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Abstract

This paper employs a general equilibrium model of firm dynamics to investigate how
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inputs (i.e., capital and labor) along with financial development raises their prices, re-
ducing unconstrained firms’ profits and slowing their accumulation of internal funds for
technology adoption. A numerical exploration of the model indicates that as financial
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development on green transition.
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1 Introduction

Industrial emissions, as byproducts of modern production, are viewed by policymakers and

economists as one of the primary obstacles to economic development (Ito and Zhang, 2020).

A potential solution to this issue is the green transition, which aims to decouple pollution

from modern production through large-scale corporate investment in clean technologies

(De Haas et al., 2024). However, the adoption of these clean technologies is progressing

slowly, particularly in developing countries. For instance, as estimated by IEA (2024), the

annual investments in clean technologies in developing countries currently amount to ap-

proximately $270 billion, which is significantly below the necessary $1.6 trillion per year to

be on track for a 1.5-degree pathway by the 2030s. Is the slow pace of green transition in

these regions attributed to underdeveloped financial markets? The adverse effects of such

underdeveloped financial markets on economic growth are well-documented, highlighting

that firms often face limited access to external credit. This lack of access can hinder their

ability to quickly reach optimal production scales, thereby reducing per capita income and

total factor productivity 1. However, the impact of financial frictions on the environment

remains relatively under-explored. To date, there is a lack of rigorous evidence regarding

how these financial frictions influence corporate decisions related to the adoption of clean

technologies.

This paper studies the effect of financial development on green transition. Financial

development reduces frictions in financial markets, enabling more firms to access external

credit. Unlike the growing body of literature on green finance, this paper concentrates on

the relationship between regular finance and environmental sustainability. Green finance

emphasizes the role of financial markets in directing investments towards green projects

and away from brown industries and firms (for a review, see Giglio et al., 2021). The capital

allocation associated with green finance embodies the inherent trade-off between economic

growth and environmental protection, as economic growth necessitates the investment of

capital into the most productive projects, whereas green investments often yield lower re-

turns in comparison to their brown counterparts. This paper, however, explores the hypoth-

esis that diminishing financial frictions may simultaneously promote economic growth and

mitigate industrial pollution through its effects on the green transition.

1For more on the effects of financial development on productivity and economic growth, see Hsieh and
Klenow (2009); Banerjee and Moll (2010); Buera et al. (2011); Greenwood et al. (2013); Moll (2014); Uras (2014);
David and Venkateswaran (2019).
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This study investigates two distinct channels through which financial development in-

fluences the green transition. In partial equilibrium, financial development facilitates the

transition by enabling firms to borrow more against their collateral capital. Clean tech-

nologies typically entail significant up-front capital expenditures but benefit from lower

operational costs (Pigato et al., 2020) 2. Young firms tend to struggle to finance these high

startup costs without access to external credit, despite the fact that clean technologies are

generally more profitable than their traditional counterparts due to their lower operating

costs. In general equilibrium, however, financial development tends to impede green tran-

sition by crowding out investment in clean technology adoption of large firms that are not

financially constrained. Higher demand for production inputs, including capital and labor,

raises their prices. For unconstrained firms, production scales are sensitive to variations in

input prices. As input prices rise, their production scales tend to decrease, which in turn

lowers their profits. As a result, diminished retained profits hinder these firms’ ability to

adopt clean technologies.

I find that financial development is not always beneficial to green transition. In fact, de-

veloping highly-developed financial markets could slow down the green transition as the

adverse general equilibrium effects outweigh the direct benefits in partial equilibrium. Fur-

thermore, the adverse impacts of financial development in general equilibrium are weak-

ened when the upfront costs of clean technology are lower. The policy implication of my

findings suggests a nuanced approach for different economies. Developing countries could

benefit from financial development both in terms of productivity and environmental qual-

ity. Conversely, developed countries may need to concentrate more on reducing the upfront

cost of clean technology, either through innovation or government intervention, as further

financial liberalization does not support green goals.

I consider a general equilibrium model with heterogeneous firms to explore how finan-

cial development affects the adoption of clean technology and clean production. The model

is based on the framework developed by Midrigan and Xu (2014). I make three assump-

tions. First, each period, a constant fraction of new entrepreneurs enter the market, all

starting with dirty technology due to its lower startup costs 3. As these entrepreneurs accu-

mulate sufficient internal net worth, they can choose to adopt clean technology by covering

2Utility-scale solar PV and wind projects in the power sector are a good example: compared to thermal
power plants with continued expenditure on burning fossil fuels, they require significant initial spending but
are then very cheap to run (IEA, 2024).

3The assumption is to avoid the self-financing channel that undoes the role of external financial and also
limits the importance of financial development. With this assumption, there are always small entrepreneurs
who own far less net worth compared to the start-up cost of clean technology.
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the upfront cost. This assumption is essential for simulating the green transition. Second,

the primary difference between dirty and clean technologies is that dirty technology gener-

ates pollution, which is subject to government taxation. This implies that producing with

clean technology is cheaper than producing with dirty technology, so that entrepreneurs are

always willing to use the former once they pay the upfront cost. Third, financial frictions

take the form of simple collateral constraints on the amount of debt and financial devel-

opment is modeled to be the relaxation of these constraints. This leads to the observation

that, in general equilibrium, not all entrepreneurs adopt clean technology, as their capacity

to finance the necessary upfront investment is restricted.

In this model, financial frictions prevent young and small entrepreneurs from adopting

clean technology due to their limited net worth, which is primarily accumulated by retained

profits. These entrepreneurs are typically significantly financially constrained. This aligns

with my key empirical finding: firms without financial constraints are more likely to adopt

clean technology. By exploring the Toxic Release Inventory (TRI) establishment-level micro-

data from the U.S. Environmental Protection Agency (EPA) from 1991 to 2022, I discovered

that financially constrained firms tend to invest less in both clean technology and end-of-

pipe solutions. As a result, these firms exhibit higher emission intensity. I categorize firms’

abatement activities into two main types: technology adoption and end-of-pipe solutions.

To mitigate pollution, firms can either adopt clean technology, which reduces emissions

during the production process, or implement end-of-pipe solutions, which address emis-

sions after production through methods such as filters and scrubbers (Frondel et al., 2007;

Hammar and Löfgren, 2010; Turken et al., 2020).

As described above, my model highlights two opposing forces of financial development

on the green transition: the positive direct effect in partial equilibrium and the negative gen-

eral equilibrium effect. The direct effect arises from easier access to external financing, which

enables more entrepreneurs to adopt clean technology. However, in the general equilibrium,

the reallocation of production inputs resulting from rising input prices reduces profits for

unconstrained entrepreneurs. This decline in profits weakens their ability to adopt clean

technology, ultimately hindering the green transition.

A numerical exploration indicates that the direct effect diminishes as financial markets

become more advanced, while the general equilibrium effect strengthens. Consequently, the

relationship between financial development and the share of clean production follows an

inverse U-shape. This pattern is observed in both open and closed economies. The di-
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rect effect diminishes due to the presence of a minimal net worth requirement for all en-

trepreneurs. In my model, entrepreneurs have access to only one financial instrument: a

one-period risk-free bond. This uncontingent debt mandates a minimum net worth that

ensures entrepreneurs can repay their debt at any time. While financial development al-

lows entrepreneurs to borrow more, which reduces the internal funds required to cover the

upfront costs of clean technology, this reduction is constrained by the minimal net worth

requirement, limiting the direct effect. However, the general equilibrium effect becomes in-

creasingly pronounced as more dirty entrepreneurs become relatively unconstrained. In

an open economy, the increase in wages accompanying financial development reduces the

production scale for more entrepreneurs. In a closed economy, the general equilibrium ef-

fect is further amplified as both wages and interest rates rise during financial development.

As a result, the profits of unconstrained firms decrease even more, making it increasingly

difficult for them to adopt clean technology.

Moreover, my results also suggest that lowering the startup costs for clean technologies

can alleviate the detrimental effects of financial development on the green transition. By

lowering these costs, clean technologies become more accessible, thereby ensuring that only

the youngest and poorest entrepreneurs use dirty technologies. It is observed that all dirty

entrepreneurs are significantly constrained, making their production scales and profits only

marginally influenced by the increases in wages and interest rates. This highly weakens the

adverse general equilibrium effects.

This paper contributes to three strands of literature. First, it extends the empirical re-

search on the relationship between corporate financial constraints and environmental per-

formance. While existing studies focus on firm heterogeneity and compare corporate emis-

sions between constrained and unconstrained firms (Antunes et al., 2008; Xu and Kim, 2022;

Bartram et al., 2022; Martinsson et al., 2024; De Haas et al., 2024), I account for the general

equilibrium effects of relaxing credit constraints and find that, although relaxing constraints

tends to reduce pollution at the firm level, wage and interest rate increases during financial

development can offset these gains. This is especially true in well-developed financial mar-

kets.

