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Minerals are essential to fuel the green transition, can foster local
employment and facilitate economic development. However, their
extraction is linked to several negative social and environmental exter-
nalities. These are particularly poorly understood in a development
context, undermining efforts to address and internalize them. In this
paper, we exploit the discontinuous locations of mines along rivers
and their basins to identify causal effects on agricultural yields in
Africa. We find considerable impacts on vegetation and yields down-
stream, which are mediated by water pollution and only dissipate
slowly with distance. Our findings suggest that pollution from mines
may play a role in the limited adoption of intensive agriculture. They
underscore an urgent need for domestic regulations and international
governance to limit negative externalities from mining in vulnerable
regions.
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1. Introduction

Mines provide vital materials for global supply chains and can play an important
role in local economies. The extracted minerals are essential manufacturing
components and are required for the transition towards cleaner energy (Masson-
Delmotte et al., 2022; Pörtner et al., 2022). As a result of the global push for
green technologies, the demand for minerals is projected to increase considerably,
reaching 1.8–3.5 billion tons of material extracted by 2050 (Hund et al., 2023).
Mining also provides local economic opportunities, increasing incomes and the
levels of wealth and asset ownership (Bazillier and Girard, 2020; Goltz and
Barnwal, 2019; Ofosu et al., 2020). At the same time, mines are linked to severe
negative externalities that are primarily borne locally. The resource wealth
from mining may crowd out other industries, drive corruption and conflict,1 and
induce a resource curse. Crucially, mines are prolific sources of pollution (of
water, air, soil, and food; see Awotwi et al., 2021; Macklin et al., 2023; Mwelwa
et al., 2023) and require copious amounts of water for their operation (Northey
et al., 2018), threatening local ecosystems and agriculture. Effective governance
is vital to realize the benefits from mining (Ali et al., 2017), but relies on scarce
evidence on the nature and extent of these externalities.

The negative externalities of mines are a particular concern for countries with
relatively weak institutions, which might otherwise enable them to internalize
costs, and impacts are likely to go unmitigated. For many countries on the
African continent, where mining operations have been booming (ICMM, 2022),
this is a major challenge. Artisanal and small-scale mining is prevalent (ASM
Inventory, 2022; Girard et al., 2022), and many mines lack the containment
facilities required to manage pollution (Kossoff et al., 2014; Macklin et al.,
2023). In Africa, agriculture accounts for a considerable portion of economic
value-added in these countries (World Bank, 2024), and subsistence farming
remains prevalent. Pollution may thus cause large disruptions (economic and
nutritional) due to fewer possibilities and limited opportunities for adaptation.
Notably, food insecurity in Africa is severe and worsening, while other regions
have made improvements (Food and Agriculture Organization of the United
Nations et al., 2023). The problem is made worse by the scarcity of reliable

1Berman, Couttenier, and Girard, 2023; Berman, Couttenier, Rohner, et al., 2017; Knutsen
et al., 2016; Rigterink et al., 2023.
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and general insights into the external costs of resource extraction and mining in
particular, due to the limited availability of data.
In this paper, we provide causal evidence for considerable effects of water

pollution from mines on agriculture and natural vegetation in Africa. For
identification, we exploit a discontinuity in the flow of water that arises from
the location of mines along fine-grained river-basins (based on data by Lehner
and Grill, 2013). We use the remotely sensed Enhanced Vegetation Index
(EVI; see Didan, 2015) to measure agricultural productivity on croplands,
and vegetation health in general. Coupled with a comprehensive dataset of
industrial and artisanal mining sites (see Maus et al., 2022) and other remotely
sensed covariates, this allows us to assess the impacts of mines across the
African continent. An illustration of the discontinuity we exploit is provided in
Figure 1. The presence of mines tends to cause a sharp drop in vegetation health
downstream. By contrast, regions that are upstream of mines are unaffected by
polluted water and can serve as a control group.
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−10 −5 0 5 10 −10 −5 0 5 10

0.2

0.3

0.4

0.5

0.45

0.50

0.55

0.60

0.65

0.40

0.45

0.50

0.55

0.5

0.6

0.7

0.8

Order relative to the mine−basin

M
ax

im
um

 E
V

I

FIGURE 1: Vegetation index around four selected mines in Angola, Lesotho, Liberia,
and Mozambique (over time). Mine locations are indicated with a dashed line (in the
center); up- and downstream river basins (by discrete order) are plotted with linear
trend lines. A variant with river distance on the horizontal axis is available in Figure B1
of the Appendix.

We find that mining sites have considerable effects on vegetation downstream.
Overall vegetation health, as measured by the maximum annual EVI within
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basins, is reduced by about 1.4–1.6 percent at the mean. The reduction in EVI
is larger for agricultural land, which we identify using established land cover
masks. This cropland-specific EVI is reduced by 1.9–2.1 percent at the mean.
These effects are economically significant and robust to a multitude of robustness
checks. Both impacts dissipate further downstream, in line with hydrological
studies on the transport of sediment and other pollutants (see Macklin et al.,
2023, and references therein). The speed of dissipation is heterogeneous —
the effect halves at a distance of 79 km for general vegetation, and at 17
km for croplands. This suggests different mediators for general and cropland
vegetation or adaptation behavior in the latter. We also assess the possibility of
heterogeneous effects regarding the characteristics of mines, biomes, and in terms
of regions. Larger, but not necessarily faster-growing mines appear to cause
larger impacts. Effects are strongest for grassland-like biomes, and particularly
pronounced in West Africa, where artisanal mining of gold is prevalent.

We contribute to the literature in two major ways. First, we provide reliable
causal evidence for the widespread impact of mines on natural vegetation and
agricultural yields in Africa. Macklin et al. (2023) investigate river contamination
from metal mining, and estimate that 23 million people live in river basins
that are affected by pollution from mining. However, causal evidence for the
consequences of this pollution on agricultural productivity remains scarce and
limited in scope. For instance, Aragón and Rud (2015) provide evidence that
gold mining in Ghana reduced agricultural productivity by about 40 percent,
while Mwelwa et al. (2023) track heavy metals from mines along the food chain
in Zambia and find considerable impacts. Our analysis provides strong evidence
for mines as one mediator for the relation between institutional strength and
agricultural yields (Wuepper et al., 2023) in the African context.
Second, we add an important dimension to the impacts of pollution in a

development context. While air pollution is comparatively well-researched,
water pollution has received little attention in the literature (Keiser, 2019). The
studies that do exist tend to focus on drinking water (Greenstone and Hanna,
2014; Keiser and Shapiro, 2018; Olmstead, 2010) and pollution from agriculture
(Moss, 2007). Studies in a context with relatively weak institutions are rare
(see Greenstone and Hanna, 2014; Liu et al., 2021, for two notable exceptions).
We follow Keeler et al. (2012) in viewing water quality as a contributor to
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ecosystem services, and show how natural vegetation and agricultural yields
are impacted by mining-induced water pollution. This impact is likely to be
especially pronounced and consequential in the context of our study, where
environmental regulations are often lacking, subsistence farming is prevalent, and
food insecurity remains a challenge. To the extent that high-income countries
drive the demand for minerals and outsource polluting industries to low-income
and developing countries, our results can be seen in the context of global
environmental justice (Banzhaf et al., 2019; Hilson and McQuilken, 2014).
Our analysis has some notable parallels in the literature. The identification

procedure, which relies on the direction of water flow along basins, has been
previously exploited by Dias et al. (2023) to identify the impacts of glyphosate
use (in the cultivation of soybean in Brazil) on birth outcomes. Another notable
study by E. Strobl and R. O. Strobl (2011) uses a conceptually similar approach
to assess the impact of dams on agricultural productivity in Africa. They find
an overall productivity loss of 0.96 percent for the period 1981–2000. The water
use of mining operations (and its implications for the local environment) is an
important research strand in the environmental literature (Luckeneder et al.,
2021; Moura et al., 2022; Northey et al., 2018), to which we add. Our study
also relates to the literature on the role of institutions in agriculture (Wuepper
et al., 2023) and water pollution. Sigman (2002) finds increased pollution levels
upstream of international borders, providing evidence of freeriding at a national
level. We show that this problem also exists within countries.
The remainder of this paper is structured as follows. In the next section

on materials and methods, we introduce our conceptual framework, and the
data and empirical strategy that we use to identify the causal effects of water
pollution from mining on agricultural productivity. In Section 3, we present our
main results, illustrate potential heterogeneities, and assess the robustness of
them. In Section 4, we discuss our results and their implications and conclude.

2. Materials and methods

In this section, we introduce the conceptual framework of our study, describe
the data we use, and outline our empirical strategy. Our approach builds on
the discontinuity from mines being located along a chain of river basins that
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are connected by directed water flows. The flow of water is used to identify the
causal effect of mine-induced water pollution, which reaches basins downstream,
but not upstream of a mine. We do not consider other impacts of mines, such
as air pollution or soil erosion. Vegetation is measured with the Enhanced
Vegetation Index (EVI), which allows for consistency over time and regions
while providing information at a granular level. The mine dataset we employ
allows us to cover artisanal and small-scale mines in addition to larger industrial
sites. The effect of interest is operationalized in two ways: via the up- and
downstream order of basins, and via the river distance. With this setup at hand,
we estimate the impact of mining-related water pollution on vegetation health
and agricultural productivity across the African continent.

