
Granular knowledge spillovers: Evidence from software
developers∗

Aaron Lohmann1

1Univeristy Bielefeld & IfW Kiel

2025-02-27

Abstract

What drives the technology choices of knowledge workers? Recent models of endoge-
nous growth emphasize the role of interactions between agents in shaping aggregate
productivity. This paper provides new evidence using detailed microdata on open-
source software developers contributing to the programming language Rust. Leverag-
ing granular data on the adoption of 613 distinct technologies, I find that developers
are influenced by the technologies used by their peers. However, the strongest predic-
tor of adoption is a developer’s own past experience with a technology, highlighting
a significant path dependence in technological choices. Knowledge spillovers are par-
ticularly strong among younger and less experienced developers, suggesting that peer
effects play a crucial role in the early stages of skill formation.

Keywords: Knowledge diffusion, software, open source software, productivity
JEL: O33, O12, L17

∗Comments, questions, and feedback are welcome and can be directed to: aaron.lohmann@uni-
bielefeld.de.

1

aaron.lohmann@uni-bielefeld.de
aaron.lohmann@uni-bielefeld.de

1 Introduction
Economic agents frequently make technology choices, particularly in knowledge-intensive
industries, where such decisions often rest with individuals. The recent endogenous growth
literature, following Lucas (2009), highlights the importance of peer interactions in shaping
productivity, though the precise nature of productivity remains somewhat ambiguous. One
interpretation, supported by Sandvik et al. (2020), defines productivity as knowing the most
effective way to perform specific tasks.

This paper examines detailed micro-data on software developers, their peer networks, and
their small-scale technology choices. The findings reveal that peer influence significantly
enhances technology adoption, with this effect being strongest among less experienced de-
velopers. Additionally, developers exhibit considerable stickiness in their technology choices,
suggesting that once a technology is adopted, they are unlikely to switch.

I study technology choices of software developers. More specifically Open Source Software
(OSS) developers working on the programming language Rust. OSS powers most modern,
digital applications from database management, to websites and the latest machine learning
models. A key feature of many OSS systems is that developers do not reinvent the wheel
every time but rather rely on code written by others. This code is usually stored in so-called
packages and can be used free of charge. The natural economic inepretation is that of a
technology choice. In contrast to other contexts, this technology choice is observed at an
individual level.

This project relies on several data sets to study the technology choices and peer effects
of developers. First, I use data shared by Schueller et al. (2022) which allows to track
contributions of individual developers, tracks the technology choices of projects and allows
me study which developers are connected to each other. Second, I incorprate additional data
from cartes, the package manager of Rust, to categorize software packages. Third, libs.rs
allows me to give quality measures to projects. Finally, from GHtorrent and GHarchive I
get additional information on developers.

To summarise my data, I provides some general information. The time frame is from 2014
to 2022. Throughout the paper, I measure everything in quarters. In total, there are 46, 265
developers who contribute to Rust packages. Though, only 16, 335 own at least one of
those packages. In total, we have 91, 437 projects which are stored in 51, 657 repositories.
This means that some repositories have multiple pckages. Still, the ownership within the
pacakge is independent of repository ownership allowing us to identify all key variables. Of
the 91, 437 packages I can identify owners for 85, 200 of the projects. of the total amount
pakcages, 29, 072 are used as an input at least once in the sample. The average project
imports 3.58 others projects – usese these as technologies. This number is steadily rising.
The projects are organized in 71 different categories.

Empirically, I assume that developers choose technologies according to a thresholf rule. As
long as the marginal utility gain, conditional on knowledge, outweighs the costs, technology
is adopted. Knowledge of a technoloyg is increased through two main channels. For one own
experience with this specific technology, second peers experience with this technology. To

2

estimate the effects, I employ a linear probabiliyt model. Both channels are quantitatively
meaningful. Though, the developers’ own past technological decisions are generally more
important. This suggests that knowledge workers are very sticky in their technological
choices. Finally, heterogeneity analysis reveals that

To address the endogeneity concern, I use an IV strategey based on the Firends of Friends idea
in Bramoullé, Djebbari, and Fortin (2009). I recoonstruct the peer exposure variable used
in the baseline regression based on peers‘ of peers who are not peers of the focal developer.
The 2SLS results confirm the insight that peer effects are an important predictor.

Related Literature

This paper contributes to two main strands of the literature.