Second, this paper builds on macroeconomic literature that examines the impact of finan-

cial development on technology adoption, but extends these studies to the environmental

context. Cole et al. (2016) provide a review of this strand of literature and summarize com-

mon properties of technology differences in these studies: better technologies have higher
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expected levels of productivity and involve a higher fixed cost in terms of adoption. This

paper novelly extends the application of this setting into the environmental context where

clean technology has higher expected profits (due to its lower variable costs) but also incurs

larger upfront costs.

Third, this paper is complementary to the effects of financial markets on the environ-

ment. For example, De Haas and Popov (2022) show that an expanding stock market can

facilitate the transition to low-carbon growth by enhancing the energy efficiency of carbon-

intensive sectors. Specifically, Aghion et al. (2024) claims that financial frictions hinder

innovation-driven green transitions due to the path dependence inherent in innovation.

Andersen (2016) argue that reducing credit constraints encourages firms to adopt more pro-

ductive technologies, which subsequently lowers their emission intensity, as more produc-

tive firms invest more in end-of-pipe emission abatement. My contribution to this body of

work is to propose another mechanism through which financial markets can influence the

green transition: by influencing the adoption of clean technology.

The remainder of this paper is organized as follows. Section 2 provides preliminary

empirical evidence on the relationship between firms’ financial constraints and their envi-

ronmental performances. Section 3 outlines the theoretical model. Section 4 presents the

main quantitative results, and Section 5 concludes.

2 Data and Motivating Evidence

In this section, I analyze the relationship between corporate environmental performance

and financial constraints using facility-level microdata from the Toxic Release Inventory

(TRI) provided by the EPA. TRI data includes information on two types of corporate abate-

ment activities: end-of-pipe solutions and the adoption of clean technologies. The difference

between these two is that clean technologies impact the production process itself, while end-

of-pipe solutions do not; instead, their purpose is to emissions after they have generated

(Hammar and Löfgren, 2010; Turken et al., 2020). Firm-specific net emissions, which refer to

the amount of pollutants released into the environment, are calculated as follows: they are

equal to gross emissions – the total pollutants generated during production– minus minus

the pollutants abated through end-of-pipe solutions:

net emissions = gross emissions − end-of-pipe abatement
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In this way, a firm’s net emissions depend on its investments in both clean technologies and

end-of-pipe abatement activities. The former help to reduce the firm’s gross emissions, while

the latter increases the total amount of pollutants that are abated.

In this section, I will examine the effects of firms’ financial constraints on their invest-

ments in clean technologies and end-of-pipe solutions. These investments play a crucial

role in determining the firms’ net emissions. I will begin by describing the data sources,

followed by the three key empirical findings regarding firms’ net emission intensity, end-

of-pipe abatement efforts, and clean technology adoption. These insights will inform the

modeling assumptions in the subsequent sections.

2.1 Data Source

To study firm-level emissions from U.S. public manufacturing companies, I use plant-level

pollutant data from the TRI database, maintained by the EPA. The TRI database contains an-

nual records of chemical production, processing, and release, dating back to 1986, for plants

that report under EPA regulations. Facilities in TRI-reportable industries with more than

ten employees and that exceed certain chemical usage thresholds are required to submit

reports. In 2022, 88% of TRI-reporting plants were in the manufacturing sector. Although

the data are self-reported, the EPA monitors quality through error correction and detailed

reviews, with non-compliance potentially leading to legal penalties (Xu and Kim, 2022).

Studies such as Akey and Appel (2021) confirm that TRI data are of high quality, with little

systemic over- or under-reporting.

TRI data provides detailed information on companies’ emission activities, including

source reduction, recycling, energy recovery, treatment, and releases. For source reduc-

tion activities, facilities are required to report whether they engage in such activities and,

if they do, to specify the categories of activities at the chemical level. For other activities,

facilities must report the specific amounts of chemicals involved. This information allows

us to analyze corporate net emissions, end-of-pipe abatement, and gross emissions which depend

on firms’ activities of clean technology adoption.

Source reduction aims to eliminate the generation of hazardous substances by modi-

fying production processes. The EPA classifies source reduction into five categories: pro-

cess and equipment modifications, operating practices, inventory management, and mate-

rial/product modifications. Of these categories, process and equipment modifications—such

as enhancements to industrial processes and equipment—are the most common and serve
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as indicators of clean technology adoption in this study .

There are three types of end-of-pipe solutions: recycling (converting discarded materials

into raw materials), energy recovery (generating energy from waste combustion), and treat-

ment (modifying hazardous materials). I define corporate end-of-pipe abatement as the total

quantity of pollutants abated through recycling, energy recovery, and treatment. Data on

firms’ net emissions and gross emissions come from two variables in the TRI database: Total

Toxic Releases (the sum of toxic chemicals released into the environment) and Production

Waste (the sum of toxic chemicals generated during production). Plant-level data are ag-

gregated at the parent company level to generate firm-level observations.

The TRI database includes 794 chemicals that meet criteria such as (1) being carcinogenic

or causing chronic health effects, (2) posing acute health risks, or (3) causing significant

environmental harm. I use the total quantities of all TRI chemicals as the measure of plants’

emissions and abatement, treating all chemicals equally to ensure comprehensive coverage

(Xu and Kim, 2022).

To supplement TRI data, I extract firm-level financial information, including sales and

total assets, from the Compustat database. I measure financial constraints using the book

value of total assets. Gertler and Gilchrist (1994) argue that small firms are more likely to

face financing constraints because they are typically younger and less well known, and thus

more vulnerable to capital market imperfections arising from information asymmetries and

collateral constraints.

I link TRI data to Compustat using parent company names, following the approach of

Hsu et al. (2023). My sample includes plants that either report Production Waste or indicate

source reduction activities 4. Additionally, firms must have positive total assets and sales, and

my focus is on manufacturing firms with SIC codes between 2000 and 3999. The final sample

spans from 1991 to 2022, ensuring broad coverage and data quality (Hsu et al., 2023), and

includes an unbalanced panel of 8,504 plants from 1,338 U.S. public firms, totaling 99,559

plant-year observations. Figure A.1 shows the number of firms and facilities in the sample

by year.

4As described in the "TRI Basic Data Files Documentation", zeros in the data represent not only numeric
number "zero" but also missing data. According to the TRI plant reporting criteria, plants included in the TRI
data must be classified into the following two groups: (1) they have positive Production Waste" and thus they
manufacture of process TRI-listed chemicals. (2) they have zero Production Waste" but they report to conduct a
source reduction activity which reduce their generation of waste to zero. Therefore, I exclude firms that cannot
be classified into these two groups from the sample since they have missing emission data.
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2.2 Summary Statistics

Table 1 presents the summary statistics for key variables, including the mean, median, stan-

dard deviation (SD), 25th percentile (P25), 75th percentile (P75), and the number of valid

observations for each variable. The firm’s net emission intensity (or gross emission intensity) in

year t is calculated by scaling each firm’s net (or gross) emissions of its sales (in millions of

dollars). The end-of-pipe abatement ratio measures the proportion of each firm’s end-of-pipe

abatement among its gross emissions. Another key outcome variable is the plant-specific

adoption frequency, which captures the number of chemicals for which plant i adopts clean

technology in year t.

Table 1: Summary Statistics

N Mean Median SD P25 P75

Net Emission Intensity 16,895 4,948 31 307,070 2 208

End-of-Pipe Abatement Ratio 16,888 0.69 0.88 0.36 0.45 0.98

Gross Emission Intensity 16,895 30669 306 1,900,229 41 1,740

Assets 16,895 6,554 900 23,888 242 3,613

Adoption Frequency (Plant) 99,559 0.16 0.00 0.92 0 0

Figure 1: Average Net Emission Intensity and End-of-Pipe Abatement Ratio, 1991-2022
Note: This figure displays the time series of average net emission intensity and end-of-pipe abate-
ment ratio for all companies in the sample, spanning the period from 1991 to 2022. To mitigate the
influence of outliers, I exclude the top 1% of firms with the highest net emission intensity during this
period from the net emission intensity time series.
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Figure 1 illustrates the time series of average net emission intensity and end-of-pipe

abatement ratio for firms in the sample by year. The data shows a downward trend in net

emission intensity over time, accompanied by a steady increase in the end-of-pipe abate-

ment ratio.