2.1. Conceptual framework

Mining metals and other minerals requires large amounts of water at the various
stages of operation (Moura et al., 2022; Northey et al., 2018). In the process,
the water is often contaminated with toxic chemicals. In the case of gold mining,
that includes mercury, lead, and sodium cyanide. Afterward, the water is
redirected into the stream it was taken from, often without proper treatment. In
addition, mines produce a large amount of ‘tailings’ (waste rock and sediment),
which are stored in large deposits called tailing dams. When oxidized by air
and weathered by rain, these tailings steadily cause pollution of water resources
(both above and below the surface) as they feed into rivers (Schwarzenbach et al.,
2010). The structural failure of these tailing dams is a major environmental
concern. While causal estimates of the effects of water pollution from mines are
lacking, Macklin et al. (2023) estimate that almost 500,000 kilometers of river
channels may be affected by metal mining in this way.

We seek to estimate the causal effect of water pollution from mining sites on
both natural vegetation and agricultural yields. For this, we locate mines within
river basins (i.e., their catchment areas), and exploit the discontinuity from the
mine to compare basins up- and downstream of the mine. The unidirectional
flow of water along these basins allows us to identify the water-mediated impact
of mining sites. This is illustrated in Figure 2, which shows two mine-basins and
their surroundings. The mine-basin itself and basins downstream are affected
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by water pollution from the mine, while basins upstream can serve as a control
group.

FIGURE 2: Two mines alongside
their up- and downstream basins.

Identification relies on the outcome being discontinuously
affected at the mine location only by the mine itself. There
are few concerns for such impacts following alongside river
basins, which are determined by geography (i.e., elevation
and slope); we will discuss and attempt to soothe them
below. There is also a possibility that farmers downstream
of mines choose to relocate to unaffected regions, or adapt
their farming practices. The potential relocation of farmers,
which would reduce yields mechanistically, is understood as
part of the impact. (This means, that part of the effect may
be due to its perception by farmers.) Adaptation, in turn,
would likely attenuate our estimates. Our second outcome
— natural vegetation that is not specific to agricultural sites
— is less likely to be impacted by either behavior.

There are two important considerations when it comes to
external validity. First, the discontinuity that we exploit is
tied to the direction of the water flow. Our estimates do not
reflect other local impacts that are not transmitted along
river-basins, but may still affect vegetation and agricultural
productivity. These include adverse effects such as height-
ened air pollution (Pandey et al., 2014), soil erosion (Jarsj et al., 2017) or food
contamination (Mwelwa et al., 2023), but also potential positive effects such as
increased wealth levels, asset ownership, or incomes (Goltz and Barnwal, 2019;
Ofosu et al., 2020) that may drive irrigation or fertilizer use. Second, agriculture
in Africa rarely makes use of irrigation, being rainfed instead. Our analysis is
focused on impacts that are transmitted along river-basins, and only impacts
on agricultural lands (and techniques) that use water from these streams are
identified. While insights may not generalize to rainfed agricultural land, it is
notable that the effect that we estimate may play a role in the slow adoption of
intensive agriculture that relies on irrigation.
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2.2. Dataset

Our dataset is a panel of 𝑁 = 14, 327 units that we observe over the period
from 2016–2023 (𝑇 = 8). The units of observation are hydrological basins in
Africa (from the HydroBASINS dataset, see Lehner and Grill, 2013), which are
delineated using the location of bodies of water and remotely sensed elevation,
terrain slope, and stream gradient data.2 Basins are nested in a hierarchical
structure; each of the twelve levels features basins of roughly comparable
size. The defining feature of basins is their directionality — water only flows
downstream, and the water in an upstream basin will (generally) not be affected
by anything that happens downstream. For our analysis, we split basins into
three types. Mine-basins (of order zero) that contain a mine, and basins that
are upstream of all and downstream of any mine-basin. The order of basins,
i.e., the discrete distance in basins, is our primary measure for the treatment
intensity. As an alternative, we rely on the distance along the river network (in
kilometers). We observe 1,900 mine-basins, and consider up- and downstream
basins up to order ten for our analysis, for a total of 6,698 upstream- and 5,729
downstream-basins (for a summary, see Table C1 in the Appendix).
For a given basin, the next (i.e., order one) downstream basin is always

unique, while there may be multiple upstream basins of any given order. This
is because streams can join, but not split in the direction of their flow (compare
the basins labeled ‘−4’ in Figure 2). Not all mine-basins have a full set of up- or
downstream basins, and the number generally decreases with the order. When
mine-basins are located in or near the top or bottom branch of a river network,
or if another mine-basin is situated up- or downstream of the mine-basin, there
will be fewer relevant basins up- and downstream. Each basin occurs only once
in our sample, and a basin that is, e.g., upstream of two mine-basins is only
associated directly with one of them.

Outcome Crop statistics reported by official institutions lack the spatial gran-
ularity needed to measure localized impacts. Even when fine-scale data is
available, institutional differences in how crop yields are calculated and reported
would lead to inconsistencies across countries, threatening comparability, and

2We use the version of the dataset that specifically accounts for the position of lakes, delineating
lake-adjacent basins similarly to coastal basins.
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possibly biasing estimates. We thus opt for the Enhanced Vegetation Index
(EVI) as a time-consistent and fine-scale spatially explicit measure of agricul-
tural productivity as our outcome variable.3 To produce a proxy for agricultural
productivity, we first filter out low-quality pixels (due to cloud cover) and
aggregate the mean EVI per basin for the available 16-day time frame. We use
these values to compute the maximum annual EVI as a peak vegetation index,
a proxy that has been shown to be tightly correlated with measures of gross
primary production of vegetation (see Shi et al., 2017, for an assessment).

Vegetation indices on croplands specifically correlate strongly with crop yields
and are frequently used in the literature.4 To zoom in on agricultural productivity,
we consider two cropland masks to filter for areas that are specifically used for
agricultural purposes. Digital Earth Africa (2022) provides a cropland mask
that is specifically trained and targeted to Africa, achieving a high overall
accuracy, between 86.4% and 90.7%. However, this product is anchored at
2019 and not time-varying. Thus, as an additional robustness check, we use a
time-varying cropland mask, provided by the European Space Agency (ESA;
Defourny et al., 2024). The ESA land cover classification is broader (being on a
global scale) and coarser in its resolution, and may thus be more susceptible to
misclassification than the Digital Earth Africa product. However, it may help
capture relocation of croplands in the period considered, which may help reflect
productivity changes in agricultural areas. Not all basins contain croplands (for
either mask), reducing our sample for the analysis of cropland-specific effects.

Treatment The treatment of interest is the location of mining sites, which we
obtain from Maus et al. (2022). They provide locations and delineated sites of
large-scale, industrial mines as well as artisanal and small-scale mining (ASM).
Compared to other commonly used mining databases, such as the SNL Metals &
Mining database (from which Maus et al. (2022) depart), it offers the advantage
that the delineation of mines was conducted manually within a 10 kilometer
buffer around the point locations of known mines. As a result, it also captures
smaller mines in the vicinity. This is particularly important in Africa, where
ASM is prevalent, and data records are often incomplete. This increases the

3Specifically, we use the product by Didan (2015) that is derived from MODIS satellite imagery.
4See, e.g., Azzari et al., 2017; Becker-Reshef et al., 2010; Bolton and Friedl, 2013; Johnson,
2016; Shammi and Meng, 2021.
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coverage and accuracy of our treatment variable beyond what is usually found
in the literature. While we cannot exclude the possibility that some mines
are missing from our sample, the delineation approach (within a 10 km buffer)
soothes concerns of effect attenuation from mines nearby.5

To construct our treatment, we intersect the mining sites of Maus et al.
(2022) with the hydrological basins from Lehner and Grill (2013). Basins that
contain one or multiple mines are directly treated (with a binary indicator),
while the basins that are further downstream of the mine-basin are indexed via
the distance along the river network or the order of the basin (with separate
binary indicators). Basins that are upstream of the mine (and not downstream
of any other mines) are considered as untreated and thus constitute our control
group. In some cases, the up- and downstream areas of different mines overlap.
To resolve this overlap and avoid duplicate basins in our sample, we consider
each basin to only be associated with the closest mine-basin in terms of order.

Other variables We consider a number of covariates that may confound the
effect of interest. Most importantly, that is elevation and the slope of land within
a given basin. Both directly relate to the basin-level discontinuity and may
thus suffer from imbalance across treatment and control basins, and could, at
worst, bias estimates. We use detailed grid-level data (Amatulli et al., 2018a,b)
for both, and aggregate information from the 30 arcsec (802–926 meters in the
study area) cells to the basin level. We also consider differences in soil type,
considering the primary soil class present in a given basin, obtained from the
SoilGrids project (Hengl et al., 2017).
Other factors that may play a role, particularly at larger distances, include

climate and socioeconomic characteristics. We account for climatological condi-
tions by considering precipitation and maximum temperatures within basins.
Both variables were retrieved from the Climatic Research Unit gridded Time
Series (version 4.08), which are available on a monthly basis and a resolution
of 0.5 degrees (Harris et al., 2020). We use the yearly sum of precipitation
and the maximum of monthly temperatures, following previous studies that
5Some mines considered may be inactive, although mines that are considered to be inactive
based on company reports are often mined illegally by individual miners. This has been
shown to substantially contribute to water pollution even after their official decommissioning
(Macklin et al., 2023). We investigate potential heterogeneity of active and inactive sites
using a longitudinal dataset of mines by Sepin et al. (2024).
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analyze vegetation dynamics in river basins (Na-U-Dom et al., 2017). In terms of
socioeconomic circumstances, we control for a given basin’s population (derived
from WorldPop, 2018) and its average accessibility, measured in minutes of
travel time to the nearest city (derived from Weiss et al., 2018). Both datasets
are available as grids with a resolution of approximately 1 × 1 km; we anchor
them in the year 2015 and aggregate them to the basin level by using total
population and average travel time.
The effect of interest may be heterogeneous, depending on various circum-

stances. We specifically consider heterogeneity regarding persistent climato-
logical conditions (as conveyed, e.g., by biomes) and mine characteristics. For
the former, we allow the effect to vary across Ecoregions (following Dinerstein
et al., 2017). As an alternative, we use the regional classification of the US
Department of Agriculture, which groups countries based on primary crops
and their varying crop calendar cycles.6 In terms of mine characteristics, we
investigate the intensity of mining activity as well as the activity over time.
We proxy the former via the total mine area in a given mine-basin. For the
activity of mines, we resort to the dataset provided by Sepin et al. (2024), which
builds on previous mapping efforts (Maus et al., 2022; Tang and Werner, 2023)
and uses machine learning techniques and satellite imagery to add temporal
information on the evolution of mine sites over time.

