Overpromising Green Jobs? Evidence from the French Energy Efficiency Obligations Program

Guillaume Wald¹, François Cohen²

 $^{\rm 1}$ CERNA, Mines Paris - PSL $^{\rm 2}$ University of Barcelona, Energy Sustainability Chair & IEB

EEA 2025, Bordeaux

28 August 2025

Motivation

Data & Method

Employment - Main results

Employment – Heterogeneity

Wages & VA

Wrap-Up & Policy Recommendation

No Energy Transition Without Green Construction Jobs

- Buildings energy efficiency is a pillar of the energy transition
 - The European Commission's Renovation Wave (2021) aims to renovate 35 million buildings by 2035

Buildings account for:

 In France, 72% of all 2030-targets green investments should go to buildings energy renovation (Pisani-Ferry & Mahfouz 2023)

No Energy Transition Without Green Construction Jobs

- Buildings energy efficiency is a pillar of the energy transition
 - The European Commission's Renovation Wave (2021) aims to renovate 35 million buildings by 2035

Buildings account for:

- In France, 72% of all 2030-targets green investments should go to buildings energy renovation (Pisani-Ferry & Mahfouz 2023)
- Energy efficiency faces major labor shortages
 - In the EU, half of occupations facing a severe shortage belong to the construction sector (European Labor Authority, 2023)
 - o In France, 170 to 250,000 jobs needed in 2030 (France Strat. 2023)

Energy Efficiency Subsidies & Labor Market Frictions

 Popular second-best policy for environmental externalities WAP (US), ECO (UK), CEE & MPR (France), Ecobonus (Italy)

Energy Efficiency Subsidies & Labor Market Frictions

- Popular second-best policy for environmental externalities WAP (US), ECO (UK), CEE & MPR (France), Ecobonus (Italy)
- Cost-efficiency depends on supply-side response, particularly labor markets
 - Subsidies raising wages make green jobs more attractive
 - Firm capture of surplus limits wage growth and thus attractiveness

Energy Efficiency Subsidies & Labor Market Frictions

- **Popular second-best policy** for environmental externalities WAP (US), ECO (UK), CEE & MPR (France), Ecobonus (Italy)
- Cost-efficiency depends on supply-side response, particularly labor markets
 - Subsidies raising wages make green jobs more attractive
 - Firm capture of surplus limits wage growth and thus attractiveness
- ⇒ Surplus distribution creates labor frictions that may hinder progress in the energy transition

Research question

How does **surplus distribution** within firms affect the **cost-efficiency of environmental subsidies**?

Research question

How does **surplus distribution** within firms affect the **cost-efficiency of environmental subsidies**?

Contributions

- Labor market effects of the energy transition
 - Limited green jobs creation (Popp et al. 2021, Fabra et al. 2024)
 - Skill-bias in low-carbon jobs (Vona, et al. 2018, Yip 2018, Marin & Vona 2019, Saussay, et al. 2022, Curtis, et al. 2024)
 - → A job creation or wage premium effect for energy retrofits?

Research question

How does **surplus distribution** within firms affect the **cost-efficiency of environmental subsidies**?

Contributions

- Labor market effects of the energy transition
 - o Limited green jobs creation (Popp et al. 2021, Fabra et al. 2024)
 - Skill-bias in low-carbon jobs (Vona, et al. 2018, Yip 2018, Marin & Vona 2019, Saussay, et al. 2022, Curtis, et al. 2024)
 - → A **job creation or wage premium** effect for energy retrofits?
- Incidence of environmental subsidies
 - Focus on the pass-through from producers / retailers to consumers (Alcott, Shapiro & Tintelnot 2025; Kwon, Allcott & Snyder 2025; Pless & Van Benthem 2019, Lade & Bushnell 2019, Salee 2011)
 - → A role for surplus sharing between firms and workers?

Motivation

Data & Method

Employment - Main results

Employment - Heterogeneity

Wages & VA

Wrap-Up & Policy Recommendation

Data: Monthly Employment, Wages & VA over 2016-2020

- Daily entries & exits from any position in each business in France (Mouvement Main d'Œuvre from Ministry of Labour)
- Wages offered to each worker in each business in France (DADS Postes)
- Monthly Value Added base (total & 5.5% rate for energy efficiency works, French VAT records)

- Businesses are distributed in 686 activity codes: our treated sector is the sum of insulation works (4322B) and heating systems installation (4329A) sectors
- \Rightarrow We aggregate the data at the region \times month \times sector to exploit both cross-sectional (13 Metropolitan regions) and cross-period variations

We exploit a **sharp discontinuity** in the **provision of subsidies** to French households

▶ **5-fold increase** in the **monthly investment** for retrofit operations:

Descriptive statistics

Comparison of monthly employment for the insulation & heating sectors, versus all other sectors
 (% of Jan. 2016 total employment)

SCM applied to disaggregated data (Abadie & L'Hour, 2021)