2.3 Motivating Evidence

Evidence 1: On average, firms with tighter financial constraints have higher net emission intensity

— As a measure of financial constraints, firms’ total assets are negatively correlated with

net emission intensity. Figure 2 shows a clear negative relationship in both 1991 and 2021.

To get more empirical regularities relating net emission intensity to corporate financial

constraint, I run a linear regression as follows:

log (1 + Emission Intensityc,t) = α + β log(Assets)c,t + FEs + ϵc,t (1)

where c denotes a firm and t denotes a year. I impose year-fixed effects to account for

unobserved yearly variation, which is the same for all companies. Additionally, I consider

industry-year and state-year fixed effects to control for time-varying industry and region-

specific differences. It is worth noting that I do not include firm-level fixed effects for two

reasons. First, the main variation of firm-specific log(assets) stems from differences between

firms. The adjusted R-square from the regression that decomposes within-firm and cross-

firm differences in log(assets) is approximately 95%, indicating that 95% of the variation in

log(assets) is due to cross-firm differences. The regression is as follows:

log(Assets)c,t = ϕc + ϕt + uct (2)

Second, s noted on the EPA website, firm-specific emission intensity is not directly compa-

rable across years because the EPA has updated the list of chemicals subject to TRI reporting

multiple times throughout the sample period 5.

5The details of these changes are available at https://www.epa.gov/system/files/documents/2024-
01/tri-chemical-list-changes-12-27-2023_0.pdf.
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(a) 1991 (b) 2021

Figure 2: Firm’s Release Intensity vs. Total Assets, 1991 and 2021

Notes:The figure illustrates the relationship between firm-level net emission intensity (measured in
pounds per million dollars) and total assets for the years 1991 (panel a) and 2021 (panel b). To
analyze this relationship, I divide the sample into twenty deciles based on firms’ total asset values
and calculate the corresponding mean net emission intensity and total assets for each decile. A linear
line relates the firm-specific net emission intensities to total assets at the same firm. The line is fit to
the entire sample, not simply the decile means. Both y and x are presented on a logarithmic scale to
enhance comparability across a wide range of values. To avoid zero values, I add one to firm-specific
net emission intensities and then take a logarithmic scale.

Columns (1) through (3) of Table 2 present the regression results across different speci-

fications. The coefficient β is consistently and significantly negative, indicating that larger

firms, which face fewer financial constraints, tend to have lower net emission intensity.

For example, in column (3), a one percent increase in total assets is associated with a 0.28

percent reduction in net emission intensity. Standard errors are clustered at the firm level

(Table 2) and at the industry-year level (Table A.1) to address firm-specific autocorrelation

and within-industry variation, respectively.
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Table 2: Financial Constraints, Emission Intensity and Abatement Ratio

log (1 + net emission intensity) end-of-pipe abatement ratio
(1) (2) (3) (4) (5) (6)

log(assets) -0.2661*** -0.2753*** -0.2819*** 0.0190*** 0.0222*** 0.0202***

(0.0365) (0.0354) (0.0369) (0.0049) (0.0047) (0.0048)

Observations 16,895 16,895 16,895 16,888 16,888 16,888

Adj. R-square 0.0777 0.1998 0.3083 0.0591 0.1748 0.2944

Year FE Yes Yes

Industry-Year FE Yes Yes Yes Yes

State-Year FE Yes Yes

Notes: This table investigates the correlation between corporate financial constraints and both net
emission intensity and end-of-pipe abatement ratio. Columns (1) to (3) present results using the
log(1+net emission intensity) as the dependent variable, while columns (4) to (6) use the end-of-
pipe abatement ratio as the dependent variable. The key independent variable across all models is
log(assets). Industry classifications are based on the 2-digit SIC code, and each firm is weighted by
the inverse probability of its inclusion in the dataset. Standard errors are clustered at the firm level
and are reported in parentheses. ∗p < 0.1; ∗ ∗ p < 0.05;∗ ∗ ∗p < 0.01.

Evidence 2: Financially constrained firms tend to exert lower end-of-pipe abatement efforts. —

One explanation for the higher net emission intensity of financially constrained firms is

their reduced investment in end-of-pipe abatement activities. Abatement is often a costly

endeavor, particularly for financially constrained firms due to their higher financing costs.

Figure 3 illustrates the positive relationship between firm total assets and the end-of-pipe

abatement ratio. This positive correlation holds for both 1991 and 2021.

I also conducted a regression similar to equation (1), substituting the dependent variable

with the end-of-pipe abatement ratio. The results, presented in columns (4) through (6) of

Table 2, show that firms with larger asset bases consistently engage in more end-of-pipe

abatement efforts. Specifically, Column (6) indicates that a 1% increase in total assets is

associated with a 0.02% increase in the end-of-pipe abatement ratio.
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(a) 1991 (b) 2021

Figure 3: Firm’s Abatement Ratio vs. Total Assets, 1991 and 2021

Notes: The figure depicts the relationship between the firm-level end-of-pipe abatement ratio (ex-
pressed as a percentage) and total assets for the years 1991 (panel a) and 2021 (panel b).The sample
is divided into twenty deciles based on total asset values, with the mean end-of-pipe abatement ra-
tio and total assets calculated for each decile. A linear trend line relates the firm-specific end-of-pipe
abatement ratio to firms’ total assets in the same firm. The line is fit to the entire sample, not simply
the decile means. The x-axis is displayed on a logarithmic scale to account for the wide range of asset
values.

Evidence 3: Facilities owned by more financially constrained parent companies are less likely to

adopt clean technology. Another reason for lower net emission intensity among financially

unconstrained firms is their higher adoption rate of clean technology, which reduces their

gross emissions.

I begin by using facility-level panel data to explore the relationship between clean tech-

nology adoption and the financial constraints of parent companies. The regression model is

as follows:

log(1+ Adoption Frequency)i,c,t = α+ β log(Assets)c,t + γFirm Controlsc,t + FEs+ εi,c,t (3)

where i denotes the facility, and c denotes the parent company. I control for production

volume (log(sales)) at the firm level and weight each facility by the inverse of the number

of facilities owned by its parent company to avoid the over-representation of larger firms.

Unlike other regressions in this section that aggregate facility emissions into firm emis-

sions, This approach helps avoid confounding effects related to size since larger firms may

possess more facilities and consequently have higher overall technology adoption rates. In-

stead, I regress the frequency of clean technology adoption at the facility level on the total

assets of the parent company, with both variables in logarithmic form. The underlying as-

sumption is that facilities belonging to financially constrained firms are also likely to face
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experience credit shortages.

Furthermore, I measure facilities’ propensities and abilities to adopt clean technologies

using the frequency of adoption rather than using a binary variable that simply indicates

whether a facility adopted technology. This approach is necessary because, in the sample,

clean technology adoption is relatively uncommon, with only about 6.7% of facilities adopt-

ing new technologies each year on average. Figure A.3 reports the yearly clean technology

adoption rate from 1991 to 2022. To enhance the variation in the dependent variable, I count

the number of technology adoption events for each facility per year instead of relying on a

simple binary indicator 6.

The results in Table 3, columns (1) to (3), indicate that a relaxation of financial con-

straints significantly increases the frequency of clean technology adoption. Specifically, a

1% increase in total assets is associated with a 0.02% increase in the frequency of adoption.

Across all specifications, the estimated coefficients are positive and significant7.

Next, to provide more evidence on differences in clean technology adoption between

financially constrained and unconstrained firms, I examine the relationship between firm-

specific gross emission intensity, which can be reduced through clean technology adoption,

and financial constraints. The scatter plot in Figure 4 shows a clear negative correlation

between total assets and gross emission intensity. Moreover, regression results in Table 3,

column (6), suggest that a 1% increase in total assets corresponds to a 0.38% reduction in

gross emission intensity. The point estimates in columns (4) and (5) are of similar magni-

tude.

6The chemical-level data reported by TRI provides me the opportunity to count the number of chemicals
for which each facility adopts clean technology in a year. I use the number as the dependent variable.

7Standard errors are clustered at the facility level. Results with standard errors clustered at the industry-
year level are reported in Table A.2.
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Table 3: Clean Technology Adoption

log(1+adoption frequency) log (1 + gross emission intensity)
(1) (2) (3) (4) (5) (6)

log(asset) 0.0234*** 0.0158** 0.0161*** -0.3784*** -0.3740*** -0.3874***

(0.0062) (0.0062) (0.0062) (0.0381) (0.0379) (0.0402)

Observations 99,559 99,559 99,559 16,895 16,895 16,895

Asjusted R2 0.0205 0.0463 0.0835 0.0782 0.2059 0.3147

Year FE Yes Yes

Industry-Year FE Yes Yes Yes Yes

State-Year FE Yes Yes

Control Yes Yes Yes

Notes: Columns (1) through (3) report the facility-level regression of adoption frequency on total as-
sets, with each facility weighted by the inverse number of facilities owned by its parent company
within the sample. Standard errors are clustered at the facility level and are reported in parentheses
for each regression. Columns (4) through (6) display the regression of firm-level gross emission inten-
sity on total assets, where each firm is weighted by the inverse probability of being included in the
dataset. Industry classifications are based on 2-digit SIC codes. Standard errors are clustered at the
firm level and are reported in parentheses. ∗p < 0.1; ∗ ∗ p < 0.05;∗ ∗ ∗p < 0.01.