Summary statistics Table 1 presents summary statistics of the data used. As
remarked above, not all basins in our sample contain croplands, thus reducing our
sample for the assessment of the impacts of mining on agricultural productivity.
Both the maximum and the mean of the cropland-specific EVI (based on Digital
Earth Africa, 2022) are slightly higher than the overall measure. The other
covariates exhibit strong variation across our sample. Table C2 in the Appendix
shows summary statistics split by their treatment status, i.e., location relative
to the mine. Generally, up- and downstream basins are well-balanced with
respect to the considered covariates. Downstream basins exhibit slightly higher
precipitation, and are more highly populated, but less accessible, and lie at
slightly lower altitudes. These minuscule differences across our treatment and
control groups alleviate concerns of potential non-comparability. Still, we assess
6The regional classification can be found here. We group North and East Africa in one region
due to the low number of observations.
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the robustness of our findings in various ways, including a coarsened exact
matching as a way to increase balance across covariates and reduce model
dependency, in Section 3.2.

TABLE 1: Summary statistics for the dataset used.

Variable 𝑁 Mean St. Dev. Min. Max.

Max. EVI 114,616 0.411 0.168 −0.112 0.993
Mean EVI 114,616 0.270 0.118 −0.112 0.578
Max. Cropland EVI 94,671 0.454 0.129 −0.112 0.990
Mean Cropland EVI 94,671 0.286 0.093 −0.114 0.734
Max. Temperature 114,616 33.80 4.047 20.00 45.40
Precipitation 114,616 882.3 606.3 0.555 4,375.3
Population 114,536 8,185 37,090 0.000 1,396,921
Elevation 114,616 804.6 482.0 −118.3 3,059.7
Slope 114,616 2.201 2.320 0.000 20.92
Accessibility 114,576 183.9 255.9 1.002 7,681

2.3. Empirical strategy

Formally, we use a quasi-experimental regression discontinuity (RD) design
to estimate the causal effect of mines on vegetative health and agricultural
productivity, as they are transmitted via water flows. That is, we estimate

𝑦𝑖𝑗𝑡 = 𝜷′𝑓(d𝑖𝑗 × downstream𝑗) + 𝜹′𝐱𝑖𝑡 + 𝜇𝑗 + 𝜓𝑡 + 𝜀𝑖𝑗𝑡, (1)

where we relate the vegetation in basin 𝑖, located up- or downstream of mine 𝑗
in year 𝑡, to a treatment in terms of distance to the nearest mine-basin. This
distance is denoted as d𝑖𝑗, and is operationalized in two different ways. Our
preferred specification uses (indicators for) the basin order directly, while we
use river distances in alternative specifications. Identification stems from the
indicator downstream𝑖𝑗, which is equal to one if a basin lies downstream of a
mine (including the mine-basin). Basin-specific covariates are denoted with 𝐱𝑖𝑡,
mine- and year-fixed effects with 𝜇𝑗 and 𝜓𝑡, and the error term, 𝜀𝑖𝑗𝑡, is assumed
to be homoskedastic.
The parameters contained in 𝜷 are identified under the assumption that

there are no other discontinuous changes in agricultural productivity at the
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mine-basin. This assumption needs some justification. Fundamental differences
of river-basins at each side of the discontinuity — e.g., in terms of size or other
characteristics — would pose a threat to our identification strategy. In our
analysis, we opt for the most granular layer of the hydrological basins (Lehner
and Grill, 2013) that is available, meaning that the relevant discontinuity is more
likely to be isolated. In the construction of the dataset, the original reference
system for the delineation of hydrological basins (the Pfafstetter system, see e.g.
K. L. Verdin and J. P. Verdin, 1999) was refined to enhance the comparability
across basins in terms of size and connections to other basins. At Level 12, there
is a total of 241,026 basins for the African continent, which cover an average
({5, 50, 95}th percentile) area of 124.4 (11.6, 131.4, 218.9) km2 (cf. Table C1 in the
Appendix).

Some concerns regarding the non-comparability of higher-order basins (e.g.,
regarding geophysical or meteorological differences) may remain. We try to
alleviate these concerns in various ways. First, we include and investigate the
effect of potentially relevant covariates, including geophysical characteristics
of basins (their elevation and slope), meteorological conditions (temperature
and precipitation), and socioeconomic information (basins’ accessibility and
population). As we will show, the inclusion of these controls leaves the estimated
effects largely unchanged. A matching exercise, where we induce balance without
relying on a linear functional form, yields similar results. We also consider
covariates as placebo outcomes, revealing no significant discontinuities at the
mine-basins. Second, we subset our analysis and estimates to basins within
a maximum order of ten (i.e., separated by at most nine basins from the
mine-basin). On average, basins of the highest order are located roughly 100
kilometers away from the mine-basin (cf. Table C1), a distance at which most
mining-related chemicals and sediment have dissipated according to hydrological
studies (Macklin et al., 2023). Third, in a battery of robustness checks, we
restrict our sample of basins even further, for example, by excluding the mine-
basin itself or only considering basins immediately adjacent to the mine-basin
(i.e., basins of order one). None of these restrictions refute the results of our
baseline specifications.

Our preferred specification, where we use indicators for the basin-order, also
remedies some concerns that would be inherent to RD designs with continuous
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running variables (see, e.g. Cattaneo et al., 2019). It highlights the immediate
discrepancy from basin to basin and reduces measurement error as it operational-
izes distance at the level of our units of observations. Concomitantly, by relying
solely on local information, it is relatively agnostic regarding assumptions of
the functional form of distance and thus less susceptible to misspecification.7

Furthermore, the basin-order allows for an intuitive assessment of the decay of
the downstream effects of mines, that is independent of specific choices for the
parameterization of distance.
Finally, we follow the recent literature on RD designs8 in terms of best

practices. We implement applicable procedures that alleviate concerns when
using a continuous running variable, as is the case for our alternative distance
specification. This includes routines that allow for the automatic selection of
the bandwidth that determines the maximum value of the running variable for
which observations are retained. Using the retained observations, polynomials
of different orders can be fitted at each side of the discontinuity to compute
bias-corrected and robust local average treatment effects. As we will show below,
using these procedures leaves our results qualitatively unchanged.

3. Results

Table 2 presents our main results for the impact of mines on general (left two
columns) and cropland-specific (right columns) vegetation. We present results
for specifications that differ in the inclusion of covariates (one plain and one
fully saturated version, first and second columns) and how they operationalize
the effect of interest — namely via (a) indicators for all basin-orders, where the
first upstream-basin is omitted (upper panel), and (b) the linear-quadratic river
distance from the mine-basin and a downstream indicator (lower panel). The
reported estimates are focused on parameters that are causally identified by
our research design; complete estimates are provided in Tables C3–C4 of the
Appendix.

7A notorious example concerns the choice of appropriate polynomials for continuous running
variables (see Gelman and Imbens, 2019).

8See Calonico et al., 2014; Cattaneo et al., 2019; Imbens and Kalyanaraman, 2012; Kolesár and
Rothe, 2018.
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TABLE 2: Main estimation results.

Max. EVI Max. Cropland EVI
Specification (Plain) (Full) (Plain) (Full)

Order

Mine-basin (0th) -0.0064∗∗∗ -0.0059∗∗∗ -0.0093∗∗∗ -0.0095∗∗∗

(0.0014) (0.0013) (0.0021) (0.0020)
Downstream (1st) -0.0060∗∗∗ -0.0057∗∗∗ -0.0049∗ -0.0061∗∗

(0.0018) (0.0017) (0.0026) (0.0026)
Downstream (2nd) -0.0070∗∗∗ -0.0066∗∗∗ -0.0042 -0.0062∗∗

(0.0021) (0.0021) (0.0028) (0.0030)

Fit statistics
Sample mean 0.412 0.412 0.454 0.454
Observations 114,616 114,496 94,671 94,604
R2 0.912 0.924 0.780 0.786

Distance

Downstream -0.0065∗∗∗ -0.0058∗∗∗ -0.0086∗∗∗ -0.0087∗∗∗

(0.0023) (0.0021) (0.0029) (0.0028)

Downstream × Distance −2.0 × 10−5 −2.0 × 10−5 0.0003∗∗ 0.0002
(0.0001) (0.0001) (0.0001) (0.0001)

Downstream × Distance2 −4.0 × 10−7 −9.8 × 10−8 −2.2 × 10−6∗∗ −1.9 × 10−6∗

(9.2 × 10−7) (7.2 × 10−7) (1.1 × 10−6) (1.0 × 10−6)

Fit statistics
Sample mean 0.412 0.412 0.454 0.454
Observations 114,616 114,496 94,671 94,604
R2 0.918 0.924 0.780 0.786

Controls
Geophysical No Yes No Yes
Meteorological Conditions No Yes No Yes
Socioeconomics No Yes No Yes

Fixed-effects
Year (2016–2023) Yes Yes Yes Yes
Mine Yes Yes Yes Yes

Clustered (by mine-basin) standard-errors in parentheses.
Significance levels: ***: 0.01, **: 0.05, *: 0.1.