- Outcome is regional workforce, average wages & value added in the renovation industry in month m
- Counterfactual is a weighted average of control sectors
 - Weights are determined by trends on the pre-reform period
 - Construction-related sectors are dropped (SUTVA)
 - o Donor pool gathers sectors with a **relatively closed workforce size** $\pm 33\%$ the treated sector (different filters as robustness check)

SCM applied to disaggregated data (Abadie & L'Hour, 2021)

- Outcome is regional workforce, average wages & value added in the renovation industry in month m
- Counterfactual is a weighted average of control sectors
 - Weights are determined by trends on the pre-reform period
 - Construction-related sectors are dropped (SUTVA)
 - \circ Donor pool gathers sectors with a **relatively closed workforce size** $\pm 33\%$ the treated sector (different filters as robustness check)

Causal inference relies on an inference score

- Same experiment with 100 randomly selected donors
 - Causal effect iff the energy renovation sector records the largest post-treatment effect compared to the placebos
 - o p-value is the rank of treated vs. placebos

Motivation

Data & Method

Employment – Main results

Employment - Heterogeneity

Wages & VA

Wrap-Up & Policy Recommendation

Net employment effect

Monthly employment in energy renovation versus its penalized synthetic control

Net employment effect

Monthly employment in energy renovation versus its penalized synthetic control

⇒ Reforms increased **monthly employment** by **+58,000** between Apr. 2018 & Feb. 2020, equivalent to **+4,900** job-year (0.01).

Temp workers (Manpower-style)

▶ **Temp workers** may be placed to a renovation firm

 \Rightarrow **Policy-induced**: +1,800 (0.01) additional job-years.

Job multiplier: +1.6-2.2 job-year per mln. EUR

- Total subsidy increase: €2,990 mln.
 - 1.6 job-year in the energy renovation industry
 - **0.6** job-year among temp workers
- In line with previous ex-post estimates on green jobs
 - Popp et al (2021):
 - 2-4 job-year/mln. USD in the construction sector in the US
 - Fabra et al. (2024):
 - 1 local job/mln. USD in PV development in Spain

Job multiplier: +1.6-2.2 job-year per mln. EUR

- Total subsidy increase: €2,990 mln.
 - **1.6** job-year in the energy renovation industry
 - **0.6** job-year among temp workers
- In line with previous ex-post estimates on green jobs
 - Popp et al (2021):
 2-4 job-year/mln. USD in the construction sector in the US
 - Fabra et al. (2024):
 1 local job/mln. USD in PV development in Spain
- Below ex-ante forecasts (5-10 job-year/mln. EUR, BPIE 2021)
- → Very ambitious green jobs generation targets from recovery packages likely to be missed.
- ⇒ How can we explain this **disappointing effect**?

Motivation

Data & Method

Employment - Main results

Employment – Heterogeneity

Wages & VA

Wrap-Up & Policy Recommendation

Within the renovation industry (1.6 job-year/mln. EUR)

- 68% jobs at Micro (< 10 workers) vs. 32% at SMEs (10-49 workers)
- → Micro enterprises largely benefited from the policy despite their limited ability to respond the increased demand and administrative burden, while SMEs failed to industrialize.
 - 66% permanent vs. 33% fixed term
- → EEOs grants have mitigated policy uncertainty and/or suggested durable public support to energy retrofits.

Within the renovation industry (1.6 job-year/mln. EUR)

- 68% jobs at Micro (< 10 workers) vs. 32% at SMEs (10-49 workers)
- → Micro enterprises largely benefited from the policy despite their limited ability to respond the increased demand and administrative burden, while SMEs failed to industrialize.
 - 66% permanent vs. 33% fixed term
- → EEOs grants have mitigated policy uncertainty and/or suggested durable public support to energy retrofits.

Including temp workers (2.2 job-year/mln. EUR)

- 28% temp-workers
- + 12% exits from any unemployment ≥ 1 month
- = 40% of net **job creation effect** within the industry
- ⇒ Evidence of **limited transition costs** for workers, especially in insulation-related tasks (80% of the investments)

Motivation

Data & Method

Employment - Main results

Employment – Heterogeneity

Wages & VA

Wrap-Up & Policy Recommendation

No effect on wages

 We run the same experiment on wages offered to newly hired workers (DADS Postes)

- No subsidy pass-through to wages in the renovation industry
- ⇒ Challenges the assumption of a labor supply shortage.

Sharp increase in value added

We run the same experiment on Value Added reported by firms in the industry under the special 5.5% rate (energy efficiency)

Total increase in Value Added: +€1.15 bln. (0.01)

Surplus is captured through higher installer margins

• Pass-through of energy efficiency subsidies to firms' VA:

$$\frac{\text{€ 1.15 bln.}}{\text{€ 2.99 bln.}} = 38\%$$

→ Surplus is shared between labor costs, profits & investments.