First, endogenous growth and evolution of productivity. Lucas (2009) has argued for an
important role of interactions between individuals who exchange ideas. A range of theoertical
and empirical contribution have build on this intuition. R. E. Lucas and Moll (2014) study
the allocation of time on meeting individuals and producing, Perla and Tonetti (2014) show
the importance of firms across the etnrire distribution of productivity for aggregate growth.
More closely related are the contributions by Jarosch, Oberfield, and Rossi-Hansberg (2021)
and Herkenhoff et al. (2024) who both estimate learning functions based on the productivity
of coworkers. Similiarly, Akcigit et al. (2018) show that among patent innovators, learning
from individuals others can have an positive effect. What is common to the above mentioned
papers, is that the sources of productivity are ambigous. Jarosch, Oberfield, and Rossi-
Hansberg (2021) and Herkenhoff et al. (2024) base their productivity estimates on the
marginal wage levels. Akcigit et al. (2018) base productivity on received citations. Though,
Sandvik et al. (2020) show in an experiment that is is concrete ways of doing things which
have the strongest impact on productivity growth. My contribution to this literature, is to
provide more micro evidence on the knowledge evolution of high skilled individuals.

Second, Open Source Software. The economics of OSS has received some attention in the
early 2000s. More recently, research on OSS has shifted to an empirical field. Wachs et
al. (2022) show that development of software is geograhically concentrated. A similiar
result can be found in Goldbeck (2023). More recently the attention has also shifted to the
technical side of OSS. Hoffmann, Nagle, and Zhou (2024) provide estimates for the value
of OSS. In another paper Lohmann et al. (2025) we show the global production of OSS.
The contribution this paper makes is to highlight the determinants of software dependency
choices.

The remainder of this paper is structured as follows. In Section 2 I introduce OSS, Rust
and GitHub. Thereafter, in Section 3 I discuss the used data sources with which I give first
empirical evidence in Section 4. After this, the empirical appraoch is introduced in Section 5
with the results presented in ?@sec-results. Finally, Section 7 concludes.

3

2 Open Source Software, Rust and GitHub
Open Source Software (OSS) is a fundamental component of the modern digital infras-
tructure, supporting a wide range of technologies across different domains. It is the back-
bone of operating systems (e.g., Linux, FreeBSD), database management (e.g., PostgreSQL,
MySQL), web development (e.g., Apache, Nginx, Node.js), cloud computing (e.g., Kuber-
netes, Docker), and machine learning (e.g., PyTorch, TensorFlow, Scikit-learn). OSS is
widely used in both consumer and enterprise applications, playing a key role in web browsers
(e.g., Firefox, Chromium) and cybersecurity tools (e.g., OpenSSL, Wireshark). Still, the fea-
tures of its production have only received limited attention from the economic discipline.
This is dispite OSS development is observable at a detailed level and usually conducted by
high skilled individuals.

Reports from Synopsys and the Linux Foundation highlight the critical role OSS plays in
software development.12 emphasizing its widespread adoption across industries. A recent
study by Hoffmann, Nagle, and Zhou (2024) further demonstrates the high estimates of the
demand-side and supply-side value of OSS.

In another study (Lohmann et al. (2025)), we show that OSS production processes follows a
modular structure, driven by the package paradigm. OSS is built using small, reusable pack-
ages (or libraries), allowing developers to share their code and integrate existing solutions.
This eliminates the need to develop everything from scratch and allows relying on the code
of others. A natural way of thinking about these decisions is as technology choices.

Take this paper as an example. The underlying code is largely written in the programming
language R. To make visually appealing plots, I use the package ggplot2, to estimate regres-
sions with high dimensional fixed effects I use fixest and to deal with big sparse matrices I
use the package Matrix. All of these packages are contributed by software developers and
shared freely with the world. For an economist this set of packages (and many more) are the
technology to craft research results. In software development the set of imported libraries
and packages is often fittingly described as the “technology stack”. Without efficient matrix
multiplication or estimation techniques already implemented this project might otherwise be
an incredibly tedious or even hopeless endeavor.

Nowadays, most packages are shared via so-called package managers, with each programming
language having its own respective system. For Python, it is PyPI ; for JavaScript, npm; and
for Rust, crates. The number of available packages on these platforms has grown significantly.
Take crates, which is the focus of this study, as an example. It is the youngest of the three,
yet by the end of September 2022, it hosted a total of 93, 000 packages. As of writing this
paper in February 2025, that number has increased to 171, 867. All of these packages could
in principle be reused by developers as their technology.