Note: The Table provides estimates of Equation 1, with treatment measured by indicators of basin-order in
the upper panel, and linear-squared distance in the lower panel. The first two columns hold results for the
overall EVI, the latter two columns results for the cropland-specific EVI. The first and third column include
no covariates, whereas columns two and four include the full set of control variables. All specifications
include mine and year fixed effects.
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Our preferred basin-order specification indicates significant negative effect
of being downstream of a mine, both for the general and the cropland-specific
vegetation index. These impacts are economically meaningful; for the mine-basin,
they correspond to a 1.4–1.6% reduction in the mine-basin for the general index,
and a reduction of 1.9–2.1% for the cropland index relative to the sample mean.
Estimates are robust to the inclusion of covariates. As visualized in Figure 3,
this impact persists beyond the immediate mine-basin, providing strong evidence
for water pollution as a mediator. Moreover, we can see that upstream basins
are unaffected, allowing us to rule out a pretrend with reasonable confidence.
For the general index, impacts appear to be more pervasive, only dissipating
at the highest order. For the cropland index, the initial four basins (the mine
and orders one to three) are significantly and considerably affected by the mine.
Estimates for higher order basins (which are less well-represented in the data)
become imprecise.

Effects by order for EVI (black) and cropland EVI (red)
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FIGURE 3: Estimated order coefficients for all up- and downstream basins (with the
mine-basin in the center) for the overall EVI (in black) and the cropland EVI (in red,
offset to the right) with full covariates. Whiskers represent 95%-confidence intervals.

For the second, distance-based, specification we find comparable results. The
average impact of being located downstream of the mine is highly significant,
and of a similar magnitude to the basin-order specification. For the general
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vegetation index, the impact mirrors estimates for the mine-basin itself, reflecting
the slow impact dissipation. For the cropland index, the imprecise higher-order
estimates are pooled, and the overall impact is slightly below the one for the
mine-basin. Notably, the operationalization via linear and linear-quadratic
distance does not accurately reflect impact decay in the data. Estimates are
only (barely) significant when no covariates are considered for the cropland
index.

Impact decay To judge the extent and possible economic impact of the effect
that we detect, we investigate the decay of effects next. The primary transmission
channel is water pollution from tailings (leftover material) and chemicals that
are used for the extraction and processing of target minerals. The dispersal
of contaminants in water is unlikely to occur linearly along streams (Macklin
et al., 2023). A more appropriate functional form to investigate the speed
of decay is the exponential distance-decay function. Next, we consider this
exponential formulation, where we additionally estimate the non-linear distance-
decay parameter (see Section A in the Appendix for more details).
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FIGURE 4: Effect decay over the distance, assuming an exponential decay function. The
solid (dashed) black line denotes the mean (median) effect; the shaded area between the
dotted lines denotes the 90% credible interval. The vertical lines denote the distance
where the average effect is reduced by 50% and 90%.

In Figure 4, we see how impacts dissipate with distance along the river
network. The differential speed of decay for general and agricultural vegetation,
which is suggested by Figure 3, is even more pronounced. The effect on general
vegetation is rather persistent, with the average effect decaying by 50% (90%)
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after 79 (257) kilometers. By comparison, the average effect on the cropland
vegetation decays by 50% (90%) after 17 (53) kilometers. The coefficients, i.e.,
effect at 100%, are -0.0028*** (0.0008) for general vegetation, and -0.0040***

(0.0011) for the agricultural index. Notably, these results are only informed
by basins up to order ten, which lie at an average distance of 106.1 km. As a
result, the tail impact decay for general vegetation relies on extrapolation.

3.1. Heterogeneity

Next, we investigate the heterogeneity of our results along several dimensions.
We differentiate by (1) conditions that relate to the mines themselves, i.e.,
(1a) the total area mined and (1b) the activity of mining operations over time,
and (2) spatial heterogeneities of basin systems, namely their (2a) geographical
position in terms of region and (2b) biome. Figure 5 provides an overview of the
main results, while Tables C5 and C6 in the Appendix report the full results.

Dependent Variable: EVI Dependent Variable: EVI croplands

−0.020 −0.015 −0.010 −0.005 0.000 0.005 −0.03 −0.02 −0.01 0.00 0.01

Region: West Africa

Region: Southern Africa

Region: North & East Africa

Biome: Grasslands

Biome: Forest

Biome: Deserts

Mine: Growth > 25%

Mine: Growth > 10%

Mine: Growth > 0%

Mine: Size > 2.5km^2

Mine: Size > 1km^2

Mine: Size > 0.5km^2

Baseline

Estimate and 95% Conf. Int.

FIGURE 5: Average treatment effects and 95% confidence intervals in the first down-
stream basin for possibly heterogeneous subsets.

First, we consider heterogeneity along characteristics of the mine-basin in rows
two to four of Figure 5. For the overall EVI, the left panel shows a clear increase
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in the effect magnitude with increasing mine area. Compared to the baseline
specification (which includes all mine-basins), the average effect is tripled for
basins with a mining area of more than 2.5 km2. This increase is less pronounced
for the cropland-specific EVI (in the right panel). Although differences are
insignificant, the increasing relationship seems to persist. Compared to the
sample mean, the average reduction in the cropland-specific EVI increases from
2.1 percent in the baseline specification to 3.7 percent when only considering
mine-basins with a mined area of more than 2.5 km2. These findings do not come
as a surprise, as larger mines are also more likely to produce more discharge
material and contaminate nearby water reservoirs or flows.
Heterogeneity with respect to the activity of mines is investigated in rows

five to seven. We use the growth of mining areas from 2017–2023 (based on
Sepin et al., 2024) to approximate the activity of mining sites, and subset
the dataset to mine-basins that exhibited any, at least 10%, or at least 25%
growth in their mining area. Estimation results do not reveal substantial
heterogeneities along this dimension; point estimates of the impacts remain
stable, whereas the precision suffers from the decrease in sample size. Besides
the noisy approximation and a true lack of heterogeneity, this result could be
driven by a lack of maintenance of inactive mining sites. At the same time,
precautions may be particularly prevalent during phases of expansion.
Second, we turn to spatial heterogeneities. In rows eight to ten of Figure 5,

we split the sample by biome. We group the granular ecoregions of Dinerstein
et al. (2017) into three broad biome groups that are present in our data —
deserts, forests, and grasslands — and determine a primary group for each basin.
For both, the overall and the cropland-specific EVI, significant effects are only
detectable for basin systems in grasslands. Coefficients for the two other biomes
are negative, but rather imprecise. This may be due to the limited number of
observations for these biomes, or the rare practice of irrigated agriculture and
applicability of the EVI in these biomes.
In the final three rows of Figure 5, we consider regional heterogeneities that

reflect differences in crop cycles. We find somewhat larger effects in West Africa,
slightly reduced effects in South Africa, and no significant effects in North and
East Africa (which are grouped due to limited samples). These discrepancies
are more pronounced for the overall EVI than for the cropland-specific one.
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In many Western African countries, including Ghana, Mali, or Burkina Faso,
gold mining is prevalent and often conducted in informal, small mines (Girard
et al., 2022). The extraction of gold from raw ore uses toxic chemicals, such as
mercury or sodium cyanide, and artisanal mining operations lack the necessary
equipment to control their runoff (Hinton et al., 2003). This may contribute
to larger impacts in West Africa, when compared to Southern Africa, where
mining of other metals and coal is more widespread.

3.2. Robustness

Finally, we assess the robustness of our results. Figure 6 presents estimates for
our main specification that are subject to various robustness checks. Specifically,
we vary the exact sample considered, the outcome variable definition, and the
level of fixed effects. Tables C7 and C8 in the Appendix report the full results
of these exercises.

Dependent Variable: EVI Dependent Variable: EVI croplands

−0.0100 −0.0075 −0.0050 −0.0025 0.0000 −0.015 −0.010 −0.005 0.000

ESA cropland mask

Mean instead of Max

FE: Basin level 6

FE: Basin level 8

Maximum order of 1 &
 at least one up/downstream &

excluding mine basin

Excluding mine basin

Maximum order of 1

At least one basin
 up/downstream

Baseline

Estimate and 95% Conf. Int.

FIGURE 6: Average treatment effects and 95% confidence intervals in the first down-
stream basin under various robustness checks.

In rows two to five of Figure 5, we begin by restricting the sample in several
ways. First, we only consider mine-basins that have at least one basin each that

20



Mines–Rivers–Yields

is up- and downstream. Second, we restrict the maximum order of basins to one,
disregarding any basins that are further away than the most immediate ones.
Third, we exclude the mine-basin itself, only considering up- and downstream
basins. Fourth and last, we combine the previous three restrictions. None
of these restrictions invalidate our baseline results (which are shown in the
first row). Only the combination of all restrictions leads to an estimate for
the cropland-specific EVI that becomes insignificant at the 5% significance
level, although the point estimate remains similar to the baseline. This loss in
precision results from the rather drastic decrease in sample size through the
combination of restrictions (less than 10% of the full sample).