Surplus is captured through higher installer margins

Pass-through of energy efficiency subsidies to firms' VA:

$$\frac{\text{€ 1.15 bln.}}{\text{€ 2.99 bln.}} = 38\%$$

- → Surplus is shared between labor costs, profits & investments.
 - Increase in total labor cost is 26% the total increase in VA

2.2 jobs-year
$$\times$$
 € 2,990 mln. \times 12 \times € 3,760 \simeq € **300 mln.**

- \rightarrow Significantly below the 37% share in the pre-policy period.
- ⇒ Low workers' bargaining power hinders the attractiveness of the industry, undermining the cost-efficiency of energy efficiency subsidies.

Motivation

Data & Method

Employment - Main results

Employment - Heterogeneity

Wages & VA

Wrap-Up & Policy Recommendation

Wrap-Up

- Energy efficiency subsidies generate modest job creation despite ambitious policy targets and labor shortages
- Firms capture 38% of the rise in subsidies, while labor cost share drops by 11pp.

Policy Recommendation

- Reward skill content in subsidy design
 - Re-skilling policies for heating technicians
 - Require certified skilled workers for subsidy eligibility
- Strengthen workers' bargaining position
 - Link subsidies to wage standards or collective agreements
 - Support SME industrialization over micro-enterprise fragmentation
- ⇒ Higher wages will enhance job attractiveness and recognition of energy renovation works, improving policy cost-efficiency

Thank you!

guillaume.wald@minesparis.psl.eu

I am on the 2025-26 Academic Job Market with a paper entitled: Wired For Change? Clean Technology Adoption and Labor Market Transitions

 ${\color{red}\mathsf{Appendix}}$

Descriptive statistics

Main estimation: Complementary results

Main estimation: Robustness checks

Descriptive statistics: the MMO data

		Headcount	Perm. emp.	FT emp.	Total emp.
Retro. i	ndustry	1			
2016	01	98,672	+957	+430	+1,387
2017	12	111,092	+4,651	+1,505	+6,156
2020	01	130,719	+14,525	+3,736	+18,262
Other sectors					
2016	01	16,139,468	+131,433	+275,265	+406,699
2017	12	17,475,526	+354,258	+466,988	+821,246
2020	01	18,644,580	+739,822	+391,657	+1,131,479

Descriptive statistics: Small & Medium Enterprises

		Headcount	Perm. emp.	FT emp.	Total emp.	
Retro. i	ndustry					
2016	01	73,770	+547	+200	+748	
2017	12	79,287	+1,193	+299	+1,492	
2020	01	93,528	+4,194	+1,265	+5,459	
Other sectors						
2016	01	12,776,349	+85,783	+176,251	+262,034	
2017	12	13,595,409	+138,785	+155,095	+293,880	
2020	01	14,380,180	+247,878	+22,658	+270,536	

Descriptive statistics: Micro Enterprises

		Headcount	Perm. emp.	FT emp.	Total emp.
Retro. industry					
2016	01	24,902	+410	+230	+639
2017	12	31,805	+3,458	+1,206	+4,664
2020	01	37,191	+10,331	+2,472	+12,803
Other so	ectors				
2016	01	3,336,121	+45,650	+99,015	+144,665
2017	12	3,882,117	+216,099	+311,919	+528,018
2020	01	4,264,400	+493,229	+369,261	+862,490

Descriptive statistics

Main estimation: Complementary results

Main estimation: Robustness checks

Permutation test for the effect of the policy

- Treatment effect ranks first against 100 alternative random permutations
- Corresponding p-value for the one-sided test: 0.01

Regional heterogeneity

 Using a synthetic control method that leverages regional variations allows us to plot results at the regional (NUTS 2) level:

⇒ Policy-induced jobs located in **colder/richer regions**

Weights of the Synthetic Control

Sum of Weights by National Sector

Descriptive statistics

Main estimation: Complementary results

Main estimation: Robustness checks

SUTVA

- New workers may come from non-construction sectors, resulting in a violation of the SUTVA
- We group new hires post Apr. 2018 in renovation firms by their sector of origin

⇒ Top 5 sectors account for 62.5% of new hires

SUTVA results

▶ We exclude the top 5 sectors of origin from the donor pool

⇒ Treatment effect remains strictly unchanged: **+4,900** (0.01)

Related sectors

- The RGE label is a quality certification for energy renovation firms
- We use this label to identify other sectors involved in the renovation industry

Top 10 sectors by headcount within certified firms

► Only 1 sector with an effect significant at 10%: Water & gas installation: +1,150 (0.08)

⇒ Effect of the policy concentrated on insulation and heating.

Anticipation test: assuming a policy start in October 2017

▶ Effect over 2017-T4 is **small** (about +1,000/year) and may stem from the **end of the third phase** rather than the changes introduced during the fourth phase; p-value = 0.01.

Placebo test: assuming a policy start in January 2018

► Effect only starts after the first *implementation reform*, **similar to our baseline** (about +59,000 over 26 months); *p*-value = 0.03.

Donor pool with workforce size $\pm 25\%$ the treated sector

▶ Treatment effect slightly below the baseline: +4,800 (0.02)

Donor pool with workforce size $\pm 50\%$ the treated sector

► Treatment effect slightly above the baseline: +5,500 (0.01)