(a) 1991 (b) 2021

Figure 4: Firm’s Waste Production Intensity vs. Total Assets, 1991 and 2021

Notes: The figure plots the relationship between firm-level waste production intensity (pounds per
million dollars) and total assets in 1991 (panel (a)) and 2021 (panel (b)). I divide the sample into
twenty deciles based on total assets and then compute the mean values of emission intensity and
total assets. The line is fit to the entire sample, not simply the decile means. Both y and x are
presented on a logarithmic scale to enhance comparability across a wide range of values. To avoid
zero values, I use one to firm-specific waste intensities and then take a logarithmic scale.

14



2.4 Summary: Features for Model Assumptions

The empirical studies above show that smaller firms facing greater financial constraints tend

to have higher pollution intensity (Evidence 1). This result can be attributed to their lower

abatement efforts (Evidence 2) and inabilities to adopt clean technology (Evidence 3). The

latter two empirical patterns inform the assumptions of our model, which I summarize in

following two points.

First, to capture the lower adoption rates among smaller firms, I assume that adopting

clean technology requires firms to accumulate internal funds. This assumption highlights

the critical role of financial development. Firms initially operate in the "dirty" sector, where

the low upfront cost of dirty technology makes it more attractive. However, they have the

opportunity to transition to clean technology—characterized by zero emissions—by paying

an upfront cost. In a well-developed financial market, all firms will adopt clean technology,

as it is more profitable by avoiding pollution tax expenditures and firms are able to finance

the startup cost fully through the external funds. In contrast, in less-developed financial

markets, firm net worth plays a pivotal role as collateral, limiting borrowing capacity. As

a result, small firms are unable to adopt clean technology due to insufficient net worth to

support them externally financing the startup cost. As a consequence, firms with little net

worth upon entry must accumulate it over time to adopt clean technology, becoming larger

and less financially constrained in the process.

Second, to account for the negative relationship between financial constraints and end-

of-pipe abatement efforts, I assume that firms operate as monopolistic competitors. In my

model, firms have decreasing return-to-scale revenue functions, which ensure that they can

earn positive profits in each period. Generally, the decreasing returns to scale could be ratio-

nalized by assuming either a decreasing return-to-scale Cobb-Douglas production function

or the monopolistic nature of the competitive environment (Cooley and Quadrini, 2001).

However, the former cannot support my empirical finding. I illustrate it by using the fol-

lowing decreasing return-to-scale Cobb-Douglas production function as an example:

yit = kα
itl

β
itz

γ
it, α + β + γ < 1

where i and t refer to firm and period, respectively. y, k, l, z are output, capital, labor and

net emission, respectively. With this production function, all firms have equal net emission
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intensities, defined as net emission per unit of output :

zit

yit
= γ (4)

For firms that have not adopted clean technology, their emission intensities are fully de-

termined by their end-of-pipe abatement. Consequently, equal emission intensities imply

equal end-of-pipe abatement efforts, which contradicts my empirical finding that financially

constrained firms have lower end-of-pipe abatement effort. In contrast, when I assume

monopolistic competition along with a constant return-to-scale Cobb-Douglas production

function, financially unconstrained firms demonstrate higher end-of-pipe abatement efforts.

This occurs because less constrained firms charge lower prices, thereby reducing the ratio

of pollution taxes to output prices, making abatement relatively more attractive.

3 Model

Motivated by the empirical evidence in section 2, I present a dynamic model of firm entry,

production, pollution abatement, and technology adoption, building upon the framework

developed by Midrigan and Xu (2014). I will first outline the model setup and specify the

decision rules governing the agents’ behavior. Then, I define the balanced growth path and

compare the model’s outcomes with those of the macroeconomic neoclassical model from

an aggregate perspective.

In the model, as in Antunes et al. (2008), I assume that only a single financial instrument

is available: a one-period risk-free bond.

3.1 Model Setup

The economy is populated by a unit measure of workers and a measure Nt of entrepreneurs.

All agents are assumed to have utility

U =
∞

∑
t=0

βt ln(Ct) (5)

where Ct is the agent’s consumption at period t. Each entrepreneur owns a firm, which

produces and sells a variety of intermediate good in a monopolistic competitive market. The

unique final food is produced using all intermediate good with an elasticity of substitution
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σ ∈ (1, ∞):

Yt =

(
1
N

) 1
σ−1
[∫ N

0
Y

σ−1
σ

it di
] σ

σ−1

(6)

Entrepreneurs — In each period, entrepreneurs allocate their income between consump-

tion and savings. They hire workers in a competitive labor market and invest their accumu-

lated savings into their firms to finance production capital. Thus, their income is derived

from their firm’s retained profits and asset gains. Entrepreneurs can also borrow using a

one-period risk-free bond.

There are two production technologies: dirty technology, which emits pollution and is

subject to a constant tax rate, τ, and clean technology, which produces no emissions. In

each period, entrepreneurs who use dirty technology can also allocate resources to end-of-

pipe abatement to reduce the pollution tax. Clean technology is more profitable because

it reduces the resources spent on abatement activities and the pollution tax paid by the

firm. Financial frictions in the model take the form of borrowing constraints: the amount

an entrepreneur can borrow is limited to a fraction of their total capital plus the upfront

investment in clean technology adoption.

Following Shapiro and Walker (2018), I model the dirty technology and emission func-

tion as

Yd
it = (1 − ξit)F(Lit, Kit) (7)

Zit = (1 − ξit)
1
ρ F(Lit, Kit) (8)

where ξit is the share of production inputs (i.e. labor and capital) that are allocated to abate-

ment activities and ρ ∈ (0, 1) governs the efficiency of abatement efforts. F(Lit, Kit) is po-

tential output: the output that would be produced if there were no pollution abatement.

If ξit = 0, there is no abatement, and each unit of output generates one unit of pollution.

Increase in the abatement effort (ξit) will divert input in production to abatement activities:

both output and emissions are negatively related to it. By eliminating (1 − ξit), the pro-

duction function of the dirty technology could be written as a Cobb-Douglas function of

pollution and potential output:

Yd
it = Zρ

t F(Lit, Kit)
1−ρ (9)

The clean technology does not emit pollution and its production function accordingly is

equivalent to the potential output in equations (7) and (8). I assume it to be a Cobb-Douglas
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function:

Yc
it = F(Lit, Kit) = sitKα

itL
1−α
it (10)

where sit represents individual productivity, following a stationary first-order Markov pro-

cess with the state S =
{

si, s2, · · · , sNp

}
and transitional probability denoted by fij ≡

Prob(st+1 = sj|st = si). The stationary distribution of the Markov process is denoted as

G(s).

In this way, the production function of the dirty technology is

Yd
it = Zρ

t

[
sitKα

itL
1−α
it

]1−ρ
(11)

At the end of each period, υNt new entrepreneurs enter the economy with certain net

worth, a yt, where a is a constant and yt represents the average output per firm, defined by

yt ≡
Yt

N
=

[
1
N

∫ N

0
y

σ−1
σ

it di
] σ

σ−1

Upon entry, these entrepreneurs use dirty technology. Over time, they have the option to

adopt clean technology at the end of period t, incurring an upfront investment in the sunk

cost proportional to the average output, denoted by κyt+1. Following Cooley and Quadrini

(2001), I assume that exit is exogenous: each entrepreneur faces a probability υ of becoming

unproductive and exiting the market each period. Thus, the number of entrepreneurs enter-

ing and exiting the market each period remains balanced, keeping the mass of entrepreneurs

in the economy constant over time. This assumption of exogenous exit facilitates the bal-

anced growth path discussed in the following section.

Worker — A worker supplies γt
Lvit efficiency of labors each period, where vit follows a

stationary first-order Markov process on V = {v1, v2, · · · , vNw} with transition probability

denoted by gij = Prob(vt+1 = vj|vt = vi). Workers allocate labor earning into consumption

and saving each period, and they are not allowed to borrow.