In rows six and seven, we vary the specification in terms of fixed effects, i.e.,
we adjust the level at which we assume that time-invariant basin characteristics
to manifest. We introduce fixed effects that relate to the mine-basin system itself
— the hierarchical nature of basins allows us to identify all sub-basins within
a given super-basin. Specifically, we introduce fixed effects for all sub-basins
within (i) Level 6 and (ii) Level 8 super-basins. These contain on average 67
and 6 of the Level 12 basins that constitute our unit of observation. Estimation
results are qualitatively unchanged.

Lastly, we vary our outcome variable — the proxy for vegetation productivity
and agricultural yields — in rows eight and nine of Figure 5. First, we consider
the annual mean of the EVI instead of the yearly maximum. Second, we use an
alternative, time-varying cropland mask by ESA to help distill our agriculture-
specific productivity.9 The results are qualitatively similar for both of these
variations, implying a negative effect on vegetation and agricultural yields. Note
that both the estimates for the mean EVI, and the ESA cropland mask cannot
be directly compared to the baseline estimate, as they have different sample
moments (cf. Table 1). Compared to the sample mean, the mean overall EVI is
reduced by 2.02 percent, whereas the reduction amounts to 2.35 percent for the
cropland-specific EVI. While the effect on the EVI for croplands, as identified
by the ESA mask, is only significant at the 10% level, it implies a one percent
reduction compared to its sample mean. The reduction in precision of the

9For this, we rely on the land use classifications derived by the European Space Agency (Defourny
et al., 2024). Specifically, we consider the land use classes for rainfed croplands (code 10) and
irrigated or post-flooding cropland (code 20). We disregard mosaics of cropland with natural
vegetation to reduce noise.
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estimate stems from a lower number of observations, as the ESA mask identifies
fewer agricultural areas in Africa compared to our region-specific baseline mask.

Estimation methods In addition to the aforementioned robustness check, we
assess the robustness of our estimation method when operationalizing distance
in kilometers along the river network. For that, we follow the recent literature
that proposes data-driven and robust methods for inference in RD designs with
a continuous running variable (see Cattaneo et al., 2019). This involves a
data-driven bandwidth selection procedure, a weighting scheme for observations
that are closer to the cutoff, and separately fitted local polynomials for untreated
and treated units.10 The results of this exercise are presented in Table C9 in
the Appendix.

For the conventional estimates, the optimally chosen bandwidth falls between
20 and 38 kilometers. The bias-corrected estimates employ more observations,
with the bandwidth ranging between 43 and 74 kilometers.11 This is a narrower
bandwidth than the one used in our main specification, where we implicitly
set the distance threshold to about +/- 100 kilometers. Yet, the coefficient
estimates from these routines for the effect of mining on vegetation downstream
are very similar to our baseline specification reported in Table 2. With the full
set of controls, and using either a linear or quadratic polynomial, the point
estimates for the local average treatment effect range between -0.005 and -0.006
for the overall EVI and between -0.010 and -0.012 for the cropland-specific one.
These estimates are robust to the bias-correction as proposed by Cattaneo et al.
(2019) and statistically significant in all specifications.

Lastly, we assess the validity of our identification assumptions. First, we
re-estimate the main specification using placebo outcomes; i.e., we change the
dependent variable to covariates that are plausibly unaffected (recommended

10We follow the set of practices as outlined by Cattaneo et al. (2019) and employ a triangular
kernel, which gives observations closer to the cutoff a greater weight. We chose the bandwidth
by minimizing the mean squared prediction error and present the results for both linear and
quadratic polynomials, which are fitted for up- and downstream basins separately (following
Imbens and Kalyanaraman, 2012). The tables present the estimates for the local average
treatment effects. We report the results for the conventional and bias-corrected estimation
procedures, which provide an improved finite sample performance.

11These bandwidths are close to what theory, from hydrological studies, would suggest. Macklin
et al. (2023), e.g., find elevated levels of toxic pollutants like zinc, lead, and arsenic between
10 and 80 kilometers downstream of mines.
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by Cattaneo et al., 2019). The underlying assumption is that there are no other
discontinuities that correlate with the treatment. We do not find a statistically
significant effect for elevation, slope, temperature, precipitation, accessibility
nor population (see Table C11 in the Appendix). Second, we induce balance
among geophysical covariates using coarsened exact matching (Iacus et al.,
2012) and re-estimate Equation 1 with the matched sample. Estimates are
qualitatively similar to the main result. These results corroborate the validity
of our identification assumption.

4. Conclusion

In this paper, we identified the causal effects of mining on agricultural produc-
tivity mediated by water pollution. In a quasi-experimental research design,
we used the location of mines along a river basin network as a discontinuity
for identification. We compared agricultural productivity, measured by the
Enhanced Vegetation Index (EVI), in basins upstream and downstream of
mining sites. In our main specification, we found a reduction of the vegetation
index downstream by 1.4–1.6% for all vegetation, and by 1.9–2.1% on croplands.
Effects were stronger for larger mines, mines on grassland, and West African
mines. Results were robust to changes in the sample considered, the definition
of the outcome variable, the level of fixed effects, and the method of estimation.
The effect size can be further contextualized by comparing our estimate

with effect sizes from the related literature. Adamopoulos et al. (2024) and
Chen et al. (2022) find that institutions (in particular land tenure systems)
affect agricultural productivity by about 20 to 40 percent. Aragón and Rud
(2015) estimates the effect of industrial pollution from gold mining in Ghana
on agricultural productivity at 40 percent. These papers use survey data to
measure crop yields, which may be more responsive than our remotely sensed
outcome measure. Several other papers use vegetation indices as a proxy for
crop yields in related contexts, and find economically significant results that are
comparable in size to our estimates.12 In a related study, Wuepper et al. (2023)
identify the impact of improving institutions on crop yields (also measured via
the annual maximum EVI), and find an effect of 2.2 percent. The similar effect

12See, e.g. Asher and Novosad, 2020; Lobell et al., 2022; E. Strobl and R. O. Strobl, 2011.
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size of our study suggests that the management of externalities from mines,
and water pollution in particular, may be an important factor behind such
institutional differences.
Our findings inform the discussion about resource extraction in Africa in

general, and in countries with weak environmental governance in particular.
The effects we found showcase a need to tackle the lack of containment facilities
that have the potential to reduce negative impacts of extraction sites. Environ-
mental legislation should introduce and enforce requirements for such facilities.
Measures should not be limited to industrial mines, but extended to include
closer monitoring of the informal mining sector, particularly in countries and
regions where such activity is widespread. Since these mines play an important
role in the livelihoods of many, stopping such operations altogether is arguably
infeasible. Instead, it may be beneficial to provide information on potential
countermeasures for water pollution and support workers in implementing them.
While environmental externalities are often difficult to internalize due to their
(economically) abstract nature, we show that water pollution from mines directly
impacts agricultural yields. Addressing this externality is pressing, especially
in regions with prevalent subsistence agriculture and ones that are plagued by
food insecurity.
Our paper contributes causal estimates of mining impacts on agriculture

in Africa, overcoming data scarcity (that has previously impeded large-scale
analyses) by relying on remotely sensed data for both treatment and outcome.
Nonetheless, there are some limitations and many future alleys for research.
Remotely sensed data has important benefits, but also entails some limitations.
Since vegetation indices derived from satellite data are an indirect measurement
of agricultural productivity, the effects we find cannot directly be translated
into agricultural yields without further information. Additionally, while our
mine data is comprehensive and has broader coverage than conventionally used
datasets, measuring treatment purely from the location and size of mines disre-
gards differences in waste production and treatment that would be important to
assess in future research. The evidence for broad effects presented in this paper
calls for future work to provide more in-depth insights into the specifics of the
mechanism, and, importantly, explores approaches to mitigate this externality
of mines.
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A. Impact decay assessment

The transport of chemicals used for the extraction and processing of target
minerals and leftover material, called mine tailings (or ‘gangue’), via rivers
and other water flows (e.g., groundwater flows or aquifers) is the primary
transmission channel to downstream basins in our study. Hydrological studies
on the dispersal and transportation of polluting materials from metal mining have
shown that >90% of them are sediment associated and are transported 10–100
kilometers from their point of discharge by mining operations (see Macklin et al.,
2023, and references therein). Furthermore, evidence from Macklin et al. (2023),
based on a process-based model for the dispersal of contaminated sediment,
suggests that for most elements associated with metal mining, concentrations
decay non-linearly. As a result, it is unlikely that the effects on vegetation
and agricultural productivity fade out linearly with increasing distance. While
Figure 3 in the main text provides (agnostic) evidence of this decay based on
the order of basins, we also investigate this decay with a parametric model.

We re-estimate the model introduced in Equation 1, assuming an exponential
distance-decay function, i.e. exp{−𝛿d𝑖𝑗}, where d𝑖𝑗 is the distance along the
river in kilometers. We use an exponential decay parameterization because (i)
hydrological studies provide evidence that this best fits the dispersion patterns of
mining-related sediment, and (ii) it reduces the influence of far away observations,
and (iii) the exponential function is commonly used for similar processes in
other statistical applications. As the speed of decay, reflected by 𝛿, is not known
a-priori, we conduct a grid search over the interval [0.001, 2] (in steps of 0.001),
which would allow for both extremely rapid and slow decay.