This amount of packages comes with a choice for software developers. Making this choice
given this size of the choice set is not easy. This paper will aim to study these decisions and
highlight certain determinants.

1Synopsys OSSRA Report (2024)
2Linux Foundation Census II Report

4

https://www.blackduck.com/blog/open-source-trends-ossra-report.html
https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on

The package paradigm described above is not specific to any programming language. With
some deviations most use a similiar logic. The programming language under scrutinity in
this paper Rust is no exception. Rust is a low-level general purpose programming language.
It is a relatively young language (first stable version in 2014) with the first development
having started in 2008. In recent years Rust has gained quite a bit of popularity. Based on
surveys of software developers with high participation rate, the Stack Overflow surveys, it is
often voted the most loved language. The Biden administration has endorsed the use of Rust.
For most, the main motif behind this are some new features in Rust wich enhance safety
and speed. This popularity has also given rise to the strong growth of software packages
from a handful to the above mentioned 170, 000 today. More firms in manafucturing or
online datbase management start to adopt Rust. Maybe on of the most valid signals that
Rust is becoming a key technology comes from the fact that the Linux Kernel started to
rewrite some parts in Rust. This suggests that Rust is in fact a relevant new technology, and
studying its ecosystem is potentially insightful.

Given the high skill requirements of Rust, the developers which I study here should be
compared to R&D workers in firms. Furthermore, given that many software development
processes are organised similiarly, I expect the results in this study to extend to other lan-
guages.

The final part to the background to this paper is GitHub, the largets online collaboration
platform for software development. The key function of GitHub is to provide a convenient
platform to work on software. Potentially in teams. While GitHub has competitiors with
GitLab, Bitbucket, GitHub is arguably in a monopoly position of development platform. In
my dataset, 94% packages are developed on GitHub. Developers on GitHub work in so
called repositories. Think of a repository as a place to store the code which constitues a
package. Developers locally write lines of code which they then commit to the repository
which is hosted online. Commits are usually the smallest unit of code change which we can
measure. Subject to approval developers can commit to all repositories but in most cases
the core team of the repository is small.

Taken together, I observe and study developers (workers), who potentially interact and work
on packages (projects) in which they choose technologies. Nothing in that sounds specific to
development of software, the key part of software is simply the possibility to observe next to
everything.

3 Data
This project relies on multiple data sources. In Section 4, I provide descriptive evidence to
give an overview of the data and discuss key processing choices.

Rust Collaboration.

The primary dataset comes from Schueller et al. (2022), offering a comprehensive account of
the Rust ecosystem from 2014 to September 2022. It includes information on approximately
90,000 packages and 45,000 developers. Given Rust’s relative youth, this dataset effectively

5

captures the entire history of the Rust ecosystem. Developer activity is recorded at the
repository level, with most repositories hosted on GitHub. The dataset also contains GitHub
login names, allowing for integration with external data sources.

Crates Data.

Crates.io, Rust’s official package manager, publishes detailed information about uploaded
packages. Two key pieces of information are particularly relevant:

1. Package ownership, which allows tracking of developer contributions.

2. Categorization of packages, where Rust defines a set of pre-determined categories. In
addition, developers can assign up to five custom keywords to their crates, providing
further classification.

Libs.rs.

Libs.rs is a service designed to categorize and facilitate the discovery of Rust crates. I
leverage its underlying database to complement category assignments where Crates.io does
not provide them. Additionally, Libs.rs offers a quality ranking for packages—a composite
measure that can be used to assess the relative quality of different crates within categories.

Additional GitHub Data.

While the dataset from Schueller et al. (2022) primarily focuses on Rust development, I also
incorporate broader GitHub activity for robustness checks. To achieve this, I use GHtorrent
and GHarchive, which provide information on:

1. The other programming languages developers engage with beyond Rust.

2. The teams and repositories they contribute to outside the Rust ecosystem.

These additional data sources help assess how Rust developers interact with other technolo-
gies and whether their behavior within Rust reflects broader programming trends.

4 Descriptive evidence
This section provides some first descriptive evidence on the used data.

In Figure 1, I plot the quarterly adoption rates of four different software packages, illustrating
how developers choose and transition between technologies over time. The left panel focuses
on logging libraries, while the right panel tracks time-handling packages.

