Di(1) = 1,X i]]

= E [E [Di(1) −Di(0) |X i] E [Yi(Zi, 1) − Yi(Zi, 0) |Di(0) = 0, Di(1) = 1,X i]]

= E [E [Yi(Zi, Di(1)) − Yi(Zi, Di(0)) |X i]]

= E [Yi(Zi, Di(1)) − Yi(Zi, Di(0))]

= AIE.

A.8 Semi-parametric Estimation of the AIE

It is difficult to directly use the CFs to compose estimates of the complier adjustment term,

because various intercepts lose identification, but also because trusting semi-parametric

estimates at individual points across the λ̂0(p
′), λ̂1(p

′) functions would increase variation

more than is necessary.

This can be avoided by noting the relation between the ATE and the conditional ADE

and conditional AIE. The following showing how to identify the AIE via relation to the ATE

and conditional ADE, and omits the conditional on X i for brevity.

A simple algebraic rearrangement has the following (as first noted in Imai, Keele, Tingley

& Yamamoto 2010, Section 3.1),

ATE = E [Yi(1, Di(1)) − Yi(1, Di(1))]

= E [Yi(1, Di(1)) − Yi(0, Di(1))] + E [Yi(0, Di(1)) − Yi(0, Di(0))]

= E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Zi = 1]︸ ︷︷ ︸
ADE conditional on Zi=1

+E [Yi(Zi, Di(1)) − Yi(Zi, Di(0)) |Zi = 0]︸ ︷︷ ︸
AIE conditional on Zi=0

.
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A similar re-arrangement also has the following,

ATE = E [Yi(Zi, Di(1)) − Yi(Zi, Di(0)) |Zi = 1]︸ ︷︷ ︸
AIE conditional on Zi=1

+E [Yi(1, Di(Zi)) − Yi(0, Di(Zi)) |Zi = 0]︸ ︷︷ ︸
ADE conditional on Zi=0

.

Reverting to the regression notation, to show how the ADE conditional on Zi is identified:

ADE = E [Yi(1, Di(Zi)) − Yi(0, Di(Zi))]

= E [γ + δDi(Zi)]

=⇒ ADE conditional on Zi = 0 = E [γ + δDi(Zi) |Zi = 0]

= E [γ + δDi(0)]

and ADE conditional on Zi = 1 = E [γ + δDi(Zi) |Zi = 1]

= E [γ + δDi(1)] .

Finally achieve identification of the AIE via the ATE and conditional ADE, as follows,

AIE = Pr (Zi = 0)E [Yi(Zi, Di(1)) − Yi(Zi, Di(0)) |Zi = 0]︸ ︷︷ ︸
AIE conditional on Zi=0

+ Pr (Zi = 1)E [Yi(Zi, Di(1)) − Yi(Zi, Di(0)) |Zi = 1]︸ ︷︷ ︸
AIE conditional on Zi=1

= Pr (Zi = 0)
[
ATE − (ADE conditional on Zi = 1)

]
+ Pr (Zi = 1)

[
ATE − (ADE conditional on Zi = 0)

]
= ATE − Pr (Zi = 0)E [γ + δDi(1)] − Pr (Zi = 1)E [γ + δDi(0)] .

The semi-parametric AIE estimate then uses this representation, avoiding directly inter-

acting with the estimated CFs, by plugging in estimates P̂r(Zi = 1) = Z, ÂTE, and the

estimates from each side of the Di = 0, 1 separated samples γ̂, δ̂.

ÂIE
CF

= ÂTE − (1 − Z)

(
γ̂ +

1

N

N∑
i=1

δ̂ π̂(1;X i)

)
− Z

(
γ̂ +

1

N

N∑
i=1

δ̂ π̂(0;X i)

)
,

where 1
N

∑N
i=1 δ̂ π̂(0;X i) estimates E [δDi(0)], and 1

N

∑N
i=1 δ̂ π̂(0;X i) estimates E [δDi(1)].

Everything involved is a standard point estimate, so their composition will converge to

a normal distribution, too. Standard error computation can be achieved by a bootstrap

procedure.
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A.9 Implementation and Further Simulation Evidence

A number of statistical packages, for the R language (R Core Team 2025), made the simulation

analysis for this paper possible.

• Tidyverse (Wickham, Averick, Bryan, Chang, McGowan, François, Grolemund, Hayes,

Henry, Hester, Kuhn, Pedersen, Miller, Bache, Müller, Ooms, Robinson, Seidel, Spinu,

Takahashi, Vaughan, Wilke, Woo & Yutani 2019) collected tools for data analysis in

the R language.

• Mgcv (Wood, N., Pya & S”afken 2016) allows semi-parametric estimation, using splines,

in the R language.

• Mediate (Tingley, Yamamoto, Hirose, Keele & Imai 2014) automates the sequential-

ignorability estimates of CM effects (Imai, Keele & Yamamoto 2010) in the R language.

Figure A1: OLS versus CF Estimates of CM Effects, varying Var (U1,i) relative to
Var (U0,i) = 1.

(a) ADE. (b) AIE.

Note: These figures show the OLS and control function estimates of the ADE and AIE, for N = 1, 000
sample size. The black dashed line is the true value, points are points estimates from data simulated with a

given Corr
(
U0,i, U1,i

)
= 0.5, Var (U0,i) = 1, and Var (U1,i)

1
2 varied across [0, 2]. Shaded regions are the 95%

confidence intervals; orange are the OLS estimates, blue the control function approach.
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