For the results, we adopt a Bayesian model averaging approach, where we
use the Bayesian information criterion (BIC) to approximate the marginal
likelihood (and thus quantify model fit).13 We then compute the mean speed of
effect decay at increasing distances, depicted by the solid black line in Figure 4,
and additionally provide quantile-based estimates. These are the ({5, 50, 95})th

quantiles for the effect decay parameter, which are depicted by dotted lines in
Figure 4.

13We compute the posterior probability for model 𝑗 with decay parameter 𝛿𝑗 and Bayesian
information criterion BIC𝑗 as 𝑃𝑃𝑗 = exp{−BIC𝑗/2}/ ∑𝑗 exp{−BIC𝑗/2} (see e.g. Neath and
Cavanaugh, 2012). The implicit prior is uniform across the searched interval.
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B. Additional Figures

Mine in Liberia Mine in Mozambique

Mine in Angola Mine in Lesotho
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FIGURE B1: Enhanced vegetation index (over time) around four selected mines in
Angola, Lesotho, Liberia, and Mozambique. Mine locations are indicated with a dashed
line (in the center); up- and downstream river basins are plotted with linear trend lines.
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FIGURE B2: Number of mine-basins with 𝑌 upstream and 𝑋 downstream basins in the
dataset.
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C. Additional Tables

TABLE C1: Number and average distance of basins by order.

Order Downstream Upstream
𝑁 Distance (km) 𝑁 Distance (km)

0 1900 0.0 - -
1 1162 10.7 987 14.5
2 841 22.2 865 24.2
3 695 32.9 778 34.7
4 591 43.7 738 44.7
5 531 54.4 681 55.1
6 462 64.8 593 65.9
7 418 74.3 575 75.6
8 376 85.1 530 86.6
9 343 95.9 499 95.7

10 310 106.1 452 104.2
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TABLE C2: Summary statistics split by upstream/downstream status.

Upstream Basins

Variable 𝑁 Mean St. Dev. Min. Max.

Max. EVI 53,584 0.417 0.169 0.021 0.983
Mean EVI 53,584 0.276 0.120 0.020 0.578
Max. Cropland EVI 44,389 0.459 0.127 0.057 0.990
Mean Cropland EVI 44,389 0.291 0.093 −0.002 0.637
Max. Temperature 53,584 33.83 4.003 20.00 45.10
Precipitation 53,584 905.4 606.5 0.851 3,976.0
Population 53,584 6,693.8 27,878.2 0.000 1,396,921.0
Elevation 53,584 840.5 471.2 10.53 3,059.7
Slope 53,584 2.295 2.256 0.086 20.91
Accessibility 53,584 192.0 242.3 3.000 7,542.8

Downstream Basins (incl. Mine Basins)

Variable 𝑁 Mean St. Dev. Min. Max.

Max. EVI 61,032 0.406 0.167 −0.112 0.993
Mean EVI 61,032 0.264 0.116 −0.112 0.563
Max. Cropland EVI 50,282 0.450 0.130 −0.112 0.981
Mean Cropland EVI 50,282 0.283 0.093 −0.114 0.734
Max. Temperature 61,032 33.78 4.085 20.00 45.40
Precipitation 61,032 862.0 605.4 0.555 4,375.3
Population 60,952 9,497.1 43,568.1 0.000 1,244,492.0
Elevation 61,032 773.1 489.1 −118.3 3,047.1
Slope 61,032 2.119 2.371 0.000 20.456
Accessibility 60,992 176.9 267.1 1.002 7,681.8
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TABLE C3: Main estimation results for Order specification.

Dependent Variables: Maximum EVI Maximum Cropland EVI
Model: (1) (2) (3) (4) (5) (6)

Variables
Downstream x Order = 0 -0.0064∗∗∗ -0.0063∗∗∗ -0.0059∗∗∗ -0.0093∗∗∗ -0.0097∗∗∗ -0.0095∗∗∗

(0.0014) (0.0014) (0.0013) (0.0021) (0.0021) (0.0020)
Downstream x Order = 1 -0.0060∗∗∗ -0.0048∗∗∗ -0.0057∗∗∗ -0.0049∗ -0.0050∗ -0.0061∗∗

(0.0018) (0.0018) (0.0017) (0.0026) (0.0027) (0.0026)
Downstream x Order = 2 -0.0070∗∗∗ -0.0053∗∗ -0.0066∗∗∗ -0.0042 -0.0046 -0.0062∗∗

(0.0021) (0.0021) (0.0021) (0.0028) (0.0029) (0.0030)
Downstream x Order = 3 -0.0094∗∗∗ -0.0069∗∗∗ -0.0083∗∗∗ -0.0049 -0.0049 -0.0069∗∗

(0.0023) (0.0023) (0.0022) (0.0032) (0.0033) (0.0033)
Downstream x Order = 4 -0.0071∗∗∗ -0.0053∗∗ -0.0059∗∗ -0.0027 -0.0036 -0.0044

(0.0025) (0.0024) (0.0024) (0.0034) (0.0036) (0.0036)
Downstream x Order = 5 -0.0077∗∗∗ -0.0052∗∗ -0.0056∗∗ -0.0009 -0.0013 -0.0018

(0.0028) (0.0026) (0.0026) (0.0037) (0.0038) (0.0039)
Downstream x Order = 6 -0.0084∗∗∗ -0.0054∗ -0.0056∗∗ -0.0042 -0.0044 -0.0051

(0.0031) (0.0028) (0.0028) (0.0039) (0.0041) (0.0041)
Downstream x Order = 7 -0.0093∗∗∗ -0.0063∗∗ -0.0063∗∗ 0.0008 0.0003 −2.53 × 10−5

(0.0033) (0.0031) (0.0030) (0.0041) (0.0043) (0.0044)
Downstream x Order = 8 -0.0140∗∗∗ -0.0110∗∗∗ -0.0109∗∗∗ -0.0074∗ -0.0085∗∗ -0.0090∗∗

(0.0033) (0.0031) (0.0031) (0.0041) (0.0043) (0.0044)
Downstream x Order = 9 -0.0103∗∗∗ -0.0065∗ -0.0067∗∗ -0.0042 -0.0045 -0.0052

(0.0035) (0.0034) (0.0034) (0.0039) (0.0043) (0.0044)
Downstream x Order = 10 -0.0107∗∗∗ -0.0056 -0.0056 -0.0038 -0.0038 -0.0043

(0.0037) (0.0037) (0.0037) (0.0045) (0.0049) (0.0050)
Elevation −7.77 × 10−6 −2.3 × 10−5∗∗∗ −1.59 × 10−5∗∗ −3.86 × 10−5∗∗∗

(6.08 × 10−6) (6.29 × 10−6) (7.19 × 10−6) (7.35 × 10−6)
Slope 0.0034∗∗∗ 0.0033∗∗∗ 0.0023∗∗∗ 0.0023∗∗∗

(0.0005) (0.0005) (0.0006) (0.0006)
Yearly Max. Temperature -0.0053∗∗∗ -0.0071∗∗∗

(0.0007) (0.0007)
Yearly Precipitation 3.33 × 10−5∗∗∗ 2.86 × 10−5∗∗∗

(3.61 × 10−6) (3.95 × 10−6)
Accessibility in 2015 −9.97 × 10−6∗ −3.78 × 10−6

(5.28 × 10−6) (1.18 × 10−5)
Population in 2015 −1.51 × 10−7∗∗∗ −1.06 × 10−7∗∗∗

(2.75 × 10−8) (2.04 × 10−8)

Sample Mean Effect -1.567 -1.531 -1.438 -2.042 -2.127 -2.089

Fixed-effects
Year Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 114,616 114,616 114,496 94,671 94,671 94,604
R2 0.91808 0.92156 0.92395 0.77981 0.78184 0.78597
Within R2 0.00393 0.04627 0.05582 0.00180 0.01099 0.02531

Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation 1, with distance included as measured by the ordering
of basins with respect to the mine basin. Columns (1)–(3) hold results from models for the overall EVI as
proxy measure for vegetative health within basins, columns (4)–(6) for the cropland-specific EVI as proxy
measure for agricultural productivity. Models in columns (1) and (4) include no additional covariates,
models (2) and (5) control for geophysical variables (elevation and slope), models (3) and (6) additionally
control for meteorological (yearly sum of precipitation and yearly maximum temperature) and socioeconomic
(accessibility to city in minutes and total population in 2015) conditions. All models include mine and year
fixed effects. Standard errors are clustered at the mine basin system level.
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TABLE C4: Main estimation results for Distance specification.