In the left panel, we observe a clear shift in adoption patterns between two competing logging
packages. Initially, one package dominates, but over time, a newer alternative gains traction
and eventually surpasses the incumbent. This pattern suggests that developers gradually
migrate toward a newer solution, likely due to improvements in features, performance, or
ease of integration.

6

A similar trend emerges in the right panel, where two packages designed for handling time
in software development exhibit differentiated adoption trajectories. The package chrono,
which offers a more comprehensive feature set, steadily overtakes time, reflecting a broader
shift toward more advanced tools as the ecosystem matures. Unlike the logging libraries,
where the transition appears more abrupt, the time-handling packages exhibit a smoother
and slower diffusion process, suggesting that developers might be more reluctant to switch
due to compatibility constraints or the complexity of date-time handling.

Figure 1: Diffusion processes in Rust.
Notes: This figure plots adoption rates for four different Rust packages grouped by the categories. Adoption
is defined on a quartely basis and computed as the share of packages which use this respective packages over
all dependency decisions made in this quarter. Left panel shows logging packages, log and tracing. Right
panel shows packages which are for handling time.

The next table, provides some general information about the data. The time frame is from
2014 to 2022. Throughout the paper, I measure time in quarters. In total, there 46, 265
developers who contribute to Rust packages. Though, only 16, 335 own at least one of those
packages. In total, we have 91, 437 projects which are stored in 51, 657 repositories. This
means that some repositories have multiple pckages. Still, the ownership within the pacakge
is independent of repository ownership allowing us to identify all key variables. Of the 91, 437
packages I can identify owners for 85, 200 of the projects. Of the total amount pakcages,
29, 072 are used as an input at least once in the sample. The projects are organized in 71
different categories. More details on the categories can found in the appendix.

7

Table 1: Basics

Variable Value
Time Frame 2014 - 2022, September (Quarterly)
Developers 46, 265, project owners: 16, 335
Projects 91, 437 packages in 51, 657 repositories.
Inputs 29, 072 packages used as input at least once.
Categories 71

How many inputs/technologies does each package import? In Figure 2 I plot the average
amount of inputs used in each of the observed projects. Clearly, the amount of used inputs
is growing over time. This suggests that as time progresses, over time more complex project
can be build because better technology is available.

Figure 2: Amount of imported technologies.
Notes: This figure plots the average amount of used inputs per project over time. The amount of inputs
used in each project is increasing over time. Time is measured in quarters.

The left panel of Figure 3 plots the distribution of co-workers of developers in the sample.
Co-working relationships are defined by being active in the same repository in a given quarter.
Most developers have at least one co-worker throughout, many have more. This suggests
that the development of Rust can be a good case study for learning from co-workers.

In the right panel of Figure 3 I plot the distribution of downstream dependencies for all
packages hosted on crates during the sample period. The red dotted lines indicate the
dependencies which I consider later in the regressions. I include packages which have at

8

least 50 unique input choices and are below 2000. The lower bound is motivated by wanting
to choose packages which really act as technology as opposed to being something extremely
niche. The upper bound is chosen to exclude the all-star packages which will be well-known
no matter what. In total I herewith include 37% of choices, the lower bound excludes 23%
of decisions and the upper bound excludes another 39%. The average project in the sample
imports 3.58 other packages with substantial heterogeneity.

Figure 3: Distribution of co-workers and input adoption
Notes: The left panel plots the distribution of co-workers for developers. The right panel, plots the amount
of technological adoption per project. The red-dotted lines show which technologies will contribute to the
regressions.

9

5 Empirical approach
This section describes the empirical approach used to study software dependency choices of
developers.

Baseline
Developers 𝑖 work on a project 𝑝 in time period 𝑡 (measured in quarters). To produce the
projects 𝑝, they can rely on available inputs 𝒥𝑡 with single inputs denoted by 𝑗. Using
these inputs requires knowledge over them. For each available input, developers 𝑖 evaluate
a threshold condiation:

𝑢𝑗𝜏𝑖𝑗𝑡 − 𝑐 > 0

where 𝑢𝑗 is a generic term capturing the internal quality of input 𝑗. The term 𝑡𝑎𝑢𝑖𝑗 captures
the knoweldge of developer 𝑖 over input 𝑗. Naturally, knowledge over an input can be scaled
between 0 and 1, therefore I assume that 𝜏𝑖𝑗 = exp(−𝑥). The 𝑥 generally captures everything
that makes a developer more or less knowledgable of a certain input. More specifically, I will
consider the past experiences with the input and the experiences of the peers. From this, it
is easy to write a basic linear probability model as:

𝐷𝑖𝑗𝑝𝑡 = 𝛽1E𝑖𝑗,𝑡−𝑞 + 𝛽2S𝑖𝑗,𝑡−𝑞 + 𝛿𝑐(𝑝)𝑐(𝑗) + 𝛾𝑖𝑡 + 𝜆𝑗𝑡 + 𝜀𝑖𝑗𝑝𝑡

where 𝐷𝑖𝑗𝑝𝑡 captures whether developer 𝑖 uses input 𝑗 in the project 𝑝 which was started
in time period 𝑡. The main explaintory variables are about the developers’ use of this input
in the past (E𝑖𝑗,𝑡−𝑞) and the use the developers’ peers (S𝑖𝑗,𝑡−𝑞). The expectation is that
both increase the knowledge of the specific input and thereby make it more probable. The
𝑞 indicates the lags considered. Fixed effects capture different aspects. There is substantial
heterogeneity of developers, including their overall experience levels which will be captured
by 𝛾𝑖𝑡. Not every input can be used in every project, for that reason I include a fixed effect
based on the categories of project and inputs. Finally, the internal quality of the input is
usually unobserved. Thus, I include a input-time specific fixed effect 𝜆𝑗𝑡. Estimation will be
based on a linear probability model with OLS.

Most input decisions for projects are done within the first 6 months. In Figure A1 I plot the
distribution of the difference between the package creation and the input decision. About
90% of decisions are done within the first 6 month. This means that having a proper
panel structure with multiple observations per project over time is not necessary. Also
this facilitates the interpretation as this clearly defines which period to consider for the prior
experience of developers. Accordingly, I will consider only decisions within the first 6 months.

Moreover, a question might relate to the team size of the projects. In figure I show that
in the vast majority of projects, it is the owner who contributes over 90% of the commits.
This is also true for projects with multiple developers. Therefore, it seems like a plausible
assumption that the owner will be responsible for the technology choices.

10

The two variables, Experience E𝑖𝑗,𝑡−𝑞 and Spillovers S𝑖𝑗,𝑡−𝑞, both depend on a lag parameter 𝑞
, which captures past usage history. 1. Experience 𝐸𝑖𝑗,𝑡−𝑞 measures how frequently developer
𝑖 has used input 𝑗 in the past 𝑞 periods relative to the current period 𝑡 :

𝐸𝑖𝑗,𝑡−𝑞 = ∑𝑡−1
𝑠=𝑡−𝑞 𝐷𝑖𝑗𝑝𝑠

where 𝐷𝑖𝑗𝑝𝑠 is an indicator variable that equals 1 if developer 𝑖 used input 𝑗 in project 𝑝 at
time s , and 0 otherwise. 2. Spillovers (𝑆𝑖𝑗,𝑡−𝑞) capture the indirect knowledge gained from
peers’ past usage of input 𝑗 . To define peer relationships, we introduce an adjacency matrix
𝑀𝑖𝑖′,𝑡−𝑞:

𝑀𝑖𝑖′,𝑡−𝑞 = {1, if developers 𝑖 and 𝑖′ collaborated in the same repository in period 𝑡 − 𝑞,
0, otherwise.

Given this peer adjacency matrix, the spillover variable is constructed as:

𝑆𝑖𝑗,𝑡−𝑞 = ∑
𝑖′≠𝑖

𝑀𝑖𝑖′,𝑡−𝑞 ⋅ 𝐸𝑖′𝑗,𝑡−𝑞

where 𝐸𝑖′𝑗,𝑡−𝑞 represents the past experience of developer 𝑖′ with input 𝑗 . This means that
developer 𝑖 is more likely to adopt input 𝑗 if their past collaborators have previously used it.