The Time Line

At the beginning of period t, entrepreneurs observe their productivities, sit. Following

Midrigan and Xu (2014), I assume that entrepreneurs decide how much capital to install

at period t after observing the stochastic productivity at the same period. This assumption

rules out the distortions of capital allocation among firms which are caused by idiosyncratic

uncertainties, helping us only focus on distortions caused by financial frictions.

Given the amount of net worth inherited from last period, Ait, and productivity level at
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period t, each entrepreneur chooses the optimal level of capital (Kit) and labor (Lit) allocated

to the production, and efforts (ξit) devoted to the abatement activities, which are indexed by

the pollution level (Zit), to maximize her periodic profits, denoted by Πj(sit, Ait), j ∈ {d, c}.

The profit is different across technologies. For entrepreneurs who use dirty technology,

the profit function is given by

Πd(sit, Ait) = max
Lit,Kit,Zit

pitYd
it − wLit − (r + δ)Kit − τZit (12)

s.t. pit =

(
Yd

it
yt

)− 1
σ

(13)

Kit − Ait ≤ θKit (14)

where {w, r} are equilibrium wage and interest rate, δ is capital depreciation rate. Equation

(13) is the demand of each intermediate good, coming from the CES aggregate function in

equation (6). The borrowing constraint, reflected by equation (14), states that borrowing

(Kit − Ait), the gap between capital that the firm uses in production and its equity, cannot

exceed a proportion of its capital. θ ∈ [0, 1] governs the strength of financial frictions in

the economy. θ = 1 represents a perfect financial market without frictions. Equation (14)

implicitly restricts the net worth of each entrepreneur (Ait) to be positive otherwise her own

firm goes bankrupt.

Although entrepreneurs using clean technology aim for similar objectives and emit zero

pollution (Zit = 0) , they face a less restrictive borrowing constraint:

Kit − Ait ≤ θ(Kit + κyt) (15)

This constraint reflects the assumption that the investment in clean technology adoption is

considered a physical asset that can be used as collateral. Consequently, entrepreneurs can

finance part of the upfront investment in clean technology through borrowing, which allows

their net worth to be negative. In the absence of financial frictions, firms can fully finance

both their capital and the upfront investment in clean technology through borrowing.

After production, υNt entrepreneurs exit the market after repaying their debts. The un-

intended exit requires that entrepreneurs must be able to repay its debt under the worst-

possible scenario:

Kit − Ait ≤ Kit + Π(sit, Ait) + rAit (16)

The inequality states that debts, at any time, must be smaller than all resources that the

entrepreneur gains, i.e. the sum of periodic income and capital stock. The lower bound of
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entrepreneurs’ net worth is therefore implicitly determined by

Amin = −Π(s1, Amin)

1 + r
(17)

The remaining entrepreneurs allocate retained profits (Π(sit, Ait)) and saving return

(rAit) into consumption (Cit) and savings (Ait+1 − Ait) to maximize her utility character-

ized by equation (5). Those who use dirty technology also decides whether to adopt clean

technology in the next period. The budget constraint at period t of entrepreneurs who do

not adopt clean technology at period t + 1 (whatever technologies that they currently use)

is given by

Cit + Ait+1 = Πj(sit, Ait) + (1 + r)Ait, j ∈ {c, d} (18)

On the other hand, entrepreneurs who use dirty technology at period t but decide to adopt

clean technology at period t + 1 have budget constraint as

Cit + Ait+1 + κyt+1 = Πd(sit, Ait) + (1 + r)Ait (19)

At the end of each period, υNt new entrepreneurs enter the economy, ensuring that the

total number of incumbent entrepreneurs remains constant.

3.2 Recursive Formulation and Decision Rule

Since labor efficiency increases at a constant rate, γL, the economy grows at the same rate as

well. To define a stationary equilibrium, I normalize all variables related to entrepreneurs

at period t by the average output, yt due to the property that profits and the optimal choice

of capital are homogeneous of degree one in (Ait, yt). And similarly all variables at period t

related to workers are normalized by γt
L. Re-scaled variables are denoted by corresponding

lowercase letters. In equilibrium which will be defined in the following section, wage and

interest rate are constant, hence I suppress dependence of value functions on wages and

interest rates where convenient for notation.

Clean entrepreneurs — The Bellman equation along a balanced growth path of a clean

entrepreneur with net worth a and productivity si is

Vc(a, si) = max
x≥amin

{
ln (πc(a, si) + (1 + r)a − γLx) + β(1 − υ)

Np

∑
j=1

fijVc(x, sj)

}
(20)
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where

πc(a, si) =max
k,l

(
sikαl1−α

) σ−1
σ − wl − (r + δ)k (21)

s.t. k ≤ 1
1 − θ

a +
θ

1 − θ
κ (22)

The RHS of equation (20) specifies the decision faced by a clean entrepreneur. The first

term reflects the current utility and the last term is the expected continuation value. amin

is determined in equation (17). Equation (22) is the collateral constraint, which implicitly

restrict entrepreneurs net worth to be larger than −θκ. Hence, minimal net worth of clean

entrepreneurs is min{amin,−θκ}.

Dirty entrepreneurs — The Bellman equation of a dirty entrepreneur is

Vd(a, si) = max
x

{
ln
(

πd(a, si) + (1 + r)a − γLx
)

+ β(1 − υ)max

[ Np

∑
j=1

fijVd (x, sj
)

,
Np

∑
j=1

fijVc (x − κ, sj
)]} (23)

where

πd(a, si) =max
k,l,z

[
zρ
(

sikαl1−α
)1−ρ

] σ−1
σ

− wl − (r + δ)k − τz (24)

s.t. k ≤ 1
1 − θ

a (25)

The dirty entrepreneurs’ continuation value is the envelope over the NPV of the two op-

tions on whether they adopt clean technology or not, which is determined by future profits.

Firm profits depend on its net worth and productivity. Although clean technology is inher-

ently more profitable for a given level of net worth and productivity, its upfront costs reduce

firms’ net worth, increasing the cost of capital and thereby diminishing the profitability of

clean technology. Consequently, clean technology becomes viable only for entrepreneurs

who have accumulated sufficient net worth to ensure that, even after covering the upfront

costs of adoption, their credit constraints remain manageable. The condition for clean tech-

nology adoption for a certain net worth x is given by

Np

∑
j=1

fijVc (x − κ, sj
)
≥

Np

∑
j=1

fijVd (x, sj
)

, x − κ ≥ min {amin,−θκ} (26)

Finally, solving the profit maximization problem of dirty entrepreneurs in equations (24)

and (25) gives the following equation of emission intensity, defined as pollution per unit of
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production:

e(a, si) =

 ρ
τ

(w
α

)α
(

r+µd(a,si)+δ
1−α

)1−α

si(1 − ρ)


1−ρ

(27)

where µd(a, si) is the multiplier on the collateral constraint (25). It is shown that the emission

intensity is decreasing with net worth of entrepreneurs who are financially constrained. Re-

laxing financial constraint decreases a firm’s pollution intensity because it increases abate-

ment efforts. Less financially constrained firms charge lower prices, implying that the ratio

of pollution taxes to output prices is higher.

Workers — The Bellman equation of a worker is

Vw(a, vi) = max

{
ln (wvi + (1 + r)a − γLx) + β

Nw

∑
j=1

gijVw(x, sj)

}
(28)

3.3 Balanced Growth Path

Let’s denote the stationary population density of dirty (clean) entrepreneurs by nd(a, si)

(nc(a, si)), which is interpreted as the fraction of dirty (clean) entrepreneurs who have net

worth a and productivity si among all entrepreneurs. Two population densities must add

up 1:

Np

∑
i=1

∫
A

dnd(a, si) +
Np

∑
i=1

∫
A

dnc(a, si) = 1 (29)

where A is the compact set of all values that entrepreneurs’ net worth can take.

The population density of dirty entrepreneurs evolves over time according to

nd(a
′
, si) = υI{a′=a}G(si) + (1 − υ)

Np

∑
j=1

∫
A

f jiI{gd(a,sj)=a′ ,ζ(a,sj) ̸=1}dnd(a, sj) (30)

where gd(a, sj) is the saving decisions of dirty entrepreneurs who will not adopt clean tech-

nology, and ζ(a, sj) is an index for whether an entrepreneur choose to adopt clean tech-

nology. The first part of the equation reflects the number of new entrepreneurs while the

second part counts the number of those who will not adopt clean technology in the next

period.
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Similarly, the evolution of clean entrepreneurs’ population density is given by

nc(a
′
, si) = (1 − υ)

Np

∑
j=1

∫
A

f jiI{gds(a,sj)−κ=a′ ,ζ(a,sj)=1}dnd(a, sj)

+ (1 − υ)
Np

∑
j=1

∫
A

f jiI{gc(a,sj)=a′}dnc(a, sj)

(31)

where gds(a, sj) is the amount of net worth hold by an entrepreneur who will adopt clean

technology, and gc(a, sj) is the saving decision of clean entrepreneurs.