Dependent Variables: Maximum EVI Maximum Cropland EVI
Model: (1) (2) (3) (4) (5) (6)

Variables
Downstream -0.0065∗∗∗ -0.0060∗∗∗ -0.0058∗∗∗ -0.0086∗∗∗ -0.0088∗∗∗ -0.0087∗∗∗

(0.0023) (0.0021) (0.0021) (0.0029) (0.0029) (0.0028)
Downstream × Distance −2.02 × 10−5 1.05 × 10−5 −2.02 × 10−5 0.0003∗∗ 0.0002∗ 0.0002

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Downstream × Distance2 −3.98 × 10−7 −4.37 × 10−7 −9.8 × 10−8 −2.15 × 10−6∗∗ −2.34 × 10−6∗∗ −1.94 × 10−6∗

(9.17 × 10−7) (7.35 × 10−7) (7.19 × 10−7) (1.06 × 10−6) (1.03 × 10−6) (1.03 × 10−6)
Distance 4.05 × 10−5 2.98 × 10−5 2.56 × 10−5 −7.01 × 10−5 −5.62 × 10−5 −4.6 × 10−5

(9.03 × 10−5) (8.4 × 10−5) (8.19 × 10−5) (0.0001) (0.0001) (0.0001)
Distance2 −1.87 × 10−7 −9.18 × 10−9 2.1 × 10−8 6.93 × 10−7 8 × 10−7 6.06 × 10−7

(6.27 × 10−7) (5.68 × 10−7) (5.56 × 10−7) (8.38 × 10−7) (8.23 × 10−7) (8.22 × 10−7)
Elevation −7.45 × 10−6 −2.22 × 10−5∗∗∗ −1.83 × 10−5∗∗ −4.03 × 10−5∗∗∗

(6.56 × 10−6) (6.71 × 10−6) (7.55 × 10−6) (7.61 × 10−6)
Slope 0.0034∗∗∗ 0.0032∗∗∗ 0.0023∗∗∗ 0.0023∗∗∗

(0.0005) (0.0005) (0.0006) (0.0006)
Yearly Max. Temperature -0.0053∗∗∗ -0.0070∗∗∗

(0.0007) (0.0007)
Yearly Precipitation 3.33 × 10−5∗∗∗ 2.88 × 10−5∗∗∗

(3.6 × 10−6) (3.94 × 10−6)
Accessibility in 2015 −1.01 × 10−5∗ −4.03 × 10−6

(5.31 × 10−6) (1.19 × 10−5)
Population in 2015 −1.51 × 10−7∗∗∗ −1.06 × 10−7∗∗∗

(2.77 × 10−8) (2.03 × 10−8)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 114,616 114,616 114,496 94,671 94,671 94,604
R2 0.91804 0.92152 0.92390 0.77971 0.78175 0.78587
Within R2 0.00346 0.04573 0.05524 0.00138 0.01060 0.02485

Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation 1, with squared distance included as measured in
kilometer along the river network. Columns (1)–(3) hold results from models for the overall EVI as proxy
measure for vegetative health within basins, columns (4)–(6) for the cropland-specific EVI as proxy measure
for agricultural productivity. Models in columns (1) and (4) include no additional covariates, models (2) and
(5) control for geophysical variables (elevation and slope), models (3) and (6) additionally control for
meteorological (yearly sum of precipitation and yearly maximum temperature) and socioeconomic
(accessibility to city in minutes and total population in 2015) conditions. All models include mine and year
fixed effects. Standard errors are clustered at the mine basin system level.
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C1. Heterogeneity analysis

C1.1. Mine size and growth

TABLE C5: Estimation results for heterogeneity analysis: Mine characteristics

Mine Size > 0.5𝑘𝑚2 > 1𝑘𝑚2 > 2.5𝑘𝑚2

Mine Growth > 0% > 10% > 25%

Model: (1) (2) (3) (4) (5) (6) (7)

Maximum EVI
Downstream x Order = 0 -0.0059∗∗∗ -0.0098∗∗∗ -0.0114∗∗∗ -0.0151∗∗∗ -0.0073∗∗∗ -0.0062∗∗∗ -0.0060∗∗∗

(0.0013) (0.0018) (0.0020) (0.0026) (0.0018) (0.0020) (0.0021)
Downstream x Order = 1 -0.0057∗∗∗ -0.0078∗∗∗ -0.0090∗∗∗ -0.0094∗∗∗ -0.0064∗∗∗ -0.0043 -0.0044

(0.0017) (0.0024) (0.0026) (0.0033) (0.0024) (0.0027) (0.0028)
Downstream x Order = 2 -0.0066∗∗∗ -0.0069∗∗ -0.0063∗∗ -0.0064∗ -0.0060∗∗ -0.0035 -0.0032

(0.0021) (0.0027) (0.0029) (0.0036) (0.0027) (0.0031) (0.0032)

Fit statistics
Observations 114,496 58,696 46,440 30,128 59,080 44,376 34,280
R2 0.92395 0.93068 0.93189 0.93393 0.90491 0.91660 0.91505
Within R2 0.05582 0.05630 0.06180 0.07193 0.05844 0.05212 0.05557

Maximum Cropland EVI
Downstream x Order = 0 -0.0095∗∗∗ -0.0121∗∗∗ -0.0148∗∗∗ -0.0165∗∗∗ -0.0110∗∗∗ -0.0099∗∗∗ -0.0084∗∗

(0.0020) (0.0029) (0.0031) (0.0041) (0.0027) (0.0031) (0.0034)
Downstream x Order = 1 -0.0061∗∗ -0.0067∗ -0.0100∗∗ -0.0093 -0.0051 -0.0006 0.0021

(0.0026) (0.0038) (0.0042) (0.0057) (0.0036) (0.0041) (0.0043)
Downstream x Order = 2 -0.0062∗∗ -0.0059 -0.0061 -0.0062 -0.0059 0.0006 0.0036

(0.0030) (0.0041) (0.0044) (0.0059) (0.0038) (0.0043) (0.0046)

Fit statistics
Observations 94,604 49,492 39,462 25,265 51,191 37,151 28,621
R2 0.78597 0.80545 0.81184 0.81068 0.75736 0.76813 0.74775
Within R2 0.02531 0.02960 0.03412 0.04540 0.02771 0.03095 0.03355

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes

Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1, with distance included as measured by the ordering
of basins with respect to the mine basin, with the overall EVI as outcome in the upper panel and the
cropland-specific EVI as outcome in the lower panel. Model in column (1) reports results for the baseline
specification, models in columns (2)–(4) for subsets of mine basins with increasing total area of mined area,
models in columns (5)–(7) for subsets of mine basins with increasing growth in mined area in the period from
2017 to 2023 based on Sepin et al., 2024. All specifications include the full set of controls and mine and year
fixed effects. Standard errors are clustered at the mine basin system level.
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C1.2. Biome and region

TABLE C6: Estimation results for heterogeneity analysis: Biome and Region

Biome Deserts Forests Grasslands
Region N. & E. Africa S. Africa W. Africa
Model: (1) (2) (3) (4) (5) (6) (7)

Maximum EVI
Downstream x Order = 0 -0.0059∗∗∗ -0.0034 -0.0013 -0.0069∗∗∗ -0.0029 -0.0049∗∗∗ -0.0078∗∗∗

(0.0013) (0.0025) (0.0032) (0.0017) (0.0038) (0.0018) (0.0023)
Downstream x Order = 1 -0.0057∗∗∗ -0.0015 -0.0054 -0.0067∗∗∗ -0.0020 -0.0033 -0.0101∗∗∗

(0.0017) (0.0033) (0.0046) (0.0021) (0.0046) (0.0022) (0.0032)
Downstream x Order = 2 -0.0066∗∗∗ -0.0008 -0.0085 -0.0075∗∗∗ -0.0013 -0.0045∗ -0.0089∗∗

(0.0021) (0.0037) (0.0055) (0.0026) (0.0055) (0.0026) (0.0040)

Fit statistics
Observations 114,496 20,408 16,872 77,216 12,456 72,032 30,008
R2 0.92395 0.89783 0.92621 0.84199 0.94780 0.89978 0.92528
Within R2 0.05582 0.05791 0.06958 0.05889 0.10409 0.05297 0.05956

Maximum Cropland EVI
Downstream x Order = 0 -0.0095∗∗∗ -0.0124 -0.0049 -0.0088∗∗∗ -0.0073 -0.0076∗∗∗ -0.0107∗∗∗

(0.0020) (0.0109) (0.0051) (0.0021) (0.0073) (0.0027) (0.0034)
Downstream x Order = 1 -0.0061∗∗ -0.0162 0.0005 -0.0059∗∗ -0.0064 -0.0016 -0.0088∗

(0.0026) (0.0158) (0.0064) (0.0027) (0.0078) (0.0034) (0.0050)
Downstream x Order = 2 -0.0062∗∗ -0.0050 -0.0036 -0.0066∗∗ -0.0015 -0.0006 -0.0108∗∗

(0.0030) (0.0175) (0.0083) (0.0030) (0.0088) (0.0040) (0.0050)

Fit statistics
Observations 94,604 8,297 15,083 71,224 9,720 58,882 26,002
R2 0.78597 0.69727 0.85804 0.71390 0.86094 0.72147 0.77684
Within R2 0.02531 0.06634 0.03601 0.02846 0.05931 0.02276 0.03564

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes

Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1, with distance included as measured by the ordering
of basins with respect to the mine basin, with the overall EVI as outcome in the upper panel and the
cropland-specific EVI as outcome in the lower panel. Model in column (1) reports results for the full sample,
models in columns (2)–(4) for sample splits by primary biome of mine basin system, and models in columns
(5)–(7) for sample splits by regions based on the USDA crop classifications. All specifications include the full
set of controls and mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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C2. Robustness analysis

C2.1. Sample variations

TABLE C7: Estimation results for varying sample definition

Dependent Variables: Maximum EVI Maximum Cropland EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables
Downstream x Order = 0 -0.0059∗∗∗ -0.0076∗∗∗ -0.0062∗∗∗ -0.0095∗∗∗ -0.0082∗∗∗ -0.0094∗∗∗

(0.0013) (0.0014) (0.0012) (0.0020) (0.0024) (0.0022)
Downstream x Order = 1 -0.0057∗∗∗ -0.0053∗∗∗ -0.0053∗∗∗ -0.0049∗∗ -0.0051∗∗ -0.0061∗∗ -0.0049 -0.0051∗ -0.0061∗∗ -0.0069∗