Instrumental Variable (Friends of Friends)
There is a valid endogeneity concern if developer 𝑖 selects into collaboration with 𝑖′ be-
cause this allows learning about a certain input 𝑗 . To address this concern, I construct
an instrument centered around the identification in Bramoullé, Djebbari, and Fortin (2009)
by using friends of friends. Using these friends of friends, I reconstruct the spillover vari-
able and use this as an instrument for the baseline spillover variable. The construction is
straightforward. Recall that I define the matching matrix 𝑀𝑖𝑖′ , where 𝑀𝑖𝑖′ = 1 if devel-
opers 𝑖 and 𝑖′ are directly connected and 0 otherwise. From this, I construct the friends
of friends matrix 𝐹𝑖𝑖′ . To do so, I first compute 𝐺 = 𝑀2 , where 𝐺𝑖𝑖′ = ∑𝑘 𝑀𝑖𝑘𝑀𝑘𝑖′

counts the number of two-step connections between 𝑖 and 𝑖′ . Next, I convert 𝐺 into a
binary variable such that 𝐹𝑖𝑖′ = 𝟙{𝐺𝑖𝑖′ > 0} , ensuring that it captures only the presence
of indirect connections. From this matrix, I subtract both the diagonal elements and the
original matching matrix to remove direct friendships and self-connections, ensuring that
𝐹𝑖𝑖′ = 𝟙{𝐺𝑖𝑖′ > 0} − 𝑀𝑖𝑖′ − 𝟙{𝑖 = 𝑖′} .

With this 𝐹 matrix, I recompute the spillover variable from before as ̃𝑆𝑖𝑗,𝑡−𝑞 and use this as
an instrument for the original spillover variable.

6 Results
The next table shows the key results. First of all, we find that that past decisions and
peer decisions are positive predictiors of software input adoption. Quantitatively, own past

11

decisions are more important though. Still, taking into an account the low unconditional
probability of observing an input decision (mean at 0.002) both estimates are quantitatively
important. All observations are based on a conservative set of fixed effects as described in
the previous section. The results are robost to different specifications to deal with zeros in
the explanatory variables.

Table 2: OLS Regression Results

Dependent Variable: depends
Model: (1) (2) (3)

Variables
Log(Peers Value + 1) 0.0135∗∗∗

(0.0011)
Log(Self Value + 1) 0.1003∗∗∗

(0.0084)
Arcsinh(Peers Value) 0.0105∗∗∗

(0.0008)
Arcsinh(Self Value) 0.0784∗∗∗

(0.0065)
value_peers 0.0082∗∗∗

(0.0007)
value_self 0.0596∗∗∗

(0.0039)
Arcsinh(Peers) 0.9202

(36.24)
Log(Cumulative Repos) -0.1527

(184.7)

Fixed-effects
user_id-time Yes Yes Yes
category_pacakge-category_input Yes Yes Yes
input-time Yes Yes Yes

Fit statistics
Observations 28,168,422 28,168,422 26,832,801
R2 0.03512 0.03516 0.03215
Within R2 0.01156 0.01160 0.01150

Clustered (user_id-time) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: OLS regressions with binary dependent variable indicating whether a project uses an input.
Observations are project-developer-input specific. Key explaintory variables are the value of peers which is
an aggregate measure of peer decicions with respect to this input in the past 4 quarters and the own past
decisions with respect to this input.

12

Next, I presenet the results based on the instrumental variables. Here, the peer value is
instrumented based on the procedure described before. The general insights do not change
also with this empirical strategy. Though, quantitatively, I find somewhat smaller estimates
suggesting that some part is subject to selection.

Table 3: 2SLS Regression Results

Dependent Variable: depends
Model: (1) (2) (3)

Variables
Log(Peers Value + 1) 0.0070∗∗

(0.0034)
Log(Self Value + 1) 0.1012∗∗∗

(0.0083)
Arcsinh(Peers Value) 0.0057∗∗ 0.0055∗∗

(0.0027) (0.0024)
Arcsinh(Self Value) 0.0791∗∗∗ 0.0735∗∗∗

(0.0064) (0.0050)
Arcsinh(Peers) 0.9175

(36.21)
Log(Cumulative Repos) -0.1575

(184.7)

Fixed-effects
user_id-time Yes Yes Yes
category_pacakge-category_input Yes Yes Yes
input-time Yes Yes Yes

Fit statistics
Observations 28,168,422 28,168,422 26,832,801
R2 0.03497 0.03502 0.03121
Within R2 0.01140 0.01146 0.01055

Clustered (user_id-time) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: OLS regressions with binary dependent variable indicating whether a project uses an input.
Observations are project-developer-input specific. Key explaintory variables are the value of peers which is
an aggregate measure of peer decicions with respect to this input in the past 4 quarters and the own past
decisions with respect to this input.