A balanced growth path consists of a set of prices (w, r), three policy functions for en-

trepreneurs, gh(a, si), h ∈ {d, ds, c}, and one for workers, gw(a, νi), a switching index ζ(a, si),

two population densities for entrepreneurs, nh
t (a, s), h ∈ {d, c}, and one for workers, nw(a, ν),

as well as labor, capital, pollution and output by entrepreneurs, lh(a, si), kx(a, si), z(a, si),

yx(a, si), h ∈ {d, c}, such that:

(i) Given (w, r, τ), labor demand, capital demand and pollution solve profit maximiza-

tion problems (21) and (24).

(ii) Given (w, r, τ), policy functions solve corresponding Bellman equations (20), (23) and

(28).

(iii) The evolution of population densities for entrepreneurs follow (30) and (31).

(iv) Labor and capital market clear:

Yt ∑
h=d,c

[ Np

∑
i=1

∫
A

lh(a, si)dnh(a, si)

]
= γt

L (32)

Yt ∑
h=d,c

[ Np

∑
i=1

∫
A

kh(a, si)dnh(a, si)

]
= Yt ∑

h=d,c

[ Np

∑
i=1

∫
A

gh(a, si)dnh(a, si)

]
+ γt

L Aw (33)

where γt
L is the total amount of efficiency units of labor and Aw is the integral of saving

decisions across workers, given by

Aw =
Nw

∑
i=1

∫
Aw gw(a, vi)dnw(a, vi)

3.4 Aggregate Reduced Form

Even though the model has complex micro-structure, the economy behaves like a neoclas-

sic growth model with total factor productivity (TFP) losses from misallocation caused by

financial frictions.
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The total amount of output produced by dirty entrepreneurs and clean entrepreneurs is

defined by

Yh
t =

(
1
N

) 1
σ−1
[∫

i∈Ih

(
yh

it

) σ−1
σ di

] σ
σ−1

, h ∈ {d, c}

where Ih is the set of h−type entrepreneurs. Integrating the profit maximization decision

rules across clean and dirty entrepreneurs, respectively, gives the aggregate output of dirty

and clean entrepreneurs as Cobb-Douglas specifications with a lower TFP compared to the

economy without frictions:

Yh
t = Sh

t Zρ(h)
t

(
Khα

t Lh1−α

t

)1−ρ(h)
, h{d, c} (34)

where Kh
t and Lh

t are the total amount of capital and labor used in production by h-type

entrepreneurs. ρ(h) = ρ when h = d and ρ(h) = 0, otherwise. Sh
t is the TFP across h-type

entrepreneurs, of which the explicit expression can be found in the appendix A.2.

In an efficient economy where entrepreneurs do not face collateral constraints, the TFP

is equal to its efficient level, denoted by Sh
:

Sh ≡
[ Np

∑
j=1

∫
A

s(1−ρ(h))(σ−1)
j dnh(a, sj)

] 1
σ−1

(35)

However, financial frictions lead to a misallocation of capital between firms, preventing

financial resources being allocated to those producers who have highest productivity. This

effect lowers TFP and lead to inefficiency:

Sh
t < St

h

In addition to the analogy of widely-used Cobb-Douglas production function in neo-

classic growth model, the economy also has constant shares of labor, capital and pollution

tax revenue while capital income share is eroded by financial frictions. The expression of

inputs’ income shares are also shown in the appendix A.2.

Importantly, the aggregation gives us the following expression of total emissions in equi-

librium:

Zt =
σ − 1

σ

ρ

τ
ϵ(r, w)Yt (36)

where ϵ ≡
(
Yd

t /Yt
) σ−1

σ is the share of output produced by dirty entrepreneurs among to-

tal output. As discussed in the introduction, financial frictions influence total emissions

through its effects on real output and the share of dirty production. With this equation, I am
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able to evaluate whether the effects of financial development on green transition, measured

by ϵ(r, w), is large enough such that pollution is reduced in the following section.

4 Quantitative Results

4.1 Calibration

To study the quantitative effects of financial frictions on clean technology adoption, model

parameters need to be assigned. At this stage, I assign parameter values based on exist-

ing literature. Future work will aim to link the theoretical model in Section 3 to real data.

Parameters are classified into three categories: standard macroeconomic parameters, firm

dynamic parameters, and environmental parameters. Table 4 lists each parameter’s value

and its corresponding literature source.

Assuming a period length of one year, I set the discount factor to β = 0.98. I adopt an

annual discount rate (δ = 0.06) and capital share (α = 1/3) consistent with values from

Greenwood et al. (2013)8. The annual economic growth rate is set at 4 percent, and the

elasticity of substitution between intermediate inputs is set to σ = 3, as typical estimates

in trade and industrial organization literature suggest a range of three to ten (Hsieh and

Klenow, 2009).

For the productivity process, I express firms’ productivity as st = exp(et) and assume

that et evolves according to an AR(1) process with Gaussian disturbances. I use the same

values for the persistence (ρs) and volatility (σs) of et as in Midrigan and Xu (2014). The av-

erage probability of firm exit is about 4.5 percent (Cooley and Quadrini, 2001) and I around

it to 0.05, υ = 0.05.

For environmental parameters, the efficiency of abatement effort is set at ρ = 0.05. The

firms’ emissions function (see equation 7), in conjunction with the production function (see

equation 8), indicates that pollution intensity is a function of abatement investments:

Zit

Yd
it
= (1 − ξit)

1−ρ
ρ (37)

Shapiro and Walker (2018) estimate ρ based on data related to firms’ pollution intensity and

abatement costs, finding values that range from 0.0005 to 0.0557 across industries, with a

mean of 0.011. We select a slightly higher value to focus on a highly polluting industry

where the need for clean technology adoption is particularly strong.

8These values are calibrated to the United States.
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For the remaining two environmental parameters, the values are selected based on heuris-

tic assumptions without direct support from literature, with plans to calibrate them using

data in future work. I set the environmental tax rate at τ = 0.02. The upfront cost of clean

technology, relative to a firm’s average one-period output (y), denoted by κ, is a critical pa-

rameter as it significantly impacts firms’ decisions regarding technology adoption. In the

benchmark scenario, κ is set to one, making the cost equivalent to the average of firms’ one

year’s output. For additional analysis, I also explore a lower value of κ = 0.1 assess its

impact.

Table 4: Parameters Value – Benchmark Economy

Parameter Description Value Source

Standard Parameters:

β Discount factor 0.98 Standard

σ Elasticity of substitution between intermediate goods 3.00 Hsieh and Klenow (2009)

α Capital share 0.33 Greenwood et al. (2013)

δ Capital depreciation rate 0.06 Greenwood et al. (2013)

γL Growth rate of the economy 1.04 Standard

Firm Dynamic Parameters:

ρs Persistence in the AR(1) process of firm productivity 0.10 Midrigan and Xu (2014)

σs Variance in the AR(1) process of firm productivity 0.50 Midrigan and Xu (2014)

υ Rate of producers’ entry and exit 0.05 Cooley and Quadrini (2001)

a Initial assets of producers upon entry 0+

Environmental Parameters:

ρ Efficiency of abatement effort 0.05 Shapiro and Walker (2018)

τ Environmental tax rate 0.20

κ Upfront cost of adoption clean technology 1.00

4.2 Quantitative Results

Effects of Financial Frictions: Open Economy

Table 5 presents the effects of financial development, modeled by increasing θ from 0 to 1,

in an open economy with a constant 4% interest rate. Panel A focuses on the scenario where

the upfront cost of adopting clean technology is high.

While real output steadily rises with θ, the impact on industrial pollution is nonlinear
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—-initially increasing, then decreasing, with a turning point around θ = 0.5. This quadratic

relationship is driven by its effect on the relative size of dirty production. For θ values

between 0 and 0.5, financial development reduces the fraction of dirty output from 43% to

25%. In contrast, when θ exceeds 0.5, further relaxing collateral constraints reverses this

trend, raising dirty output from 24% at θ = 0.5 to 48% at θ = 1.