(0.0017) (0.0020) (0.0017) (0.0020) (0.0021) (0.0026) (0.0032) (0.0030) (0.0030) (0.0039)
Downstream x Order = 2 -0.0066∗∗∗ -0.0054∗∗ -0.0056∗∗ -0.0062∗∗ -0.0057 -0.0062∗

(0.0021) (0.0026) (0.0023) (0.0030) (0.0037) (0.0033)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 114,496 61,712 32,360 99,320 9,168 94,604 50,914 27,589 81,278 7,623
R2 0.92395 0.91566 0.93993 0.92392 0.93378 0.78597 0.76613 0.84032 0.78332 0.81766
Within R2 0.05582 0.05702 0.05650 0.05511 0.07364 0.02531 0.02382 0.03446 0.02322 0.03884

Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation 1, with distance included as measured by the ordering
of basins with respect to the mine basin. Columns (1)–(5) hold results from models for the overall EVI as
proxy measure for vegetative health within basins, columns (6)–(10) for the cropland-specific EVI as proxy
measure for agricultural productivity. Models in columns (1) and (6) are the baseline specification, models in
columns (2) and (7) only include basin systems with at least one up- and downstream basin, models in
columns (3) and (8) include maximum order one up- and downstream basins, models in columns (4) and (9)
exclude the mine basin itself, models in columns (5) and (10) include only the first order basins of basins
systems with at least one basin up- and downstream and excludes the mine basin. All specifications include
the full set of controls and mine and year fixed effects. Standard errors are clustered at the mine basin
system level.
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C2.2. Outcome and fixed effects variations

TABLE C8: Estimation results for varying fixed effects and outcome variables

Dependent Variables: Maximum EVI Mean EVI Maximum Cropland EVI Mean C EVI ESA C EVI
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9)

Variables
Downstream x Order = 0 -0.0059∗∗∗ -0.0065∗∗∗ -0.0079∗∗∗ -0.0048∗∗∗ -0.0095∗∗∗ -0.0104∗∗∗ -0.0109∗∗∗ -0.0073∗∗∗ -0.0048∗

(0.0013) (0.0013) (0.0014) (0.0009) (0.0020) (0.0020) (0.0021) (0.0013) (0.0026)
Downstream x Order = 1 -0.0057∗∗∗ -0.0060∗∗∗ -0.0066∗∗∗ -0.0035∗∗∗ -0.0061∗∗ -0.0062∗∗ -0.0064∗∗∗ -0.0043∗∗ -0.0035

(0.0017) (0.0016) (0.0017) (0.0011) (0.0026) (0.0025) (0.0025) (0.0017) (0.0032)
Downstream x Order = 2 -0.0066∗∗∗ -0.0064∗∗∗ -0.0067∗∗∗ -0.0038∗∗∗ -0.0062∗∗ -0.0058∗∗ -0.0064∗∗ -0.0055∗∗∗ -0.0015

(0.0021) (0.0020) (0.0020) (0.0013) (0.0030) (0.0029) (0.0028) (0.0019) (0.0035)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes
Pfaffstetter basin level 8 Yes Yes
Pfaffstetter basin level 6 Yes Yes

Fit statistics
Observations 114,496 114,496 114,496 114,496 94,604 94,604 94,604 94,604 67,649
R2 0.92395 0.91954 0.90419 0.95707 0.78597 0.77061 0.74193 0.88641 0.80154
Within R2 0.05582 0.06500 0.08647 0.11783 0.02531 0.02957 0.04285 0.04478 0.02553

Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation 1, with distance included as measured by the ordering
of basins with respect to the mine basin. Columns (1)–(4) hold results from models for the overall EVI as
proxy measure for vegetative health within basins, columns (5)–(9) for the cropland-specific EVI as proxy
measure for agricultural productivity. Models in columns (1) and (4) are the baseline specification for the
overall maximum EVI and the cropland-specific maximum EVI, respectively, with mine fixed effects. Models
in columns (2) and (5) use fixed effects at Pfaffstetter level 8 basins, models in columns (3) and (6) fixed
effects at Pfaffstetter level 6 basins. Models in columns (4) and (8) report results for the yearly mean of the
overall EVI and the cropland-specific EVI instead of the maximum, respectively. Model in column (9)
reports result for the cropland-specific EVI based on the time-varying cropland mask retrieved from
Defourny et al., 2024. All specifications include the full set of controls. Standard errors are clustered at the
mine basin system level.
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C2.3. Automatic Bandwith Selection

Table C9: Distance specification using automatic bandwith selection

Max EVI Max C EVI

No Controls
Conventional -0.0050*** -0.0069*** -0.0112*** -0.0112***

(0.0015) (0.0019) (0.0020) (0.0025)
Bias-Corrected -0.0056*** -0.0073*** -0.0118*** -0.0116***

(0.0015) (0.0019) (0.0020) (0.0025)
Observations 37880 55072 32813 52964
Bandwidth (conv) 20.3 34.9 20.7 41.7
Bandwidth (bias) 46.4 67.9 47.4 82.6

With full Controls
Conventional -0.0045*** -0.0055*** -0.0100*** -0.0115***

(0.0015) (0.0019) (0.0020) (0.0026)
Bias-Corrected -0.0049*** -0.0059*** -0.0105*** -0.0118***

(0.0015) (0.0019) (0.0020) (0.0026)
Observations 38200 53384 32629 49968
Bandwidth (conv) 20.6 33.3 20.5 38.4
Bandwidth (bias) 43.4 63.3 45.4 73.7
Settings
Kernel Triangular Triangular Triangular Triangular
BW.Criterion mserd mserd mserd mserd
Polynomial Linear Quadratic Linear Quadratic
Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1, with distance
as measured in kilometer along the river network used as the running
variable, using practices suggested in Cattaneo et al., 2019 for automatic
bandwidth selection using a triangular Kernel and the mean squared
error distance as selection criterion, and bias correction. Models in the
upper panel include no covariates, models in the lower panel include
the full set of controls. Models in columns (1) and (2) report results
using the overall EVI as outcome, models in columns (3) and (4) for
the cropland-specific EVI. Models (1) and (3) fit a linear polynomial of
the distance measure at each side of the cutoff, models in columns (2)
and (4) a quadratic polynomial. All specifications include mine and year
fixed effects. Standard errors are clustered at the mine basin system
level.
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Table C10: Order specification automatic bandwidth selection

Max EVI Max C EVI

No Controls
I(order>0) -0.0048 -0.0048 -0.0090*** -0.0090**

(0.0013) (0.0019) (0.0018) (0.0030)
Observations 45613 45613 38537 38537
Bandwidth 2 2 2 2

With full Controls
I(order>0) -0.0048** -0.0048 -0.0090*** -0.0090***

(0.0012) (0.0018) (0.0017) (0.0029)
Observations 45580 45580 38504 38504
Bandwidth 2 2 2 2
Settings
Kernel Triangular Triangular Triangular Triangular
BW.Criterion MSE MSE MSE MSE
Cluster SEs No Mine basin No Mine basin
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1, with distance
as measured by the ordering of basins with respect to the mine basin
as the running variable, using practices suggested in Kolesár and
Rothe, 2018 for automatic bandwidth selection using a triangular
Kernel and the mean squared error distance as selection criterion.
Models in the upper panel include no covariates, models in the lower
panel include the full set of controls. Models in columns (1) and (2)
report results using the overall EVI as outcome, models in columns
(3) and (4) for the cropland-specific EVI. Models (1) and (3) do
no cluster standard errors, models in columns (2) and (4) cluster
standard errors are at the mine basin system level. All specifications
include mine and year fixed effects.

xiv



Mines–Rivers–Yields

C2.4. Placebo Outcomes

TABLE C11: Estimation results using covariates as placebo outcomes

Dependent Variables: Elevation Slope Max. Temp Precipitation Accessibility in 2015 Population in 2015
Model: (1) (2) (3) (4) (5) (6)

Variables
Downstream -6.852 -0.0538 -0.0137 0.6025 -5.427 2,125.7

(8.509) (0.0912) (0.0567) (3.934) (5.531) (1,589.8)
Distance × Downstream -5.008∗∗∗ -0.0060 0.0135∗∗∗ -0.1942 0.0839 -182.9∗∗∗

(0.4814) (0.0044) (0.0036) (0.2860) (0.3278) (55.80)
Distance2 × Downstream 0.0043 −8.25 × 10−6 2.12 × 10−6 0.0003 0.0004 1.081∗∗∗

(0.0039) (4.01 × 10−5) (3.36 × 10−5) (0.0020) (0.0028) (0.3463)
Distance 2.326∗∗∗ 0.0025 -0.0067∗∗ 0.0879 0.7557∗∗∗ -54.72

(0.4215) (0.0039) (0.0032) (0.2129) (0.2587) (45.17)
Distance2 0.0005 1.12 × 10−6 −5.34 × 10−6 -0.0005 -0.0013 0.3439

(0.0033) (3.49 × 10−5) (3.1 × 10−5) (0.0015) (0.0021) (0.2724)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes
Mine Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 114,616 114,616 114,616 114,616 114,576 114,536
R2 0.95627 0.70192 0.95579 0.96187 0.88768 0.59121
Within R2 0.41042 0.01108 0.07605 0.00070 0.04659 0.00851

Clustered (Mine) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation 1, with distance included as measured by the ordering
of basins with respect to the mine basin using the additionally used covariates as placebo outcomes for the
full sample. All specifications control for the remaining covariates except the one used as placebo outcome as
well as mine and year fixed effects. Standard errors are clustered at the mine basin system level.
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