Finally, I show heterogeneity analysis which reveals that more experienced developers are
not as affected by the value of peers. This is consistent with the view that a technological
stack is chosen early in the career and is then carried forward. To meassure experience, I
use the amount of past repositories the developer has contributed to and the age measured
in quarters based on the first commit ever observed. The interaction with either of these
experience measures is negative. The general peer effect however still remains positive.

13

Table 4: Heterogeneity with experience

Dependent Variable: depends
Model: (1) (2)

Variables
Arcsinh(Peers Value) 0.0126∗∗∗ 0.0153∗∗∗

(0.0016) (0.0016)
Arcsinh(Self Value) 0.0784∗∗∗ 0.0787∗∗∗

(0.0065) (0.0066)
Arcsinh(Peers Value) × dev_age -0.0003∗∗

(0.0001)
Arcsinh(Peers Value) × cum_repos -0.0003∗∗∗

(7.1 × 10−5)

Fixed-effects
user_id-time Yes Yes
category_pacakge-category_input Yes Yes
input-time Yes Yes

Fit statistics
Observations 28,168,422 28,168,422
R2 0.03518 0.03523
Within R2 0.01162 0.01167

Clustered (user_id-time) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: 2SLS regressions with binary dependent variable indicating whether a project uses an input.
Observations are project-developer-input specific. Key explaintory variables are the value of peers which is
an aggregate measure of peer decicions with respect to this input in the past 4 quarters and the own past
decisions with respect to this input. The value of peers is instrumented based on on the peers of peers
decisions.

14

7 Concluding remarks
This paper uses detailed micro data on software developers, their co-working relationships
and detailted technology choices. Developers adopt technologies their peers. This effect is
stronger for less experienced and younger developers. Though, the results also show strong
persistence of developers in their choices.

15

8 References
Akcigit, Ufuk, Santiago Caicedo, Ernest Miguelez, Stefanie Stantcheva, and Valerio Sterzi.

2018. “Dancing with the Stars: Innovation Through Interactions.” Cambridge, MA.
https://doi.org/10.3386/w24466.

Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin. 2009. “Identification of Peer Effects
Through Social Networks.” Journal of Econometrics 150 (1): 41–55.

Goldbeck, Moritz. 2023. “Colocation and the Death of Distance in Software Developer
Networks.”

Herkenhoff, Kyle, Jeremy Lise, Guido Menzio, and Gordon M. Phillips. 2024. “Produc-
tion and Learning in Teams.” Econometrica 92 (2): 467–504. https://doi.org/10.3982/
ECTA16748.

Hoffmann, Manuel, Frank Nagle, and Yanuo Zhou. 2024. “The Value of Open Source
Software,” January. https://doi.org/10.2139/ssrn.4693148.

Jarosch, Gregor, Ezra Oberfield, and Esteban Rossi-Hansberg. 2021. “Learning From
Coworkers.” Econometrica 89 (2): 647–76. https://doi.org/10.3982/ECTA16915.

Lohmann, Aaron, Gábor Békés, Julian Hinz, and Miklós Koren. 2025. “Code Without
Borders? Global Value Chains in Open Source Software Development.” University of
Bielefeld, Kiel Institute for the World Economy, Central European University, HUN-REN
KRTK, CEPR, CESifo.

Lucas. 2009. “Ideas and Growth.” Economica 76 (301): 1–19. https://doi.org/10.1111/j.
1468-0335.2008.00748.x.

Lucas, Robert E., and Benjamin Moll. 2014. “Knowledge Growth and the Allocation of
Time.” Journal of Political Economy 122 (1): 1–51. https://doi.org/10.1086/674363.

Perla, Jesse, and Christopher Tonetti. 2014. “Equilibrium Imitation and Growth.” Journal
of Political Economy 122 (1): 52–76. https://doi.org/10.1086/674362.

Sandvik, Jason J, Richard E Saouma, Nathan T Seegert, and Christopher T Stanton. 2020.
“Workplace Knowledge Flows*.” The Quarterly Journal of Economics 135 (3): 1635–80.
https://doi.org/10.1093/qje/qjaa013.