Table 5: The Effects of Financial Development: Open Economy

θ = 0 θ = 0.2 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.8 θ = 1

Panel A: With Upfront Cost of Clean Technology (κ = 1)

Wage 0.441 0.481 0.531 0.564 0.603 0.702 0.852

Fraction output dirty (%) 43.07 34.55 26.33 24.52 24.62 28.87 48.08

Fraction constrained (%) 86.03 81.19 74.39 69.20 61.28 38.52 0.00

Output 1.015 1.101 1.211 1.284 1.374 1.603 1.965

Pollution 0.0728 0.0634 0.0531 0.0525 0.0564 0.0771 0.1574

Panel B: With Low Upfront Cost of Clean Technology (κ = 0.1)

Wage 0.481 0.516 0.561 0.589 0.621 0.710 0.946

Fraction output dirty (%) 6.05 5.11 4.17 3.69 3.25 2.72 5.69

Fraction constrained (%) 84.98 80.10 73.36 69.02 63.28 47.32 0.00

Output 1.085 1.164 1.264 1.328 1.400 1.600 2.135

Pollution 0.0109 0.0099 0.0088 0.0082 0.0076 0.0072 0.020

Notes: This table reports the effects of financial development in an open economy where the interest
rate is fixed at 4 percent. The output and pollution are re-scaled by labor supply, hence the output
can be explained as the overall labor productivity. The fraction of dirty output corresponds to the
variable ϵ in equation (36). Fraction constrained is the share of entrepreneurs with binding credit
constraint.

There are two opposite effects of financial development on clean technology adoption

and,consequently, on dirty production. On the one hand, fixing the level of wages, relaxing

collateral constraints allows an entrepreneur to borrow more, given their level of net worth.

This directly reduces the net worth required to adopt clean technology, thereby encouraging

its adoption and scaling up clean production. This refers to as the direct effect, which pro-

motes a green transition. On the other hand, more efficient capital allocation raises wages

in the general equilibrium. Higher wages reduce profits, particularly for less constrained

firms, as their profits are more sensitive to labor costs. As wages increase, firms’ ability

to accumulate the net worth necessary for adopting clean technology diminishes, thereby

slowing the transition to cleaner production. Consequently, this general equilibrium effect of

financial development hinders the adoption of clean technology. Figure 5 shows the direct
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effect of financial development on clean technology adoption, showing that the net worth

threshold declines sharply as θ increases when θ is not larger than 0.5. Figure 6 illustrates

the general equilibrium effect: as θ increases, the profits of most dirty firms decline (panel

(a)), and the share of small dirty entrepreneurs grows (panel (b)). In Figure 6, I select the

values of θ as {0, 0.6, 0.8, 0.9} such that the collateral constraints faced by firms are relaxed

in a double scale, since the tightness of these constrains are governed by the formula 1
1−θ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1
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Figure 5: Net Worth Threshold of Clean Technology
Notes: This figure plots the net worth threshold of clean technology adoption. Dirty entrepreneurs
whose net worth exceeds this threshold will opt for clean technology. For a given θ, the threshold
decreases as productivity increases. The figure shows the upper bound (corresponding to the lowest
productivity) and the lower bound (corresponding to the highest productivity) of the threshold for
each θ, along with the mean threshold value.

The overall impact of financial development on dirty production is driven by the balance

between two opposing forces – the negative direct effect and positive general equilibrium ef-

fect, as illustrated in Figure 7a. The direct effect is limited in a highly developed financial

market since the technology adoption decisions in these markets are distorted by the mini-

mal assets requirements (see equation (17)) due to the mere financial instrument of firms –

the risk-free bond, rather than their financial constraints. All eligible entrepreneurs—those

whose net worth meets the minimum required—can cover the start-up costs. As a result,

further relaxation of credit constraints has a small additional impact. In contrast, the general

equilibrium effect is enlarging with financial development. As the share of financially con-

strained dirty entrepreneurs decreases, as shown by the growing proportion of light brown

bars in Figure 7b, rising wages lead to more entrepreneurs who earn less profits. The in-
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crease in wages plays a larger role in slowing the accumulation of net worth, making it hard

for more firms to adopt clean technology. Once θ becomes sufficiently large, the general

equilibrium effect ultimately outweighs the direct effect, and financial development starts to

favor dirty production.
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Figure 6: Profits and Cumulative Distribution Function (CDF) of Dirty Entrepreneurs
Notes: This figure plots the profits and cumulative distribution function (CDF) of dirty entrepreneurs
as a function of their net worth. In panel (a), productivity is fixed at the medium level (s5), and the
asterisk marks the net worth threshold for clean technology adoption.
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(b) Shares of Entrepreneurs

Figure 7: Effects Decomposition and Fractions of Four Types of Entrepreneurs
Notes: Panel (a) in this figure shows the cumulative magnitude of the direct and general equilibrium
effects on the share of dirty output, with the baseline set at θ = 0. The cumulative direct effect is
equal to the change in the share of dirty output as θ increases from 0 to various levels, while keeping
wages fixed at the θ = 0 level. The general equilibrium effect is the difference between the total effect
and the direct effect. The dashed line indicates the total effect of financial development. Panel (b)
reports the composition of entrepreneurs in the economy. The dark green (green) bar represents the
constrained dirty (clean) entrepreneurs while the light bars represent the unconstrained ones.
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It is noteworthy that the direct effect on the fraction of dirty output in Figure 7a turns

positive when θ exceeds approximately 0.8, as indicated by the declining cumulative direct

effect. This suggests that, even though wages no longer increase with θ in general equilib-

rium, financial development ultimately begins to favor dirty production in the final stages

of market development. This occurs because the dirty sector retains a higher proportion

of financially constrained entrepreneurs compared to the clean sector. In a simple scenario

where the number of dirty and clean firms is fixed, financial development tends to benefit

the sector with a higher proportion of constrained firms. While allowing firms to switch

between sectors through the adoption of clean technology mitigates the advantage of dirty

production in the early stage of financial development, this extensive margin effect dimin-

ishes over time. Consequently, the relative benefit to the dirty sector prevails, even in the

presence of technological transition.

Role of the Upfront Cost (κ)

Table 5 panel (b) presents the effects of financial development when the upfront cost of clean

technology is low (κ = 0.1). In this case, pollution levels are significantly lower compared to

the high-cost scenario, as the reduced upfront cost enables a larger number of entrepreneurs

to adopt clean technology, leading to a smaller share of dirty entrepreneurs and a reduction

in dirty output.

The quadratic relationship between financial development and pollution, as well as the

share of dirty production, remains; however, the turning point shifts to a much higher level

– θ = 0.9. This is mainly due to the relatively muted general equilibrium effect, allowing the

direct effect consistently to dominate. As Figure 8a shows, the cumulative general equilib-

rium effect changes little with θ, particularly when compared to the much larger cumulative

direct effect. This suggests that the rise in wages in general equilibrium has little impact on

accelerating the accumulation of net worth by dirty entrepreneurs for the adoption of clean

technology.

In this case, clean technology is quite affordable. Only a few share of firms who are very

small are forced to use dirty technology. As a result, those dirty entrepreneurs face quite

tight financial constraints (as illustrated in Figure 8b). Wage increases in equilibrium have

small effects on their profits since these profits are highly determined by their collateral con-

straints. Consequently, the general equilibrium effect almost vanishes when the upfront cost

of clean technology is relatively low. Figure 9 compares the profits of dirty entrepreneurs
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between fixed and flexible wages, showing that rising wages in general equilibrium do not

overturn the positive relationship between financial development and dirty entrepreneurs’

earnings.
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Figure 8: Effects Decomposition and Fractions of Four Types Entrepreneurs (κ = 0.1)
Notes: This figure is the counterpart of Figure 7, reflecting the scenario where the upfront cost of clean
technology is low (κ = 0.1). Panel (b) presents two key differences: first, all dirty entrepreneurs are
financially constrained; second, the share of dirty entrepreneurs decreases as θ increases, regardless
of its level. The latter occurs due to the near disappearance of the general equilibrium effect.
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Figure 9: Profits of Dirty Entrepreneurs (κ = 0.1)
Notes: This figure compares the profits of dirty entrepreneurs under two wage scenarios: fixed wages
(panel (a)) and flexible wages in general equilibrium (panel (b)). In both panels, productivity is held
constant at its middle level (s5). In panel (a), where the wage is fixed at the level corresponding to
θ = 0, profits increase as θ rises. In panel (b), with wages adjusting to their equilibrium levels, the
profit differences across different values of θ are less pronounced. However, despite the contraction
in profit variation, the earnings of dirty entrepreneurs still increase with θ.
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Effect of Financial Frictions: Closed Economy

Table 6 reports the effects of financial development in a closed economy where interest rates

adjust flexibly to clear the domestic capital market. The quadratic relationship between

financial development and industrial pollution, as well as the proportion of output from

polluting sectors, remains evident.