Schueller, William, Johannes Wachs, Vito D. P. Servedio, Stefan Thurner, and Vittorio
Loreto. 2022. “Evolving Collaboration, Dependencies, and Use in the Rust Open Source
Software Ecosystem.” Scientific Data 9 (1): 703. https://doi.org/10.1038/s41597-022-
01819-z.

Wachs, Johannes, Mariusz Nitecki, William Schueller, and Axel Polleres. 2022. “The Geog-
raphy of Open Source Software: Evidence from GitHub.” Technological Forecasting and
Social Change 176 (March):121478. https://doi.org/10.1016/j.techfore.2022.121478.

16

https://doi.org/10.3386/w24466
https://doi.org/10.3982/ECTA16748
https://doi.org/10.3982/ECTA16748
https://doi.org/10.2139/ssrn.4693148
https://doi.org/10.3982/ECTA16915
https://doi.org/10.1111/j.1468-0335.2008.00748.x
https://doi.org/10.1111/j.1468-0335.2008.00748.x
https://doi.org/10.1086/674363
https://doi.org/10.1086/674362
https://doi.org/10.1093/qje/qjaa013
https://doi.org/10.1038/s41597-022-01819-z
https://doi.org/10.1038/s41597-022-01819-z
https://doi.org/10.1016/j.techfore.2022.121478

A Additional figures

Figure A1: Month difference package creation and input decision.
Notes: This figure illustrate the distribution of. The figure combines information
on 417, 190 unique dependency decisions. That is the first time a package imports
another package. The vast majority of decisions are done within the month of
creating the package. Source: Schueller et al. (2022), own caluclations.

17

Figure A2: Test.
Notes: This figure plots the distribution of commits done by the owner, as registered
on crates, over the total amount of commits in the repository where the package is
stored. The share is heavily skewed to the right suggesting that in most packages
the owner is the developer exerting the most effort. Source: Schueller et al. (2022),
own caluclations.

18

B Additional tables

Category Category.cont.
text-processing development-tools::ffi
concurrency memory-management
network-programming web-programming
algorithms config
cryptography compression
asynchronous internationalization
accessibility science::math
rendering::graphics-api simulation
parser-implementations games
development-tools::procedural-macro-helpers hardware-support
game-development text-editors
compilers database
embedded os
os::windows-apis finance
science::bio science
command-line-utilities date-and-time
encoding os::unix-apis
development-tools::build-utils development-tools::testing
data-structures template-engine
multimedia::audio no-std
web-programming::http-client filesystem
wasm development-tools::debugging
development-tools multimedia
web-programming::http-server os::macos-apis
multimedia::images web-programming::websocket
rendering::data-formats rendering
multimedia::video value-formatting
caching visualization
parsing emulators
science::ml database-implementations
authentication rendering::engine
gui email
science::robotics development-tools::cargo-plugins
command-line-interface science::geo
cryptography::cryptocurrencies development-tools::profiling
rust-patterns

Notes: Table displays the available 71 categories. Source: Libs.rs.

19

Table A1: Heterogeneity with experience

Dependent Variable: depends
Model: (1) (2)
Variables
Arcsinh(Peers Value) 0.0126∗∗∗ 0.0153∗∗∗

(0.0016) (0.0016)
Arcsinh(Self Value) 0.0784∗∗∗ 0.0787∗∗∗

(0.0065) (0.0066)
Arcsinh(Peers Value) × dev_age -0.0003∗∗

(0.0001)
Arcsinh(Peers Value) × cum_repos -0.0003∗∗∗

(7.1 × 10−5)
Fixed-effects
user_id-time Yes Yes
category_pacakge-category_input Yes Yes
input-time Yes Yes
Fit statistics
Observations 28,168,422 28,168,422
R2 0.03518 0.03523
Within R2 0.01162 0.01167

Clustered (user_id-time) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: OLS regressions with binary dependent variable indicating whether a project uses an input.
Observations are project-developer-input specific. Key explaintory variables are the value of peers which is
an aggregate measure of peer decicions with respect to this input in the past 4 quarters and the own past
decisions with respect to this input. Heterogeneity with resepct to the effects of peers and the experience
levels. Experience measured in the age of the develoepr and the amount of past projects contributed to.

20

	Introduction
	Open Source Software, Rust and GitHub
	Data
	Descriptive evidence
	Empirical approach
	Baseline
	Instrumental Variable (Friends of Friends)

	Results
	Concluding remarks
	References
	Additional figures
	Additional tables