Table 6: The Effects of Financial Frictions: Closed Economy

θ = 0.2 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.8 θ = 1

Panel A: With Upfront Cost of Clean Technology (κ = 1)

Wage 0.504 0.550 0.578 0.613 0.694 0.811

interest rate -0.060 0.003 0.020 0.031 0.044 0.051

Fraction output dirty (%) 30.08 23.70 22.99 24.09 29.10 47.99

Fraction constrained (%) 100.00 89.16 77.54 74.75 37.54 0.00

Output 1.152 1.253 1.316 1.396 1.584 1.869

Pollution 0.0577 0.0495 0.0504 0.0560 0.0768 0.1495

Panel B: With Low Clean Technology Cost (κ = 0.1)

Wage 0.538 0.591 0.615 0.644 0.715 0.902

interest rate -0.060 -0.015 0.004 0.017 0.037 0.050

Fraction output dirty (%) 5.00 4.00 3.56 3.14 2.71 5.69

Fraction constrained (%) 100.00 94.45 84.13 73.21 48.09 0.00

Output 1.215 1.332 1.385 1.450 1.612 2.036

Pollution 0.0101 0.0089 0.0082 0.0076 0.0073 0.0193

Notes: This table reports the effects of financial development in closed economy where the interest
rate is flexible to clear the capital market. The output and pollution are re-scaled by labor supply,
hence the output can be explained as the overall labor productivity. The fraction of dirty output
corresponds to the variable ϵ in equation (36). Fraction constrained is the share of entrepreneurs
with binding credit constraints.

In both open and closed economies, the development of a relatively highly-developed fi-

nancial market is detrimental to the environment. However, the magnitude of the effects on

industrial pollution differs. Figure 10 compares the cumulative effects of financial develop-

ment on pollution and its two key determinants—the fraction of dirty output and aggregate

output—across both open and closed economies. Notably, these two factors have opposite

effects. Compared to the open economy, financial development leads to a smaller increase

in output but a larger increase in the share of dirty output in the closed economy.
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Figure 10: Cumulative Effects of Financial Development
Notes: This figure presents the cumulative effects of increasing θ on pollution, the fraction of dirty
output, and total output. The baseline for comparison is set at θ = 0.2. In this open economy
scenario, the interest rate remains fixed at the general equilibrium level corresponding to θ = 0.2,
which is significantly lower than the 4 percent interest rate used in the benchmark analysis.

On the one hand, financial development results in a smaller increase in output in a closed

economy due to higher interest rates, which dampen capital demand. This, in turn, leads

to a relatively smaller increase in pollution. On the other hand, financial development also

exacerbates the size of dirty production relative to clean production in a closed economy,

driven by a reinforced general equilibrium effect. The profits of unconstrained entrepreneurs

are reduced not only by higher wages but also by higher interest rates in general equilib-

rium. Moreover, as interest rates rise in response to financial development, the desired

capital stock for unconstrained producers decreases, leading to fewer constrained dirty en-

trepreneurs. Consequently, in a closed economy, financial development results in more
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unconstrained dirty entrepreneurs, who require a longer time to accumulate sufficient net

worth for adopting clean technology. Thus, financial development disproportionately sup-

ports dirty production in a closed economy. Together, these opposing effects determine the

overall impact on pollution in a closed economy.

5 Concluding Remarks

This paper examines the impact of financial development on the green transition, primar-

ily through its influence on clean technology adoption. Using a dynamic heterogeneous-

agents general equilibrium model, I derive two key findings. First, financial development

supports the green transition primarily in underdeveloped financial markets, while in more

advanced markets, it can hinder progress. Second, the effect of financial development on

clean production is contingent on the startup costs of clean technology; lower startup costs

make financial development more conducive to green production.

There are several potential extensions of the current work, which I plan to explore in

future research. Firstly, I will match up the theoretical model with data by estimating or

calibrating environmental parameters and probably firm dynamic parameters in section

4.1. Secondly, I will utilize country-sector-level data to test my theoretical predictions em-

pirically. Following the approach of De Haas and Popov (2022), I will modify their linear

regression model by incorporating a quadratic term for the financial development variable.

Thirdly, it is better to investigate whether environmental taxes or sustainable finance— al-

ter the collateral requirements for clean technology investments—can mitigate the adverse

effects of financial development on pollution. Finally, to align my empirical evidence more

closely with the model, where firm productivity and net worth are key state variables, I

should include productivity as an additional variable in my regressions in section 2, along-

side the current financial constraint variable. I will also check the robustness of results in

section 2 by using different measures of financial constraints.
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A Appendix

A.1 Matching TRI with Compustat

I construct firm-level variables for Production Waste, Total Release, and Total Abatement by

aggregating facility-level data for each year, using parent company names from the TRI

database. To link these parent names to U.S. public companies in the Compustat database,

I first clean the parent firm names in both databases using the fedmatch package in R. Sub-

sequently, I apply Stata’s fuzzy name-matching algorithm, matchit, which generates match-

ing scores for all pairs of parent names in TRI and Compustat. These scores quantify the

similarity between two names on a scale from zero to infinity, with a score of one indicat-

ing an exact match. I first give equal weight to each word and select all pairs with scores

higher than 0.8 and manually check to ensure accuracy. To avoid inflated matching scores

caused by common words such as "corporate" or "industry," I then reapply matchit using

a weighting scheme that assigns lower weights to high-frequency words. After repeating

the matching process, I combine the matched pairs from both methods to create the final

dataset.

A.2 Model Details

The equation for TFP across the h−type entrepreneurs is

Sh
t (r, w) =


[

Bh(r, w)

Eh(r, w)

]α(1−ρ(h))(σ−1)

Bh(r, w)


1

σ−1

(38)

where both Bh(r, w) and Eh(r, w) are the integrals of productivity across h−type where in-

dividual productivities are weighted by the wedge between the shadow price of saving

(r + δ + µh(a, si)) and the market price of capital (r + δ) in different ways:

Bh(r, w) =
Np

∑
j=1

∫
A

[
sj

(
r + δ

r + µh(a, si) + δ

)α](1−ρ(h))(σ−1)

dnh(a, si)

Eh(r, w) =
Np

∑
j=1

∫
A

[
sj

(
r + δ

r + µh(a, si) + δ

)α](1−ρ(h))(σ−1) r + δ

r + µh(a, si) + δ
dnh(a, si)
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In the efficient economy, µ(a, si) = 0, Bh(r, w) and Eh(r, w) are equivalent and the TFP is

equal to its efficient level. However, with financial frictions, both of them are smaller:

Eh(r, w) < Bh(r, w) < St
h
(r, w)

The share of labor income, capital income and pollution tax revenues are reported as

follows:

wLt

Yt
=

σ − 1
σ

(1 − α) [1 − ρϵ(r, w)] (39)

(r + δ)Kt

Yt
=

σ − 1
σ

α

[
Ec(r, w)

Bc(r, w)
(1 − ϵ(r, w)) +

Ed(r, w)

Bd(r, w)
(1 − rho)ϵ(r, w)

]
(40)

τZt

Yt
=

σ − 1
σ

ρϵ(r, w) (41)
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Figure A.1: Sample Number of Companies (Bar) and Facilities (Line), 1991-2022

Figure A.2: Total Toxic Release, 1991-2022
Notes: This figure presents the time series of toxic release of all companies in the sample for a period
running from 1991 through 2022. We exclude top 1% companies with highest toxic release during
the sample period.
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Figure A.3: Clean Technology Adoption Rate, 1991-2022
Notes: This figure presents the time series of the share of facilities who adopt clean technology each
year from 1991 through 2022.
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Table A.1: Financial Constraint, Emission Intensity and Abatement Ratio

log (1 + emission intensity) abatement ratio
(1) (2) (3) (4) (5) (6)

log(asset) -0.2661*** -0.2753*** -0.2819*** 0.0190*** 0.0222*** 0.0202***

(0.0202) (0.0197) (0.0187) (0.0031) (0.0027) (0.0026)

Observations 16,895 16,895 16,895 16,888 16,888 16,888

Asjusted R2 0.0777 0.1998 0.3083 0.0591 0.1748 0.2944

Year FE Yes Yes

Industry-Year FE Yes Yes Yes Yes

State-Year FE Yes Yes

Table A.2: Clean Technology Adoption

log(1+adoption frequency) log (1 + generation intensity)
(1) (2) (3) (1) (2) (3)

log(asset) 0.0234*** 0.0158*** 0.0161*** -0.3784*** -0.3740*** -0.3874***

(0.0035) (0.0037) (0.0037) (0.0209) (0.0197) (0.0186)

Observations 99,559 99,559 99,559 16,895 16,895 16,895

Asjusted R2 0.0205 0.0463 0.0835 0.0782 0.2059 0.3147

Year FE Yes Yes

Industry-Year FE Yes Yes Yes Yes

State-Year FE Yes Yes

Controls Yes Yes Yes
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